

Mastering XPages
A Step-by-Step Guide to XPages
Application Development and the
XSP Language
By Martin Donnelly, Mark Wallace, Tony McGuckin
ISBN: 0-13-248631-8

The fi rst complete, practical guide to XPages
development—direct from members of the
XPages development team at IBM Lotus.
Martin Donnelly, Mark Wallace, and Tony
McGuckin have written the defi nitive program-
mer’s guide to utilizing this breakthrough
technology. Packed with tips, tricks, and best
practices from IBM’s own XPages developers,
Mastering XPages brings together all the
information developers need to become
experts—whether you’re experienced with
Notes/Domino development or not. The authors
start from the very beginning, helping developers
steadily build your expertise through practical
code examples and clear, complete explanations.
Readers will work through scores of real-world
XPages examples, learning cutting-edge XPages
and XSP language skills and gaining deep
insight into the entire development process.
Drawing on their own experience working directly
with XPages users and customers, the authors
illuminate both the technology and how it can be
applied to solving real business problems.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

XPages Extension
Library
A Step-by-Step Guide to the Next
Generation of XPages Components
By Paul Hannan, Declan Sciolla-Lynch,
Jeremy Hodge, Paul Withers, Tim Tripcony
ISBN: 0-13-290181-1

The XPages Extensibility Framework is one of the
most powerful application development features
found in IBM Lotus Notes Domino. It enables
developers to build their own artifacts and move
far beyond XPages’ out-of-the-box features.
The XPages Extension Library is the greatest
manifestation of this framework. A team of
all-star XPages experts from inside and outside
IBM show developers how to take full advantage
of the XPages Extensibility Library and the grow-
ing portfolio of components built with them. The
authors walk through installing and confi guring
the XPages Extension Library, integrating it
with Domino Designer, and using new XPages
components to quickly build state-of-the-art
applications for web, the Notes client and
mobile devices.

Related Books of Interest

Visit ibmpressbooks.com

Web 2.0 and Social
Networking for the
Enterprise
Guidelines and Examples
for Implementation and
Management Within Your
Organization
Bernal
ISBN: 0-13-700489-3

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott
ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of
proven resolutions to common problems and has
streamlined processes for infrastructure support.
Elliott systematically addresses support solutions
for all recent Lotus Notes and Domino
environments.

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David Byrd, Gary Wood,
Tim Speed, Michael Martin, Suzanne Livingston,
Jason Moore, and Morten Kristiansen
ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM
Lotus Connections 2.5 experts thoroughly intro-
duces the newest product and covers every facet
of planning, deploying, and using it success-
fully. The authors cover business and technical
issues and present IBM’s proven, best-practices
methodology for successful implementation. The
authors begin by helping managers and technical
professionals identify opportunities to use social
networking for competitive advantage–and by
explaining how Lotus Connections 2.5 places full-
fl edged social networking tools at their fi ngertips.
IBM Lotus Connections 2.5 carefully describes
each component of the product–including
profi les, activities, blogs, communities, easy social
bookmarking, personal home pages, and more.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master
Data Management
An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for
Security Professionals
Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Understanding DB2 9
Security
Bond, See, Wong, Chan
ISBN: 0-13-134590-7

The Social Factor
Innovate, Ignite, and Win through Mass
Collaboration and Social Networking
By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
fi rewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specifi c techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.
Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

This page intentionally left blank

XPages Portable
Command Guide

This page intentionally left blank

XPages Portable
Command Guide
A Compact Resource to XPages Application
Development and the XSP Language

Martin Donnelly, Maire Kehoe, Tony McGuckin,
Dan O’Connor

IBM Press, Pearson plc

Upper Saddle River, NJ  •  Boston  •  Indianapolis  •  San Francisco
New York  •  Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid
Cape Town  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights
reserved.

Note to U.S. Government Users: Documentation related to restricted right.
Use, duplication, or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

Cover design: IBM Corporation

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

The following terms are trademarks of International Business Machines
Corporation in many jurisdictions worldwide: IBM Press, Notes, Domino, Java,
IBM, Rational, WebSphere, LotusScript, developerWorks, and Sametime. Other
product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at “Copyright and trade-
mark information” at www.ibm.com/legal/copytrade.shtml. Java and all Java-
based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates. Microsoft, Windows, Windows NT, and the Windows logo
are trademarks of Microsoft Corporation in the United States, other countries,
or both. Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both. Other company, product, or service names may be
trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

XPages portable command guide : a compact resource to XPages application
development and the XSP language / Martin Donnelly ... [et al.].
 p. cm.
 Includes bibliographical references.
 ISBN 978-0-13-294305-5 (pbk.)
 1. XPages. 2. Application software--Development. 3. Web site development.
I. Donnelly, Martin, 1963-
 QA76.625.X63 2012
 006.7’6--dc23
 2011047429

All rights reserved. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

First printing February 2012

ISBN-13: 978-0-13-294305-5
ISBN-10: 0-13-294305-0

Associate Publisher
Dave Dusthimer

Marketing Manager
Stephane Nakib

Executive Editor
Mary Beth Ray

Publicist
Heather Fox

Development Editor
Eleanor Bru

Managing Editor
Kristy Hart

Designer
Alan Clements

Project Editor
Anne Goebel

Copy Editor
Krista Hansing
Editorial Services, Inc.

Indexer
Lisa Stumpf

Compositor
Nonie Ratcliff

Proofreader
Debbie Williams

Manufacturing Buyer
Dan Uhrig

www.ibm.com/legal/copytrade.shtml

Dedications

To the memory of my parents, Betty and Paddy, whose love and support I will always
cherish.

—Martin

To my parents and my husband, Nelius, for all their support.

—Maire

To Martin: Once again, you pulled us over the line! You deserve a medal.

To my parents and family: I love you all and hope you enjoy reading another great book
about XPages!

For “my two girls,” Paula and Anna-Rose: a beautiful wife and special daughter who
mean absolutely everything to me!

—Tony

Dedicated to the memory of my parents, Peter and Rita—I miss you both.

To my family—in particular, my wife, Anne Marie, and daughter, Aileen—my contribution
to this book would not have been possible without your support and encouragement.
I love you both.

Finally, to my coauthors—thank you for putting faith in a “Designer developer”
to contribute to this fine book!

—Dan

This page intentionally left blank

Contents

Chapter 1	 Working with XSP Properties  1

Locating and Updating xsp.properties  7

The Timeout Properties  9

xsp.application.timeout  10

xsp.session.timeout  10

xsp.session.transient  12

xsp.application.forcefullrefresh  13

The Theme Properties  13

xsp.theme  13

xsp.theme.web  14

xsp.theme.notes  15

The Resources Properties  18

xsp.resources.aggregate  18

The File Upload Properties  21

xsp.upload.maximumsize  21

xsp.upload.directory  21

The JSF Persistence Properties  22

xsp.persistence.discardjs  23

xsp.persistence.mode  24

xsp.persistence.tree.maxviews  29

xsp.persistence.file.maxviews  30

xsp.persistence.viewstate  30

xsp.persistence.file.gzip  32

xsp.persistence.file.async  32

xsp.persistence.file.threshold  33

xsp.persistence.dir.xspstate  34

xsp.persistence.dir.xspupload  35

xsp.persistence.dir.xsppers  35

The Client Side JavaScript Properties  37

xsp.client.script.dojo.version  37

xsp.client.script.dojo.djConfig  42

The HTML Page-Generation Properties  44

xsp.html.doctype  44

xsp.html.meta.contenttype  45

xsp.html.preferredcontenttypexhtml  46

xsp.html.page.encoding  47

xii   XPages Portable Command Guide

xsp.compress.mode  47

xsp.client.validation  48

xsp.redirect  49

The Error-Management Properties  50

xsp.error.page.default  50

xsp.error.page  52

The User Preferences Properties  55

xsp.user.timezone  55

xsp.user.timezone.roundtrip  56

The AJAX Properties  57

xsp.ajax.renderwholetree  57

The Script Cache Size Properties  60

ibm.jscript.cachesize  60

ibm.xpath.cachesize  60

The Active Content Filtering Properties  61

The Resource Servlet Properties  65

xsp.expires.global  65

The Repeating Control Properties  66

xsp.repeat.allowZeroRowsPerPage  67

The Partial Update Properties  68

xsp.partial.update.timeout  68

The Link Management Properties  69

xsp.default.link.target  69

xsp.save.links  71

The Control Library Properties  73

xsp.library.depends  73

The Composite Data Properties  75

xsp.theme.preventCompositeDataStyles  76

Other Ways of Applying xsp.properties Settings  77

Viewroot Properties  77

Request Properties  78

Applying Properties Using a Theme  80

What Works Where?  81

Conclusion  81

Chapter 2	 Working with Notes/Domino Configuration Files  83

INI Variables You Should Know About  83

The Java Heap  86

HTTPJVMMaxHeapSize Variable  88

Contents   xiii  

HTTPJVMMaxHeapSizeSet Variable  89

JavaMaxHeapSize Variable  89

JavaMinHeapSize Variable  90

JavaEnableDebug Variable  90

JavaDebugOptions Variable  90

JavaUserClasses Variable  90

OSGI_HTTP_DYNAMIC_BUNDLES Variable  91

XPagesPreload Variable  92

XPagesPreloadDB Variable 93 

When and Why Is Preloading Important?  93

Avoid Unnecessary Network Transactions in Your
Application Code  95

Optimizing Client Memory Usage  96

vmarg.Xms  97

vmarg.Xmx  97

Enabling Extended Java Code with the java.policy File  97

JavaUserClasses  100

Conclusion  102

Chapter 3	 Working with the Console  103

About the XSP Command Manager  103

How to Execute the XSP Command Manager Commands  103

show data directory  104

show program directory  105

show version  105

show settings  106

show modules  108

refresh  108

heapdump  109

javadump  109

systemdump  111

Working with the OSGi Console  112

diag <bundle-symbolic-name>  114

ss, ss <bundle-symbolic-name>, or
ss <bundle-name-prefix>  116

start <bundle-symbolic-name>  119

stop <bundle-symbolic-name>  120

b <bundle-symbolic-name>  120

headers <bundle-symbolic-name>  121

help  122

xiv   XPages Portable Command Guide

How to Launch Notes/Designer Along
with the OSGi Console  123

Common Console Commands You Should Know  126

help  127

load [task-name]  127

load [task-name] -?  128

quit  129

restart server  129

tell [task-name] quit  130

restart task [task-name]  130

show server  131

show conf [notes.ini variable]  132

set conf [notes.ini variable=value]  132

tell adminp [options]  132

load chronos [options]  133

load updall [path] [options]  134

load design [source] [target] [options]  134

load fixup [path] [options]  135

show tasks  136

show allports  136

show diskspace  137

show heartbeat  137

Conclusion  138

Chapter 4	 Working with the XSP Client Side JavaScript Object  139

What Is the XSP Client Side JavaScript Object?  139

Summary of the XSP Client Side JavaScript Object Functions  145

The Public XSP Client Side JavaScript Object Functions  160

XSP.alert(message) : void  161

XSP.confirm(message) : boolean  162

XSP.error(message) : void  162

XSP.prompt(message, defaultValue) : string  163

XSP.djRequire(moduleName) : object  164

XSP.addPreSubmitListener(formId, listener, clientId, scriptId)
: void  165

XSP.addQuerySubmitListener(formId, listener, clientId,
scriptId) : void  166

XSP.canSubmit() : boolean  167

XSP.allowSubmit() : void  168

Contents   xv  

XSP.setSubmitValue(submitValue) : void  169

XSP.getSubmitValue() : object  170

XSP.validateAll(formId, valmode, execId) : boolean  171

XSP.getFieldValue(node) : string  172

XSP.getDijitFieldValue(dj) : object  173

XSP.validationError(clientId, message) : void  174

XSP.scrollWindow(x, y) : void  176

XSP.partialRefreshGet(refreshId, options) : void  176

XSP.partialRefreshPost(refreshId, options) : void  177

XSP.attachClientFunction(targetClientId, eventType,
clientScriptName) : void  179

XSP.attachClientScript(targetClientId, eventType,
clientScript) : void  180

XSP.addOnLoad(listener) : void  181

XSP.showSection(sectionId, show) : void  182

XSP.findForm(nodeOrId) : object  183

XSP.findParentByTag(nodeOrId, tag) : object  183

XSP.getElementById(elementId) : object  184

XSP.hasDijit() : boolean  184

XSP.trim(s) : string  185

XSP.startsWith(s, prefix) : boolean  186

XSP.endsWith(s, suffix) : boolean  186

XSP.toJson(o) : string  187

XSP.fromJson(s) : object  187

XSP.log(message) : void  188

XSP.dumpObject(object) : string  189

How XPages Uses the Dojo Framework  189

Dojo Types and Attributes  190

Working with Dojo Dijits  193

IDs in the HTML Source and the Requirement to Use the
“#{id:” Syntax  193

Scripts Accessing Dojo Controls Need to Use dijit.byId  195

Dojo Controls Are Not Available While the HTML Page Is
Loading  196

Bad AJAX Requests to an XPage Can Cause Loss of
Data  197

XPages Input Validation Can Interact with Dojo Layout
Controls  198

Dojo Control Interaction with XPages Partial Update  199

xvi   XPages Portable Command Guide

Client-Side Debugging Techniques  201

XSP Object Debug Functions  201

Client-Side Debugging with Dojo  202

Other Miscellaneous Client-Side Debugging
Information  204

Conclusion  207

Chapter 5	 Server-Side Scripting  209

What Can I Do with Server Side JavaScript?  210

XPages Object Model  210

Server-Side Scripting Objects and System Libraries  210

Summary of Server-Side Global Functions  216

getComponent(id:String): UIComponent  219

getClientId(id:String): String  223

getLabelFor(component:UIComponent):UIComponent  224

getView(): UIViewRoot  225

getForm(): UIForm  225

save():void  226

Working with Java Made Simpler  226

Importing Java Packages into Server Side JavaScript  226

Creating Custom Java Classes  227

Creating Managed Beans  227

Conclusion  238

Chapter 6	 Server-Side Debugging Techniques  239

The “Poor Man’s” Debugger  239

print(message) : void & println(message) : void  239

_dump(object) : void  241

Using try/catch Blocks  246

How to Set Up a Server for Remote Debugging  247

Debugging Java Code and Managed Beans  250

Debugging XPages Extension Plug-ins  261

How to Configure notes.ini and rcpinstall.properties
for Logging  262

Contents   xvii  

Interpreting a Stack Trace: Where to Go from Here?  268

Understanding the XPages Request Handling
Mechanism  268

Understanding the XPages Request Processing Lifecycle  269

XPages Toolbox  275

Conclusion  276

Appendix A	 Definitive Resources  277

Appendix B	 Useful Online Resources  279

Appendix C	 Make Your Own Journal  281

index  285

Introduction

Welcome to the XPages Portable Command Guide! This book is designed, for the
most part, as a quick information guide for XPages developers with some real-world
experience under their belts. It focuses on the road less traveled—xsp.properties
parameters, notes.ini settings, XSP JS object functions, and such. In other words,
it covers the little-known magic bullets that are not well documented but invariably
help get you out of a programming bind. In that sense, it is an ideal companion for
more holistic tomes such as Mastering XPages, which is designed to give broad
coverage to the runtime and application development experience in general. Having
said that, this book does dive into detail, when appropriate—after all, the authors are
developers, so we just can’t help ourselves!

XPages is a rich and powerful application development framework for Notes/
Domino, first introduced in version 8.5 at Lotusphere 2009. Since that time, XPages
has gone from strength to strength, with three further release updates, an open source
XPages Extension Library, a dedicated IBM XWork server, a best-selling IBM Press
book, and many other initiatives and innovations. We hope this Portable Command
Guide helps add to the general success of XPages by bringing new information to the
community and making application development a little bit easier for all concerned.

Reading Audience

This book is for XPages developers with some practical experience. Neophytes are
advised to start with a more general book, such as Mastering XPages, or perhaps to
use this book as its companion guide.

Conventions

Any programming code, markup, or XSP keywords are illustrated in numbered list-
ings using a fixed width font.

User interface elements (menus, links, buttons, and so on) of the Notes client,
Domino Designer, or any sample applications are referenced using a bold font.
So too are file system paths, locations, and artifacts, such as the notes.ini and
xsp.properties files.

Important words and phrases are emphasized using an italic font.

Visual representations of the design-time experience or runtime features are typically
captured as screen shots and written up as numbered figures, using super-imposed
callouts where appropriate.

In general, chapters feature a summary table of XPages commands, parameters,
or properties near the beginning and seek to explain these in brief, concise terms.
These items, or important subsets thereof, are typically then given more expansive

Introduction   xix  

treatment in the rest of the chapter. Most chapters also have an accompanying NSF
sample application containing practical examples that can be perused using Domino
Designer and run in preview mode for the web or Notes client. These samples are
available online for download at the following website: www.ibmpressbooks.com/
title/0132943050

The samples are based on the latest release of XPages available at the time of writing
(version 8.5.3), although many examples work with earlier releases. Visit this website
to download the no-charge version of Domino Designer 8.5.3: www.ibm.com/
developerworks/downloads/ls/dominodesigner/

How This Book Is Organized

This book is divided into six chapters, to separately address the many different
aspects of XPages software development in as logical a manner as possible.

	 n	 Chapter 1, “Working with XSP Properties,” gives you all the details you
need to locate, edit, and load the xsp.properties file, and thus configure the
XPages runtime for your own specific requirements. An XSP property is a
simple parameter definition that can modify the behavior of the XPages run-
time in “magical” ways.

	 n	 Chapter 2, “Working with Notes/Domino Configuration Files,” concerns
itself with the practical business of identifying the notes.ini settings that have
particular relevance to XPages and explains their usage in detail.

	 n	 Chapter 3, “Working with the Console,” gives an overview of the many
ways you can interact with the XPages runtime at the console level for runtime
analysis, troubleshooting, or application debugging.

	 n	 Chapter 4, “Working with the XSP Client Side JavaScript Object,” exam-
ines the XSP Client Side JavaScript Object and lists simple examples of all
the publically exposed functions that that can be used in an XPage. It also
provides a general overview of Client Side JavaScript scripting techniques and
other miscellaneous features relevant to XPages development.

	 n	 Chapter 5, “Server-Side Scripting,” gives an overview of Server Side
JavaScript scripting objects and supporting libraries. This chapter also exam-
ines ways to integrate custom Java classes and create Managed Beans.

	 n	 Chapter 6, “Server-Side Debugging Techniques,” provides detail on set-
ting up a debug and logging environment for your XPages applications. It also
explains the details of stack traces and how you can analyze and decipher such
information when troubleshooting an application.

	 n	 Appendix A, “Definitive Resources,” points to a collection of definitive
reference sources that describe all the details of the XSP tags and Java and
JavaScript classes. It also points to specification documents that define the
technologies that XPages consumes or extends.

www.ibmpressbooks.com/title/0132943050
www.ibmpressbooks.com/title/0132943050
www.ibm.com/developerworks/downloads/ls/dominodesigner/
www.ibm.com/developerworks/downloads/ls/dominodesigner/

xx   XPages Portable Command Guide

	 n	 Appendix B, “Useful Online Resources,” gives a snapshot of the authors’
favorite XPages websites at the time of writing. This list of sites should help
you find whatever you need to know about XPages that you cannot find in this
book.

	 n	 Appendix C, “Make Your Own Journal,” provides blank pages for you to
add your own specific notes on settings, markup, code fragments, or whatever
else you need that might not be listed in this book.

Acknowledgments

We would like to start by thanking our two very thorough and knowledgeable techni-
cal reviewers, Mark Wallace and David Taieb. Thanks to you both for keeping us
honest and for providing invaluable feedback—most of which we included here. ;-)

A big and sincere thank you to all those in the Notes/Domino application develop-
ment leadership team for supporting this project—especially to Eamon Muldoon,
Pete Janzen, Maureen Leland, Peter Rubinstein, and Philippe Riand.

Behind us are some very special teams of people—particularly the XPages runtime
team in IBM Ireland and the Domino Designer team in Littleton, Massachusetts.
Each member of these teams has unique strengths and skills, which we have com-
pletely exploited over the course of writing this book. The user experience and docu-
mentation teams also worked closely with us and helped bring clarity and objectivity
to all we do. Our thanks to all: Andrejus Chaliapinas, Brian Gleeson, Darin Egan,
Edel Gleeson, Graham O’Keeffe, Greg Grunwald, Jim Cooper, Jim Quill, Kathy
Howard, Lisa Henry, Lorcan McDonald, Mark Vincenzes, Michael Blout, Mike
Kerrigan, Padraic Edwards, Paul Hannan, Robert Harwood, Robert Perron, Simon
McLoughlin, Teresa Monahan, and Vin Manduca.

It was once again a tremendous privilege for us to work with our friends at IBM
Press, particularly Mary Beth Ray, Ellie Bru, Anne Goebel, Vanessa Evans, and
Chris Cleveland. On the IBM side, Steven Stansel and Ellice Uffer worked tirelessly
on getting the message out there for the Mastering XPages book and are already beat-
ing the drum for this one! Thanks for the help and the fun along the way.

Finally a great big thank you as always to our customers and business partners for
continuing to explore new ground with XPages and driving further adoption of this
most truly wonderful technology. Viva XPages!

About the Authors

The authors of this book have a few things in common. All four hail from Ireland, work
for the IBM software group, and have made significant contributions to the development
of both XPages and Domino Designer.

Martin Donnelly is a software architect and tech lead for the XPages runtime team
in IBM Ireland. He graduated with a Bachelor of Commerce degree from University
College Cork in 1984 and later completed a Master’s degree in Computer Science at
Boston University (2000). Martin has worked on all XPages releases, from Notes/
Domino 8.5 through 8.5.3, and also worked on a precursor technology: XFaces for Lotus
Component Designer. In the 1990s, while living and working in Massachusetts, he was
a lead developer on Domino Designer. Now based once again in Ireland, Martin lives in
Cork with his wife, three daughters, and two greyhounds. Despite the fact that he should
have hung up his boots years ago, he still persists in playing soccer on a weekly basis
and enjoys salmon angling during the summer when the opportunity presents itself.

Maire Kehoe is a senior software engineer in the IBM Ireland software lab. She com-
pleted an Honors Bachelor of Science degree in Computer Applications in Dublin
City University (DCU) and began working for IBM in 2003. She worked on the Lotus
Component Designer product from 2004 to 2007 and moved to IBM Lotus Domino to
help develop the XPages runtime for the Domino server. Maire lives in Dublin with her
husband and enjoys travel and musicals (and tea).

Tony McGuckin is a senior software engineer in the IBM Ireland software lab. After
studying Software Engineering at the University of Ulster, he began his career with IBM
in 2006, working in software product development on the Lotus Component Designer
runtime. He then transitioned into the XPages core runtime team when XPages was born.
When not directly contributing to the core runtime, Tony is kept busy with research
and development of the next generation of IBM software development tools, as well as
middleware, conferencing, and consultancy. Outside the lab, Tony enjoys food, wine,
and cooking; recently acquired a curious taste for classical music; and likes to get off the
beaten track to take in Irish scenery and wildlife.

Dan O’Connor is a senior software engineer in the Littleton, Massachusetts, software
lab. He graduated with a Bachelor of Engineering degree in Computer Engineering from
the University of Limerick, Ireland in 2000. He joined IBM through Lotus Software in
Cambridge, Massachusetts, in 2000. Since then, Dan has worked on different projects,
but most have focused on Eclipse and JavaServer Faces. In 2002, he joined the Rational
Application Developer team to work on a “new” technology called JSF. In 2006, he
rejoined the Lotus division to work on Lotus Component Designer and moved to
Domino Designer in 2008 as the UI team lead. Dan lives in Milton, Massachusetts, with
his wife and daughter. In his spare time, he spends too many hours following Gaelic
football and occasionally dabbles in “home improvement,” much to the profit of the
local plumber!

For most XPages developers, the process of building knowledge and expertise begins
inside Domino® Designer. Typically, a neophyte developer loads Domino Designer,
learns to create a new XPage, and then quickly figures out how to drag and drop con-
trols from palette to page and assign values to these controls via the various property
panels. From there, the natural progression is to discover how to program the controls
dynamically, using JavaScript or one of the other languages available within the XPages
framework. Pretty soon, a developer can be laying out fully fledged pages that link and
combine in clever ways to form an impressive application. At that stage, it is common
for a developer to feel that the XPages learning curve is complete and all that remains is
to roll out applications and await the plaudits of the user community. Unfortunately, the
feel-good factor is often short lived and a swift reality check is delivered by those tasked
with appraising the initial versions of applications. New and unforeseen factors always
come to the fore when an application is unveiled to users, and at this point the less expe-
rienced developer becomes acutely aware of the need for a whole new set of tools that
can help tune and adapt an application to the many and varied nuances of real-world
usage. This is when a collection of XPages framework parameters, known as
xsp.properties, become the new best friend of the XPages developer!

XPages is a rich and extensive application framework that supports applications on a
number of different runtime platforms, such as web browsers, the Notes® client, and
mobile devices (smartphones, iPads, and so forth). The best applications are inevita-
bly those that can deliver the required core functionality across all platforms, while at
the same time leveraging the best unique features of each individual platform at run-
time. Often it is possible to deliver such smart behavior programmatically, such as by
dynamically detecting the runtime environment and adapting the application markup
appropriately; other times, it is more effective to simply have parameters that dictate the
appropriate behavior in a particular context. Diversity of runtime platforms is just one
example of the need for runtime adaptability. An application designed to work a particu-
lar way out of the box might require different adaptations to satisfy varying customer
requirements, whether they are driven by divergent performance and scalability metrics
or simply by differing consumer expectations of application runtime behavior. Whatever
the driving force is, XPages requires a means of modifying its behavior to flexibly
adapt to different well-known use cases. The collection of parameters defined in its
xsp.properties file is a primary tool for doing just that.

To get more concrete about what xsp.properties is and what it can do for you, Table
1.1 provides a high-level summary definition of all such parameters available within the
XPages framework as of Notes/Domino V8.5.3. This chapter explores all 47 of these
parameters in detail, along with some practical examples of how and why they can be
applied to solve common problems. First, however, you should download PCGCH01.nsf

Chapter 1

Working with XSP Properties

2  

and open it in Domino Designer so that you can be ready to explore some of the hands-
on sample XPages this chapter covers. All the sample NSFs are available at this website:
www.ibmpressbooks.com/title/0132943050

Table 1.1  xsp.properties

Category/Name Description

Timeout

xsp.application.timeout Defines when an application is discarded from
memory after a period of user inactivity. Takes
a numeric value representing time expressed in
minutes.

xsp.application.forcefullrefresh Boolean property that, when set to true,
requests a full application refresh when the
design of a class changes. The default value is
false.

xsp.session.timeout Defines when a user session is discarded from
memory after a period of user inactivity. Takes
a numeric value representing time expressed
in minutes.

xsp.session.transient Boolean property. true means that the ses-
sions, and thus the pages, are not persisted
between requests.

Theme

xsp.theme The name of an XPages theme that an appli-
cation uses by default. The default theme is
named webstandard.

xsp.theme.web The name of an XPages theme to use when
running on the web. If not assigned an explicit
value, the xsp.theme value is used.

xsp.theme.notes The name of an XPages theme to use when
running on the Notes client. The xsp.theme
value is used when a value is not explicitly
assigned.

Resource Aggregation

xsp.resources.aggregate Boolean value indicating whether resources
defined on an XPage should be automatically
aggregated wherever possible to optimize
download time.

File Upload

xsp.upload.maximumsize Controls the maximum size of any file that
can be uploaded as a document attachment.
Takes a numeric value representing the file
size expressed in kilobytes, with the default
value being 1024 (that is, 1024KB, equating
to 1MB).

www.ibmpressbooks.com/title/0132943050

﻿   3  

Category/Name Description

xsp.upload.directory Accepts a string value that identifies a folder
to be used as a temporary storage location
when uploading files. Deprecated in favor of
xsp.persistence.dir.xspupload.

JSF Persistence

xsp.persistence.discardjs Boolean property indicating whether to discard
the JavaScript context for a page after the page
is processed. Set to true by default.

xsp.persistence.mode Accepts a string value that defines how
XPages are persisted according to how a user
uses an application: on disk, in memory, or a
hybrid model that persists pages to disk except
for the latest page, which is stored in memory.
The string values that represent these modes
are file, basic, and fileex respectively.

xsp.persistence.tree.maxviews Takes a numeric value defining the maximum
number of pages to be persisted when the in-
memory mode is used. The default value is 4
pages.

xsp.persistence.file.maxviews Takes a numeric value defining the maximum
number of pages to be saved when the on-
disk or hybrid persistence mode is used. The
default value is 16 pages.

xsp.persistence.viewstate Defines what information is persisted for a
given XPage, namely the full component tree,
nothing at all, or just the changes to the page.
The string values that represent these modes
are fulltree, nostate, delta, and
deltaex, respectively.

xsp.persistence.file.gzip Boolean property indicating whether the per-
sisted files should be compressed to GZIP
format on disk (less disk space, more CPU
processing). Defaults to false.

xsp.persistence.file.async Boolean property indicating whether file
persistence should be done asynchronously.
Defaults to true.

xsp.persistence.file.threshold Number property indicating whether pages less
than the given size should be saved in memory
instead of on disk. The threshold is in bytes.
Defaults to 0.

xsp.persistence.dir.xspstate String value that defines the directory where
the JSF pages are persisted.

4  �4﻿

Category/Name Description

xsp.persistence.dir.xspupload String value that defines the directory where
the temporary uploaded files are stored.
Supersedes the xsp.upload.directory
property.

xsp.persistence.dir.xsppers String value that defines the directory where
the document attachments are temporarily
persisted.

Client Side JavaScript

xsp.client.script.dojo.version Notes/Domino can have multiple versions
of the Dojo toolkit installed. This property
accepts a string value that identifies a specific
version to use; if no string value is given,
XPages uses the latest version.

xsp.client.script.dojo.djConfig String value used to add parameters to the
djConfig attribute of Dojo. For example,
to load Dojo in debug mode, apply this
setting: xsp.client.script.dojo.
djConfig=isDebug:true.

HTML Page Generation

xsp.html.doctype String value that defines the document doctype
XPages generates. Defaults to HTML 4.01
transitional.

xsp.html.meta.contenttype Boolean property. A value of true requests
that XPages generate a <meta> tag in the
HTML header defining the content type and
the optional character set. This meta tag is the
first tag that appears in the <head> section of
the rendered HTML page.

xsp.html.preferredcontenttypexhtml Boolean property indicating whether to
force the content type to be application/
xhtml+xml, if the user agent supports it.
Defaults to false.

xsp.html.page.encoding String value defining the character set returned
for the page. The default is utf-8.

xsp.compress.mode String value defining the compression mode
used when a page is rendered. Valid values are
none, gzip (default), and gzip-nolength.

xsp.client.validation Boolean property indicating whether to enable
client-side error validation. Client-side valida-
tion is performed before the page is submitted.
Defaults to true.

﻿   5  

Category/Name Description

xsp.redirect Boolean property indicating whether the
XPages runtime should update the user agent
when redirecting to a new page—for example,
when performing a page navigation. Defaults
to true.

Error Management

xsp.error.page String value used to identify the name of a
custom error page to display any runtime
errors. If blank, XPages provides a default
error page.

xsp.error.page.default Boolean property that defines whether the XSP
layer should display the default error page.
Defaults to false.

User Prefences

xsp.user.timezone Boolean property. A value of true means
that the user’s time zone, as detected in the
client browser, is used when date objects are
displayed in text form on an XPage. A false
or undefined value means that the server time
zone is used.

xsp.user.timezone.roundtrip Boolean property indicating that the user time
zone is not used in the initial display of any
XPages in the application, allowing an optimi-
zation to avoid a round-trip to the server for
computing the time zone.

AJAX Options

xsp.ajax.renderwholetree Boolean property indicating whether the JSF
tree should be completely processed during the
render phase. Defaults to true.

Script Caches Size

ibm.jscript.cachesize Controls the number of compiled JavaScript
expressions. Accepts a numeric value. The
default value is 400.

ibm.xpath.cachesize Numeric value used to control the number of
compiled XPath expressions.

Active Content Filtering

xsp.richtext.default.htmlfilter String value that defines which filter to use by
default for controls that output user-entered
HTML values, such as the Computed Field
control.

xsp.richtext.default.htmlfilterin String value that defines which filter to use by
default for controls that allow editing HTML
values, such as the rich text control.

6  �6﻿

Category/Name Description

xsp.htmlfilter.acf.config String value that identifies the Active Content
Filtering (ACF) library configuration file to
use.

Resources Servlet

xsp.expires.global Defines the default expiration duration for
global resources. Accepts a numeric value
expressing the period in days. Defaults to 10
days.

Repeating Controls

xsp.repeat.allowZeroRowsPerPage Boolean property that controls whether empty
pages are allowed in repeating controls—for
example, a View panel, a Repeat, or a Data
table.

Partial Update Timeout

xsp.partial.update.timeout Accepts a numeric value that defines the time-
out for partial update operations. Defaults to
20 seconds.

Link Management

xsp.save.links String value that defines whether native links
are saved in Notes (client) or Domino (web)
format. Valid values are UseNotes and
UseWeb, respectively. These are case sensitive.

xsp.default.link.target Accepts a string value that can be used as a
default link target value for all links in the
application. Valid values are _self (open tar-
get in same window) and _blank (open target
in new window).

Control Libraries

xsp.library.depends A comma-separated and trimmed list of library
IDs (strings) that an application depends on to
run.

Composite Data

xsp.theme.preventComposite
DataStyles

Boolean property controlling how theme
property values are applied to Custom Control
style and styleClass properties.

Table 1.1 groups all these magic runtime switches and levers into various categories.
This chapter explores each of these categories later. A cursory skimming of the sum-
mary definitions indicates that these properties do not all fall solely within the exclusive
domain of the Domino application developer, but many are appropriate to Notes/Domino
administrators also. For instance, many properties offer a simple means of executing
administrative tasks, such as fine-tuning performance, applying security rules, limiting

Locating and Updating xsp.properties   7  

document size, and so forth. First and foremost, however, you need to find this xsp.
properties file!

Locating and Updating xsp.properties

One interesting point about the xsp.properties file is that there is potentially more than
one of them. Every XPages NSF application contains an xsp.properties file, and you
likely will find an xsp.properties file on your Domino server and/or Notes client instal-
lation also. Where exactly are these files located? You can start with the properties file
that is embedded directly in every XPages application.

XPages applications are standard web applications based on the J2EE specification, and
J2EE-compliant web applications typically place configuration files inside a standard
private WEB-INF folder. XPages adheres to this by locating its xsp.properties file
inside the WEB-INF folder inside the NSF. The Domino Designer perspective does not
expose the raw Java™ project structure that underlies your XPages application, but you
can view it by switching perspective or by including other Eclipse views in your Domino
Designer perspective. To do the latter, select the Window > Show Eclipse Views >
Other menu and then choose Package Explorer view from the Java category. In Domino
Designer V8.5.3, this adds a new tab adjacent to the Application Navigator, from which
you can explore all project elements. After you have opened the Package Explorer,
find your current NSF, expand it, and then peruse its contents. Open the Web Content\
WEB-INF folder to locate the xsp.properties file, and then double-click to open the
file. Figure 1.1 shows a simple xsp.properties file in a plain text editor. You can view
and/or modify the file contents directly from this editor.

Luckily, viewing and updating the embedded xsp.properties file is not always as cum-
bersome as just described. Domino Designer makes it easy to work with most of the
more commonly used settings. You might have already been setting and modifying prop-
erty values within the local xsp.properties file and not been aware of this process. Many
of these XPages properties, along with other Notes/Domino properties, are surfaced in
a single general-purpose Application Properties editor. Look for an outline entry of the
same name in the Application Navigator and double-click it to activate the multitab edi-
tor. Selecting the XPages tab in the bottom editor pane gives access to the properties.
Figure 1.2 shows a sample, with some property mappings highlighted.

The embedded xsp.properties file specifies parameter values that apply to the applica-
tion that contains it. The Domino server also has an xsp.properties file so that parameter
values can be applied to all applications loaded on the server. A sample file, appropri-
ately named xsp.properties.sample, is installed automatically as part of the Domino
installation process; it is located in the data\properties folder under the Domino root
directory. (Note that this is the location on MS Windows® platforms; it can vary on other
systems.) You can edit this file with a standard text editor. It contains all the properties
listed in Table 1.1. All property assignments are commented out—that is, the line is pre-
fixed with a # character, as follows:

#xsp.application.timeout=30

8   Locating and Updating xsp.properties

Figure 1.1  Accessing xsp.properties from the Eclipse Package Explorer

Figure 1.2  Accessing xsp.properties from the Domino Designer Applications Editor
Explorer

Sample xsp.property

xsp.properties file

xsp.properties location

xsp link management
properties

xsp HTML generation
properties

xsp time zone
properties

xsp timeout
properties

xsp theme
properties

xsp JSF
persistence

properties

The Timeout Properties   9  

The default value is typically demonstrated as a default assignment. To uncomment a
line, simply delete the # character prefix. To enforce a property, do the following:

	 1.	 Rename the file from xsp.properties.sample to xsp.properties, if not already
done.

	 2.	 Edit the xsp.properties file, uncomment the line, and apply the desired value.

	 3.	 Restart the server (or just the http server task), depending on the chosen property.

To restart just the http task on the server, you can enter restart task http in the
Domino console window. Alternatively, just type tell http q, followed by a load
http command.

Tip  If you are using clusters, you must repeat the operation for all servers in the
cluster. Server xsp.properties file changes are not automatically replicated between
servers of the same cluster.

Similarly, the Notes client has an xsp.properties file where you can apply settings on a
client-wide basis. If the xsp.properties file has not been used, it is named xsp.proper-
ties.sample; in this case, you must rename it to xsp.properties before you can apply
any properties. You can find this file in the same data\properties subfolder structure
under the Notes root directory; and the same rules and principles apply when it comes to
enforcing settings.

As described in Step 3, you might or might not have to restart your Domino server or
Notes client for a given property value change to take effect. This depends on the indi-
vidual nature of a given property: Some are static and require a restart when changed,
whereas others are dynamic and are reread when next executed.

The Timeout Properties

The XPages runtime creates and manages an application session whenever a user ini-
tially requests an application. Thereafter, subsequent requests from any user, regardless
of how many, cause that application to use the initial application session object for stor-
ing application-scoped objects. Furthermore, the XPages runtime creates and manages a
user session for each user of any given application. Each user is associated with a unique
user session object within the context of the current application.

This category of xsp.properties facilitates the management of application and user
session timeout durations, as well as determines the way in which the XPages runtime
maintains the user session and application object. This maintenance relates to how a user
session is serialized between page requests and also to how the objects representing an
application are recycled and reinstantiated between page requests based on design ele-
ment changes.

10  T he Timeout Properties

xsp.application.timeout

If you look for the xsp.application.timeout setting in the xsp.properties file, you
will find the snippet shown in Listing 1.1.

Listing 1.1  xsp.properties Snippet for the xsp.application.timeout Property

Application timeout management defines when an application is

discarded from memory after a period of inactivity expressed

in minutes

#xsp.application.timeout=30

By default, a Domino server boots up without any XPages applications in memory.
You can learn more on how to preload XPages applications in Chapter 2, “Working
with Notes/Domino Configuration Files.” Only when the XPages runtime processes a
user request for a given XPages application is an application loaded into memory and
processed to serve the incoming request. Thereafter, that application resides in memory
within the XPages runtime until all user sessions associated with that application have
been discarded from the XPages runtime and the xsp.application.timeout dura-
tion has been exceeded. As shown in Listing 1.1, the default timeout value is 30 minutes.
This property can be set at the global server level or, alternatively, within an application.
Figure 1.3 shows where this can be set within Designer for an application.

xsp.session.timeout

If you look for the xsp.session.timeout setting in the xsp.properties file, you will
find the snippet shown in Listing 1.2.

Listing 1.2  xsp.properties Snippet for the xsp.session.timeout Property

Session timeout management defines when a user session is

discarded from memory after a period of inactivity expressed

in minutes

#xsp.session.timeout=30

When a user first issues a request for an XPages application, following successful
authentication, a user session object is instantiated and associated with that user. This
user session object is used to store temporary data created during that user’s usage of the
application. By default, no explicit mechanism exists for discarding a user session object
when a user closes a browser or otherwise exits the system. Therefore, this xsp.ses-
sion.timeout property defines a timeout period for discarding a user session object
from server memory, based on a period of inactivity. This is expressed in minutes, with
30 minutes being the default period.

This property can be set at the global server level or, alternatively, within an application.
Figure 1.4 shows where this can be set within Designer for an application.

The Timeout Properties   11  

Figure 1.3  The xsp.application.timeout property exposed in the application properties
editor in Designer

Figure 1.4  The xsp.session.timeout property exposed in the application properties
editor in Designer

xsp.application.timeout
property

xsp.application.timeout
property

xsp.session.timeout
property

12  T he Timeout Properties

xsp.session.transient

This property is new in Notes/Domino 8.5.3.

By default, the XPages runtime is a stateful web application framework. A request for an
XPage results in a degree of server-side processing that begins with creation or retrieval of
a user session and ultimately ends with a rendering process that builds up the content for a
response. During this server-side processing, a user session configuration object, along
with all the controls on a requested XPage, have their respective properties and values
serialized to disk and/or deserialized from disk. This is due to the inbuilt serialization
mechanism of XPages that manages and provides the stateful characteristics of the XPages
runtime. Based on application requirements, it might be beneficial from a performance and
scalability perspective for an application not to participate in this serialization process, to
optimize its level of participation. This aim of the xsp.session.transient property is
to provide a way to control how user session objects are serialized between requests.

If you look for the xsp.session.transient setting in the xsp.properties file, you
will find the snippet in Listing 1.3.

Listing 1.3  xsp.properties Snippet for the xsp.session.transient Property

Transient sessions means that the sessions, and thus the pages,

are not persisted between requests

#xsp.session.transient=false

By default, the XPages runtime sets this property to false. Therefore, the serialization
process includes all user session objects, but not the sessionScope object. This means
that any XPages a given user requests are serialized/deserialized in association with the
user session object over the life of that user session object. They are discarded along
with the user session object when the overall user session timeout duration passes.

Alternatively, if this property is set to true, the XPages runtime automatically avoids
serializing user session objects between XPage requests. It is important to note that
a user session object still is instantiated for a request, but it simply is not serialized
between requests. This also means that properties and values of controls within requested
XPages still participate in the serialization process—this ensures that an XPage can still
provide a rich user experience for the scoped variables and partial execution of actions,
for example. However, when a user navigates to another XPage, the associated stateful
data for that XPage is discarded because the user session object is not serialized between
requests. This feature is made available for use cases that require an extremely optimal
level of performance tuning where server memory must be finely managed. Note that
such use cases are those in which partial updates are applied against only the current
page; full page refreshes cause the state to be discarded between requests. Therefore, the
design and intent of the page require careful consideration to benefit from this feature.

The Theme Properties   13  

xsp.application.forcefullrefresh

This property was introduced in Notes/Domino 8.5.3. It is set to false by default and is
particularly useful during the development phase of an XPages application. Listing 1.4
shows the relevant section of the xsp.properties file.

Listing 1.4  xsp.properties Snippet for the xsp.application.forcefullrefresh Property

Application refresh when this property is set to true, then a

full application refresh is requested when the design of a

class changes (means that all the data is discarded in scopes)

#xsp.application.forcefullrefresh=false

The property ensures a full refresh of all data and objects stored within the scoped vari-
ables and context whenever an XPage is refreshed in a browser while the application
design is open within Domino Designer and design changes are being made. Note that
“refresh” in this context means resetting to empty values. This specifically ensures that
view-, session-, and application-scoped variables, objects, and even Managed Beans are
forcefully refreshed as a consequence of any application design changes. Request-scoped
variables, objects, and Managed Beans, on the other hand, automatically are refreshed
anyway because of the rules governing the request scope.

When this xsp.application.forcefullrefresh property is set to true, an appli-
cation design refresh from a template causes this same behavior. Therefore, after the
design refresh task has executed, subsequent requests to a given application with this
property set to true cause a complete refresh of the scoped variables, objects, and con-
text for the first incoming request after the design refresh. Ideally, for a production envi-
ronment, this setting should be set to false; it is intended as a development-time aid.

The Theme Properties

This category of xsp.properties provides a way to set the application theme in three
different ways. This accommodates the possibility of an application running in different
platforms—namely, a Notes client or Domino server—and requiring different themes
for each. You can also use this group of settings to specify a single theme for use in all
platforms, which is the most common case. This is done by not specifying any Override
on Web or Override on Notes settings, therefore allowing the theme specified for the
Application Theme setting to be the one used regardless of running environment.

xsp.theme

If the xsp.theme.web or xsp.theme.notes properties are not specified, the xsp.
theme property sets the default theme for all platforms. Therefore, you can configure
the default theme for a Notes client or Domino server using this setting, as shown in
Listing 1.5.

14  T he Theme Properties

Listing 1.5  xsp.properties Snippet for the xsp.theme Property

Name of the XSP theme to use

#xsp.theme=webstandard

This property is applied at platform level and affects all new or existing applications that
do not specify their own theme. However, an application can override this setting using
its own xsp.properties setting, therefore providing an Application Level setting.
Figure 1.5 shows where this can be set within Designer for an application.

Figure 1.5  The xsp.theme property exposed in the application properties editor in
Designer

Tip R efer to the Mastering XPages book (ISBN: 0132486318) from IBM® Press: www.
ibmpressbooks.com/bookstore/product.asp?isbn=0132486318 where you will find
extensive details on creating and applying XPages Themes in Chapter 14, “XPages
Theming” (pages 543–620).

xsp.theme.web

Set this property to define the theme to display for web applications. Simply assign the
name of any existing theme to the property declaration shown in Listing 1.6.

Setting the xsp.theme
property

www.ibmpressbooks.com/bookstore/product.asp?isbn=0132486318
www.ibmpressbooks.com/bookstore/product.asp?isbn=0132486318

The Theme Properties   15  

Listing 1.6  xsp.properties Snippet for the xsp.theme.web Property

Name of the XSP theme to use when running on the web, if this

property is not defined, the xsp.theme is used

#xsp.theme.web=

Regardless of whether the xsp.theme property is specified, the xsp.theme.web property
takes precedence when specified for applications accessed using a browser. Figure 1.6
shows where this can be set within Designer for an application.

Figure 1.6  The xsp.theme.web property exposed in the application properties editor in
Designer

xsp.theme.notes

Set this property to define the theme to display for XPages applications running in the
Notes client. Listing 1.7 shows the relevant part of the xsp.properties file.

Listing 1.7  xsp.properties Snippet for the xsp.theme.notes Property

Name of the XSP theme to use when running on the Notes client, if

this property is not defined, the xsp.theme is used

#xsp.theme.notes

If the xsp.theme property is specified, this property takes precedence for applications
accessed using a Notes client.

Setting the
xsp.theme.web

property

16  T he Theme Properties

Set this property to define the theme to display for XPages applications running in
the Notes client. Regardless of whether the xsp.theme property is specified, the xsp.
theme.notes property takes precedence when specified for applications accessed
using the Notes client. Figure 1.7 shows where this can be set within Designer for an
application.

Figure 1.7  The xsp.theme.notes property exposed in the application properties editor in
Designer

When you specify any of these theme properties from the Application Properties editor
for any given application, they are written into the xsp.properties file for that applica-
tion. Figure 1.8 shows that all three theme properties have been specified using the
Application Properties editor.

Figure 1.9 shows these theme property values. They have been written into the applica-
tion’s underlying xsp.properties file.

Incidentally, you can use the propertiesInspector XPage found within the supporting
PCGCH01.nsf application to inspect the values of any application-level property. When
you open this XPage in a browser or on the Notes client, you see a type-ahead edit box
that enables you to select from the available xsp.properties, as shown in Figure 1.10.

After you select any of the xsp.properties and then click the Inspect button, you see the
currently specified value of that property based on the application-level setting. Figure
1.11 shows an example for the xsp.theme property that has been specified within the
Application Properties editor for the theme blue.

Setting the
xsp.theme.notes

property

The Theme Properties   17  

Figure 1.8  All three xsp.theme.* properties specified in the application properties editor
in Designer

Figure 1.9  All three xsp.theme.* properties written into the application’s underlying
xsp.properties file

All three xsp.theme.*
properties set

All three xsp.theme.*
properties set

xsp.properties file under
WebContent/WEB-INF

xsp.theme.* properties
written into xsp.properties

18  T he Resources Properties

Figure 1.11  The propertiesInspector XPage showing the currently set value of the
xsp.theme property

The Resources Properties

This category is new in Notes/Domino 8.5.3 and contains only one published entry.

xsp.resources.aggregate

The purpose of the xsp.resources.aggregate property is to enhance perfor-
mance by reducing the number of requests made for resources like JavaScript files and

Figure 1.10  The type-ahead list of available xsp.properties displayed in the
propertiesInspector XPage

All available xsp.properties

Inspecting the xsp.theme property

The Resources Properties   19  

cascading style sheets, when an XPage is loaded by an end-user at runtime. The relevant
part of the xsp.properties file is shown in Listing 1.8.

Listing 1.8  xsp.properties Snippet for the xsp.resources.aggregate Property

Defines if the resources served to a page should be aggregated.

This option should be used to provide the best download time

experience. The option defaults to false when not set, but new

applications created in Designer 8.5.3 or later will contain

an xsp.properties file with the option value set to true.

#xsp.resources.aggregate=false

The more sophisticated the XPage is, the more likely it is to require many Dojo modules
and CSS resources. Each resource request necessitates a network round-trip before the
XPage rendering can be completed. Each round-trip has a performance impact, espe-
cially on slow or busy networks.

The number of resource requests required for a typical XPage can ramp up quickly—and
in a manner that is often not immediately transparent to the application developer. This
mostly occurs as a result of large and opaque resource-dependency trees generated by
rich Dojo controls and complex UI themes. For instance, many of the sample pages in
the standard XPages Extension Library demo application routinely generated more than
80 resource requests, although often the XSP markup of the XPages themselves do not
explicitly declare resources. Clever analysis of the resource dependencies by the XPages
runtime indicates that Dojo modules and CSS files can be aggregated (joined in the right
order in a single file) so that fewer large-payload requests replace many small-payload
requests. The former is far more efficient in terms of performance.

If you are inspecting the resource requests made on a typical XPage, such as when using
Firebug on a Firefox browser, you will see resource requests of the form shown in List-
ing 1.9, when aggregation is not in effect.

Listing 1.9  Nonaggregated Resource Requests

...

GET http://server/domjs/dojo-x.y.z/dojo/../dijit/_base.js

GET http://server/domjs/dojo-x.y.z/dojo/../dijit/_base/focus.js

GET http://server/domjs/dojo-x.y.z/dojo/../dijit/_base/manager.js

GET http://server/domjs/dojo-x.y.z/dojo/../dijit/_base/popus.js

...

The simple resource requests shown here are replaced by something less humanly digest-
ible when aggregation is applied. For instance, the GET request may point to an aggre-
gated file named something like @Wc&@Ei&@ESb.js, an example of an aggregated Dojo
module resource. When aggregation is in effect, you will not see these aggregated names
in the GET request stack and you will also see fewer requests for the XPage.

20  T he Resources Properties

The standard 8.5.3 help documentation summarizes the performance benefits of this fea-
ture quite well. It short, it provides the following:

	 n	 A decrease in requests sent from the browser to the server

	 n	 An increase in user performance, particularly in the context of networks with high
latency

	 n	 An increase in the speed of JS/CSS parsing from the browser

	 n	 The freeing of server connections to fulfill other requests

The xsp.resources.aggregate property is exposed directly in Domino Designer
by the Application Properties > XPages > Use runtime optimized JavaScript and
CSS resources check box, so it does not require direct editing of the xsp.properties file
to apply the setting for a given application. As indicated in the property comments, any
new applications created with Domino Designer 8.5.3 automatically insert this property
in the local xsp.properties file with a value of true. Earlier releases of the XPages core
runtime ignore this property, so it is safe to apply in an environment that contains a mix
of Notes/Domino 8.5.x releases, in which applications replicate with each other.

Some unpublished properties in this category can also give you more granular control
over the operation of the feature. Table 1.2 summarize these properties. Their behavior is
self-explanatory, although unpublished properties are not guaranteed to be supported in
future releases.

Table 1.2  Other Aggregation Properties

Name Description

xsp.resources.aggregate.dojo Boolean value indicating whether XPages Dojo
modules should be aggregated. Defaults to true.

xsp.resources.aggregate.css Boolean value indicating whether XPages CSS
resource should be aggregated. Defaults to true.

xsp.resources.aggregate.appjs Boolean value indicating whether JavaScript
resources located in the NSF itself should be
aggregated. Defaults to true.

xsp.resources.aggregate.appcss Boolean value indicating whether CSS resources
located in the NSF itself should be aggregated.
Defaults to true.

It is also worth mentioning that this feature works equally well on the Notes client and
Domino server, although network round-trips for resources may not be such a worry if
you are running in the Notes clients.

Finally, aggregated resources are also packaged in compressed gzip form, as long the
browser accepts gzip content (refer to the xsp.compress.mode section for more infor-
mation on compression). The browser caches aggregated resources just like any other

The File Upload Properties   21  

such resource, and the cache header field in the response is set to 10 days, by default.
You can change this value by using the xsp.expires.mini property, to assign it an
alternative number of days (0 means no cache).

In a production environment, it is beneficial to enable resource aggregation. Otherwise,
during development, you can turn off this setting if you are interested in viewing the
individual resource links within the generated HTML markup.

The File Upload Properties

This category of properties enables you to override the default settings for handling a
file upload attachment using the XPages core File Upload control. In particular, two
properties control the maximum attachment size and the target upload directory on the
receiving server.

xsp.upload.maximumsize

The xsp.upload.maximumsize property gives you the capability to set a specified
maximum attachment size for file uploads processed by an XPage—in particular, file
uploads handled by the XPages core File Upload control. The default setting is declared
in the placeholder location in xsp.properties, as shown in Listing 1.10.

Listing 1.10  xsp.properties Snippet for the xsp.upload.maximumsize Property

This controls the maximum size, in kilobytes, of a file being

uploaded as an attachment

#xsp.upload.maximumsize=1024

The Domino server web engine enables you to specify a maximum attachment size for
file uploads using the Domino Server Configuration document from within Domino
Administrator. Ultimately, that setting takes precedence over any other setting. Figure
1.12 shows where to find this property within an application’s Application Properties
editor.

You can set this property at the server level within the xsp.properties file of a Domino
server or Notes client. You should set it within the upper limits of the overall Domino
Server Configuration document maximum file attachment size setting. Of course, you
can increase the Domino Server Configuration document setting accordingly.

xsp.upload.directory

By default, the XPages runtime receives a File Upload attachment or Rich Text Editor
embedded image file and temporarily persists it to disk on the receiving server before
further processing the attachment or image. (See the xsp.persistence.dir.xspup-
load property for the default behavior.) Listing 1.11 shows this property as it appears in
the xsp.properties file.

22  T he JSF Persistence Properties

Listing 1.11  xsp.properties Snippet for the xsp.upload.directory Property

Directory used to temporarily store the uploaded attachment

Default to a temporary directory returned by the OS

#xsp.upload.directory=

This property is a global setting; therefore, it must be specified only within a Domino
server or Notes client xsp.properties file. Setting the xsp.upload.directory prop-
erty within an application’s xsp.properties file has no effect because the global setting
always takes precedence.

This setting has been available since version 8.5, but it is now deprecated and provided
only for legacy compatibility purposes. You should use the xsp.persistence.dir.
xspupload property instead. If specified, the xsp.upload.directory property value
is used instead of the xsp.persistence.dir.xspupload property value. The xsp.
upload.directory property enables you to specify a different temporary upload
directory. This can be useful if disk space is an issue and you need to point at another
disk space directory on another server- or network-assigned storage device.

The JSF Persistence Properties

This category mostly relates to how a user’s page state is saved on the server between
requests interacting with that page. Options relate to how the page state is saved on

Figure 1.12  The xsp.upload.maximumsize property exposed in the Application
Properties in Designer

Maximum File
Upload Size

The JSF Persistence Properties   23  

the server file system. This category also includes some options for how uploaded and
attached files are saved on the server file system. But to start, an option controls how
JavaScript variables are saved between requests, which impacts on the size of the
page state.

xsp.persistence.discardjs

This property controls how data stored as global JavaScript variables are handled when a
page request is complete. Listing 1.12 shows the relevant section of xsp.properties.

Listing 1.12  xsp.properties Snippet for the xsp.persistence.discardjs Property

Discard the JavaScript context for a page after the page is processed

This is a runtime optimization that is set to true by default

but might be reverted to avoid compatibility issues

(although it is *not* advised).

#xsp.persistence.discardjs=true

Version 8.5.1 included a change in how global Server Side JavaScript variables are
handled between page requests. You can set this option to false to revert to the older
behavior from version 8.5.0, although it is better to change your application to work with
the new behavior. The new behavior gives better performance by helping your applica-
tion to use less memory.

The behavior that the option controls is related to global variables defined in Server Side
JavaScript code, such as the valueComputed variable shown in Listing 1.13.

Listing 1.13  Global Server Side JavaScript Variable

valueComputed = false;

// update valueComputed

When such a global variable is defined, it can be referenced in any Server Side Java-
Script in the XPage that executes after the global variable has been defined, until the end
of the current server request.

In version 8.5.0, global variables were available to be referenced for a longer duration,
from when the global variable was defined until a different XPage instance was loaded.
That is, when multiple redisplays of the same XPage used repeated requests to the
server, global variables continued to be available during subsequent server requests.
The new behavior, post–version 8.5.0, ensures that global variables are discarded
between page requests.

When attempting to redesign your application to handle the shorter global variable avail-
ability, you can use viewScope variables for values that you need to access in subse-
quent redisplays of the same XPage. Listing 1.14 shows the revised code.

24  T he JSF Persistence Properties

Listing 1.14  Scoped Server Side JavaScript Variable

viewScope.valueComputed = false;

// update viewScope.valueComputed

Similarly, you can change any other code in the application that used to reference
valueComputed (or your variable name) to reference viewScope.valueComputed.

The viewScope is a namespace where you can store simple values while the same page
is being repeatedly redisplayed. It is not possible to store a document in viewScope, but
it is often sufficient to store the document ID and retrieve the document using the ID. It
is okay to save Strings, Booleans, Numbers, and many other values in the viewScope,
but if nonserializable objects are placed in the viewScope, problems can arise—see the
information on the xsp.persistence.mode option for more details. Other scopes can
be useful as well, such as the sessionScope, which stores values for the duration of
the current user’s login session. Chapter 5, “Server-Side Scripting,” explains the scopes
in the section “Scope Objects.”

xsp.persistence.mode

This option determines how the server-side tree of controls is saved between requests
while the user is interacting with the XPage. Listing 1.15 shows the help information
provided in the xsp.properties file.

Listing 1.15  xsp.properties Snippet for the xsp.persistence.mode Property

Defines the persistence mode for the JSF pages (a.k.a. Views)

file: All the pages are persisted on disk

fileex: All the pages are persisted on disk except

the current one, which stays in memory

basic: All the pages stay in memory, the default.

#xsp.persistence.mode=

When a user first opens an XPage in a web browser, a server-side tree representing the
controls in the XPage is built up and used to output the XPage to the browser. If the
user then interacts with the same page, such as by clicking a Section control to make
its contents visible, the same control tree is used to respond and interact with the user.
As the user interacts with the page, the control tree maintains state so that, for example,
values typed into fields are still present between requests and a document can be edited
across multiple requests without saving on each request.

To allow such interaction, the tree of controls for an XPage must be saved on the server
between requests from the user. A specific control tree instance that one user request-
ing an XPage has created is known as a page or a JSF view. The options controlling this
saving are known as the persistence options, meaning that they control how the pages
manage to persist (or, continue to be present) when attempting to redisplay them.

The JSF Persistence Properties   25  

Broadly speaking, the page can be either saved on the server’s file system or kept in
memory (RAM) so that no explicit save operation takes place.

When the pages are saved in memory, the response time for individual users is quick.
Most servers can handle low levels of infrequent users, but as the number of users
increases, eventually the server might have not enough memory. When the server runs
out of memory, it reports the serious java.lang.OutOfMemoryError problem, which
prevents XPages from being displayed to any users. This problem likely has negative
consequences for non-XPages use of the server.

When pages are saved on the file system, they do not cause the server to run out of
memory. The application will be less likely to fail as it scales up to larger numbers of
users and a greater request load. However, when the pages are saved to the server’s file
system, it may be necessary to configure how that saving occurs. (Refer to the section
entitled “No Space Left on Device Problems,” for suggested solutions when the file
system runs out of space.) Saving pages to the file system also introduces the possibility
of serialization problems that prevent XPages from displaying. (This chapter discusses
how to fix such problems in an upcoming section titled “XPages Problems When Storing
Pages on the File System.”)

It is also possible to choose a model that acts as a hybrid between in-memory and file
system schemes. The most commonly used option, fileex, saves the most recent page
the user has touched in memory and saves the previous pages in the usage history on the
file system. This is sensible because users are most likely to continue interacting with
the most recent page. Users generally interact with previous pages only if they press the
browser back button or if they are using multitab browsing, in which the web browser
has multiple pages open in the same application.

The xsp.persistence.file.threshold option enables another compromise by
saving pages that are smaller than a certain size in memory and writing only larger pages
to disc. However, the process of saving in memory is different when using the threshold
option. A later section, “xsp.persistence.file.threshold Property,” is dedicated to this
option.

Choosing the Persistence Mode in Designer

You can change the main setting that controls persistence in Application Properties, in
Designer. The Application Properties > XPages > Performance > Server page persis-
tence combo box offers the following options:

	 n	 Server default.

	 n	 Keep pages in memory (best performance). This saves the mode as basic,
meaning that the pages are always saved in memory.

	 n	 Keep pages on disk (best scalability). This saves the mode as file, meaning
that the pages are always saved on disk unless the threshold option is set to some
value.

26  T he JSF Persistence Properties

	 n	 Keep only the current page in memory (scales and performs well). This saves
the mode as fileex, meaning that the most recently accessed page for each user
is saved in memory and older pages for the users are saved on disk.

In applications created in a Designer version 8.5.2 or later, this setting defaults to
fileex. That is, the actual xsp.properties file in the application has the literal mode
fileex specified. This means that editing the server xsp.properties file does not have
an effect on the persistence of such applications. For applications created in version
8.5.0 or 8.5.1, this setting defaults to Server default, but it is advisable to edit such
applications to change the setting to fileex. However, when making such a change, it
is best to verify that the application continues to work. Refer to the section “Serialization
Problems Giving an Error Page with NotSerializableException” if issues arise.

Cache Size Limits and XPages Behavior When Limits Are Encountered

Whether saving on disk or in memory, limits govern the number of pages in a user’s
browser session that are maintained on the server. You can configure the limits for the
maximum number of views for an application. When a user in a given session navigates
through more pages than the maximum limit, older pages are discarded. Selecting which
page to discard is accomplished using an MRU (most recently used) algorithm, to pre-
serve the most recently accessed pages. The pages discarded are the pages whose last
redisplay time was furthest in the past, not the pages that were created furthest in the
past. The discarding happens when the user navigates to a new page, so continued redis-
play of the same page does not cause previously cached pages to be discarded.

When a user attempts to access a page that was discarded from the cache, the page is
displayed in its initial state, as if this were the first time the user opened the page. Users
can access old pages either by redisplaying them using the browser back button or by
clicking a button or link on an open page in a browser tab that is not the most recent tab
the user was interacting with. When a user accesses a discarded page, the previous state
of the page is not available; if the user had been editing values in a document, those
values would not be present in the page. If the user clicked a Save button and expected
the page to be no longer editable, the user might not realize that the updated values
were lost. Certain applications and populations of users are more likely to encounter
discarded page problems; examples are users who commonly use tabbed browsing and
edit multiple documents at once. If users of your application likely will attempt to access
discarded pages, you might want to either increase the maximum number of pages saved
per user or provide warnings about the use of tabbed browsing with this application.

XPages Problems When Storing Pages on the File System

An application that saves the pages in files on disk might encounter some problems that
it would not if it saved the pages only in memory.

Serialization Problems Giving an Error Page with NotSerializableException

The most common type of problem with saving to files is a java.io.
NotSerializableException. Serialization is the process of converting from

The JSF Persistence Properties   27  

in-memory objects to a representation of those objects that can be saved to a file.
When the configuration options indicate that pages are to be saved to the file system
and a page is about to be saved, this serialization is performed and any problems in the
serialization process give a java.io.NotSerializableException. The excep-
tion prevents the XPage from displaying and an error page appears with a stack trace,
as shown in Figure 1.13. One of the messages at the top of the error page is java.
io.NotSerializableException: classname, where classname is the name of a class that
could not be serialized.

Figure 1.13  Example of an error page showing serialization problems

When a NotSerializableException occurs, it indicates a problem in the design of
the application where a nonserializable object is being used but cannot be persisted as
part of the page state. Commonly, the application designer buffered a nonserializable
object in the viewScope map. Alternatively, the application designer might have used
a Compute On Page Load expression to generate the value of a control property, but
the computed value is not serializable. Many types of objects are serializable and okay
to save in the viewScope and other serialized scopes. For example, Strings, Numbers,
and Java Dates are serializable, as are Arrays, Lists, and Maps containing such values.
When saving other objects to the viewScope, it is recommended to verify that they are
serializable. Java developers can check whether the object’s class implements the java.
io.Serializable interface and that all the contents of the object are also serializable.
It may be more convenient to verify that the NotSerializableError does not occur,
by changing the application to save the pages on disk, opening the page that is saving
the value to the viewScope, and clicking a submit button to redisplay the page a
few times.

To fix your serialization problem, you should redesign your application not to save the
nonserializable object. Usually, it is possible to save some String value that can recon-
struct any nonserializable object during subsequent page requests. If it is not immedi-
ately apparent where the problem object is arising, you can take some common steps to
find the cause of the problem. In the afterRenderResponse event on your page, you

28  T he JSF Persistence Properties

should print the names and values of the viewScope contents to the server console and
do a (value instanceof java.io.Serializable) check on each to determine
which viewScope object is causing the problem. When you have the name used to
save the object in the viewScope, you can search your application for references to that
name and put further debugging code where values are saved in the viewScope.

Functional Problems Caused by Control State Saving Issues

Besides serialization problems, the other kind of problem you may see when saving
pages on the file system occurs when using controls and data sources built using the
XPages Extensibility APIs rather than the controls the XPages runtime provides. If prob-
lems arise in the control implementations, you might see functional issues in the con-
trols after the pages are redisplayed. The values set on the control in the XPage might
be missing after the page is restored from disk. For instance, the control style might be
gone, or if it was configured to do a partial update, it might have reverted to doing a
full update. Such issues can be subtle and hard to notice, especially because the page
appears correctly on the initial page display. Those problems occur when controls do
not correctly implement the javax.faces.component.StateHolder interface. The
solution is usually to ask the control developer to fix the problem in the control. Work
around the issue might be possible by computing the values instead of directly setting
them in the XPage. For instance, instead of setting the style as:

style="background-color: blue"

You might compute it as this:

style="#{javascript: 'background-color: blue'}"

No Space Left on Device Problems When the Disk Is Full

When saving page states to the file system has been enabled by setting xsp.
persistence.mode to file or fileex, the possibility exists that the server file sys-
tem might run out of space. This is determined by the amount of space used in propor-
tion to how many users are accessing XPages in various applications, and up to a limit,
to how many XPages they view during their session. A more likely scenario than the file
system running out of space is that the server will run out of memory, so the solution
here is not to change the mode to basic (saving the state in memory). Instead, you can
use options to reduce the number of page files saved, to decrease their size, and possibly
to avoid saving pages.

	 n	 The solution with fewest negative effects is to change the location where the page
files are saved so that it points to a different, larger drive that is less likely to run
out of space. The location where the files are saved is configurable through the
option xsp.persistence.dir.xspstate; see the section dedicated to that
option for more details.

	 n	 The option xsp.persistence.file.gzip ensures that files are compressed
using GZIP format before they are saved to the file system. This results in smaller
files, but at a cost of both more processing load on the server when compressing

The JSF Persistence Properties   29  

the files and longer response time to the users on the client side when decom-
pressing the files to restore the pages.

	 n	 The option xsp.persistence.tree.maxviews can be used to reduce the
number of files saved per user. The capability to use that option depends on the
usage patterns of the application users. Reducing this limit might make users lose
data entered into the browser when the cache limit is reached.

	 n	 The xsp.session.timeout option can be reduced to decrease the time page
files remain on disk after the user stops interacting with the application. The
usefulness of this option depends on the user application usage patterns. Possible
negative effects can arise, including loss of data typed into a browser. It can be
useful if many intermittent users are each accessing a few pages and then closing
the browser or navigating away from the site.

	 n	 The xsp.persistence.file.threshold option can reduce the number of
page files, at the expense of using more memory. It can be useful if the applica-
tion pages are often small.

	 n	 The xsp.persistence.viewstate and xsp.session.transient options
ensure that no pages are saved, but they are useful for only certain types of appli-
cations. Generally, they are useful when the application does not allow editing or
creating documents and mostly uses HTTP GET requests instead of HTTP POST
requests.

xsp.persistence.tree.maxviews

This option applies when using the option xsp.persistence.mode with the value
basic, indicating that a user’s pages should be stored in memory. The default value is
4 (as shown in Listing 1.16), which means that the server stores four pages per user in
memory.

Listing 1.16  xsp.properties Snippet for the xsp.persistence.tree.maxviews Property

Defines the number of pages persisted when in memory (MRU algorithm)

#xsp.persistence.tree.maxviews=4

Refer to the section “Cache Size Limits and XPages Behavior When Limits Are Encoun-
tered” for details on what happens when users access a fifth page and the possible
negative effects if a user attempts to access a page that is no longer in the cache. Those
negative effects include the possibility of data loss, where values that the user has
typed into the browser are no longer available and the user then must reenter values.
If users of this application encounter such problems, it may be necessary to increase
this in-memory cache size limit. If increasing this limit causes the server to run out of
memory, it may be necessary to change the xsp.persistence.mode option to file
or fileex; fewer problems arise with large cache sizes when dealing with pages per-
sisted on the file system.

By changing your application design, you might reduce this limit without negative
effects to your users. Generally, your application must be designed to mostly use HTTP

30  T he JSF Persistence Properties

GET requests instead of POST requests, to have few or no forms where users need to edit
data, and few or no server-side actions in response to events. Reducing the value means
that less memory is used per user. Thus, a greater number of users can access the server
without incurring the response time issues associated with setting the modes file and
fileex, which are usually used when attempting to support a greater number of users.

xsp.persistence.file.maxviews

This option applies when using the value file or fileex with the option xsp.
persistence.mode, meaning that some or all of a user’s saved page states are written
to the server’s file system. This option controls the number of previous pages the user
viewed that will be saved as files on the file system before further opened pages cause
older pages to be discarded. The default value is 16 pages, as shown in Listing 1.17.

Listing 1.17  xsp.properties Snippet for the xsp.persistence.file.maxviews Property

Defines the number of pages persisted on disk,

when "file" or "fileex" is defined (MRU algorithm)

#xsp.persistence.file.maxviews=16

Again, refer to the section “Cache Size Limits and XPages Behavior When Limits Are
Encountered” for details on the behavior when users access the next page after the limit
is reached. In theory, it might be necessary to increase this limit if users are using mul-
tiple page tabs in the web browser or if they use the browser’s back history.

If problems with insufficient disk space on the server arise, a possible solution is to
reduce this limit so that fewer pages are saved per user. The value should not be so low
that it causes the cache limit negative effects, however. The previous section, “No Space
Left on Device Problems,” covers part of the xsp.persistence.mode topic.

xsp.persistence.viewstate

This setting controls how much of the page control tree state is saved between requests.
It has four possible values: fulltree, nostate, delta, and deltaex, as shown in
Listing 1.18.

Listing 1.18  xsp.properties Snippet for the xsp.persistence.viewstate Property

Defines the persistence mode for the JSF pages (a.k.a. Views)

fulltree: Persists the full page content. Default mode.

nostate: The page is *not* persisted at all. Useful

for pure read-only pages.

The following options are valid only when the page

is persisted in memory

delta: Only persists the changes since the

page was constructed

The JSF Persistence Properties   31  

deltaex: Persists the full state for the current page,

and delta's for all other pages #xsp.persistence.
viewstate=

The default value for this property is fulltree, meaning that the full control tree state
is saved between requests. This behavior can also be configured through the XPage root
control’s viewState property, which you can set to the same possible values. The value
set in an XPage overrides the application setting in the xsp.properties file. The behavior
when this option is set to nostate is similar to when the option xsp.session.
transient is enabled.

The value nostate means that none of the control tree is saved between requests.
Instead, when attempting to restore a control tree state for a previously displayed page, a
new control tree is created and used to process the incoming request. Some of the behav-
ior here is similar to the behavior when the cache size limits are reached. For example, if
the user has navigated to a different tab in a Tabbed Panel or has toggled a Section area
open or closed, those controls appear at the initial state, either displaying the wrong tab
or appearing closed instead of open.

However, submitted values from the browser are not ignored. Values in edit boxes can
be saved to a document and simple actions can occur in response to events (although
only if they are in an area that is initially visible in the first page display). When design-
ing a page intended to be used with the nostate value, values that would normally
be saved in a viewScope variable can be saved in an Input Hidden control included
in page submissions and thus can maintain their value in the browser across multiple
requests. In general, though, this option is usually used when building applications that
are intended only to display data, not to edit existing documents or to create new docu-
ments. That way, the application developer doesn’t have to worry about maintaining data
across pages and possibly losing user-entered values.

As a refinement of the nostate value, the value delta attempts to address some of the
limitations of the nostate value by saving certain values between requests. However,
it still does not save the control tree and it still re-creates a new control tree for every
request. Not all XPages controls support the delta option, and not all control values are
saved. When using the delta strategy for saving the control tree state, certain parts of
the control tree are saved. Examples include the viewScope map; the Tabbed Panel
control’s current tab state; the Section control’s open or closed state; and the View Panel
control’s first property value, which corresponds to which page of data is being dis-
played. An example of a value that is not saved is the View Panel control’s rows value,
which indicates how many documents will be displayed in each page of data. It is com-
mon to make the rows configurable so that an end user can choose to display more rows
in each page. With the nostate and delta options, the View Panel control reverted to
displaying the initial number of rows on the next redisplay of the XPage, so the user’s
change to the rows value was lost.

The deltaex value gives a similar behavior to the delta option, in that most of the
previous pages in a user’s session history are saved using the delta option. Thus, only

32  T he JSF Persistence Properties

some of the state in the control tree is saved. The difference with the deltaex value is
that the current page the user is viewing is entirely saved. The entire control tree state
for the current page, not just the minimal state used with the delta value, is serial-
ized and saved in memory. The behavior where it serializes the state before saving it in
memory is different than the normal in-memory saving of the control tree explained for
the xsp.persistence.mode value basic. That serialization strategy is also used
with the xsp.persistence.file.threshold option. It has the disadvantage that
serialization errors may occur, such as those explained in the previous section on serial-
ization problems. However, this option has an advantage over delta view state saving:
The user is less likely to encounter problems where page state seems to have reverted.
The page state is the same for most use cases, and only when users use the Back button
in the browser will they encounter the behavior explained for the delta value.

xsp.persistence.file.gzip

This option applies when the xsp.persistence.mode option is set to file or
fileex, meaning that the page state is stored on the server as files on the file system.
Listing 1.19 shows the relevant part of the xsp.properties file.

Listing 1.19  xsp.properties Snippet for the xsp.persistence.file.gzip Property

Defines if the persisted files should be GZIP'ed on disk

(less disk space, more CPU processing)

#xsp.persistence.file.gzip=false

You can set this property to true to cause the files to be zipped or compressed before
they are saved. (GZIP is a particular compression utility.) This means that the file size
is smaller, so there is less possibility of running out of disk space on the server. How-
ever, this comes at the cost of running the compression algorithm, which uses up server
computation time and may cause decreased response time for users, depending on how
busy the server is. The section entitled “No Space Left on Device Problems” discusses
other solutions to low disk space problems, as part of the xsp.persistence.mode property
discussion.

xsp.persistence.file.async

This option applies when the xsp.persistence.mode option is set to file or
fileex, meaning that the page state is stored on the server as files on the file system.
It defaults to true, as shown in Listing 1.20.

Listing 1.20  xsp.properties Snippet for the xsp.persistence.file.async Property

Defines if the pages persistence to a file

should be done asynchronously (best response time,

creates extra threads on the server)

#xsp.persistence.file.async=true

The JSF Persistence Properties   33  

The default value (true) means that, after the page has been used to generate the HTML
response, it is not immediately saved to the file system during that user’s browser
request. Instead, a helper thread later handles the operation of writing the file to the file
system; the response to the browser is not delayed by interaction with the server file sys-
tem. This leads to better response times and better user experience in the browser.

The most common use case for setting this option to false is for debugging issues
encountered when writing the page to the file system.

Before the page content is passed to the helper thread, it is serialized to a buffer. This
can result in serialization problems with an error page displayed to the user, as men-
tioned in the section on the xsp.persistence.mode option. Later, the helper thread
attempts to save the buffer to the file system. Any problems during the file system save
do not appear in the browser and are noted only in the server log files. Problems sav-
ing to the file system can occur if the server disk is full, if the server process does not
have permission to write values to the cache location, or if any other types of java.
io.IOException problems occur. If a problem saving the page arises, the behavior for
the user is the same as if the page was discarded because the cache was full. This can
lead to data loss issues. For more information, refer to the section “Cache Size Limits
and XPages Behavior When Limits Are Encountered.”

xsp.persistence.file.threshold

This option applies when the xsp.persistence.mode option is set to file or
fileex, meaning that the page state is stored on the server as files on the file system.
Listing 1.21 shows the relevant property and help text as contained in the xsp.properties
file.

Listing 1.21  xsp.properties Snippet for the xsp.persistence.file.threshold Property

Defines if the pages should be serialized in memory,

instead of in files, when their size is less

than a specific amount of bytes. 0, which is default,

means that it is always serialized to disk

#xsp.persistence.file.threshold=0

When set to 0, the user’s pages on the server are serialized (converted from control tree
objects to a representation of objects that can be saved to a file), and the serialized pages
are saved to a file on the server’s file system. This option provides a size threshold that
depends on the size of the serialized page, measured in bytes. If the serialized page size
is less than this threshold, the serialized page is stored in memory instead of on the file
system. Note that this is different than the behavior when the xsp.persistence.
mode option is set to basic. In that case, the actual page control tree objects are saved
in memory, whereas, in this file or fileex case, the serialized representation of that
page is saved instead. Because these smaller pages are saved in memory instead of on
disk, response times are improved for browser requests for these pages. The possibility of
running out of server memory does arise, along with the consequent issues discussed at

34  T he JSF Persistence Properties

length elsewhere in this chapter. If such problems are encountered, it may be necessary
to reduce this threshold again. This threshold option was added in version 8.5.3.

xsp.persistence.dir.xspstate

This option controls the location where the state of pages previously opened by a user
are saved when saving to the file system. Listing 1.22 shows a snippet from the relevant
section in the xsp.properties file.

Listing 1.22  xsp.properties Snippet for the xsp.persistence.dir.xspstate Property

Define the directory where the JSF pages are persisted

defaults to <tempdir>/<notesSessionID>/xspstate

#xsp.persistence.dir.xspstate=

Pages are saved to the file system when the xsp.persistence.mode option is file
or fileex. The generally recommended mode is fileex, so this location is likely to
contain page files.

The page state files are saved to a location such as this: C:\Documents and
Settings\userName\Local Settings\Temp\notes74483D\xspstate\2\CXXTXFVP7C\
cxzkvftr56.ser

The folder C:\Documents and Settings\userName\Local Settings\Temp\ is the default
Windows temporary folder. That folder location varies, depending on your operating
system and how your OS is configured. In this example, the folder notes74483D is
a Notes/Domino instance temporary folder; the number changes every time Notes or
Domino is restarted. In version 8.5.0, this folder didn’t exist and the XPages persistence
used different subfolders under the temporary folder. The folder xspstate is a container
folder for the page files; other container folders are present at that level. The 2 is a folder
corresponding to the application. Those numbers are lazily assigned based on the order
applications are accessed using XPages, starting at 1 for the first application opened
after the server starts. The CXXTXFVP7C is a user session identifier. Different users,
or the same user logged in using a different web browser, have different session IDs.
The sessions also have a timeout, so a user reaccessing the application after the session
has expired triggers a new session. The cxzkvftr56.ser is the viewId identifying this
XPage control tree instance. The viewId is accessible through Server Side JavaScript
via the view.getViewId()API call and is present in the HTML source produced by an
XPage. Files saved here are discarded when the page cache for that user session is full,
when the user session has timed out due to inactivity, and when the server is restarted. It
may be useful to change this setting to point to a different location, if the folder is taking
up too much space on the main server drive and an alternate drive has more available
space. Other options also can be set to reduce the space used by the page saving. For
more information, refer to the section “No Space Left on Device Problems,” as part of
the xsp.persistence.mode property discussion. It may also be useful to change this
if faster drives are available, to give better turn-around time to individual web users.

The JSF Persistence Properties   35  

This option is server-wide, so it should be set in the server xsp.properties file. Values
set in a particular application’s xsp.properties file are ignored.

xsp.persistence.dir.xspupload

As described in the help text in Listing 1.23, this option defines the location where
uploaded files are temporarily stored on the server file system.

Listing 1.23  xsp.properties Snippet for the xsp.persistence.dir.xspupload Property

Define the directory where the temporary uploaded files are stored

defaults to <tempdir>/<notesSessionID>/xspupload

#xsp.persistence.dir.xspupload=

If the File Upload control is bound to a document field so that it will be saved as an
attachment, the file will not be in this temporary upload folder for long and will be
moved to the folder referenced by the option xsp.persistence.dir.xsppers.

The default location of this folder is like so: C:\Documents and Settings\userName\
Local Settings\Temp\notes74483D\xspupload\

Refer to the option xsp.persistence.dir.xspstate for a discussion of the folders
up to xspupload. Within the xspupload folder, the file is saved with a temporary file-
name, unrelated to the name before upload or to the name used when it is attached to the
document. Note that there is a limit to the size of files that can be uploaded, configurable
through the option xsp.upload.maximumsize.

It may be useful to change this setting to point to a different location if the folder is tak-
ing up too much space on the main server drive and another drive has more available
space.

This option is server-wide, so it should be set in the server xsp.properties file. Values
set in a particular application’s xsp.properties file are ignored.

The xsp.persistence.dir.xspupload property is related to the xsp.upload.
directory property but should be used as the preferred option because the xsp.
upload.directory is deprecated.

xsp.persistence.dir.xsppers

This option controls the location where document attachments are temporarily stored
on the server file system after the files have been uploaded and associated with a docu-
ment, but before the document has been saved. An intermediary step comes before the
attachment is associated with a document: At that point, the file is saved in the location
indicated by the xsp.persistence.dir.upload option. Listing 1.24 displays the
relevant snippet from xsp.properties.

36  T he JSF Persistence Properties

Listing 1.24  xsp.properties Snippet for the xsp.persistence.dir.xsppers Property

Define the directory where the document attachments

are temporarily persisted (stored)

defaults to <tempdir>/xsppers

#xsp.persistence.dir.xsppers=

While the file is in this xsppers folder, the browser URL to download the file is like:
http://serverName/appName.nsf/xsp/.ibmmodres/persistence/DominoDoc-3-Body/
red.GIF

With the default settings, the actual file location on the server file system is like: C:\
Documents and Settings\userName\Local Settings\Temp\notes74483D\xsppers\2\
CXXTXFVP7C\DominoDoc-3-Body\red.GIF

See the option xsp.persistence.dir.xspstate for a discussion of the folders up
to DominoDoc-3-Body, except that these attachment files are saved in an xsppers
folder instead of the xspstate folder described in that option.

DominoDoc-3-Body/ indicates that this is the third document to which files are being
attached in the application. That folder can contain multiple files as more attachments
are added to the document.

red.GIF is usually the name of the file before it was uploaded, although there is an
option on the file upload control to assign a different name to the uploaded file.

After the document has been saved, the file no longer is accessed through a persistence
URL. Instead, it is accessed through a Domino document attachment URL: http://
serverName.example.com/appName.nsf/xsp/.ibmmodres/domino/
OpenAttachment/appName.nsf/91AB1F5555CF7E06802578FA005F8DFC/
Body/red.GIF

Some different variants of that URL syntax exist—for example, the document might be
from an application on a different server.

The files remain in the temporary persistence location until the user session expires.
The file is not removed after the document is saved, although it is no longer referenced
by URLs.

Note that there is a limit to the size of files that can be uploaded, configurable through
the option xsp.upload.maximumsize.

It may be useful to change this setting to point to a different location if the folder is tak-
ing up too much space on the main server drive and another drive has more available
space.

This option is server-wide, so it should be set in the server xsp.properties file. Values
set in a particular application’s xsp.properties file are ignored.

http://serverName/appName.nsf/xsp/.ibmmodres/persistence/DominoDoc-3-Body/red.GIF
http://serverName/appName.nsf/xsp/.ibmmodres/persistence/DominoDoc-3-Body/red.GIF
http://serverName.example.com/appName.nsf/xsp/.ibmmodres/domino/OpenAttachment/appName.nsf/91AB1F5555CF7E06802578FA005F8DFC/Body/red.GIF
http://serverName.example.com/appName.nsf/xsp/.ibmmodres/domino/OpenAttachment/appName.nsf/91AB1F5555CF7E06802578FA005F8DFC/Body/red.GIF
http://serverName.example.com/appName.nsf/xsp/.ibmmodres/domino/OpenAttachment/appName.nsf/91AB1F5555CF7E06802578FA005F8DFC/Body/red.GIF
http://serverName.example.com/appName.nsf/xsp/.ibmmodres/domino/OpenAttachment/appName.nsf/91AB1F5555CF7E06802578FA005F8DFC/Body/red.GIF

The Client Side JavaScript Properties   37  

The Client Side JavaScript Properties

These options relate to the JavaScript framework used in the browser. “Client side”
here means in the browser, as opposed to Server Side JavaScript, which executes in the
XPages runtime as part of the web server. The Client Side JavaScript framework used by
XPages is the Dojo Toolkit, so these options relate to how Dojo is used in XPages.

xsp.client.script.dojo.version

This option relates to the Dojo Toolkit, which comes installed on the Domino server and
in the Notes client. Pay close attention to the help text shown in Listing 1.25.

Listing 1.25  xsp.properties Snippet for the xsp.client.script.dojo.version Property

The version of the Dojo Toolkit to use.

By default the Dojo version is detected by examining the folder

Data/domino/js/ for subfolders with names like dojo-<version>,

and using the latest version available.

Change this setting if you are installing different versions of Dojo

in that folder and you need XPages to use a specific version.

Note, using XPages with a Dojo version other than the default

is unsupported; if you do so you will need to test for

compatibility problems.

#xsp.client.script.dojo.version=

Dojo is used in XPages as a client (browser) JavaScript framework and to provide the
browser behavior of some controls. People familiar with Dojo can also use the dojo utili-
ties in their own application scripts. In addition, it is possible to use the full set of Dojo
controls directly in XPages pages. However, most of those controls have not been tested
with XPages so it is up to the application developer to debug any problems encountered.

The Dojo Toolkit resources (JavaScript files, icons, style sheets, and so on) are installed
on the Domino server, where web URLs can access them. The HTML for individual
XPages refers to the main dojo.js file, which provides the Dojo infrastructure, and to
other Dojo files as needed.

Different versions of Dojo exist, each with a different version number. Whenever you
upgrade a Domino server, such as from version 8.5.2 to version 8.5.3, a new, later ver-
sion of Dojo is installed. If you do an upgrade install, the older version of Dojo for the
previous Domino server version remains present in the server’s Domino\data folder.
(From version 8.5.3, now that the supported Dojo is packaged as an OSGi plug-in, the
older Dojo version no longer is available on upgrade.) The XPages runtime is verified
to run with only a single version of Dojo, the XPages-supported Dojo version for that
release, so usually the older version left after an upgrade is unused. The Domino server
versions 8.5.2 and 8.5.3 contain two installs of Dojo. Lotus iNotes uses the installed ver-
sion with the earlier number, and the XPages runtime uses the later Dojo version. The

38  T he Client Side JavaScript Properties

URLs to Dojo resource locations contain the Dojo version number, so to refer to a Dojo
file, your application should use paths like this:

src="/.ibmxspres/dojoroot/dijit/themes/tundra/tundra.css"

The XPages runtime preprocesses the /.ibmxspres/dojoroot/ portion of that path. Thus,
the HTML output for the page contains a URL that points into the Dojo resource loca-
tion for the current Dojo version.

You can use this xsp.client.script.dojo.version option to choose a Dojo ver-
sion to use in XPages, from among the Dojo version installs available on the server.
Use of any Dojo version other than the version associated with XPages for that Domino
release is an unsupported configuration, so you must test to verify that the XPages infra-
structure and the XPages controls used in your application work with the version of Dojo
you have chosen. The version format is like 1.6.1—that is, three integers separated by
dots, read as “major.minor.micro.” A text value after the third number is allowed, though
not included in version comparisons, so it can be like “1.6.1.xxx,” with the text referred
to as a qualifier.

The option is usually set in an application’s xsp.properties file when your applica-
tion needs to use an unsupported Dojo version. You might need to set the option in the
server-wide xsp.properties file if you have installed an unsupported version for use in
a specific application but it is being detected as the default version and is being used in
all XPages applications on the server. In that case, the server-wide xsp.properties file
should be explicitly configured to use the supported version. When setting the option
in the server file, keep in mind that the server xsp.properties file is not overwritten on
upgrade, so after upgrade, you must edit the file to change to the version supported by
the upgraded Domino version.

Tip  Note that when setting this option in an application xsp.properties file, you also
need to disable the resource aggregator by setting the option xsp.resources.
aggregate to false. The aggregator incorrectly uses the files for the server-wide
Dojo version, yet the reference to the main dojo.js file uses the application Dojo ver-
sion. Thus, you end up with a mix of Dojo versions in use on the page, giving Client
Side JavaScript errors. That issue is still open in version 8.5.3.

Table 1.3 shows the Dojo versions that XPages runtime supports.

Table 1.3  XPages Runtime–Supported Dojo Versions

XPages Version Dojo Version

Domino 8.5.0 (server only) Dojo 1.1.1

Notes/Domino 8.5.1 Dojo 1.3.2

Notes/Domino 8.5.2 Dojo 1.4.1

Notes/Domino 8.5.3 Dojo 1.6.1

The Client Side JavaScript Properties   39  

Reasons to Use Different Dojo Versions

You might want to use different Dojo versions in your application, for a few reasons. As
mentioned before, none of these is officially supported, so testing is required.

You might want to upgrade to a later point release of Dojo when that point release has
Dojo fixes or new features that you need for Dojo controls used in your application.
Point releases are instances when the third part of the version number changes, such
as from 1.6.0 to 1.6.1. Different point releases are usually broadly compatible and less
likely to result in breaking functionality, although you should read the release notes to be
aware of any possible issues.

You might want to downgrade to the version of Dojo used in the previous version of
the Domino server after a server upgrade. This is sometimes useful as a quick fix when
your application is using a specific Dojo version, such as when the paths to the Dojo
resources are explicitly using the version number, instead of using the /.ibmxspres/
dojoroot/ paths mentioned earlier. Alternatively, your application might have been using
the dojox experimental Dojo controls, and they might have changed significantly in the
upgraded Dojo version so that your pages are now broken. As with all unsupported Dojo
versions, you must retest your applications with this older Dojo version because the
server-side behavior of the XPages runtime controls will have been tested with only the
supported Dojo version. It is better to upgrade your application design to work with the
new supported version.

You might want to install a source copy of the supported Dojo version for debugging.
The version of Dojo installed in the Domino server is compressed to remove whitespace,
to use shorter variable names, and to implement other changes to make the files smaller
and the code run faster. That makes it more difficult to read the JavaScript code when
you need to debug, to investigate some problem. You can install the more verbose
source copy of Dojo from the dojotoolkit.org website. You will need to give your
source copy a version, such as 1.6.1.source instead of 1.6.1, because the versions
need to be unique. Then in the application, set this xsp.client.script.dojo.
version option to the version 1.6.1.source so that the uncompressed source is available
for debugging.

As another option, you might want to use an entirely different version of Dojo than that
supported by the XPages runtime. Perhaps it has some feature you want to use in your
controls, or maybe you are using some third-party Dojo-based controls that work with
only a specific Dojo version. This is the riskiest option and the one most likely to intro-
duce compatibility problems in your applications. You will likely need to fully test that
your application and the XPages controls it uses work with the proposed Dojo version
in all the browsers your application users will be using. Areas to test in particular are
the Partial Update behavior, the event handling (for actions configured in the Designer
Events view), the Rich Text Editor control, the Date Time Picker, any type-ahead con-
trols, and anywhere you’re setting a dojoType property on an XPage control or in pass-
through HTML.

40  T he Client Side JavaScript Properties

Installing Multiple Dojo Versions and Determining the Version Used

The Domino server detects the Dojo-installed versions available in various ways. Among
the detected versions, an algorithm selects the default Dojo version for the server. In
addition, within an application are various factors that determine the Dojo version used
for that application.

Since version 8.5.3, there is an XPages Dojo contribution extension point so that the
Dojo resources can be provided within a plug-in, not just as a folder under the Domino\
data\ directory.

The supported Dojo version in version 8.5.3 is packaged as a plug-in (as mentioned,
another version on the server is not supported for XPages, just for Lotus iNotes). The
plug-in is installed as a zipped .jar file here:

{dominobin}\osgi\shared\eclipse\plugins\

com.ibm.xsp.dojo_8.5.3.20110824-1655.jar

That Dojo plug-in, shipped with the Domino server, lists the Dojo version in an inner
text file:

/resource/dojo.properties

In version 8.5.3, it lists the version as follows:

DojoVersion.versionStr=1.6.1

Your server might contain other plug-ins contributing Dojo versions to the XPages run-
time. This is most likely to occur if you’ve installed some XPages Extensibility library
of controls that requires and provides some other version of Dojo. Additionally, when
you want to install different Dojo versions, you might find it useful to package the alter-
nate Dojo versions as plug-ins.

The other way of installing Dojo versions is as domjs subfolders, as in this folder pres-
ent in Domino 8.5.3 servers and used only by Lotus iNotes:

{dominodata}\domino\js\dojo-1.5.1\

When providing Dojo versions as folders, they must be present in that Domino\data\
domino\js\ parent folder. That parent folder is known as domjs because, on the Domino
server, the URL used to access the subfolder will be like http://server.example.com/
domjs/dojo-1.5.1.

The name of the Dojo folder under domjs must match that format, with dojo- and the
major.minor.micro version number. A folder name such as dojo-1.5.1.xxx is also pos-
sible, but the extra text at the end is not included in version comparisons. If the folder
name does not match either of those formats, it will not be recognized as an installed
version of Dojo. Because the XPages Dojo extension point became available only in ver-
sion 8.5.3, in the older servers, the only way to provide Dojo versions is through domjs
folders.

The Client Side JavaScript Properties   41  

The contents of the Dojo resource folder should be like this:

dijit/

dojo/

dojox/

ibm/

The first three folders, dijit, dojo, and dojox, are standard folders that are available in
the download zips from the Dojo Toolkit website.

The ibm/ folder contains extra JavaScript files that the XPages runtime requires. When
installing a new Dojo version, you need to copy the ibm folder from the supported Dojo
location into your new location so that those files are available to the XPages runtime.
(Anyone using the version 8.5.3 XPages Dojo extension point will notice that it was
designed so that you don’t need to copy the ibm folder, but that feature is unavailable at
this time.)

At a server level there is a detected default Dojo version, usually used when individual
applications do not specify an explicit version in the xsp.properties option.

If the server-wide xsp.properties file contains the option xsp.client.script.dojo.
version and it matches one of the installed Dojo versions, that will be the default dojo
version for the server.

Otherwise, the default version is chosen from among the installed versions. Dojo installs
provided as domjs folders are considered candidates for default, unless the version is
like 1.1.1.xxx. The text at the end after the “major.minor.micro” numbers disqualifies
them as candidates. Dojo resource locations provided through the XPages Dojo
extension point are considered candidates when their implementation of the method
DojoLibrary.isDefaultLibrary() returns true. The candidate location with the
highest version number becomes the default server dojo version.

Within an application, the version of Dojo used depends on the value of the xsp.
client.script.dojo.version option and also on the maximum dependency Dojo
version.

The max dependency Dojo version applies only when your application uses any XPages
Extensibility library of controls. As explained in the xsp.library.depends option,
an application can be configured to use multiple libraries of controls other than those
that the XPages runtime provides. A library can declare a required version of Dojo,
indicating that the library will not work if the Dojo version the application uses is less
than the required version. When an application depends on multiple libraries requiring
different minimum versions of Dojo, the application must use a Dojo version the same
or greater than the maximum Dojo version required by any of the libraries. That maxi-
mum is known as the max dependency Dojo version.

In an application, when the xsp.client.script.dojo.version option is explic-
itly configured, that version of Dojo is used. Note that the version can have text after
the version numbers, as in 1.6.1.source. If the application-configured Dojo version

42  T he Client Side JavaScript Properties

(including any text after the numbers) does not exactly match one of the installed Dojo
versions, an error will prevent the application from running. If the application is using
some control libraries, the option value is validated against the max dependency Dojo
version. If the version in the option is less than the max dependency version, an error
will prevent the application from running. That can happen if you upgrade some library
on your server so that the dependency Dojo versions change and your application-speci-
fied version is no longer viable.

When the option is not configured in the application, either the max dependency ver-
sion or the server default Dojo version is used. The one with the highest version number
applies.

xsp.client.script.dojo.djConfig

This option can add extra values to the djConfig object in the page header besides val-
ues that XPages automatically outputs. Listing 1.26 includes the relevant section of the
xsp.properties file.

Listing 1.26  xsp.properties Snippet for the xsp.client.script.dojo.djConfig Property

Add parameters to the djConfig attribute of Dojo.

Useful to switch Dojo to debug, using for example:

xsp.client.script.dojo.djConfig=isDebug:true

#xsp.client.script.dojo.djConfig=

The full description of parameters to the djConfig object is part of the Dojo Toolkit
documentation at dojotoolkit.org. The value format is the contents of a Client Side
JavaScript object, so it can have multiple name and value pairs. A colon (:) separates
the name and value, and commas (,) separate the different pairs. The value is written
in the HTML page as an attribute, so it should not contain double quotes (") or newline
characters. Consider two examples of the format:

someBoolean:true, someString: 'text', someNumber: 20

someArray: ['text1','text2'], someObj: {name1:'value1', name2:'value2'}

This option can be set per XPage, in the XPage root control property named proper-
ties. Unlike in some other options, the behavior is not solely determined by the value
in the application and server xsp.properties files.

The option is most commonly used to set the parameter isDebug:true. That param-
eter is used when your page has some Client Side JavaScript error, to find out more
information about the cause. The option is useful when writing complicated Client
Side JavaScript code or when attempting to use Dojo controls instead of the predefined
XPages controls by setting a dojoType property on an XPage control or in an HTML
snippet in the XPage source. Since version 8.5.3, by default, the XPages resource aggre-
gator appends all the Dojo .js files into a single file. For debugging purposes, then,
it is usually necessary to disable the resource aggregator by setting the option xsp.
resources.aggregate to false. Also, the .js files on the server are compressed,

The Client Side JavaScript Properties   43  

with formatting whitespace removed. To make the files more readable for debugging
purposes, it may be useful to replace the server’s dojo resources with a source-uncom-
pressed version of the same, downloaded from the Dojo Toolkit website. Uncompressed
versions of the XPages runtime files are included in the Domino server, but under names
such as file.js.uncompressed.js; you’ll need to do some file renaming to use the uncom-
pressed versions. For more on debugging Client Side JavaScript, see Chapter 4, “Work-
ing with the XSP Client Side JavaScript Object.”

Besides the parameters explicitly configured in this option, the XPages runtime outputs
other parameters to the djConfig object, some by default and others depending on
property settings in the XPage.

Every XPage outputs the locale parameter, as in locale: ‘en-us’. That usually corre-
sponds to the language and region of the user’s web browser, although if the application
is translated but not to the user’s language, the application’s default language may be
used instead. For more on how the XPages locale is chosen, see the Internet document
“Locale Use in XPages.”

Another djConfig locale parameter, extraLocale, may be useful to configure in this
option when your application has pages containing multiple languages. If you need to
specify that option, keep in mind that the XPages locales are Java locales, as with en_
US, which need to be explicitly converted to a Dojo locale, such as en-us. Some locale
conversions are complicated, as with the language Indonesian, which is in in Java but
id in Dojo. For more details, in the Internet document “Locale Use in XPages,” see the
section “Norwegian and the Deprecated Locale Codes.”

The djConfig parameter parseOnLoad:true is usually set by the XPages runtime
instead of through this option. It is not always present on an XPage, but the presence
of certain XPage controls causes the option to be set to true. In addition, the XPages
root control has a Boolean property dojoParseOnLoad that can be set to output this
parameter. The parseOnLoad parameter means that the Dojo infrastructure detects any
dojoType attributes in the HTML source and converts those elements to Dojo controls
or modules.

A djConfig parameter named modulePaths provides locations where Dojo will
search for Dojo module JavaScript files. To output a module path, an XPage resource
can be set in an individual XPage. Actually, it outputs the module path as a separate line
in the header, but the effect is similar to when the value is set in the djConfig param-
eter, so the djConfig modulePaths parameter is not generally used in XPages.

The module path resource can be used when providing Dojo-based controls or modules
as JavaScript files in your application. Listing 1.27 provides the XPage source for such
a page.

Listing 1.27  Setting the Dojo Module Path in XSP Markup

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core"

 dojoParseOnLoad="true">

44  T he HTML Page-Generation Properties

 <xp:this.resources>

 <xp:dojoModulePath prefix="inapp" url="/" />

 <xp:dojoModule name="inapp.CustomButton" />

 </xp:this.resources>

 <xp:button value="Label" id="button1"

 dojoType="inapp.CustomButton" />

</xp:view>

There is also an XPages extension point for module paths, used in XPages Extensibil-
ity control libraries. For example, the extension point is used by the XPages Extension
Library project on OpenNTF.org. When that library is installed, any Dojo module names
beginning with extlib. are not searched for in the Domino server’s Dojo folder.
Instead, they are registered as being available from a URL folder pointing into the
Extension Library plug-in. The URL to an individual module JavaScript file is in this
form: http://server.example.com/xsp/.ibmxspres/.extlib/dijit/Tooltip.js

The HTML Page-Generation Properties

This category of properties provides you with several properties that can be used to con-
figure the emitted HTML markup from the XPages runtime. This includes document and
content type, encoding, compression mode, client-side validation, and client or server
redirection.

xsp.html.doctype

This property gives you control over the <!DOCTYPE> tag that is emitted as the first line
of all your XPages at runtime. This is not an HTML tag, but a declaration to the browser
for the document type definition (DTD) used to create the page that is being served up—
essentially, the type and version of the markup language. Some good summary informa-
tion is provided in the xsp.properties file, in Listing 1.28.

Listing 1.28  xsp.properties Snippet for the xsp.html.doctype Property

Defines the document doctype generated by the engine

Defaults to HTML 4.01 transitional, but XHTML is available with:

html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

Note that when using XHTML, the content type is still text/html as
➥IE,

as well as Dojo, don't support application/xhtml+xml

xsp.html.doctype=HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
➥http://www.w3.org/TR/html4/loose.dtd"

You can specify the literal <!DOCTYPE> option directly in the xsp.properties file or via
Domino Designer using Application Properties > XPages > HTML doctype: combo

The HTML Page-Generation Properties   45  

box menu. With the latter, you can make your selections using the logical doc type
names, as follows:

	 n	 HTML Strict

	 n	 HTML Transitional

	 n	 XHTML Strict

	 n	 XHTML Transitional

	 n	 HTML5

These are transformed into the following <!DOCTYPE> declarations at runtime,
respectively:

<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"

\"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

\"http://www.w3.org/TR/html4/loose.dtd">

<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html>

HTML Transitional is the runtime default. Even though you can change this setting
using this property, you must consider certain issues. As pointed out via the comments
in the xsp.properties file, not all browsers fully support XHTML mode. Using a strict
HTML DTD can cause problems with Dojo controls within XPages—for instance, the
dojoType attribute is used by the XPages Date Time Picker renderer when generating
the markup for the Dojo control. Because dojoType is not part of the HTML specifica-
tion, the emitted markup fails a strict validator.

Similarly, you can have HTML content on an XPage that does not emanate from the
XSP design markup at all, but rather from the document data itself. Suppose that your
XPage contains a Rich Text control instance and you are working with one originally
created on the native Notes client. The data in the Notes rich-text field has been trans-
formed into HTML by an internal CD-MIME engine. The resulting HTML might not be
well formed or might contain deprecated HTML tags, which would also result in valida-
tion failures.

These are issues to bear in mind if you are considering a <!DOCTYPE> change.

xsp.html.meta.contenttype

This property is really a convenient means of inserting an HTML <meta> tag into the
emitted page markup as the first line in the <head> section. Simply set the property to
the desired Boolean value, as shown in Listing 1.29.

46  T he HTML Page-Generation Properties

Listing 1.29  xsp.properties Snippet for the xsp.html.meta.contenttype Property

Ask the XPages runtime to generate a <meta> tag in the HTML header

defining the content type, and the optional character set.

This meta tag is the first tag appearing after the <head> one.

For example, it generates something like:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

#xsp.html.meta.contenttype=false

The tag includes http-equiv and content attributes, with the values reflecting the
settings applied by the runtime. For example, if such a metadata declaration is required
by policy for all web pages in an application or organization, setting this property makes
the implementation simple.

The alternative is to stipulate the metadata manually, by inserting <xp:metadata> tags
with the required attribute values into the <xp:resources> of each XPage, which is
cumbersome. Extra metadata, over and above that automatically specified by this prop-
erty, can be added to any page using the <xp:metadata> tag. You will end up with
multiple <meta> tags in the <head> section of the emitted markup, but that is okay.

xsp.html.preferredcontenttypexhtml

Listing 1.30 summarizes this property in the xsp.properties file.

Listing 1.30  xsp.properties Snippet for the xsp.html.preferredcontenttypexhtml
Property

Force the content type to be application/xhtml+xml if the user agent

supports it

WARN: this has to be used very carefully as some features won't work

with an XML content type. For example, the innerHTML JavaScript

property is read only and then breaks Dojo or XPages partial refresh.

Moreover the RichText fields converted to MIME are not XHTM
➥compatible

This option should only be used in very particular cases

xsp.html.preferredcontenttypexhtml=false

Although you can use the xsp.html.doctype property to set the <!DOCTYPE> of the
emitted page to XHTML, the Content-Type response field is still set to text/html
to guard against the potential pitfalls described for that property, such as non-XHTML-
enabled browsers and noncompliant XHMTL markup generated in certain use cases. If
your application is not affected by such issues and you want to coerce the Content-
Type field in the response header to explicitly specify the application/xhtml+xml
type (which makes it a real XML file), simply set this xsp.html.preferredcon-
tenttypexhtml property to true. It will be applied as long as the end user’s browser
includes application/xhtml+xml as an Accept parameter value.

The HTML Page-Generation Properties   47  

xsp.html.page.encoding

This property is used to set the preferred character encoding for the web pages generated
by your XPages. The XPages default encoding in utf-8, as shown in Listing 1.31.

Listing 1.31  xsp.properties Snippet for the xsp.html.page.encoding Property

Defines the character set returned for the page

#xsp.html.page.encoding=utf-8

UTF-8 is part of the Unicode standard and is the preferred character encoding for web
pages. However, you can specify alternative character encoding standards, although this
is not a common occurrence in practice, at least from this author’s experience. A com-
prehensive selection of character encodings is made available in Domino Designer via
the Application Properties editor, as shown in Figure 1.14.

Figure 1.14  Application Properties, HTML Generation > Encoding Options

Picking an entry from the combo box writes the value as the xsp.html.page.
encoding setting in the local xsp.properties file, while the Domino server/Notes
client file provides a convenient global override mechanism.

xsp.compress.mode

XPages supports a number of compression options that are designed to give maximum
control over the manner in which XPages content is sent from the server to the client
browser. Good summary information is provided in the xsp.properties file, as shown in
Listing 1.32.

Listing 1.32  xsp.properties Snippet for the xsp.compress.mode Property

XSP compression

This defines the compression mode used when a page is rendered to

the client. The compression is effectively enabled when the client

Character
encoding options

48  T he HTML Page-Generation Properties

supports it, as specified in the HTTP header of the request.

The possible values are

none

no compression at all

gzip

the response contains the content-length header, which forces

the data to be buffered.

this is the prefered mode and is required to support HTTP 1.1

persistent connections.

gzip-nolength

The content is compressed but it doesn't compute the content-length,

Thus it doesn't need to buffer the result

#xsp.compress.mode=gzip

Compressing text resources such as HTML, CSS, and JavaScript can boost runtime
performance by drastically reducing the physical size of the data that is sent from the
server to the browser when rendering an XPage. The default mode specifies an encoding
format called gzip, short for GNU zip. XPages content is compressed using this format
by default, as long as the browser client can handle this type of encoding. The compres-
sion mode negotiation occurs between browser and server using the request/response
headers. If the browser specifies an Accept-Encoding of gzip in the request, XPages
responds with gzipped content and sets the Content-Encoding field in the response
header to gzip. The size of the compressed content is also computed and included in
the Content-Length response header field, unless gzip-nolength is specified as
the preferred compression mode. When the Content-Length field is set, all the con-
tent is buffered before being sent to the browser. When not set, the response is sent to
the browser immediately, which can be advantageous in low-bandwidth situations as
the page will incrementally be rendered by the browser as it receives content from the
server.

You can access this feature directly through Domino Designer using the Application
Properties > XPages > HTML Generation > Compression combo box options.

xsp.client.validation

This property specifies whether to apply client-side validation. The default setting is
true, as shown in Listing 1.33.

Listing 1.33  xsp.properties Snippet for the xsp.client.validation Property

Enable the client validation - default to true

#xsp.client.validation=true

User input validation is a fundamental aspect of any application. Any input control
included on an XPage can have validation conditions attached so that the data ultimately
submitted by the end user at runtime can be checked against particular criteria. The

The HTML Page-Generation Properties   49  

validation criteria might be that a required field is not empty or that a number in another
field falls within a certain range. Any stipulated validation criteria are always executed
on the server side by the XPages runtime as part of the validation phase of the request
lifecycle. In other words, validator code is always executed on the Domino server after
the XPage is submitted from the browser agent. However, XPages also provides the
option of having validation performed on the client side—that is, it provides the capabil-
ity to apply the validation criteria in the browser container before the page is submit-
ted to the server. In this scenario, if the data on the page does not pass the validation
conditions, the page is not submitted to the server at all and the user is notified with one
or more error boxes in the browser. This can result in an improved user experience—
because of quicker validation feedback, for example—and thus client-side validation is
enabled by default in the XPages runtime.

If client-side validation is not really required for a given application—remember, server-
side validation is performed regardless—you can simply turn it off. For a particular
application, you can do this via Domino Designer by selecting the Application
Properties > XPages > Client Validation > Off radio button. This action results in
xsp.client.validation=false being written to the local xsp.properties file. If the
Server Default option is chosen, the preference is taken from the xsp.properties file on
the Domino server (or from the xsp.properties file in the Notes client if running on that
platform, which makes the UI name somewhat confusing).

When client validation is turned on, client validation code is rendered at runtime in the
emitted HTML for any input control on the XPage that has validators attached. Note
that individual controls can also opt out of the client-side validation either by setting
their own disableClientSideValidation Boolean property to true or by set-
ting the disableValidators Boolean property on event handlers belonging to the
control to true. Finally, be aware that not all standard validators have a client-side
implementation.

xsp.redirect

The xsp.redirect comment included verbatim from the xsp.properties file, in
Listing 1.34, summarizes this feature concisely.

Listing 1.34  xsp.properties Snippet for the xsp.redirect Property

xsp Page redirect mode - This happens when the runtime redirects

to a new page (navigation rules, API, simple action)

When this property is true, then the runtime emits an HTTP 302 code

to the ask client to redirect to the new page.

This ensures that the client has the right URL in its address bar,

at the cost of an extra client/server roundtrip.

Else, the redirection is purely done on the server, without any

notification to the browser (the URL doesn't change)

#xsp.redirect=true

50  T he Error-Management Properties

When something happens within the runtime on the server side that changes the current
page, as with the execution of a navigation rule, simple action, or particular set of API
calls, XPages can simply render the new page to the browser client or instruct the cli-
ent to request the new page. The latter means that the browser always shows the correct
URL in the address bar. This is critical if your application needs to support page book-
marking, enabling users to return to a particular part of your application at some future
point via a browser bookmark. The xsp.redirect property defaults to true, but you
can set it to false to gain some performance optimization if bookmarking is not impor-
tant and you generally have no requirement to have the browser address bar accurately
reflect the active page.

The Error-Management Properties

These options control the application’s response to the browser when an unanticipated
problem occurs. In those situations, instead of displaying the current application page
or the next page triggered by some action, an error page displays and reports that some
problem occurred. These errors are different from the anticipated validation errors,
which are displayed in the Display Errors controls, such as messages indicating that
a required field has not been supplied. Such validation errors are expected to occur as
users fill out forms, and the message indicating the problem is displayed within the
current page so that users can continue editing their form and not lose the values they
entered so far.

The default behavior for an XPages application is that the underlying web server handles
any errors encountered and returns a simple page with the HTTP error code, along with
possibly a one-line description of the problem. The most common such error is probably
the Error 500 – Command Not Handled error page, which indicates a problem
in the application code (as opposed an authentication problem, unknown page, or other
server-level problem).

These options allow different pages to be displayed instead of the simple web server
error pages.

xsp.error.page.default

This option, if set to true, displays an error page provided by the XPages runtime as
the default in-built page for debugging problems in an XPages application. Listing 1.35
shows the relevant section from the xsp.properties file.

Listing 1.35  xsp.properties Snippet for the xsp.error.page.default Property

Defines if the default error page should be displayed by the XSP

layer this is very useful in development as it displays extra

information on the error

#xsp.error.page.default=false

The Error-Management Properties   51  

The setting can be set for the entire server by changing the server xsp.properties file,
but it is more normal to set the option for a specific application. To set the option for an
application, in Application Properties, choose the XPages tab and check the check box
Display XPages runtime error page, as shown in Figure 1.15. (In earlier versions, that
option was named Display default error page—the behavior is unchanged.)

Figure 1.15  Application Properties, Display XPages runtime error page

You normally do not use this option in a production environment because it is intended
only for debugging. It is considered less scary for an end user to see an Error 500 page
than to see a page with a stack trace. However, the application designer can choose what
works best for the application.

The default built-in error page has the text Unexpected runtime error, displays the
messages from the exception that caused the problem and from any ancestors that cause
exceptions, and enables the user to toggle open an area to see the full stack trace of the
problem. In addition, if the error occurred within some JavaScript code in the XPage, the
default error page displays the snippet of JavaScript code and highlights in red the line
where the problem occurred, as shown in Figure 1.16.

Figure 1.16  Default error page with JavaScript snippet

52  T he Error-Management Properties

Unlike the user-provided error page, limitations govern the circumstances under which
the XPages default error page will appear. That error page is displayed only if the
encountered problem is a java.lang.Exception, not when the problem is the more
serious java.lang.Error type. When a java.lang.Error is encountered, the
problem is written to a log file and the default web server Error 500 simple error page is
displayed. It does not attempt to display the default error page for such serious problems,
which can occur when the JVM has run out of memory or required class dependencies
cannot be resolved, because the problems are so serious that attempting to display the
default error page will probably fail, too. In that situation, it is best to log the informa-
tion currently available rather than risk losing that information or complicating the effort
to debug the problem by filling the error logs with problems caused by failing to output
the default error page.

When building your own user error-provided error page, it may be best to treat such
java.lang.Error problems in a similar manner. However, such errors are passed to
the custom error page in case the page designer wants to handle certain types of java.
lang.Error problems differently, perhaps partially recovering from the problem.

When we refer to the default error page, we generally mean that page with the main
message Unexpected Runtime Error. Some other, less frequently occurring error
pages provided by the XPages runtime are also displayed only when the default error
page option is enabled. The other runtime error pages are used at a lower level of code,
closer to the web server engine. An example is a page that says Page Not Found
instead of Unexpected Runtime Error but otherwise looks the same, including the
exception messages and the area where the user can toggle open the stack trace.

The HTTP response code for the error page was incorrect in releases before version
8.5.3. Previously, it returned HTTP status 200 OK, indicating that the XPage had
displayed without any problem. Now, since version 8.5.3, it returns HTTP status 500
Internal Server Error, indicating that some error occurred in the XPage it was
attempting to display.

Chapter 6, “Server-Side Debugging Techniques,” details how the XPages runtime logs
error and trace information.

xsp.error.page

This option can be set to an XPage name to display an XPages error page provided by
application developer, instead of the usual web server error page or the XPages runtime
default error page. This is done in the snippet of xsp.properties, shown in Listing 1.36.

Listing 1.36  xsp.properties Snippet for the xsp.error.page Property

Defines an XSP specific error page

When not defined, it displays a default error page

#xsp.error.page=

The Error-Management Properties   53  

To set the option, create a new XPage that will be used for your error handling. Then
in the Application Properties, XPages tab, under Errors and Timeouts, in the Error
page: drop-down list, choose your XPage.

To quickly test that your custom error page is used, in some other XPage of your appli-
cation, set loaded="true" on the XPage root control and then open that XPage in
your browser. Your custom error page is displayed instead of the XPage that you opened
in the browser, because an error returns when the root XPage control is not loaded.

To refer to the problem that caused the custom error page to be displayed, you can ref-
erence the requestScope.error value. That object will be a java.lang.Throwable,
which has the information about where the problem occurred in your application. The
commonly used methods there are getMessage(), which gives the text of the problem;
getCause(), which may give another Throwable that caused this problem (and possi-
bly a chain of Throwable causes); and the methods for printing and accessing the Java
stack trace that can be read by a Java developer to understand how the problem occurred.

In addition, if the problem in the application occurred during the execution of some
Server Side JavaScript code, it is possible to find which code was executing and the line
number and column number where the problem occurred. That information is available
by checking whether the error object and its cause implement com.ibm.xsp.
exception.XSPExceptionInfo and com.ibm.jscript.InterpretException
(information about those interfaces is part of the XPages Extensibility JavaDocs avail-
able on the Internet). For example, Listing 1.37 provides a simple error page.

Listing 1.37  XSP Markup for a Sample Error Page

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core">

 An error occurred

 <pre>

 <xp:text escape="true" id="computedField1">

 <xp:this.value><![CDATA[#{javascript:

 var output = requestScope.error.toString()+"\n";

 output+="\n";

 if(requestScope.error instanceof

 com.ibm.xsp.exception.XSPExceptionInfo){

 var codeSnippet = requestScope.error.getErrorText();

 var control = requestScope.error.getErrorComponentId();

 var cause = requestScope.error.getCause();

 output+="In the control : "+control+"\n";

 output+="\n";

 if(cause instanceof com.ibm.jscript.InterpretException){

54  T he Error-Management Properties

 var errorLine = cause.getErrorLine();

 var errorColumn = cause.getErrorCol();

 output+="At line "+errorLine;

 output+=", column "+errorColumn+" of:\n";

 }else{

 output+="In the script:\n";

 }

 output+=codeSnippet;

 }

 return output;

 }]]></xp:this.value>

 </xp:text>

 </pre>

</xp:view>

That page displays in a browser, as follows in Figure 1.17.

Figure 1.17  Custom error page with JavaScript snippet

In general, you design your error page so that its appearance matches the design of the
rest of your application.

However, when developing your error page, keep in mind that you cannot use any
XPages server-side simple actions or any server-side Events. This is because the URL
used for the custom error is the same as the URL for the page that was opened when the
problem was encountered, so any attempt to communicate with the server-side represen-
tation of the page will contact the wrong XPage.

Note that the HTTP response code for the error page defaults to HTTP 500: Inter-
nal Server Error. You might want to update that response code if the encountered
error more closely matches one of the other HTTP response codes. To update the status
code, use the API shown in Listing 1.38.

Listing 1.38  Server-Side JavaScript Snippet to Update HTTP Response Code

var responseObj = facesContext.getExternalContext().getResponse();

responseObj.setStatus(404/*Page Not Found*/);

The User Preferences Properties   55  

Note that, even when using this option, some problems might not display in your custom
error page, so you might still want to set the xsp.error.page.default option to
make it easier to debug such issues. That might happen for some problems that occur
at a lower level in the web server, where the facility for loading an XPage might not be
available and it is not possible to load the custom error XPage.

It is also worth noting that if a problem arises in the display of the custom error page itself,
that problem is noted in the log file and the default web server error page is displayed to
report the original problem. (The default page is usually a simple Error 500 page.)

The most common occurrence where the custom error page cannot be displayed arises
when the original problem was severe. An example might be a Java OutOfMemory-
Error, in which no further objects can be created because all the memory available
to the server has been consumed. In general, problems that implement java.lang.
Error are likely to be unrecoverable. If users of your application are likely to encounter
such problems, you should probably redesign your application to prevent them from
occurring.

The User Preferences Properties

These options control the detection of the end user’s browser settings and preferences.

xsp.user.timezone

XPages supports different time zones, so dates can be displayed in the user’s local
time, using the server’s time zone, or using a programmatically configured time zone.
Listing 1.39 shows the relevant section of the xsp.properties file.

Listing 1.39  xsp.properties Snippet for the xsp.user.timezone Property

Defines the timezone to use

When not specified, it uses the server timezone.

#xsp.user.timezone=false

The time zone is used when displaying date objects as text. The date objects contain the
universal region-independent time (for example, 1pm in London today, saved in mil-
liseconds), and the current time zone is used to display the time. For example, it knows
to display the date as 8am EST when the web server is located in the eastern USA. By
default, in XPages, the server time zone is used. So if you have users in different time
zones, the exact same time is shown to each user instead of using the local time for that
user. This option can be set to true to use the user’s browser time zone instead of the
server’s, so that users see their local time.

You can change the time zone that an individual application uses in Designer, in the
Application Properties, XPages tab, as shown in Figure 1.18. The Time Zone section
enables you to choose from three values. The default value is Server Default, meaning
that the option is not set in the application, so the value in the server-wide xsp.proper-
ties file is used. The other values are Browser, meaning the user’s web browser’s time

56  T he User Preferences Properties

zone, and Server, meaning the time zone on the web server where the XPages runtime is
running.

Figure 1.18  Application Properties, Time Zone option

It is also possible to set Time Zone programmatically instead of detecting the browser
or server time zones. The current Time Zone for an XPage can be accessed through
the context object, through Server Side JavaScript. You can create a Java TimeZone
object and set it as the current time zone. The value set then is used for the rest of the
current user session. Unlike other values that can be set onto the context, it is not neces-
sary to reload the page after changing the time zone. The time zones values are either
TimeZone objects or text IDs defined by the java.util.TimeZone class, as in Amer-
ica/Los_Angeles. Not all common names for time zones are supported, so you might
need to refer to the documentation for that class. That documentation also describes the
custom time zone syntax; for example, GMT+5 means 5 hours ahead
of GMT.

Listing 1.40 provides the time zone methods on the context object.

Listing 1.40 T imeZone API Method Calls Available on Context Object

context.getTimeZone() : TimeZone

context.getTimeZoneString() : string

context.setTimeZone(timeZone:TimeZone)

context.setTimeZoneString(timeZone:string)

The server time zone is always available through the I18n library, like so:

I18n.getServerTimeZone(): TimeZone

In addition, it is possible to set the time zone for an individual Edit Box or Computed
Field. Verify that the control display type is set to Date/Time in the Properties view,
Data tab. Then in the All Properties tab, Data category, either configure the converter’s
timeZone property to a value such as America/New_York or compute the property to
programmatically determine the time zone displayed.

xsp.user.timezone.roundtrip

This property is a simple Boolean option, as shown in Listing 1.41.

Listing 1.41  xsp.properties Snippet for the xsp.user.timezone.roundtrip Property

#

#xsp.user.timezone.roundtrip=true

The AJAX Properties   57  

When the option xsp.user.timezone is true, so that the user’s browser time
zone is being used, you can sometimes change the round-trip option to false, as an
optimization.

The round-trip it refers to is part of how XPages detects the browser time zone. The time
zone information is not automatically passed by the browser to the server. So XPages
computes a time zone using a piece of JavaScript in a temporary page and then sub-
mits the result to the server and redirects to the actual XPage. The piece of JavaScript
produces a rough guess of the time zone, so it finds GMT+5 instead of America/New_
York. If the first XPage in your application does not use any time zone information, you
can change the setting to avoid the temporary page and prevent that round-trip to the
server. In that case, the piece of JavaScript is output in the first XPage you open and the
browser time zone is available only after the user submits for the first time. Often it is
not possible to use that option because users might bookmark pages within your website,
so you cannot predict which will be the first page they open in any session.

The AJAX Properties

The option in this section controls some of the behavior during partial update (also
known as partial refresh). In a partial update, a subsection of the web page is updated by
submitting and retrieving an updated snippet of the page from the web server. It uses an
AJAX request, which is a popular Web 2.0 technique. The acronym stands for asynchro-
nous JavaScript and XML, although the XPages partial update request actually transfers
a snippet of HTML rather than XML.

xsp.ajax.renderwholetree

This option allows a performance improvement while processing a partial update (also
known as partial refresh). Listing 1.42 shows the summary information provided in the
xsp.properties file.

Listing 1.42  xsp.properties Snippet for the xsp.ajax.renderwholetree Property

This property defines if the JSF tree should be

completely processed during the render phase,

including the components that are not rendered. When set to false

it gives better performance but with potential side effects

if some components are changing data during the render phase (which

should be avoided anyway)

#xsp.ajax.renderwholetree=true

The option was added in version 8.5.1 and defaults to true, meaning to use the old
slower way of handling partial update, the same as the behavior in 8.5.0. Version 8.5.2
implemented a change so that applications that are newly created in Designer 8.5.2 or
later have this setting set to false, with faster handling of partial updates. If you have
existing applications that were created in version 8.5.0 or 8.5.1, it is usually possible to
set this value to false so that partial updating is faster. However, some applications

58  T he AJAX Properties

that depended on the old behavior might fail when this value is changed, so you must
retest applications after you change this setting.

To change this value in an application, you can edit the xsp.properties file directly or
change the check box in the Application Properties. In the Application Properties,
XPages tab, in the section Performance, the check box is named Evaluate the entire
page on partial refresh, as detailed in Figure 1.19.

Figure 1.19  The Application Properties, XPages tab, Performance section

The behavior this option controls occurs during the server-side processing of partial
update events and affects only the Render phase of the JSF lifecycle.

The default, slower behavior means that the render phase navigates through all controls
in the server-side tree of controls. It doesn’t generate HTML for the controls outside the
update area, and it doesn’t execute their “rendered” property, but it does publish the data
sources for each control. In fact, all variables that are published by controls are made
available, including the Repeat control’s indexVar variable and the Custom Control’s
compositeData variable.

The improved behavior means that, during the render phase, it navigates through the
controls until it finds the update area. After generating the HTML for the update area,
it does not navigate through the rest of the controls. Also with the improved behavior,
when navigating through controls before the update area, if it finds controls that imple-
ment the NamingContainer interface, it does not search through any naming container
that does not contain the update area. So in effect, the naming container protects its con-
tents’ controls from being navigated through and having their variables published. The
most common naming container controls are the repeating controls (Repeat, Data Table,
and View Panel) and the Custom Control container.

The application for this chapter contains the sample XPage testRenderWholeTree
demonstrating this behavior. The page has print statements that are emitted to the server
console when various data are published, when the render phase starts and ends, and so
on. The page starts with an update button to update Panel4; Panel1 is the first panel con-
figured with data to output a print statement to the server console, a Repeat control con-
tains Panel2, then after the Repeat is Panel3 (which has a child Panel4 that is updated),
and after Panel3 is Panel5.

The AJAX Properties   59  

To test, set the xsp.ajax.renderwholetree option to true, meaning to navigate the
whole tree. Then click the button Update Panel4 on that page. Listing 1.43 shows the
console output.

Listing 1.43  Console Output for the Sample Page with xsp.ajax.renderwholetree=true

beforeRenderResponse

data in Panel1 published

data in Panel2 published, in Repeat1, index 0

data in Panel2 published, in Repeat1, index 1

data in Panel2 published, in Repeat1, index 2

data in Panel3 published

data in Panel4 published

data in Panel5 published

afterRenderResponse

The output indicates that the data is published in all the controls before the updated
Panel4. Then the data is published in Panel4 itself and, finally, the data is published in
the control after Panel4, in Panel5.

Next, to test the optimized behavior, set the xsp.ajax.renderwholetree option
to false. Then click the button Update Panel4 on that page. Listing 1.44 shows the
updated console output.

Listing 1.44  Console Output for the Sample Page with xsp.ajax.renderwholetree=false

beforeRenderResponse

data in Panel1 published

data in Panel3 published

data in Panel4 published

data in Panel4 published

afterRenderResponse

With the updated behavior, after the render phase has found Panel4, it stops searching,
so the data for Panel5 is not present in the output. The data in Panel2 within the Repeat1
is not output because the Repeat control is a NamingContainer and it acts to prevent
data within that area from being published. The data in Panel4 is published twice—once
while searching and again while generating the HTML output.

You can see that when the option is set to false, less of the control tree is navigated
through and less of the data is published. This means that less work is done on the server
and the response is available to the browser more quickly.

An application might fail to function if this option is changed from true to false.
The application may have been designed to compute and set values during property
evaluations that happen while data is published. For example, when the Custom Control
container publishes the compositeData variable, all property values set to that Custom

60  T he Script Cache Size Properties

Control tag are evaluated. If the application is relying on those property evaluations hap-
pening at specific times and you change the option to false, those property evaluations
might not occur and your application might break. It is usually possible to redesign your
application to avoid such problems, or it might be convenient to set this option back to
true so that the application runs slightly slower but still functions.

The Script Cache Size Properties

Two available properties within this category enable you to control the optimization of
compiled script expressions within the XPages runtime. The first time an expression is
used at runtime, the Server Side JavaScript, and any XPath computed expressions, are
further decomposed into optimized, line-for-line expressions. The optimized expressions
are then cached for later reuse. This enables an application to execute faster at runtime
because there is no need for the XPath runtime to keep parsing Server Side JavaScript
or XPath expressions for every XPage request. Instead, the XPages runtime leverages
an expression-caching mechanism to accommodate Server Side JavaScript and XPath-
computed expressions. When an application is loaded, the expressions within any given
XPage are cached for use during any subsequent request of that XPage.

Server Side JavaScript is the default scripting language for XPages. However, a built-in
XPath expression engine supports expressions for working against XML-based docu-
ment stores. This XPath engine has been available within XPages since version 8.5. Fur-
thermore, because XPages is built upon the JavaServer Faces framework, there is indeed
a third scripting language option by way of Expression Language, or EL, as it is more
commonly termed. This is the scripting language technology provided by the underpin-
ning JSF framework and is readily usable within XPages applications also. However, it
is important to point out that there is no facility for caching EL expressions.

ibm.jscript.cachesize

The Server Side JavaScript expression cache is set by default to a maximum limit of 400
computed expressions, as shown in Listing 1.45.

Listing 1.45  xsp.properties Snippet for the ibm.jscript.cachesize Property

This controls the number of compiled JavaScript expressions.

#ibm.jscript.cachesize=400

In a server with high available JVM memory, this property value can be increased
accordingly based on benchmark testing results to find an optimal setting based on the
demands of the particular application use case.

ibm.xpath.cachesize

The XPath expression cache is set by default to a maximum limit of 400 computed
expressions, as shown in Listing 1.46.

The Active Content Filtering Properties   61  

Listing 1.46  xsp.properties Snippet for the ibm.xpath.cachesize Property

This controls the number of compiled XPath expressions.

#ibm.xpath.cachesize=400

Similar to the ibm.jscript.cachesize property, any adjustment of this property
value must be determined by adequate benchmark testing to establish an optimal setting.

For your interest, Listing 1.47 shows the XSP markup code for an XPage containing
XPath-computed expressions.

Listing 1.47 E xample of an XPage Containing XPath-computed Expressions

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core">

 <xp:this.beforePageLoad>

 <![CDATA[#{javascript:

 var document = DOMUtil.createDocument();

 var person = document.createElement("person");

 document.appendChild(person);

 var firstName = document.createElement("firstName");

 firstName.setStringValue("Joe");

 person.appendChild(firstName);

 var lastName = document.createElement("lastName");

 person.appendChild(lastName);

 lastName.setStringValue("Bloggs");

 requestScope.put("document", document);

 }]]>

 </xp:this.beforePageLoad>

 <xp:text escape="true" id="computedField1"

 value="${xpath:document:/person/firstName}">

 </xp:text>

 <xp:text escape="true" id="computedField2"

 value="${xpath:document:/person/lastName}">

 </xp:text>

</xp:view>

The Active Content Filtering Properties

Active Content Filtering (ACF) was introduced to XPages in Notes/Domino V8.5.1 as
a means of protection from malicious content entered via requests or responses in an
XPages application. The ACF properties are the following:

xsp.htmlfilter.acf.config

xsp.richtext.default.htmlfilter

xsp.richtext.default.htmlfilterin

62  T he Active Content Filtering Properties

Good summary information on the Active Content Filtering properties is included in the
xsp.properties file, as shown in Listing 1.48.

Listing 1.48  xsp.properties Snippet for the xsp.htmlfilter.acf.config Property

#######################################

ACTIVE CONTENT FILTERING

#######################################

#

Defines which filter should be used by default for some controls

(richtext)

The valid values are:

- acf: use the acf library

- identity: no filtering is applied

- empty: the entire text is stripped out

- striptags: all the html tags are stripped out.

Only the text pieces remain

#xsp.richtext.default.htmlfilter=acf

#xsp.richtext.default.htmlfilterin=

#

Defines the acf library config file to use

If empty, then it uses the default config file provided by the
library

Else, it looks for a file locating in data/properties. For example:

acf-config.xml

#xsp.htmlfilter.acf.config=<file name>

Dynamic scripting languages such as JavaScript can pose a threat if used maliciously by
a hacker—for example, if some JavaScript code is embedded in the HTML content on
a rich text control and then submitted as part of a request. Similarly, output fields can
contain malicious content, such as where dynamically computed text contains code that
attempts to perform privileged or illegal operations. To counteract such threats, each
output control, such as Labels and Computed Fields, has had an htmlFilter property
since version 8.5.1, and input controls such as the Edit Box and the Rich Text editor
additionally have an htmlFilterIn property. These nominate a filtering engine that
can check the field data for malicious content and take appropriate action.

The standard values applied to these properties are as follows:

	 n	 acf. Parses the HTML text and filters out the unsafe constructs. The filter used is
based on a default configuration shipped with the XPages runtime. The default
configuration can be overridden by specifying a custom acf-config.xml configu
ration file in your Notes/Domino data/properties directory.

	 n	 striptags. Removes all the tags using a regular expression:
replaceAll("\\<.*?>","")

The Active Content Filtering Properties   63  

	 n	 identity. Does nothing but return the original string. This option is useful if you
have the engine set to acf and you want to override this setting for one particular
control.

	 n	 empty. Removes everything and returns an empty string.

The first two ACF settings in the xsp.properties file, xsp.richtext.default.
htmlfilter and xsp.richtext.default.htmlfilterin, merely provide a means
of applying the same filters on a more global basis than the control properties themselves
can facilitate. That is, you can set any of the same four aforementioned values to the
xsp.properties file within an NSF and thus have them apply to all input/output fields
on all pages of the application (saving a lot of typing). Moreover, setting these property
values in the xsp.properties file on a given server applies the nominated filters to all
applications running on that server—and the same for the Notes client.

The third ACF setting, xsp.htmlfilter.acf.config, is a little more interesting.
This property allows a custom configuration file to be applied as the ACF filter engine,
for example:

xsp.htmlfilter.acf.config=acf-config.xml

On your Notes client or Domino server, in the data/properties directory, a file
named acf-config.xml.sample is provided as an example containing some custom
filtering rules. You can examine this file and perhaps add your own extended ACF rules.
Of course, you must rename the file to acf-config.xml for the rules to take effect.
And remember, this must be performed on each server in a given cluster because the
configuration file is not part of the replication process. Listing 1.49 shows a snippet con-
taining some sample filter rules.

Listing 1.49  Sample ACF Rules

<?xml version="1.0"?>

<config>

 <filter-chain>

 <filter name='base'

 class='com.ibm.trl.acf.impl.html.basefilter.BaseFilter'

 verbose-output='false' use-annotation='false' />

 </filter-chain>

 <filter-rule id='base'>

 <target scope=''>

 <!-- C14N rules -->

 <rule c14n='true' all='true' />

 <!-- Base rules -->

 <rule attribute='on' attribute-criterion='starts-with'

64  T he Active Content Filtering Properties

 action='remove-attribute-value' />

 <rule attribute='${' attribute-criterion='starts-with'

 action='remove-attribute-value' />

 <rule attribute='href' value='javascript:'

 value-criterion='contains'

 action='remove-attribute-value' />

 <rule attribute='style' action='remove-attribute-value' />

 <rule tag='script' action='remove-tag' />

 <rule tag='style' action='remove-tag' />

 </target>

 </filter-rule>

</config>

Most of the keywords in the listing are self-explanatory. For example:

<rule attribute='on' attribute-criterion='starts-with'
 action='remove-attribute-value' />

This rule means to remove attributes that start with the sequence of letters on. If
the input contains any tag attributes, such as onmouseover or onclick, these are
removed while still leaving the enclosing tag. If you want to strip out the complete tag,
use a rule similar to the following:

<rule tag='script' action='remove-tag' />

This rule removes all the script tags.

One important point to remember with ACF filtering is that it is based on a blacklist
approach. This means that everything is allowed and only code matching the specified
patterns is removed. As new vulnerabilities are discovered, the blacklist must be updated.

ACF filtering can also be applied programmatically. The XPages Server Side JavaScript
context global object provides two methods:

filterHTML(html:String, processor: String) : String

filterHTML(html:String) : String

The methods accept a string of markup that is then filtered using the specified processor
or engine. The processed string is returned as the result. If no engine is specified, acf
is used. A typical use case might be one in which you want to verify that the result of
several input fields do not form a string with malicious content when concatenated—in
other word, where the sum of various parts amounts to something malicious.

Finally, the ACF technology that XPages uses is a common component shared across
other products in the IBM software portfolio, such as IBM WebSphere® sMash.
In-depth information on ACF is now available in the development community for

The Resource Servlet Properties   65  

WebSphere sMash, known as Project Zero. At the time of writing, searching the Internet
for ACF yielded good information at the projectzero.org site, as follows:
www.projectzero.org/sMash/1.0.x/docs/zero.devguide.doc/zero.acf/
ActiveContentFiltering.html

This resource is certainly worth exploring if you want to deep dive on ACF
customizations.

The Resource Servlet Properties

The XPages runtime supports a range of different resource providers. These are respon-
sible for serving common resource content, such as CSS, Images, and JavaScript files,
to a requesting browser or client. Such content is marked for inclusion in a browser-
caching policy, to reduce the number of duplicate requests for any given global resource
against a server. One available property enables you to optimize this process.

xsp.expires.global

The xsp.expires.global property is set to 10 days by default (as shown in List-
ing 1.50). This means that, for any given resource served by any of the XPages runtime
resource providers, that resource is set to be included within the requesting browser or
client cache for a maximum of 10 days.

Listing 1.50  xsp.properties Snippet for the xsp.expires.global Property

Defines the default expiration duration for global resources

When not defined, it is 10 days

#xsp.expires.global=10

If the defined period has passed, then for any requests issued against the server for
that same resource, there will be a new download (refresh) of that resource within the
requesting browser or client cache. Again, the expiry duration is set to 10 days into the
future from that point in time.

This mechanism works in isolation to the range of cache expiry duration settings found
within the Applications Properties editor, as shown in Figure 1.20.

These cache expiry duration values are written into the application’s database.proper-
ties file. This is due to the dual use by the Classic Domino web engine and the XPages
runtime of these values. You can see this in the following code fragment in Listing 1.51,
taken from the database.properties file.

Listing 1.51  Sample database.properties Snippet

<item name='$CSSExpires'><text>365</text></item>

<item name='$ImageExpires'><text>365</text></item>

<item name='$JSExpires'><text>365</text></item>

<item name='$FileExpires'><text>365</text></item>

www.projectzero.org/sMash/1.0.x/docs/zero.devguide.doc/zero.acf/ActiveContentFiltering.html
www.projectzero.org/sMash/1.0.x/docs/zero.devguide.doc/zero.acf/ActiveContentFiltering.html

66  T he Repeating Control Properties

Such isolated requests against the XPages Resource Servlet can typically be identified
by a special URL alias, such as /.ibmxspres/, within the resource URL’s of a rendered
XPage. These URLs are issued against the global resource providers and not directly to
the underlying Domino HTTP engine.

The following URLs demonstrate a standard resource request against the Domino server
for an image resource versus a request for a global resource issued against the XPages
Resource Servlet (resource provider) for CSS content:

http://taurus/domjava/xsp/theme/common/images/expanded.gif

versus

http://taurus/xsp/.ibmxspres/.mini/css/@Oa&@Ob&@Da&@Ib&@Ta&@Tb&@Tc.css

In this example, the first URL retrieves the image resource and caches this resource
based on the standard caching expiry for image resources found within the Application
Properties. The second URL is issued directly at the XPage Resource Servlet. This can
be identified here by the inclusion of the /.ibmxspres/ alias within the URL. This run-
time servlet then provides the resource based on the xsp.expires.global property setting.
If you have not specified a value for this property, the default expiry duration of 10 days
is specified in the response headers to the requesting browser or Notes client.

The Repeating Control Properties

This category has a single option and controls an aspect of the behavior of the content-
repeating controls. In the XPages runtime, the repeating controls are the View Panel, the
Data Table, and the Repeat control, although any third-party implementation of a
repeating control (in other words, anything that extends UIData or implements
FacesDataIterator) should honor the behavior this property defines.

Figure 1.20  The general cache expiry duration settings in the Application Properties
in Designer

General Cache
Expiration Settings

http://taurus/domjava/xsp/theme/common/images/expanded.gif
http://taurus/xsp/.ibmxspres/.mini/css/@Oa&@Ob&@Da&@Ib&@Ta&@Tb&@Tc.css

The Repeating Control Properties   67  

xsp.repeat.allowZeroRowsPerPage

This option was added in version 8.5.2. The behavior of the repeating controls is the
same as in the previous releases, but now this option can be used to change the behavior
for an individual application. Listing 1.52 shows the summary information provided in
the xsp.properties file.

Listing 1.52  xsp.properties Snippet for the xsp.repeat.allowZeroRowsPerPage Property

Defines the behavior in repeating controls when the rows property

evaluates to 0. By default, in that situation 30 rows are displayed

per page. With this option set to true no rows would be displayed.

This may be useful when computing the number of rows to display,

as there may be situations when no rows should be displayed

but the control should still be rendered.

#xsp.repeat.allowZeroRowsPerPage = false

The repeating controls are the View Panel, the Data Table, and the default configura-
tion of the Repeat control. When the Repeat control is configured with the property
repeatControls=“true”, it repeats its contents only once, at page load time. Hence, it
does not engage in the repeating behavior controlled by this option and is not affected
by changes to this option. The repeating controls can be bound to a list of items, and in
the HTML page, the contents of the repeating control are redisplayed for each item, usu-
ally with subsequent contents displaying vertically under the previous items so that the
contents appear in multiple rows. The list of items commonly consists of the contents of
a Notes/Domino view, appearing as a list of documents.

Each of those repeating controls has a property rows, which controls how many rows
or documents are initially visible in the repeating control. For example, you may have
an application with 10,000 documents and a View Panel control displaying the All
Documents view. The control does not attempt to display all 10,000 documents at once
because the browser page would be too long and unwieldy, and it would take a long time
for the page to load. Instead, by default, the control displays the first 30 documents. The
user can use a Pager control Next link to move to the next 30 documents and to navi-
gate through the rest of the documents. The rows property can be used to change the
number of documents shown initially and in each subsequent page of documents. So if
it is set to 10, the first 10 documents will be initially shown; clicking Next then would
show the 11th to 20th documents.

It is possible to compute the rows property and also the first property, which controls
the document index where the initial display starts. This allows use cases in which you
can design a page to show any range of documents in a view. For example, you could
show three documents starting at the fifth document. If you’ve designed a page to show
a dynamic range of documents, sometimes the range might be empty. That is, if none of
the documents is suitable for the criteria you’re selecting, you might want to show zero
documents.

68  T he Partial Update Properties

By default, when the rows property is set to 0, 30 documents are displayed. That might
seem odd, but it is the behavior of the underlying JSF framework. The possibility is
that existing XPages have been designed to depend on that behavior, so changing the
behavior might cause problems. However, it also means that you need special con
figuration when attempting to display a range of documents. This xsp.repeat.
allowZeroRowsPerPage option can be set to true in an application to change the
behavior for that application so that when the rows property is 0, no rows are displayed.
It can also be set to true at a server-wide level, but be aware that you might need to
retest the existing applications on that server, to verify that they do not depend on the
old behavior of 0 displaying 30 documents.

The Partial Update Properties

This category contains one property relevant to AJAX requests issued against the
XPages runtime.

xsp.partial.update.timeout

The XPages partial update feature enables an area of the web page to be submitted and
updated with the response from the web server. Sometimes the browser does not receive
the web server response; perhaps the web server is down, the network connection is
slow, or the user has accidentally unplugged the network cable. Eventually, the browser
determines that the request has timed out—that it is taking more time than is allowed—
and displays an error dialog to the user. Listing 1.53 shows the relevant section of the
xsp.properties file.

Listing 1.53  xsp.properties Snippet for the xsp.partial.update.timeout Property

This allows a user to configure the partial update timeout in
➥Designer

The default is 20 seconds

#xsp.partial.update.timeout=20

Since version 8.5.3, the dialog has this text:

An error occurred while updating some of the page. timeout exceeded

The user can click an OK button. In earlier releases, the dialog had this text:

Problem submitting an area of the page. timeout exceeded

Submit the entire page?

The user could click OK to submit the page or click Cancel to prevent the page submis-
sion. The dialog has been changed because people found the text confusing and weren’t
sure which button to click.

The Link Management Properties   69  

This option can be used to change the amount of time the browser will wait before dis-
playing that dialog. The value is specified in seconds; it currently defaults to waiting 20
seconds when not specified.

This option has been available only since version 8.5.2. Also before 8.5.2, the time-out
duration was 6 seconds, by default. In this case, people with slow network connections
saw time-out problems when the server response was just taking time and was not actu-
ally unavailable, so the default was increased to 20 seconds.

The time-out can also be changed programmatically. It has been possible to change the
time-out duration like this since release 8.5.0, so you can use this as a workaround for
too-short time-out problems in versions 8.5.0 and 8.5.1. To programmatically change the
timeout, in Client Side JavaScript, set the value of XSP.submitLatency to some num-
ber of milliseconds (not seconds), as in the example XPage control in Listing 1.54.

Listing 1.54  XSP Markup Example Showing Programmatically Setting the Partial
Update Timeout

<xp:scriptBlock id="scriptBlock1">

 <xp:this.value><![CDATA[

XSP.addOnLoad(function(){

 // change submitLatency to 2 seconds (defaults to 6 or 20):

 XSP.submitLatency = 2 * 1000; // milliseconds

});

]]></xp:this.value>

</xp:scriptBlock>

Note that the option xsp.ajax.renderwholetree also affects partial update behav-
ior, so you should study and understand it in relation to the partial refresh feature.

The Link Management Properties

Although it might not be immediately obvious, the fine art of managing the humble
anchor link is sufficiently complex that it requires not one, but two dedicated xsp.prop-
erties settings. The sections that follow explain these settings.

xsp.default.link.target

This property can be assigned one of two values, namely _self or _blank. Anyone
familiar with the standard HTML anchor link tag, <a>, will recognize these attribute
values. The former instructs the browser to open a link in the current window, replac-
ing current content; the latter means that the linked page is to be opened in a new tab.
Applying either value in the xsp.properties file establishes the default link behavior for
all applications on the platform. In this case, the platform is the Notes client exclusively.
Listing 1.55 shows the relevant section of the xsp.properties file.

70  T he Link Management Properties

Listing 1.55  xsp.properties Snippet for the xsp.default.link.target Property

#######################################

DEFAULT LINK TARGET

#######################################

The Default Link Target when not specified directly on link

#xsp.default.link.target=

Why just the Notes client and not the web? The answer lies in the management of appli-
cation data. The logic and behavior of any application often depend on data stored in
application scope—that is, data shared by all instances of a given application. In a nut-
shell, if a single XPages application instance has several pages open at any one time in
different tabs within the Notes client, each open page can be reliably associated with the
application instance to which it belongs. This is because the XPages runtime has very
granular control over the window-management features of the Notes platform and has
built custom runtime logic to keep tabs on multiple windows. On the web, however, if a
single XPages application instance has multiple pages open in different browser tabs, it
is not possible to deterministically identify the owning application instance. As a result,
applications that make dynamic use of application-scope data could become unstable in
a multitabbed web application. Thus, the feature can be honored only in the Notes cli-
ent. Moreover, the traditional user experience on the Notes client is for multitabbed or
multiwindowed applications, and it is important that XPages support this native mode of
execution when running on that platform.

So because the value specified in xsp.default.link.target is used as a default
value for link behavior on the Notes client, what links does it apply to, when is it
enforced, and how is it overridden?

In essence, the xsp.properties setting is applied to any standard link control located on
an XPage if the link itself does not explicitly specify a target value. To cater to the
use case in which a particular XPage contains many link controls, a defaultLink-
Target property can be set on the XPage itself to dictate link behavior for all links on
the XPage, saving the application developer a lot of typing. If the required link behavior
does not vary from one XPage to another, but is consistent across the application as a
whole (as one would expect to be the norm), it is easier to simply set the overall link
behavior in the xsp.properties file. When no value is set at any of these three levels
(control, page, or application), a default value of _self is automatically applied and
linked pages open in the original window or tab.

Another link also needs to be accounted for: the column link that can be optionally ren-
dered inside a <xp:viewPanel> control. Here also, any underlying document link dis-
played for a row of the view can be opened either in a new tab or in the same pane when
running in the Notes client. This is achieved using the same target property name and
attribute values as the link control, but applied on the view control.

This extended link behavior was added in Notes/Domino V8.5.2. Table 1.4 displays a
summary of all options.

The Link Management Properties   71  

Table 1.4  Link Management Property Summary

Container Property Values

<xp:link> target _self, _blank values determine whether
the link opens in the same page or a new tab

<xp:viewPanel> target Uses same values to define link behavior for
all columns in the view

<xp:view> defaultLink-
Target

Uses same values to define default behavior
for all links on the page

xsp.properties xsp.default.link.
target

Uses same values to define default behavior
for all links in the application

Bear in mind that the XPages link control renders as a standard HTML anchor link. In
addition, standard HTML link attribute values are supported within XPages and simply
passed through at runtime if specified in the XSP markup. Thus, a value of _blank can
be applied to a link on the web and will result in a new tab being opened in the browser,
but the application developer must be cognizant of the potential for application scope
errors mentioned earlier and must also understand that neither the XPage nor xsp.prop-
erties default target setting will be applied to applications running on the web.

xsp.save.links

This property defines what format is used to save native Notes/Domino links in XPages.
Listing 1.56 shows the default setting.

Listing 1.56  xsp.properties Snippet for the xsp.save.links Property

#######################################

SAVING LINKS IN DOMINO DOCUMENTS

#######################################

Defines how doc/db/view/app links should be saved in a Domino
Document

Valid Values are:

- UseNotes: Saves your links with the notes protocol

- UseWeb: Saves your links as web links

#xsp.save.links=UseNotes

To understand the semantics of this property, it is necessary to briefly discuss the for-
mats used to store rich text in Notes/Domino applications, namely MIME and CD. Rich
text content created within an XPages application on the Notes/Domino platform is
always stored in MIME format. This is also true of documents created using applica-
tions running on the classic Domino web server. On the other hand, any rich text docu-
ment fields created using the native Notes client are typically stored in a proprietary

72  T he Link Management Properties

Composite Data (CD) format. If your application needs to be supported on a mixed
Notes/Domino platform—for example, if it runs using XPages on the web and also as a
native Notes client application—xsp.save.links can help you avoid incompatibilities that
can arise between these two formats.

A cursory examination of most any Notes/Domino application inevitably demonstrates
heavy usage of links within the documents stored in an NSF. For example, a typical
document in a Discussion or TeamRoom application instance, by virtue of being a col-
laborative application, will be littered with document, view, and application links. When
working with such a document in XPages, if it was created or last updated in the native
Notes client, it must go through a CD-to-MIME format conversion. Any such links are
converted in the process from Notes links to Domino URLs. For example, a generic
view link on Domino looks like this: http://[server]/appname.nsf/viewName

A view link on the Notes client typically is of this form:

notes://[server]/appname.nsf/viewName

You will immediately observe the differing protocols (http versus notes) between
both types. The square bracket notation also indicates that the server name is optional.
Before the advent of XPages, documents that went through the CD-to-MIME conversion
process were expected to run only on the web—that is, on the Domino web server—and
so were converted as relative instead of absolute URLs. This meant that, for applica-
tions residing on a server, the server name was omitted from the Domino URL. This was
okay because the Domino web engine running on that server could resolve these locally.
When XPages in the Notes client (XPiNC) was released in version 8.5.1, it was suddenly
easy to take XPages applications offline by creating a local client replica of an XPages
web application. Any Notes/Domino links opened in XPiNC could not be resolved, how-
ever, because the server name was not present in the converted URL and the client could
not resolve the relative URL.

To be a good citizen on both the Notes client and the web, the XPages runtime attempts
to massage native links opened in XPages applications so that the converted links
resolve correctly, regardless of either their provenance or the runtime platform on which
they are opened. However, a lot of the massaging can be avoided in the first place if
links are saved in a common format that both the Notes client and the Domino web
server can resolve. The xsp.save.links property thus gives the application developer
the opportunity to choose a Notes/Domino link format that is most compatible with the
mix of runtime platforms for which the application is to be deployed. Table 1.5 suggests
appropriate values for different application configurations.

Table 1.5  Application Type by Notes/Domino Platform

Notes Client Application Web Application Appropriate Value(s)

Native XPages UseNotes (default)

XPages Classic UseWeb

XPages XPages UseNotes (default)

The Control Library Properties   73  

The implementation of this feature went through a number of iterations. In Notes/Dom-
ino 8.5.3 (or Notes/Domino 8.5.2 FixPack 2), the default link format used by XPages
when saving links is as follows:

notes:///__replicaID/resourceUNID?Redirect&Name=ServerName

When the XPages runtime encounters such links on the web, the notes protocol is auto-
matically replaced with the http protocol. This format is the best common denominator
for links in a mixed-runtime environment.

The Control Library Properties

Generally, extensibility refers to the capability for XPages controls provided by third
parties to be used in XPages applications so that applications are no longer limited to the
default set of controls that comes with the XPages runtime (the Edit Box, Button, and
View Panel controls, and so on).

Libraries of controls can be developed using the instructions on the web page “XPages
Extensibility API Developers Guide.” Existing libraries can be purchased from third par-
ties or downloaded for free from open source sites on the Internet. The most prominent
control library is the XPages Extension Library project, available on OpenNTF.org. This
library has mostly been developed by people working for IBM, although it is provided
under an Apache license and is not an IBM product offering.

xsp.library.depends

This option was new in version 8.5.2 as part of XPages Extensibility. Good summary
information is included in the xsp.properties file, as shown in Listing 1.57.

Listing 1.57  xsp.properties Snippet for the xsp.library.depends Property

A comma-separated and trimmed list of library IDs of

XPages control libraries that the current application depends on.

This option should only be set in the application xsp.properties file,

not in the server Data/properties/xsp.properties file.

#xsp.library.depends=

You can install any libraries of controls that you want to use in your application in Dom-
ino Designer, as well as probably onto the Domino server you use for testing, using the
instructions in the Extensibility guide. If your application is using XPages in the Notes
client, you will find instructions on installing the library to Notes client installations
where the application will be used.

After you have installed the library into Designer, when editing an XPage, the Controls
palette contains all the extra controls provided by all the libraries installed in Designer.
If you drag a library control onto an XPage in your application, you get a prompt dialog
asking to enable the control library in this application, as shown in Figure 1.21.

74  T he Control Library Properties

Figure 1.21  The Designer prompt to add a library dependency to an application

When you click Continue at that dialog, this xsp.library.depends option in the
application’s xsp.properties file is updated to include the ID of the library containing
the control you have used. That configures the application to allow use of all controls in
that library.

When you have used controls from multiple libraries in your application, the option
value is a comma-separated list of the IDs of libraries that your application depends on.
Listing 1.58 provides an example.

Listing 1.58  xsp.properties Snippet Showing Sample Dependency Declaration

xsp.library.depends=com.ibm.xsp.extlib.library,com.example.library

You can also set the option in the Application Properties in Designer. It is usually set
there, or by adding controls from the palette, instead of directly editing the xsp.proper-
ties file. In the Advanced tab, in the XPages Libraries section, you can see a list of all
the third-party libraries that are installed into this Designer instance, as shown in Figure
1.22. Check boxes indicate the libraries that this application depends on. You can add or
remove dependencies on a particular application by checking or unchecking those check
boxes.

If you uncheck a check box for a library but the application is using controls from
that library, the application will fail to compile. The Problems view then will contain
“Unknown tag” errors, complaining that it does not recognize the controls.

You should check boxes for only the libraries that your application depends on. When
the application runs on a server, it validates the list of library dependencies against the
list of libraries installed on the server. If any of the required libraries are not present on
the server, the application will fail to display, with an error message similar to this:

Cannot find the library com.example.library, required by the applica-
tion TestApp.nsf.

The XPages runtime is actually implemented as a set of XPage libraries, but there is
special handling for those libraries so that they do not need to be explicitly listed in
the xsp.library.depends option. Those libraries are always depended upon so that
attempts to use the Edit Box, Button, and other core runtime controls do not give an
“Unknown tag” error.

The Composite Data Properties   75  

The Composite Data Properties

XPages Theme files can be created in an application to change the appearance of every
instance of a control in the application. Generally, there is a default behavior for each
property of a control—for example, an Edit Box may have a default size of 20 charac-
ters wide. Theme files support overriding the default property value, for example—for
example, setting Edit Boxes to have size of 25 and to have a style indicating a thick
border instead of the default border width. The theme values for the control properties
are applied to all Edit Boxes in the application, except for those for which the XPage has
specifically set a value. It is also possible to apply a theme property value to a smaller
group of controls using the control themeId property. For example, on all Edit Boxes
that are designed to accept a user’s age, you might set a themeId such as ageEditBox.
Then it would be possible to use a theme file to configure that all ageEditBox controls
must have a size of three characters wide.

You can create Custom Controls in an application that contain some snippet of XPage
content. The Custom Control then becomes available in the controls palette and can be
used in different XPages or used multiple times in the same XPage. Every place where
a Custom Control is used is an individual Custom Control instance and appears in the
XPage source tab as an XML tag. When editing a Custom Control’s content, in the
Properties view is a Property Definition tab where you can define properties of the Cus-
tom Control. You then can set that property to different values on each Custom Control
instance tag. Within the Custom Control content, it is possible to refer to the property
values passed in from the outer Custom Control tag instance. A Custom Control prop-
erty named header can be referred to in a computed expression as compositeData.
header, which contains the property value set on the current Custom Control tag (or
which is empty if the property has not been set).

Figure 1.22  The Application Properties, Advanced tab, showing multiple libraries

Library ID Editor

76  T he Composite Data Properties

In version 8.5.0, it was not possible to set Custom Control property values using theme
files. In the Custom Control contents, if you selected the root tag, set the themeId
to customHeaderArea, and then configured a theme to set the header value of all
customHeaderArea controls, the value set in the theme file would not be available as
compositeData.header in computed expressions.

Since version 8.5.1, in applications where this option is not set or is set to true, it is
now possible to set Custom Control property values using a theme file. So in the previ-
ous example, if your theme is configured to set all customHeaderArea controls so the
header property value is Welcome, then computed expressions referring to compos-
iteData.header will resolve to the value Welcome unless the header property has
been explicitly set to some other value in this particular Custom Control tag instance.

xsp.theme.preventCompositeDataStyles

This option relates to a change in behavior for Custom Controls in version 8.5.1. The
option can be set to true to revert an application to the old version 8.5.0 behavior,
although it usually is better to update the application to work with the new behavior.
Refer to the summary information provided in xsp.properties, as shown in Listing 1.59.

Listing 1.59  xsp.properties Snippet for the xsp.theme.preventCompositeDataStyles
Property

In 8.5.0 style and styleClass would be set as a base property

but in 8.5.1 they are set as compositeData properties

and referred to in the inner custom control

as compositeData.style/styleClass.

Set to true to revert to 8.5 behavior, default is false.

#xsp.theme.preventCompositeDataStyles=false

The behavior in question relates to how theme property values are applied to Custom
Control properties named style and styleClass. The default behavior changed in
version 8.5.1.

The only disadvantage to this, and the reason you might want to revert the behavior,
is that, previously, a quirk in the implementation meant that even where you had not
declared Custom Control properties named style and styleClass, it was possible to
set values for those nonexistent properties in the theme file. The property values then
actually appeared in the output HTML on a DIV tag wrapped around the Custom Control
content.

If you have already implemented an application that is using the old behavior to set a
style or a styleClass onto a Custom Control in a theme file, it may be useful as a
temporary workaround to set this option to true to revert to the old behavior. It will
revert the behavior for only the style and styleClass properties. Other Custom
Control property values will continue to be settable in theme files in the new manner;
however, any style or styleClass property set in a theme file will appear in the

Other Ways of Applying xsp.properties Settings   77  

HTML DIV tag but will not be available when referenced by compositeData.style
or compositeData.styleClass expressions.

Instead of using this option to revert the behavior, it might be best to update your Cus-
tom Controls to support the desired style properties through normal Custom Control
property definitions. To achieve this, in the Property Definition tab, define new proper-
ties named style and styleClass. Then in the Custom Control content, select the
root tag acting as a container for the Custom Control contents and compute style
and styleClass properties using the expressions compositeData.style and
compositeData.styleClass. You then can set the style and styleClass proper-
ties using the theme file and have them appear in a DIV tag around the Custom Control
content. The Source tab of the Custom Control content will look like that shown in
Listing 1.60.

Listing 1.60  XSP Markup Snippet for a Custom Control with Custom Style Properties

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core"

 style="#{javascript:compositeData.style}"

 styleClass="#{javascript:compositeData.styleClass}">

 custom control content

</xp:view>

Other Ways of Applying xsp.properties Settings

At this point, the chapter has explained all the properties and you have seen that they
can be applied at various scopes, such as at an application-wide level and a server-wide
level. In truth, it gets more sophisticated than that: Many properties can be applied on an
individual XPage basis, for the lifetime of a particular request, or even by a completely
different mechanism, as with an XPages theme. These operations might not be common,
but they are worth exploring.

Viewroot Properties

Making an xsp.properties setting apply to just a single XPage is easy. Open Domino
Designer and create a new XPage. In the Outline navigator, select the XPage element
itself (that is, the root node of the tree of components that comprise an XPage) and
then select the All Properties panel for the page. Under the data category, you will see
a properties entry. You can select this element and add new entries. By clicking the
properties entry, you can see from both the panel editor and the source panel that
Designer wants you to add a new name/value pair. In this case, you can add any of the
xsp.properties shown in Table 1.1 and apply an appropriate value. To take a simple
and recent example, add xsp.default.link.target as a property name and assign
_blank as the property value. Then drop a link control on to the page from the Core
Controls palette and assign www.masteringxpages.com as the value attribute. Your
XPage markup should correspond to that shown in Listing 1.61.

www.masteringxpages.com

78   Other Ways of Applying xsp.properties Settings

Listing 1.61 A pplying xsp.properties to a Single XPage

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core"

 xmlns:xe="www.ibm.com/xsp/coreex">

 <xp:this.properties>

 <xp:parameter name="xsp.default.link.target"

 value="_blank">

 </xp:parameter>

 </xp:this.properties>

 <xp:link escape="true" text="Link" id="link1"

 value="www.masteringxpages.com">

 </xp:link>

</xp:view>

Now preview this XPage in the Notes client (remember that this is a client-only feature)
and click the link when the XPage is rendered. The target web page is loaded in its own
tab window in the Notes client, as you might expect when _blank is the property value.
Now close the new tab and the previewed XPage, and go back to Domino Designer.
Change the xsp.default.link.target property name value to _self and preview
the page in the Notes client again. Observe that, this time, the target web page is loaded
inside the previewed page. That is, it replaces the current window content and does not
open a new tab window for the target web page.

Thus, the xsp.default.link.target property has been applied to just a single
XPage. The term viewroot, by the way, can be easily explained. In JSF parlance, pages
are known as views, not to be confused with the view design element in the Notes/
Domino world. The XPage itself is always the root node of the tree of controls and other
components that comprise an XPage. So the term viewroot is synonymous with the base
XPage element itself.

Request Properties

Taking this notion a step further, you can simply set an xsp.properties parameter
for a particular request. You do this by using the com.ibm.xsp.context.
RequestParameters object obtained from the facesContext global object. Sim-
ply use the setProperty method on this object to set an xsp.property. (Note that
not all xsp.properties can be applied using this mechanism—see the last section of
this chapter.) To retrieve the value of any given property, you can call the context.
getProperty(String propertyName) method. This method returns a property
value based on an order of precedence. First, it checks the RequestParameters
object for the given property, if not defined in the request (through prior use of
the RequestParameters object). It then checks the viewRoot of the actual
XPage. If the given property is not defined at this level, it checks the session, or
application properties. Note that this is equal to checking using the context.
getSessionProperty(String propertyName) method. If the given property is

Other Ways of Applying xsp.properties Settings   79  

not defined within the session or application properties, a check is done within the cur-
rently running theme. Thereafter, a final check of the system properties is done.

Remember that any property set on the RequestParameters object takes absolute
precedence over any other defined setting for that property. This means that any
Application Properties property value is ignored for a property if set in the
RequestParameters object for a request.

A simple but illustrative example of this arises in changing the new version 8.5.3
Resource Aggregation feature setting on a per-request basis. (Note that this example will
not work in earlier releases of Notes/Domino.) Study the requestPropertySetter XPage
within the PCGCH01.nsf application to understand how this is done. For your conve-
nience, Listing 1.62 details the XSP markup for this XPage.

Listing 1.62  XSP Markup Used to Set the xsp.resources.aggregate Property on a Per-
Request Basis

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="www.ibm.com/xsp/core" style="margin:30px">

 <xp:text escape="false">

 <xp:this.value>

 <![CDATA[#{javascript:"Application Property: " +

 facesContext.getApplication().

 getApplicationProperty("xsp.resources.aggregate", null);

 }]]>

 </xp:this.value>

 </xp:text>

 <xp:br></xp:br>

 <xp:br></xp:br>

 <xp:text escape="false">

 <xp:this.value>

 <![CDATA[#{javascript:"Request Property: " +

 context.getProperty("xsp.resources.aggregate", null);

 }]]>

 </xp:this.value>

 </xp:text>

 <xp:br></xp:br>

 <xp:br></xp:br>

 <xp:button value="Aggregate" id="button2">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 facesContext.getRequestParameters().

 setProperty("xsp.resources.aggregate", "true");

 }]]>

80   Other Ways of Applying xsp.properties Settings

 </xp:this.action>

 </xp:eventHandler>

 </xp:button>

 <xp:button value="Do Not Aggregate" id="button3">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 facesContext.getRequestParameters().

 setProperty("xsp.resources.aggregate", "false");

 }]]>

 </xp:this.action>

 </xp:eventHandler>

 </xp:button>

</xp:view>

The PCGCH01.nsf application has its xsp.resources.aggregate property already
set to true using the Application Properties editor in Designer. But in this example, a
user can click either the Aggregate or Do Not Aggregate buttons, and the XPages Run-
time will process the request and toggle resource aggregation handling. This is best seen
by viewing the source of the HTML markup where the CSS and JavaScript resources are
either aggregated or not, based on each request.

Applying Properties Using a Theme

If you like to work with XPages themes, you’ll be glad to know that you can also apply
the xsp.properties parameters using a theme. This can be useful in providing custom-
ized settings of xsp.properties based on the currently selected theme. Each theme within
an application provides different settings for the same xsp.property. For example, con-
sider the earlier example of setting the xsp.default.link.target property. By alternatively
using a theme file, you can achieve this same behavior for every XPage within a given
application—but you also gain the benefit of decoupling the logic to set the xsp.prop-
erty from within the XPage itself to being discretely done inside the theme file. Listing
1.63 shows the fragment of theme code required to achieve this.

Listing 1.63  Fragment of Theme Code to Set the xsp.default.link.target Property

<?xml version="1.0" encoding="UTF-8"?>

<theme>

 <property>

 <name>xsp.default.link.target</name>

 <value>_blank</value>

 </property>

</theme>

Conclusion   81  

What Works Where?

Even though you can use these mechanisms to attempt to apply any of the xsp.
properties, not all properties are applicable in all circumstances. For example, you can-
not apply a new random server persistence folder through the xsp.persistence.dir.
xspupload property via a single request or XPage property. This is a static server prop-
erty that can be applied only via the xsp.properties file that resides on the server itself.
Your own intuition will be a good guide as to whether a property is applicable via a par-
ticular mechanism, and it is easy to quickly test it out, as shown here with the viewroot
and request properties examples.

Conclusion

In this chapter, you explored every xsp.properties setting and saw how they can be
used to adapt XPages runtime behavior to suit particular use cases. Hopefully, you have
learned about some properties that you can apply to meet requirements you have encoun-
tered in the field so that you can produce highly tuned, well-adapted applications—and,
of course, happier XPages customers.

This page intentionally left blank

In Chapter 1, “Working with XSP Properties,” you saw how the xsp.properties file
served as a configuration file for the XPages runtime. In an analogous manner, both the
Notes client and the Domino server have a configuration file that sets parameters for
various elements of core behavior: notes.ini.

Whereas the xsp.properties file is specific to XPages, notes.ini has many masters to
serve; it is a common resource that all components in the Notes/Domino core share. As a
consequence, the notes.ini files in your particular Notes/Domino installations might con-
tain hundreds of diverse settings. For instance, a current check of the notes.ini file for
my own Notes client shows that it has 198 entries, while my Domino server
notes.ini contains 112 entries. The good news is that only a small fraction of these
entries are directly relevant to XPages.

INI Variables You Should Know About

The notes.ini file is located in the root installation folder of the client and server. Listing
2.1 shows the first 20 lines of a sample Domino server notes.ini file, which includes all
the entries that relate to XPages (directly or indirectly) as of Notes/Domino 8.5.3. These
entries are emphasized using a shaded background.

Listing 2.1  Sample Snippet from a Domino Server notes.ini Configuration File

[Notes]

NotesProgram=C:\Domino

Directory=C:\Domino\data

JavaEnableDebug=1

JavaDebugOptions=transport=dt_socket,server=y,suspend=n,address=8000

KitType=2

InstallType=4

HTTPJVMMaxHeapSize=256M

HTTPJVMMaxHeapSizeSet=1

JavaMaxHeapSize=64M

JavaMinHeapSize=16M

PartitionNumber=1

XPagesPreload=1

XPagesPreloadDB=teamdisc.nsf/ByAuthor.xsp

FaultRecovery_Build=Build V853_06152011NP

Timezone=0

OSGI_HTTP_DYNAMIC_BUNDLES=update/extlibupdate.nsf,sbtupdate.nsf

Chapter 2

Working with Notes/Domino
Configuration Files

84   INI Variables You Should Know About

NSF_QUOTA_METHOD=2

JavaUserClasses=D:\jdbcutils\jdbcdrivers.jar;D:\java\customlibs

ServerName=lehenaghmore/XYZ

Table 2.1 describes these entries.

Table 2.1  Sample Domino Server notes.ini Settings

INI Variable Description

HTTPJVMMaxHeapSize Sets the maximum heap size to be used by the HTTP
task’s JVM. Defaults to 256MB on 32-bit systems and
1GB on 64-bit systems. All heap size variables must be
accompanied with a unit of size suffix (K, M, G, and so
on).

HTTPJVMMaxHeap
SizeSet

A flag the HTTP task uses to determine whether the
HTTPJVMMaxHeapSize variable has been previously
set programmatically.

JavaMaxHeapSize Specifies the maximum heap size for JVMs running
outside the HTTP task. Defaults to 256MB on all
systems.

JavaMinHeapSize Specifies the minimum heap size for all JVMs. Defaults
to 48MB on all systems.

JavaEnableDebug Notifies the Domino server that it should start the JVM
in debug mode. This variable, along with all the remain-
ing variables in this table, are not enabled in notes.ini
by default.

JavaDebugOptions Provides a comma-separated list of arguments to the
JVM.

JavaUserClasses Specifies a semicolon-separated list of one or more path
locations, JAR files, or ZIP files containing Java classes
that are then included in an extended Java class path.

JavaOptionsFile Provides a path location to a file that contains argu-
ments passed to the JVM on startup.

JavaVerbose Turns on verbose logging within the JVM.

JavaTraceFile Provides a path location to the JVM where the ver-
bose logging messages will be stored. This variable,
along with JavaOptionsFile and JavaVerbose,
are discussed in more detail in Chapter 6, “Server-Side
Debugging Techniques.”

OSGI_HTTP_DYNAMIC_
BUNDLES

Specifies the location(s) of update site databases that
contain OSGi bundles that are to be installed dynami-
cally by the HTTP process.

XPagesPreload Applying a value of 1 instructs the Notes/Domino core
to preload the XPages Java runtime classes in memory
at client and/or server startup.

XPagesPreloadDB Takes a comma-separated list of XPages applications to
preload in memory at client and/or server startup.

INI Variables You Should Know About   85  

Table 2.1 describes the various notes.ini variables that can be added to debug XPages
applications, extend their capabilities, and optimize their performance. Unless otherwise
stated, it can be assumed that any given INI variable under discussion applies to the
Domino server rather than the Notes client. In addition, any INI variable can be added or
edited in one of three ways:

	 n	 By directly editing the notes.ini file using a text editor.

	 n	 On the server, using a Domino console command of this form:
set conf varname=value

	 n	 On a server using the Name & Address Book (NAB) configurations parameters
document. This approach is particularly useful in server clusters because the con-
figuration replicates across all servers. As a result, the administrator doesn’t need
to manually configure each server.

On the Domino server, after a notes.ini variable is set, it is typically necessary to restart
the HTTP task for the server to read and use the variable. In some cases, it is necessary
to restart the server itself. Tasks on the Domino server that have Java programs embed-
ded within them typically initialize and run a separate instance of the server’s JVM
per task. For instance, the Agent Manager, the HTTP task, and others all run unique
instances of the server’s JVM. It is also worth pointing out that, in many cases,
notes.ini settings apply across all server tasks and are not necessarily tied to the HTTP
task. Variables that apply only to the HTTP task are prefixed with HTTP in the variable
name. If a variable applies to more than the HTTP task, users must use caution when
modifying those variables; the consequences of the changes made will reach beyond the
XPages runtime and, indeed, the HTTP task.

Depending on the task, the requirements on the JVM instance differ. As a result, vari-
ous INI variables have been added to notes.ini to make the different JVM instances as
configurable as possible. This enables the Domino server administrator to fine-tune the
memory consumption of the Domino server while simultaneously optimizing the perfor-
mance delivered to the end user.

Because the XPages runtime is written almost entirely as a Java program, the HTTP
process must have a larger maximum Java heap size than was historically necessary
for most Domino servers. That is not to say that XPages applications consume more
memory than “traditional” Notes applications; however, resources now must be allocated
to the Java process where traditionally they were not required.

Administrators have always been able to apply heap size minimum and maximum
limits across all Java processes running on the Domino server via two INI variables,
JavaMaxHeapSize and JavaMinHeapSize. Both are discussed later. With the release
of Domino 8.5.2, two new variables have been added that increase the flexibility of these
limits: HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet. Before delving into
the various heap size variables that are available to Domino’s JVM, it is worth explain-
ing what the Java heap is and how it affects performance.

86   INI Variables You Should Know About

The Java Heap

The JVM’s heap is responsible for storing all objects that a Java program creates. The
JVM creates a Java object when the constructor for an object is called within a running
program. The JVM stores the object (on its heap) until all references to the object have
been released. Only when all references have been released does the JVM allow garbage
collection to occur on the object. The term garbage collection describes the process by
which Java deletes previously created objects and makes the memory previously allo-
cated to those objects available for other objects to use.

The size of the Java heap determines the frequency at which garbage collection needs
to be run. In larger applications, it is not uncommon to set the size of -Xms
(minimum heap size) and -Xmx (maximum heap size) to be the same, to give a fixed
heap size. This helps to improve overall performance, particularly boot performance
(performance when the application is bootstrapping/starting on the server).

One of the main memory goals of a JVM is to keep its memory footprint within the con-
straints provided via its vm arguments (that is, within the minimum and maximum heap
limits). As a result, when a JVM notices that the amount of memory it is using is nearing
the amount of memory allocated to it, the JVM runs garbage collection in an attempt to
keep its memory footprint below the amount currently allocated. If the minimum heap
size is a small number, garbage collection must run frequently to keep the memory
footprint as small as possible. Each time the amount of memory the JVM uses nears the
amount of memory currently allocated to the JVM, garbage collection is run. Garbage
collection algorithms have been optimized significantly with each release of Java, but
garbage collection doesn’t come for free. A performance impact occurs each time the
garbage collector must be executed. Furthermore, when garbage collection is running,
it takes priority over all other processes running within the JVM. Figure 2.1 illustrates
sample memory consumption of the HTTP task’s JVM during startup when the mini-
mum heap size is set to 16MB. The same battery of tests was run against the XPages
runtime in all the following graphs. You can see that, as minimum heap size increases,
the amount of time spent performing garbage collection decreases.

Figure 2.1  Memory consumption by HTTP JVM when JavaMinHeapSize is set to 16MB

Garbage Collection occurs
as allocated memory reached

The lower line represents
used memory

The upper line represents
allocated memory

INI Variables You Should Know About   87  

As you can see in Figure 2.1, each time the amount of memory the JVM uses nears the
allocated memory threshold, garbage collection is run. The graph shows that there will
be an impact on performance during startup due to the low minimum heap size. When
the JVM determines that, after garbage collection, the amount of allocated memory is
not enough to create a new object, the JVM allocates more memory for itself, if possible.

Figure 2.2 illustrates how much time the JVM spends performing garbage collection dur-
ing the same time period in Figure 2.1.

Figure 2.2  Time spent performing garbage collection when JavaMinHeapSize is
set to 16MB

From looking at Figure 2.1 and 2.2, you can easily see that the JVM performs garbage
collection approximately two minutes into the scenario. Next, you can see from Figure
2.3 and 2.4 that, as the minimum heap size is increased, the amount of time spent in gar-
bage collection decreases.

Figure 2.3 illustrates sample memory consumption for the same scenario, but this time
with the minimum stack size set to 48MB.

Figure 2.3  Memory consumption by HTTP JVM when JavaMinHeapSize is set to 48MB

Finally, Figure 2.4 illustrates the amount of time spent in garbage collection during the
same scenario.

Peak Garbage Collection as more memory is required

Allocated memory is sufficient
Upper line represents allocated memory

Lower line represents used memory

88   INI Variables You Should Know About

Figure 2.4  Time spent performing garbage collection when JavaMinHeapSize is
set to 48MB

Although it is difficult to give an exact figure for optimal JVM performance, if the
server administrator/developer knows that the amount of memory the JVM requires is
likely to regularly exceed the minimum allocated to the JVM, it is advisable to increase
the minimum heap size, if possible. This results in less time spent performing garbage
collection and more time being allocated to processes that perform tasks that the end
user can see.

We have discussed the reasoning behind setting JavaMinHeapSize to a reasonable
size, but we have not mentioned the impact of setting the opposing settings HTTPJVM-
MaxHeapSize and JavaMaxHeapSize. Both of these settings are responsible for
setting the maximum heap size of the JVMs of the HTTP task and all other tasks,
respectively. The maximum heap size, as the name suggests, is the maximum size that
the JVM’s heap can expand to. If after garbage collection the JVM calculates that it does
not have enough memory to create an object without exceeding the maximum heap size,
it throws an OutOfMemoryException. If XPages developer or server administrators
notice that the Domino server is throwing OutOfMemoryExceptions regularly, the
HTTPJVMMaxHeapSize variable should be the first area for investigation.

HTTPJVMMaxHeapSize Variable

This variable sets the maximum Java heap size to be used by the Domino server’s HTTP
task. This INI variable passes its value through to the HTTP task’s JVM. This variable
correlates directly with Java’s -Xmx vm argument. The value of this INI variable gets
passed to the JVM as the value of the –Xmx vm argument. This setting was introduced
in Domino 8.5.2 to allow administrators to set (in most cases) a higher heap limit for
the JVM running within the HTTP task, and thus a higher heap limit for the XPages
runtime.

In the past, it was typical to recommend setting a 64MB heap limit for all JVMs running
on the Domino server (running on a 32-bit platform). With the introduction of XPages,
it was quickly acknowledged that, for servers running several XPage applications simul-
taneously with many concurrent users, allocating more memory to the JVM serving the
XPage applications was necessary. The initial recommendation prior to version 8.5.2
was to increase the JavaMaxHeapSize setting to accommodate the need for increased
memory. However, increasing this setting for servers on 32-bit systems could cause
them to run out of memory, as all JVMs (not just the HTTP task’s JVM) were running

Garbage Collection is not as intensive as heap size is increased

INI Variables You Should Know About   89  

with this higher limit. A new solution was required, and two new INI variables resulted
(HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet).

For servers that have intensive XPage needs, it is now normal to recommend setting a
maximum HTTP JVM heap size of 256MB (for 32-bit systems). A 1GB JVM maxi-
mum heap size is recommended for 64-bit systems. The task of identifying how much
memory is enough memory to allocate as the maximum heap size is a delicate balancing
act. If this number is too small, the performance of your XPages runtime will be nega-
tively affected. Conversely, assigning a number that is too high adversely affects the
performance of the entire system. Developers and system administrators should be wary
of setting this value to an unreasonably high value for the system in question. If this
variable is set too high, other applications running on the system will likely slow down
and performance as a whole for the system will degrade. Users should be vigilant when
changing this variable on the Notes client because it has a direct impact on the applica-
tion’s memory footprint.

Sample usage:

HTTPJVMMaxHeapSize=256M

HTTPJVMMaxHeapSizeSet Variable

This variable notifies the HTTP task that the HTTPJVMMaxHeapSize setting has been
specifically set and should not be programmatically overwritten. The HTTP task checks
for the HTTPJVMMaxHeapSize variable each time the HTTP task starts. If the variable
is not present, the HTTP task queries notes.ini for the JavaMaxHeapSize variable.
If this variable is present, it assigns the value of JavaMaxHeapSize to HTTPJVMMax-
HeapSize and sets HTTPJVMMaxHeapSizeSet to 1. If JavaMaxHeapSize is not
present the HTTP task sets the value of HTTPJVMMaxHeapSize to 64MB for 32-bit sys-
tems and to 1GB for 64-bit systems, and sets HTTPJVMMaxHeapSizeSet to 1.

If HTTPJVMMaxHeapSize is set to less than 256MB on a 64-bit system, it is automati-
cally reset to 256MB on HTTP startup and HTTPJVMMaxHeapSizeSet is set to 1.

Users should be vigilant when changing this variable on the Notes client because it has a
direct impact on the memory footprint of the Notes client.

JavaMaxHeapSize Variable

Domino tasks that run Java programs require a JVM instance to execute the Java pro-
gram. Until release 8.5.2, the JavaMaxHeapSize variable was responsible for control-
ling the maximum heap size for all JVMs running on the server. As of release 8.5.2,
the HTTPJVMMaxHeapSize variable has responsibility for controlling the size of the
heap of the HTTP task’s JVM. The JavaMaxHeapSize variable controls the maximum
heap size of all other JVMs running on the server. The JavaMaxHeapSize variable is
responsible for passing the -Xmx vm argument to all server JVMs (apart from HTTP’s
JVM).

Because the JavaMaxHeapSize setting affects potentially multiple JVM instances and
multiple tasks, the server must be restarted after changing the variable’s value. Users

90   INI Variables You Should Know About

should be vigilant when changing this variable on the Notes client because it has a direct
impact on the memory footprint of the Notes client.

Sample usage:

JavaMaxHeapSize=256M

JavaMinHeapSize Variable

This variable sets the minimum heap size for all JVMs running within the Domino
server (and Notes client). The minimum heap size is the amount of memory initially set
aside for the JVM. This variable is responsible for passing its value through to the JVM
as the -Xms vm argument.

Users should think carefully before increasing this variable on the Notes client because it
impacts the memory footprint of the client.

Sample usage:

JavaMinHeapSize=16M

JavaEnableDebug Variable

Chapter 6 discusses this variable in much greater detail. This variable signals to the
Domino server that its JVM should be started in debug mode. Enabling this variable is
the first step required when configuring the Domino server for remote debugging. In the
following example the variable is set to a value of 1. This variable’s value acts like a
Boolean flag, with 1 being true (or on) and 0 being false (or off).

Sample usage:

JavaEnableDebug=1

JavaDebugOptions Variable

Chapter 6 discusses this variable in much greater detail. This variable is used to pass
debugger information, such as debug port numbers and debug transport protocol names,
to the server’s JVMs.

Sample usage:

JavaDebugOptions=transport=dt_socket, server=y,suspend=n,address=8000

JavaUserClasses Variable

Setting the notes.ini parameter JavaUserClasses allows for a class to be loaded via
the JVM system loader so that classes (and jars) can be shared across JVM instances.
This variable is discussed in the section, “Enabling Extended Java Code with the java.
policy File,” later in this chapter.

This section touched on a few of the more commonly used JVM vm arguments. How-
ever, literally dozens of arguments to the JVM are available. You can find a full list
here: www.tinyurl.com/JVMLaunchOptions.

www.tinyurl.com/JVMLaunchOptions

INI Variables You Should Know About   91  

You likely will never need to use many of them, but having a reference to these argu-
ments is worthwhile because some will prove useful in the long term.

OSGI_HTTP_DYNAMIC_BUNDLES Variable

The XPages APIs have been available since Domino 8.5.2. Through the use of the
XPages extension APIs, customers can create their own extensions of the XPages
runtime. Customers can create their own XPages artifacts, such as (but not limited to)
XPage controls, converters, validators, and data sources.

Typically, these artifacts are packaged within OSGi bundles (plug-ins). The artifact cre-
ator distributes the OSGi bundles. Under normal circumstances, a server administrator
is expected to install the OSGi bundles (via copy and paste) into a folder location within
the Domino server.

Feedback from administrators and developers alike indicated that this method of bundle
installation is not optimal, mainly because organizations are hesitant to place unsigned
JAR files into their Domino server.

Domino 8.5.3 introduced the OSGI_HTTP_DYNAMIC_BUNDLES variable. This vari-
able enables the bundle provider to place OSGi bundles within an update site database
that can be signed and provided to the server administrator. The plug-in signer must be
among the server’s list of individuals who can run unrestricted methods and operations.
Those familiar with Domino server administration will understand that granting this
level of authority to an individual or group should not be done without first ensuring that
the signer is completely trusted. Allowing individuals or groups to run unrestricted in
this manner implies that those listed have access to run agents or XPages that can access
the underlying OS APIs.

The HTTP task automatically provisions (installs) the OSGi bundles from the database
into the server, without the need for physically copying the bundles into the server (note
that the update site database in question must be based on the version 8.5.3, or newer,
update site template). The bundles at all times remain within the database, and the
HTTP task is responsible for dynamically adding the bundles to the list of runtime OSGi
bundles as the task is starting. As with any databases/code received from third parties,
administrators should ensure that the update site databases are not malicious in nature
before installing them on a production server. This model is recommended for use where
an update site needs to be deployed across multiple servers. If OSGi bundles need to be
installed on multiple servers in a cluster, administrators are advised to create an update
site database (based on the 8.5.3 update site template). Administrators should next
upload their OSGi bundles to the update site database. After the bundles are uploaded,
a replica of the update site database should be created on each server where the bundles
are to be installed. Finally, in the server’s Name and Address Book, a Configuration/
Parameters document must be created with the OSGI_HTTP_DYNAMIC_BUNDLES INI
variable set to the location of the update site database. Using this model ensures that the
bundles are installed on each server where the update site database is replicated to. After
the bundles are deployed, the HTTP task on each server must be restarted.

92   INI Variables You Should Know About

Figure 2.5 shows the update site database with an update site imported into the database.
As you can see from the figure, multiple toolbar buttons within the database support the
easy import of existing update sites.

Actions are also available toActions are available to

Figure 2.5  Notes 8.5.3 Eclipse update site database

Sample usage:

OSGI_HTTP_DYNAMIC_BUNDLES=update/extlibbundles.nsf,sbtbundles.nsf

XPagesPreload Variable

This feature, along with its XPagesPreloadDB sidekick, was introduced in Notes/
Domino 8.5.3 to boost the initial startup time of XPages applications. When set to 1,
the XPagesPreload variable causes the Notes/Domino Java class loader to load the
XPages Java runtime classes when the client or server is starting up. Two distinct groups
of classes are loaded:

	 n	 Java classes from the XPages runtime plug-ins (com.ibm.xsp.core and so on)

	 n	 The Java classes referenced in the *-faces-config.xml files in the core plug-
ins (core-faces-config.xml, extsn-faces-config.xml, and so on)

Actions are also available to
import remote update sites

Actions are available to
import local update sites

INI Variables You Should Know About   93  

The first group is loaded from a fixed list of runtime classes (465 objects total in version
8.5.3), not only from the core com.ibm.xsp.* plug-ins, but also from common utility
classes, JavaScript wrapper classes, and underlying JSF runtime classes.

In the second instance, all the faces-config.xml files in the following core plug-ins
are read and the classes declared within are loaded in a batch. These mostly consist of
XPages control renderers, data sources, and complex types.

	 n	 com.ibm.xsp.core

	 n	 com.ibm.xsp.extsn

	 n	 com.ibm.xsp.designer

	 n	 com.ibm.xsp.domino

	 n	 com.ibm.xsp.rcp

Note that com.ibm.xsp.rcp is a Notes client–only plug-in and that both groups of
classes are loaded simultaneously on separate threads. Also, unless these preload vari-
ables are set in notes.ini, no XPages class loading of any description is performed before
the first XPages application is opened in a given client or server session.

XPagesPreloadDB Variable

Whereas the XPagesPreload variable is concerned with loading critical pieces of the
core runtime platform, XPagesPreloadDB is concerned with the application layer. The
XPagesPreloadDB variable points to one or more NSF applications, which can be
local to the client or server or on a remote server. Any nominated NSF can also include
an optional XPages .xsp filename. The following sample notes.ini variable declaration
includes an example of a local NSF that specifies an XSP page (ByAuthor.xsp) and an
NSF on a remote server (bigIron) that does not:

XPagesPreloadDB=teamdisc.nsf/ByAuthor.xsp,bigIron!!expenseDb.nsf

In the normal course of events, when an end user from a browser loads an XPages
application, the XPages runtime loads the NSF as a virtual web application module.
The concept behind preloading is to load the web application module into memory at
startup time in the same way it would occur normally if a real user had submitted an
actual application load request. Thus, the XPages runtime fakes a real request for each
argument in the XPagesPreloadDB comma-separated list. This means that an XPages
URL is constructed for each argument and sent to the web application server. The web
application server loads the application module, caches it, and renders back markup if an
XPages file is specified. The XPages runtime simply throws away the response from the
web application server, but the module has been loaded into memory and will be avail-
able instantly for the next real user request.

When and Why Is Preloading Important?

Preloading the runtime technology and/or XPages applications is important when initial
application load time is a project requirement—in other words, preloading is important

94   INI Variables You Should Know About

almost all the time! While the XPages preloading features work on both the Notes client
and Domino server, it can be especially significant when an XPages application is run in
the Notes client but the NSF itself resides on a remote Domino server. In this scenario,
application startup performance can be slower than normal, depending on the load and
latency of the network infrastructure on which the applications are deployed. To under-
stand this fully, however, you need to quickly look at how XPages runs in the Notes
client.

In a typical, albeit oversimplified, XPages web application scenario, a user makes a
request for an XPage to a Domino server that responds by generating the XPages content
and emitting the markup back to the user’s browser client. The same applies when run-
ning an XPages application in the Notes client, except that the Expeditor (XPD) web
application server and (XULRunner) browser client are embedded in the client platform
and thus are running on the local desktop computer. When running with a local cli-
ent NSF application—say, a replica of an XPages web application that has been taken
offline—this all runs the same as the typical web scenario and with a similar perfor-
mance profile. Figure 2.6 summarizes the XPages client runtime model.

Sets
Updated
Launch
URL

XPages Client URL

User Opens
XPages Client
Application

XPages Notes
UI Container

• Transforms URL
• Starts Web Container
• Starts XULRunner

XSP Runtime
• Handles Requests
• Renders Responses

XPD Web
Container

• Bootstraps XSP Runtime
• Dispatches Requests

XULRunner-based
Browser Component

Sends Page Request

XSP
Requests

XSP
Responses

Sends Rendered Page

User
Experience

Notes Client

Figure 2.6  XPages in the Notes client

However, when the NSF is not a local replica, but a file on a remote server, all the
data displayed as content in the XPage must be fetched across the network from the
remote server. This can result in numerous network transactions being carried out just
to populate the XPage. On top of this, however, all the XPages and Custom Control
design elements themselves must be fetched from the remote NSF to be executed in
the local Notes web application server. In terms of performance optimization, network

INI Variables You Should Know About   95  

transactions should always be minimized because applications inevitably slow down
due to the extra time required to complete network transactions (that is, over and above
the time required to fulfill equivalent local disk access operations). On networks with
high latency, the performance impact can be significantly exacerbated. Preloading an
application ensures that any remote network activity required for application design
artifacts is absolutely minimized by the time the end user first touches the application. It
also ensures that the web container has been started in advance of the first user request,
to eliminate overhead. Thus, the XSP preload INI variables can really help mitigate the
performance issues outlined here.

Tip A dministrators can apply INI settings like this to many client computers in one fell
swoop using a desktop policy settings document. The process is described in detail in
this IBM support document: www.tinyurl.com/PushNotesIniSettings

Avoid Unnecessary Network Transactions in Your Application Code

Now that you understand the potential negative impact of network transactions on page
loading when running a remote NSF application in the Notes client, it is important to
apply this lesson to your own application code: In other words, do not fall into the same
trap by loading application data inefficiently. A use case that we have encountered on
more than one occasion with sample customer applications is highlighted here—avoid it
at all costs. This example has to do with customizing views.

XPages makes it easy to access and display view data using container controls such as
the View panel, Repeat control, or Data Table. These controls attach to a Domino view
via a data source and display its content by iterating though the view entries, accessing
the row data, and formatting it for display according to various design-time parameters.
The controls offer the powerful capability of adding customized view columns to the
output, which often transform back-end view data or compute new values based on
Domino view data for display purposes. However, there are efficient and inefficient
ways of customizing view column data. The egregious offender is the column value
computation that uses Server Side JavaScript code to do something like this:

return rowData.getDocument().getItemValueString("Customer");

Here, rowData is the sample variable name parameter on the container control (that is,
the name assigned to the var property) that gives access to the current row in the view
as it is being read and rendered at runtime. When the page content is being built, the
underlying document for the current view entry is opened and an item value is read from
the document instance. This operation is repeated for every row displayed in the view
control. In one particular real-world instance, a View control was configured with two
custom columns, both of which opened the underlying document to extract item data,
and the View control was configured to show 25 rows at a time. Thus, in one fell swoop,
50 extra and expensive network transactions had to be carried out for this page when this
NSF was run as a remote application on the Notes client. Ouch!

When custom columns are required, it is always best to work with columns that are
already defined in the back-end Domino view and then retrieve the column content for

www.tinyurl.com/pushNotesIniSettings

96   Optimizing Client Memory Usage

custom computation using the getColumnValue() API call on the
NotesXspViewEntry JavaScript class. If the required column does not exist in
the back-end Domino view, add it if you have sufficient design privilege, but do
not open the underlying document to read the item and then have this bad practice
repeated iteratively for every view entry to be displayed.

A simple example of a customized column is the concatenation of two back-end view
column values into a single XPages View control column, formatted in a particular way.
You can achieve such a custom value using Server Side JavaScript (in particular, by
leveraging the aforementioned getColumnValue() API call) to extract the column
data from the Domino view:

return "" + rowData.getColumnValue("Area") + ":" +
➥rowData.getColumnValue("Customer");

Optimizing Client Memory Usage

Most of the usage scenarios outlined in this chapter deal with notes.ini variables and are
of primary importance when used within the Domino server. However, a number of set-
tings used on the Notes client can help configure the memory-management settings of
the Notes client.

The Notes client is based on Eclipse since release 8.0. As a result, Notes requires a JVM
to launch and run. The JVM that Notes uses is installed as a part of the Notes client and
launches each time the Notes client is launched. The JVM is installed to the jvm folder,
which is a child of the Notes program directory (for example C:\Notes\jvm).

The Notes JVM can be configured by modifying jvm.properties, which resides in
<notes_program_directory>\framework\rcp\deploy. Users should be careful when
modifying the jvm.properties setting: Changing some settings can negatively impact
the Notes client’s performance. It is advisable to keep a backup copy of jvm.properties
before modifying it.

Similar to the notes.ini heap variables discussed previously, two Notes client jvm.
properties attributes provide the same vm arguments to the Notes client’s JVM. Table
2.2 outlines both of those properties.

Table 2.2  Notes Client JVM Memory Management Properties

jvm.properties Property Description

vmarg.xms Sets the minimum heap size to be used by the Notes
client’s JVM

vmargs.xmx Sets the maximum heap size to be used by the Notes
client’s JVM

Users should take note when modifying the value of these properties. If the user is
confident that the system has enough overall system memory to support increasing the

Enabling Extended Java Code with the java.policy File   97  

memory allocated to the Notes client, increasing the minimum and maximum JVM heap
size for the Notes client can yield performance improvements for the Notes client.

vmarg.Xms

This property corresponds to the -Xms vm argument. The value of this property is
passed to the JVM as the minimum heap size allowed for the JVM. Increasing this prop-
erty leads to an increased initial heap size for the Notes client JVM.

vmarg.Xmx

This property corresponds to the -Xmx vm argument. The value of this property is passed
to the Notes client’s JVM as the maximum heap size allowed for the JVM. Increasing
this property allocates more memory to the Notes client JVM and, ultimately, the Notes
client. Listing 2.2 shows how to set the minimum and maximum memory arguments via
jvm.properties.

Listing 2.2  Sample Notes client jvm.properties Values

vmarg.Xmx=512m

vmarg.Xms=128m

Any variable can be passed into the Notes client’s JVM using jvm.properties. vm argu-
ments are passed to the Notes client’s JVM using the vmarg.arg notation. The argu-
ment name succeeding the dot is passed directly to the Notes client’s JVM as in
vmarg.Xnolinenumbers=-Xnolinenumbers.

Enabling Extended Java Code with the java.policy File

Another configuration file to know about is the java.policy file. The XPages Java Secu-
rity Manager uses this file to determine what classes are trusted in the XPages runtime
environment of the Notes client and Domino server. It is located in the jvm\lib\security
folder under the Notes/Domino root installation directory. The Notes client has an addi-
tional java.policy file in its root directory. This is done to support the Mac platform. The
content of both files is effectively concatenated as one by the security manager on the
Notes client. Listing 2.3 shows a snippet from the java.policy file on an 8.5.3 Domino
server, with some lines highlighted for special attention.

Listing 2.3  Sample Snippet from a Domino Server java.policy Configuration File

// Standard extensions get all permissions by default

grant codeBase "file:${java.home}/lib/ext/*" {

 permission java.security.AllPermission;

};

98  E nabling Extended Java Code with the java.policy File

// default permissions granted to all domains

grant {

 // Allows any thread to stop itself using the java.lang.Thread.
➥stop()

 // method that takes no argument.

 // Note that this permission is granted by default only to remain

 // backwards compatible.

 // It is strongly recommended that you either remove this
➥permission

 // from this policy file or further restrict it to code sources

 // that you specify, because Thread.stop() is potentially unsafe.

 // See "http://java.sun.com/notes" for more information.

 permission java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on un-privileged ports

 permission java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properies that can be read by anyone

 permission java.util.PropertyPermission "java.version", "read";

 permission java.util.PropertyPermission "java.vendor", "read";

 permission java.util.PropertyPermission "java.vendor.url", "read";

 "java.vm.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.version", "read";

 // etc ...

 permission java.util.PropertyPermission "java.vm.vendor", "read";

 permission java.util.PropertyPermission "java.vm.name", "read";

 permission java.util.PropertyPermission "javax.realtime.version",
➥"read";

};

// Notes java code gets all permissions

grant codeBase "file:${notes.binary}/*" {

 permission java.security.AllPermission;

};

grant codeBase "file:${notes.binary}/rjext/*" {

 permission java.security.AllPermission;

};

Enabling Extended Java Code with the java.policy File   99  

grant codeBase "file:${notes.binary}/ndext/*" {

 permission java.security.AllPermission;

};

grant codeBase "file:${notes.binary}/xsp/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${notes.binary}/osgi/-" {

 permission java.security.AllPermission;

};

The first grant statement in Listing 2.3 declares that the security manager trusts any
Java JAR files located in the jvm\lib\ext folder under the root Notes/Domino directory.
This means that you could drop your own custom Java libraries into this location, and
they would be included in the class path and trusted by the security manager at runtime.
This is not a recommended practice, however, because the location is intended for global
system libraries; including private custom libraries there would pollute the model.

At the bottom of the listing are some other locations that are also granted all permissions
by the security manager. Shaded in gray is the xsp subfolder; you can include your own
custom Java libraries at this location (say, by including a JAR file in the xsp\shared
folder). This is no longer a recommended practice, but it is still supported for historical
reasons. You can also encapsulate your custom Java classes in a plug-in and place them
in the OSGi location (the last entry in the listing), to ensure that your classes are suc-
cessfully loaded. However, this is also not recommended because the upgrade installer
removes everything under the osgi folder whenever the server is next upgraded. The rec-
ommended way is to deploy custom plug-ins in the workspace subfolder path under the
server data directory (domino\workspace\applications\eclipse\plugins). This location
automatically inherits all Java 2 security settings of the OSGi directory, and contents are
preserved in the event of an upgrade.

If you want to include custom Java code in an NSF and reuse it in other XPages applica-
tions, you must add a grant declaration, such as that shown in Listing 2.4.

Listing 2.4 A Grant Declaration for XPages Java Code Contained in an NSF Application

grant codeBase "xspnsf://server:0/xsp85code.nsf/-" {

 permission java.security.AllPermission;

};

The xspnsf protocol identifies the code source as coming from XPages in an NSF file.
The server, port, and actual NSF file are then specified in the remaining part of the URL.
You can refine the scope of the approved code source by further modifying the URL.
For example, to allow only Java code called via Server Side JavaScript to execute, add a
script path identifier. Listing 2.5 shows the modified grant declaration.

100  E nabling Extended Java Code with the java.policy File

Listing 2.5 A Grant Declaration for XPages Java Called Via SSJS in an NSF Application

grant codeBase "xspnsf://server:0/xsp85code.nsf/script/-" {

 permission java.security.AllPermission;

};

Note also that some URLs are suffixed with an asterisk character (*), whereas others end
with a hyphen (-). The former includes all files in the designated location; the latter is
recursive, meaning it also includes any libraries found in subfolders of the location.

The other entries in the java.policy file may be vaguely interesting to you. For exam-
ple, you can see where the other standard Java components, such as Notes/Domino
extensions (ndext), are declared. There is also a collection of individual permission
declarations:

permission java.util.PropertyPermission "java.version", "read";

This simply means that anyone is allowed to read the version of Java running on Notes/
Domino. The other individual statements are equally straightforward.

Finally, custom libraries can also be included in the Java class path using the
JavaUserClasses INI variable.

JavaUserClasses

This setting existed long before the advent of XPages in Notes /Domino 8.5, but it is still
effective today as a directive to include custom or third-party libraries in the class path.
The example included in Listing 2.1 shows how to add a JAR file or a file path location
to the class path:

JavaUserClasses=D:\jdbcutils\jdbcdrivers.jar;D:\java\customlibs

The list of JARs, ZIPs, or path locations is ultimately limited to 255 characters. This can
be an issue when third-party libraries are installed into long-winded file system paths,
but there are workarounds for this limitation. One solution is provided by way of another
INI variable, named JavaUserClassesExt, that was introduced subsequently to per-
form the same function but is designed to accept a list of tags instead of a list of literal
resources. Listing 2.6 shows an example.

Listing 2.6 A notes.ini Snippet Showing JavaUserClassesExt and Related Tags

JavaUserClassesExt=ibm,json

ibm=C:\IBM\financelib.jar

json=D:\utils\jsonlib.jar

};

Note that the XPages Java Security Manager does not trust any Java class files added
to the class path in this way. That is, the class files may be loaded, but any attempt to

Enabling Extended Java Code with the java.policy File   101  

perform protected operations will be denied. You can use the AccessController.
doPrivileged action if you need to add privileged operations to your custom Java
code. Listing 2.7 shows a simple example of this.

Listing 2.7  A Simple Code Snippet That Calls Third-Party Java Code Via Server Side
JavaScript in XPages

String getUserNameProtected() {

 String user = (String) AccessController.doPrivileged(

 new PrivilegedAction() {

 public Object run() {

 return System.getProperty("user.name");

 }

 }

);

 return user;

}

If you want to experiment with extending the Domino class path, setting up a mini-
mal test case is easy. For example, take a third-party standalone Java library, such as
the Apache Commons BeanUtils, and install the JAR in one of the aforementioned jar
locations, or put it in a private folder and add it to the class path using the JavaUser-
Classes setting. On an XPage, you can attach some Server Side JavaScript to a button
such as the one shown in Listing 2.8.

Listing 2.8  A Simple Code Snippet That Calls Third-Party Java Code Via Server Side
JavaScript in XPages

<xp:button value="Label" id="button1">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action><![CDATA[#{javascript:

// Instantiate the array stack, add an entry and print it out

var as = new org.apache.commons.collections.ArrayStack();

as.push("foo");

println(as.size());

println(as.get());}]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

println(as.get());

Clicking the button in the XPage on a web browser at runtime causes the array size (1)
and array content (foo) to be printed on the server console if the Apache Commons
BeanUtils library is properly loaded.

102   Conclusion

Conclusion

In this chapter, you explored some core Notes/Domino configuration files (namely
notes.ini, jvm.properties, and java.policy) and saw how the variable settings can con-
trol many aspects of behavior of the XPages runtime on the Notes client and Domino
server. These settings mostly serve as XPages debugging, performance, and extensibil-
ity aids. Hopefully, you found some nuggets that you can apply to solve or simplify
problems you have encountered in your everyday XPages application development
adventures.

When working with an application running on an application server, it is often necessary
to interact with the server’s console to analyze, troubleshoot, and debug any problems
that might arise. This is also true for XPages applications and controls. The Domino
server console provides the developer with a wide variety of commands, ranging from
starting a server task to reporting the status of an OSGi bundle running on the server. At
some point, the XPage developer inevitably will need to call on the console to analyze
why an application is not working or functioning as desired.

The Domino server has a long history. Over time, the Domino server’s console has
served Domino administrators and developers alike as the first line of attack when
troubleshooting problems. In an effort to maintain this level of service over the evolution
of the server, and to enable administrators and developers to quickly get to the root of
issues relating to XPages applications, the server’s console has been instrumented with a
large array of commands specifically built with the XPages runtime in mind.

About the XSP Command Manager

The XPages runtime is embedded within the Domino server’s HTTP task. The XSP
Command Manager serves as the common link for the Domino HTTP task, the server’s
JVM, and the XPages runtime. The XSP command manager is responsible for dispatch-
ing XPages’ requests received from the HTTP task and the Domino console, and is also
ultimately responsible for the XPages runtime’s lifecycle. The XSP Command Manager
has many useful commands built in that enable the administrator or developer to quickly
analyze whether a particular XSP setting is causing an issue. It also can generate Java
dumps that the development team can analyze.

How to Execute the XSP Command Manager Commands

Commands are executed via the XSP Command Manager similar to any other command
on the Domino server. The XSP Command Manager is running within the HTTP task, so
the commands it executes must be fed through the HTTP task, as in this example:

tell http xsp <<xsp command manager command>>

Chapter 3

Working with the Console

104  H ow to Execute the XSP Command Manager Commands

Table 3.1 lists all the XSP Command Manager Commands.

Table 3.1  XSP Command Manager Commands

Command Name Description

show data directory Shows the location of the Domino server’s data directory.

show program directory Shows the location of the Domino server’s program
directory.

show version Displays the exact version of the XPages runtime that is
installed and running on the Domino server.

show settings Shows all the variables/properties that have been set on
the server’s bootstrap.properties file. If a bootstrap.
properties file does not exist, the XPages runtime pro-
vides reasonable recommended defaults.

show modules Displays the modules loaded in the system. The XPages
runtime dynamically loads each Domino database as a
web application module.

refresh Causes the services in the XPages runtime to be refreshed.
This is mainly reserved for future use.

heapdump Performs a live dump of all objects on the Domino
server’s Java heap. Creates a dump file that must be read
by other tools (such as the Eclipse Memory Analyzer); the
file is not human readable.

javadump Performs a Java dump, sometimes referred to as a thread
dump or JavaCore dump, of the Domino server’s JVM.
The information collected during the dump operation is
stored in human-readable format.

systemdump Performs a full system dump, sometimes referred to as a
core dump, of the Domino server’s JVM. The dump infor-
mation is platform specific and contains all the memory,
process, and thread information for the JVM at the time
the dump occurred.

These commands can greatly aid administrators and developers when trying to analyze
particular issues. The dump commands are of particular importance because they per-
form diagnostic dumps on the server’s JVM but do not cause the JVM or the server to
stop operation.

show data directory

As the name suggests, this command simply tells the user where the Domino server’s
data directory resides on the operating system’s file system. In a Domino server envi-
ronment, the data directory stores all the databases that are available through the Dom-
ino server. The location of this directory is significant because all applications running
on the server will reside in this directory or within a subdirectory of this directory.

How to Execute the XSP Command Manager Commands   105  

Sample usage:

tell http xsp show data directory

Figure 3.1 shows the results of running the show data directory command on a
Domino server.

Figure 3.1  Result of running the show data directory command

show program directory

This command tells the user where the Domino server’s program directory resides on
the operating system’s file system. This command can be convenient for developers who
are not familiar with a particular setup of an individual server machine. The command
enables developers or administrators to quickly identify the file system location of the
Domino server’s program directory.

Sample usage:

tell http xsp show program directory

Listing 3.1 shows the result of running the show program directory command in
the Domino server console.

Listing 3.1  Result of Running the show program directory Command in the Console

> tell http xsp show program directory

09/20/2011 10:52:33 PM C:\Program Files\IBM\Lotus\Domino

show version

This command shows the exact version of the XPages runtime that is installed and run-
ning on the Domino server. The version number is updated only when upgrading from
one release to another of XPages core runtime. Adding or upgrading extensions such as

106  H ow to Execute the XSP Command Manager Commands

the XPages Extension library does not update the version number. This command typi-
cally is used when a developer or administrator needs to confirm which version of the
XPages runtime is running on a particular server. New features are added to the XPages
runtime with each release. These features can range from new properties on existing
controls to entirely new controls. Over time, a developer or administrator must confirm
that the version of XPages runtime is at the appropriate release level for the applications
running on the server. This command enables the developer or administrator to quickly
confirm the XPages runtime version.

Sample usage:

tell http xsp show version

Listing 3.2 shows how to determine the version of the XPages runtime.

Listing 3.2  Result of Running the show version Command in the Console

> tell http xsp show version

09/20/2011 04:34:21 PM XSP Runtime Version: [DSI8.5.3] 20110629.1645

In the previous example, the version number can be broken down as follows:

	 n	 The DSI prefix is a constant, which does not vary from release to release.

	 n	 8.5.3 represents the Major.Minor.Maintenance version number. The first digit
is updated with each major feature release, the second digit is updated with each
minor feature release, and the last digit is updated with each maintenance release.

	 n	 The final number (20110629.1645) represents the time stamp (yyyyMMdd.
hhmm) at which the build in question occurred.

show settings

This command makes a request to the XPages runtime to print all the settings in use by
the runtime. By default, the XPages runtime is configured with a host of default settings.
These settings can be overwritten by adding a bootstrap.properties file to the xsp direc-
tory, which resides in the Domino server’s program directory (for example C:\domino\
xsp). As a result of being able to override the default settings in the XPages runtime (via
bootstrap.properties), it is not guaranteed that the XPages runtime defaults will apply
from server to server. This command enables developers and administrators to quickly
list all the current settings without needing to manually access various file system loca-
tions to determine which properties are being applied.

Sample usage:

tell http xsp show settings

Listing 3.3 shows the XPages runtime default settings being output to the Domino server
console.

How to Execute the XSP Command Manager Commands   107  

Listing 3.3  Result of Running the show settings Command in the Console
(Default Case)

> tell http xsp show settings

09/16/2011 11:24:26 AM xsp.commas.not.delimiters.in.cookie=false

09/16/2011 11:24:26 AM com.ibm.faces.USE_UNENCODED_CONTEXT_PATH=/xsp

09/16/2011 11:24:26 AM xsp.gc.on.shutdown=false

09/16/2011 11:24:26 AM xsp.sessionid.name=SessionID

09/16/2011 11:24:26 AM xsp.default.charset=UTF-8

09/16/2011 11:24:26 AM xsp.log.severe.stack.trace=false

09/16/2011 11:24:26 AM xsp.default.post.buffer.size=1024

09/16/2011 11:24:26 AM xsp.allow.cookie.sessionid=true

09/16/2011 11:24:26 AM xsp.global.context.path=/xsp

09/16/2011 11:24:26 AM xsp.send.set.cookie2.header=true

09/16/2011 11:24:26 AM xsp.max.cookies.per.session=50

09/16/2011 11:24:26 AM xsp.allow.packagenames=false

09/16/2011 11:24:26 AM xsp.allow.url.sessionid=true

09/16/2011 11:24:26 AM xsp.default.chunk.post.buffer.size=8

In some cases, it is necessary to set extra system settings or even overwrite existing
settings. Being able to quickly analyze which settings have changed can be invaluable.
Listing 3.4 shows a case in which some settings (xsp.sessionid.name) have been
overwritten by bootstrap.properties and some new logging settings (log_
configuration and logdir) have been added. Chapter 6, “Server-Side Debugging
Techniques,” explains these settings

Listing 3.4  Result of Running the show settings Command in the Console

> tell http xsp show settings

09/16/2011 11:01:47 PM xsp.commas.not.delimiters.in.cookie=false

09/16/2011 11:01:47 PM com.ibm.faces.USE_UNENCODED_CONTEXT_PATH=/xsp

09/16/2011 11:01:47 PM xsp.gc.on.shutdown=false

09/16/2011 11:01:47 PM log_configuration=xsp/log.properties

09/16/2011 11:01:47 PM xsp.sessionid.name=FOOID

09/16/2011 11:01:47 PM xsp.default.charset=UTF-8

09/16/2011 11:01:47 PM xsp.log.severe.stack.trace=false

09/16/2011 11:01:47 PM xsp.default.post.buffer.size=1024

09/16/2011 11:01:47 PM xsp.allow.cookie.sessionid=true

09/16/2011 11:01:47 PM xsp.global.context.path=/xsp

09/16/2011 11:01:47 PM xsp.send.set.cookie2.header=true

09/16/2011 11:01:47 PM xsp.max.cookies.per.session=50

09/16/2011 11:01:47 PM xsp.allow.packagenames=false

09/16/2011 11:01:47 PM xsp.allow.url.sessionid=true

09/16/2011 11:01:47 PM logdir=c:/Domino/log

09/16/2011 11:01:47 PM xsp.default.chunk.post.buffer.size=8

108  H ow to Execute the XSP Command Manager Commands

show modules

Each Domino database (.NSF) that is running within the XPages runtime is loaded by
the XPages runtime as an application module. The show modules command shows
all the databases (NSF modules) that are currently running within the XPages runtime.
This command also shows registered system service modules that the XPages runtime
automatically loads. This command is convenient for server administrators who need to
know which XPages applications are being served by the XPages runtime at any point in
time.

Sample usage:

tell http xsp show modules

Listing 3.5 shows all the active modules running within a Domino server that has ses-
sions open for three XPages applications.

Listing 3.5  Result of Running the show modules Command in the Console

> tell http xsp show modules

09/16/2011 11:47:36 AM XSP Resources

09/16/2011 11:47:36 AM Default Http Registry Module

09/16/2011 11:47:36 AM OSGI WebContainer Bridge Service

09/16/2011 11:47:36 AM oauthtokenstore.nsf

09/16/2011 11:47:36 AM lsdemo2011.nsf

09/16/2011 11:47:36 AM xpagessbt.nsf

In Listing 3.5, six modules are listed. Three of these modules are XPages runtime system
modules; the other three modules represent XPages applications that are currently run-
ning on the server.

	 n	 xpagessbt.nsf, lsdemo2011.nsf, and oauthtokenstore.nsf are all
XPages applications that were running on the server when the command was
executed.

	 n	 XSP Resources is a module loaded by the XPages runtime; it is not configurable.

	 n	 Default Http Registry Module is a module loaded by the Domino web container;
it is not configurable.

	 n	 OSGI WebContainer Bridge Service is a module loaded by the Domino to OSGi
bridge; it is not configurable.

The core runtime modules are not configurable and can be removed or added to in future
releases.

refresh

This command was implemented with future extensions of the XSP Command Man-
ager’s HTTP service in mind. As of release 8.5.3 of the Domino server, this command

How to Execute the XSP Command Manager Commands   109  

does nothing. It is intended to be used with HTTP services and will enable services to be
refreshed as necessary without restarting the HTTP task or the XPages runtime.

Sample usage:

tell http xsp refresh

heapdump

The heapdump command performs a live dump of all objects on the Domino server’s
Java heap. The operation creates a dump file that must be read by third-party tools; the
file is not human readable. The dump file can be read using tools such as the Eclipse
Memory Analyser Tool (www.eclipse.org/mat). Because the dump file is written in the
IBM JVM heap dump format, it is necessary to install further add-ons to the Eclipse
Memory Analyser Tool to read the heap dump information. You can download the add-
on for the Eclipse Memory Analyzer tool from www.ibm.com/developerworks/java/
jdk/tools/dtfj.html. The heapdump command causes a dump file to be generated in the
server’s program directory, as demonstrated in Figure 3.2.

Sample usage:

tell http xsp heapdump

Figure 3.2  Result of running the heapdump command in the console

When configured, the Eclipse Memory Analyzer tool enables the user to read the content
of the dump file and provide information on where memory is potentially being leaked
and which objects are in use when the dump occurs. Figure 3.3 shows sample output
from the Eclipse Memory Analyzer Tool.

javadump

Running the javadump command causes the server’s JVM to create a Java Dump file.
Sometimes referred to as a thread dump or a Javacore dump, the dump information is
written to disk in a human-readable format—the contents of the dump file can be opened
with applications such as Microsoft Notepad. The information stored as a result of a
javadump is generally diagnostic information relating to the threads, stacks, locks, and
memory that were in use by the JVM when the dump occurred. Javadump files are of
particular use where the developer or administrator needs to quickly obtain system infor-
mation (such as operating system version, JVM version, and loaded threads).

www.eclipse.org/mat
www.ibm.com/developerworks/java/jdk/tools/dtfj.html
www.ibm.com/developerworks/java/jdk/tools/dtfj.html

110  H ow to Execute the XSP Command Manager Commands

The Javadump file is lightweight by nature and can help to quickly identify which
threads are hung in the system.

Sample usage:

tell http xsp javadump

Listing 3.6 shows the console output when the javadump command is executed.

Listing 3.6  Result of Running the javadump Command in the Console

> tell http xsp javadump

10/18/2011 11:40:00 PM HTTP JVM: JVMDUMP034I User requested
Java dump using 'C:\Program Files\IBM\Lotus\Domino\
javacore.20111018.233959.8220.0001.txt' through com.ibm.jvm.Dump.
➥JavaDump

10/18/2011 11:40:01 PM HTTP JVM: JVMDUMP010I Java dump written to C:\
Program Files\IBM\Lotus\Domino\javacore.20111018.233959.8220.0001.txt

In Listing 3.6, you can see the result of executing the javadump command. A Java
dump file is written to the location specified in the console output. It is beyond the scope
of this book to go into the details of reading the contents of dump files. However, in
the case of Javadump files, a few tips can easily be bestowed upon the reader to make

Figure 3.3  Eclipse Memory Analyzer Tool

How to Execute the XSP Command Manager Commands   111  

reading the contents of the Javadump file easier. The dump file can essentially be broken
down into different sections:

	 n	 Date and time of the javadump.

	 n	 Operating system signal information (who initiated the javadump and how it was
initiated). The signal information tells the reader whether the user initiated the
dump or whether the operating system did so due to a program fault. The signal
information is operating system specific.

	 n	 Java (JVM) version.

	 n	 Information about threads running when the javadump occurred.

	 n	 Operating system and processor details.

	 n	 Native libraries loaded by the JVM.

	 n	 Full command line, including arguments, that the Domino server used to launch
the JVM.

	 n	 JVM monitor information.

	 n	 Current stack for each thread running within the JVM.

For further in-depth information on how to read the contents of the Javadump file, see
the following article from IBM support:

www-01.ibm.com/support/docview.wss?uid=swg21181068

Alternatively, you can search for information on how to read a javacore dump file in
your favorite Internet search engine.

systemdump

The systemdump command is the most intensive of the three dump commands avail-
able through the XSP Command Manager. As a result, the footprint of the resulting
systemdump file can be quite large. The systemdump file contains detailed information
on the JVM’s threads, memory, and active processes. When a Java application crashes as
a result of general protection fault failure or as a result of a major JVM error, a system-
dump file is generated by default.

Sample usage:

tell http xsp systemdump

Listing 3.7 shows the console output when the systemdump command is executed.

Listing 3.7  Result of Running the systemdump Command in the Console

09/20/2011 12:36:30 AM HTTP JVM: JVMDUMP034I User requested
System dump using 'C:\Program Files\IBM\Lotus\Domino\
core.20110920.003630.8220.0002.dmp' through com.ibm.jvm.Dump.SystemDump

112   Working with the OSGi Console

09/20/2011 12:38:26 AM HTTP JVM: JVMDUMP010I System dump written to
C:\Program Files\IBM\Lotus\Domino\core.20110920.003630.8220.0002.dmp

The dump file is stored in a platform-specific format and, as a result, must be read by
tools specific to the platform on which the dump was created. The IBM Dump Analyzer
enables you to read and analyze the contents of a system dump that is performed on the
Domino server. For more information on the IBM Dump Analyzer tool, refer to the fol-
lowing websites:

	 n	 “Java Diagnostics, IBM Style, Part 1: Introducing the IBM Diagnostic and
Monitoring Tools for Java—Dump Analyzer,” at IBM.com: www.ibm.com/
developerworks/java/library/j-ibmtools1/

	 n	 “Installing the IBM Monitoring and Diagnostic Tools for Java—Dump Analyzer,”
at IBM.com: www.tinyurl.com/IBMJavaDumpAnalyzer

The information generated by a system dump is extremely granular in nature. An XPage
developer rarely will need to create a system dump because the information the dump
generates details information about every process executing on the system, not just the
information pertinent to the JVM. A system dump generally is needed only when the
failure is as a result of complex interactions with programs running outside the Domino
server.

Working with the OSGi Console

Before delving into the inner workings of the OSGi console, it is best to briefly explain
OSGi. OSGi stands for Open Services Gateway initiative framework. This framework
allows software to be written and executed as independent components. In OSGi-speak,
these components are referred to as bundles. OSGi is used in a wide range of applica-
tions, from client programs such as Eclipse and IBM Lotus Notes, to mobile phones,
to server applications such as IBM Lotus Domino. As a result of their modular nature,
OSGi bundles can be started, stopped, and debugged on an individual basis, without
the need for stopping or restarting the entire platform. Both the Domino server and the
Notes client use Eclipse’s implementation of OSGi (Equinox) as their OSGi runtime
platform.

OSGi was added to the Domino platform in release 8.5.2. As a result, in Domino 8.5.2,
the XPages runtime was repackaged to run as OSGi bundles (instead of just a regular
collection of Java JARS), also referred to as Eclipse plug-ins.

The OSGi console allows for the input of commands that the OSGi platform then per-
forms. The platform posts the results of such commands back to the console. The OSGi
platform itself has a whole host of commands that can simplify the troubleshooting of
problems. The OSGi console can assist developers in developing XPages controls and
applications, as well as assisting support personnel in diagnosing runtime issues. Devel-
opers who extend the XPages runtime by creating libraries will find the OSGi console
commands to be a particularly powerful tool in analyzing problems. The OSGi console

www.ibm.com/developerworks/java/library/j-ibmtools1/
www.ibm.com/developerworks/java/library/j-ibmtools1/
www.tinyurl.com/IBMJavaDumpAnalyzer

Working with the OSGi Console   113  

is of particular use when the developer/administrator needs to know whether individual
plug-ins (or sets of plug-ins) are loading correctly or which version of a plug-in is in use.

As mentioned earlier, OSGi is embedded within both the Notes client and the Domino
server. Depending on where your XPages application is running (whether on the cli-
ent or the server), your method of accessing the OSGi console will vary. We start by
explaining how to access the OSGi console on the Domino server.

OSGi is embedded within the HTTP task on the Domino server, as a result, the OSGi
console is started automatically whenever the HTTP task is started. OSGi console com-
mands are routed to the OSGi console via the HTTP task. That is, when entering an
OSGi console command on the Domino server, the user must tell the HTTP task to route
the specified command to the OSGi console—for example:

tell http osgi <<command>>

Here, <<command>> is the name of the OSGi console command. Any OSGi command
can be executed using the preceding syntax.

When it comes to OSGi commands, every developer and administrator should know
several rudimentary commands. These commands can be your “go to” commands when
problems arise—say, when you suspect bundle loading might be a factor. Even when
you do not think that bundle loading is the problem, it is often best to first confirm that
the bundle is actually loaded before proceeding with other debugging techniques.

Table 3.2 lists some of the more commonly used OSGi commands that are available to
use for diagnosing plug-in issues on the Domino server (and also the Notes client). In
Table 3.2, bundle-symbolic-name is referenced extensively. This is the name by which
the OSGi platform references bundles. bundle-symbolic-name correlates directly to the
Bundle-SymbolicName manifest header, often referred to as the plug-in name.

Table 3.2  OSGi Console Commands

Command Syntax Description

tell http osgi diag
<bundle-symbolic-name>

Diagnoses the status of the bundle whose name
is provided. Determines whether the bundle is
resolved and, if not, states why the bundle is not
resolved.

tell http osgi ss
<bundle-symbolic-name>

Lists the status of all bundles in the system.
Optionally, a symbolic name or a symbolic name
prefix can be provided to obtain the status of a par-
ticular bundle or a subset of bundles.

tell http osgi start
<bundle-symbolic-name>

Starts the bundle with the specified symbolic name.

tell http osgi stop
<bundle-symbolic-name>

Stops the bundle with the specified symbolic name.

tell http osgi b
<bundle-symbolic-name>

Prints metadata relating to the specified bundle.

114   Working with the OSGi Console

Command Syntax Description

tell http osgi headers
<bundle-symbolic-name>

Lists the OSGi headers for the specified bundle.

tell http osgi help Lists all the OSGi command available on the serv-
er, along with some text describing each command.

All the commands listed in Table 3.2 can be entered via the Domino server console,
with the results of such commands being printed back to the console, as illustrated in
Figure 3.4.

Figure 3.4  Running an OSGi command on the Domino Server Console

All the commands referenced in Table 3.2 can alternatively take the bundle id as a
parameter (instead of the bundle-symbolic-name). The bundle id is a numeric ID that the
OSGi runtime assigns to the bundle during platform initialization. The ID might vary
from instance to instance of the platform, but users might find it easier to input than hav-
ing to enter the entire bundle symbolic name. Examples of how to determine and use the
bundle id are given later in this chapter.

Rarely does a single OSGi console command answer all the questions on why a plug-in
is not loading or operating as expected. The following sections explain in greater detail
how you can use each of these commands and the results you can expect to see from
executing such commands.

diag <bundle-symbolic-name>

This is one of the most valuable commands in your arsenal and will likely be the one
you’ll use most frequently when diagnosing issues. You can use this command to deter-
mine whether a bundle is resolved within the OSGi platform. The status returned by this
command will be one of the following:

	 n	 No unresolved constraints

	 n	 Unresolved constraint

If No unresolved constraints is the returned status, it suggests that the system
has recognized the bundle and that all dependencies of the bundle are satisfied. When
an Unresolved constraint status is returned, it suggests that one or more bundles

Working with the OSGi Console   115  

or packages that the bundle requires are missing or cannot be loaded. It is worth not-
ing here that a bundle might still fail to start even though the OSGi console reports that
the bundle has been resolved. If a bundle fails to start and is resolved, some code in the
bundle’s activator likely is failing (throwing an exception).

Sample usage:

tell http osgi diag com.ibm.xsp.core

Listing 3.8 shows the typical output of running the diag command against the com.ibm.
xsp.core plug-in.

Listing 3.8  Result of Running the diag Command Against a Specific Bundle—
Successful Case

> tell http osgi diag com.ibm.xsp.core

10/17/2011 09:43:14 PM

 initial@reference:file:../../shared/eclipse/plugins/com.ibm.xsp.
core_8.5.3.20110629-1645/[119]

10/17/2011 09:43:14 PM No unresolved constraints.

In this case, the diag command reports that there were No unresolved
constraints against the entered bundle symbolic name—in other words, the system
recognizes the given bundle. Upon closer examination, the user can obtain further infor-
mation about the bundle in question. It can determine where the bundle being used by
the platform is installed, and the platform-assigned bundle id can also be obtained.

From reading the console output, the user can see that the bundle is installed to ../../
shared/eclipse/plugins/com.ibm.xsp.core_8.5.3.20110629-1645. The location speci-
fied is relative to the osgi/rcp/eclipse directory, which is a child of the Domino program
directory. In this case, the console output indicates that the plug-in is installed at:
<domino program directory>/osgi/shared/eclipse/plugins.

Finally, the output states the platform-assigned bundle id for the specified bundle. 119 is
the id assigned to this bundle in this example. As stated previously, the OSGi commands
listed here can use the bundle id interchangeably. In this example, executing the follow-
ing command has identical output to that in Listing 3.8.

Sample usage:

tell http osgi diag 119

Listing 3.9 shows sample output of running the diag command in an unsuccessful
scenario.

Listing 3.9  Result of Running the diag Command Against a Specific Bundle—
Error Case

> tell http osgi diag com.ibm.xsp.extlib.sbt 09/09/2011 04:05:51 PM

update@../../../data/domino/workspace/applications/eclipse/plugins/com.
ibm.xsp.extlib.sbt_8.5.3.201108111413.jar [116] 09/09/2011 04:05:51

116   Working with the OSGi Console

PM Direct constraints which are unresolved: 09/09/2011 04:05:51 PM
Missing host com.ibm.xsp.extlib_0.0.0.

In Listing 3.9, you can see that the OSGi platform reports that the bundle in question is
not resolved as a result of a missing dependency. We can see from the console output
that the OSGi platform has actually found the bundle that we are looking for (com.
ibm.xsp.extlib.sbt), but as one of the bundles that com.ibm.xsp.extlib.
sbt depends on is not resolved, the com.ibm.xsp.extlib.sbt bundle does not get
resolved itself. Looking a little more closely at the console output, we can determine the
following:

The bundle com.ibm.xsp.extlib.sbt is installed at ../../../data/domino/workspace/
applications/eclipse/plugins/com.ibm.xsp.extlib.sbt_8.5.3.201108111413.jar. We now
know that this path is relative to the <domino program directory>/osgi/rcp/eclipse
directory. Hence, we can deduce that com.ibm.extlib.sbt is installed at the
<domino program directory>/data/domino/workspace/applications/eclipse/plugins/
directory.

The OSGi platform–assigned bundle id for this bundle is 116.

One other tidbit of information can be extracted from the console output, in this case.
The final line of the output tells us that the host is missing:

Missing host com.ibm.xsp.extlib_0.0.0

This tells us that the bundle we are looking for (com.ibm.xsp.extlib.sbt) is, in
fact, a plug-in fragment, and the unresolved constraint (com.ibm.xsp.extlib) is the
host plug-in.

ss, ss <bundle-symbolic-name>, or ss <bundle-name-prefix>

Similar to the diag command, this command quickly determines the status of a particu-
lar bundle—or all the bundles installed in the platform. Users can optionally specify a
bundle name or a bundle name prefix to get the status of specific bundles. The returned
status shows the bundle id, state, and bundle name of all bundles. In many situations,
this command is just as useful as the diag command because it also reports the status of
a bundle. This command does not tell the user why a particular bundle is not loading, but
it does tell the user the state of a bundle.

Sample usage:

tell http osgi ss

Listing 3.10 shows the result of running the ss command without any parameters.

Working with the OSGi Console   117  

Listing 3.10  Result of Running the ss Command Without Any Bundle Name Parameter

> tell http osgi ss

09/09/2011 01:46:07 PM Framework is launched.

09/09/2011 01:46:07 PM id State Bundle

09/09/2011 01:46:07 PM 0 ACTIVE org.eclipse.
osgi_3.4.3.R34x_v20081215-1030-RCP20110624-1648

09/09/2011 01:46:07 PM Fragments=57, 76, 88, 89, 235

09/09/2011 01:46:07 PM 1 RESOLVED org.eclipse.equinox.
event_1.1.0.v20080225

09/09/2011 01:46:07 PM Fragments=32

09/09/2011 01:46:07 PM 2 RESOLVED com.ibm.pvc.jndi.provider.
java.nl_6.2.3.20110625-0109

09/09/2011 01:46:07 PM Master=71

09/09/2011 01:46:07 PM 3 RESOLVED com.ibm.eclipse.equinox.
preferences.nl_6.2.3.20110624-1648

09/09/2011 01:46:07 PM Master=85

09/09/2011 01:46:07 PM 4 <<LAZY>> com.ibm.icu.
base_3.8.1.v20080530

09/09/2011 01:46:07 PM 5 RESOLVED com.ibm.pvc.servlet.
jsp_2.1.0.20110625-0109

09/09/2011 01:46:07 PM 6 RESOLVED org.apache.commons.
logging_1.0.4.20110625-0109

Listing 3.10 lists a subset of the information that displays when this command is run in
a normal server environment. However, the listing does show all the information needed
to understand the output of the command.

The command outputs several important pieces of information about each bundle:

	 n	 Bundle-id—for example, 2, which is the OSGi platform–assigned ID of the
bundle.

	 n	 Bundle state—for example, RESOLVED, which is the state of the bundle within
the OSGi platform. A bundle can have one of seven states. Table 3.3 explains all
of these.

	 n	 Bundle name—for example com.ibm.eclipse.equinox.preferences.
nl_6.2.3.20110624-1648, which is the bundle symbolic name with its ver-
sion information appended to the name.

	 n	 Master or Fragments—for example, Master=71. This data tells whether
the bundle in question is a plug-in or a fragment. If the bundle specifies neither
Master nor Fragments, it is automatically implied that the bundle is a plug-in
bundle. The digits corresponding to the fragments or plug-ins are the OSGi plat-
form–assigned bundle ids of the fragments or the master plug-in of the bundle in
question.

118   Working with the OSGi Console

Sample usage:

tell http osgi ss com.ibm.xsp.extlib

Listing 3.11 shows the result of running the ss command with a bundle prefix specified.

Listing 3.11  Result of Running the ss Command, Specifying a Bundle Prefix

> tell http osgi ss com.ibm.xsp.extlib

09/09/2011 02:25:36 PM Framework is launched.

09/09/2011 02:25:36 PM id State Bundle

09/09/2011 02:25:36 PM 108 RESOLVED com.ibm.xsp.extlib.
conns_8.5.2.20110724

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 109 RESOLVED com.ibm.xsp.extlib.
domino_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 112 RESOLVED com.ibm.xsp.extlib.
oneui_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 115 RESOLVED com.ibm.xsp.extlib.
stime_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 117 ACTIVE com.ibm.xsp.
extlib_8.5.2.201107241628

Similar to Listing 3.10, Listing 3.11 shows the results of executing the ss command,
only this time the command is passed a bundle symbolic name as a parameter. The ss
command finds all bundles on the system that either start with the parameter or have a
bundle symbolic name that is the same as the parameter. Listing 3.11 lists all the bun-
dles, along with their bundle id and state.

Table 3.3 lists all the possible states of an OSGi bundle.

Table 3.3  OSGi Bundle States

State Description

UNINSTALLED The bundle is uninstalled and is unusable.

INSTALLED The bundle has been installed, but the platform has not yet
resolved it.

RESOLVED The bundle has been resolved and is in a position to be start-
ed. Note that it is still possible for the bundle to fail to start,
even though it has been resolved by the environment.

<<LAZY>> Similar to RESOLVED, the platform has resolved the bundle
and is in a position to be started. The bundle is not yet
ACTIVE because it has been configured (via its bundle
manifest) to be initialized lazily—that is, only when another
ACTIVE bundle references the bundle will it be activated.

Working with the OSGi Console   119  

State Description

STARTING The bundle is in the process of starting. Either another bun-
dle has specifically caused the bundle to start (by referring
to a class within the bundle) or the user has manually started
the bundle via the console. Rarely is a bundle in this state
because it is transient.

STOPPING The bundle is in the process of shutting down. Similar to
STARTING, a bundle rarely is in this state.

ACTIVE The bundle is running within the OSGi platform.

Developers and administrators should be aware that, on the Domino server, the state of
a bundle is not persisted from one session to the next—that is, after the HTTP task is
restarted, any bundles that were started manually in the previous session must be started
again. Luckily, the ss command has an argument for filtering all bundles in a given
state. The ss command can filter the bundles based on their state, by appending -s
[state] to the command syntax.

Sample usage:

tell http osgi ss -s active

Figure 3.5 shows the output of running the ss command with the -s active argument.

Figure 3.5  Result of running the ss command in the Domino server console

start <bundle-symbolic-name>

This command requests that the platform manually start the specified bundle. Calling
this command does not guarantee that the specified bundle will be started. An excep-
tion can still occur during bundle initialization that would cause the bundle initialization
to fail. Performing an ss command after the start command reports the status of the
bundle. This command is helpful when a new bundle has been installed on the server,

120   Working with the OSGi Console

but the administrator or developer is not in a position to restart the HTTP task to start the
new bundle.

Sample usage:

tell http osgi start com.ibm.xsp.extlib.sbt

Figure 3.6 shows that, by running a combination of the ss and start commands, a
bundle can be started and its state can be verified.

Figure 3.6  Result of running the start and ss commands in the console

stop <bundle-symbolic-name>

This command tells the platform to stop the specified bundle. Users should be careful
when calling this on a production environment. In some cases, it might not be possible
for the platform to stop the bundle. If this is the case, the reason will be printed to the
console.

Sample usage:

tell http osgi stop com.ibm.xsp.extlib.sbt

Figure 3.7 shows how running a combination of the ss and stop command stops a
bundle and verifies its state.

b <bundle-symbolic-name>

This command prints all metadata relating to the specified bundle. The metadata
includes imported packages, required bundles, exported packages, bundle location, and
so on. This command is useful when the developer needs to quickly verify that the bun-
dle loaded by the platform has the meta information that the developer believes it has.

Sample usage:

tell http osgi b com.ibm.xsp.extlib

com.ibm.xsp.extlibx.sbt plugin
is “RESOLVED” but not started

com.ibm.xsp.extlibx.sbt
plugin is listed as “ACTIVE”

Manually ‘start’
com.ibm.xsp.extlibx.sbt plugin

Working with the OSGi Console   121  

Listing 3.12 shows a subset of the output from running the b command against a speci-
fied bundle.

Listing 3.12  Sample Result of Running the b Command Against a Specified Bundle

tell http osgi b com.ibm.xsp.extlib

09/09/2011 02:15:21 PM

update@../../../data/domino/workspace/applications/eclipse/plugins/com.
ibm.xsp.extlib_8.5.2.201107241628NTF.jar [117]

 09/09/2011 02:15:21 PM Id=117, Status=<<LAZY>> Data Root=C:\
Program Files\IBM\Lotus\Domino\data\domino\workspace\.config\

 org.eclipse.osgi\bundles\117\data

 09/09/2011 02:15:21 PM No registered services.

 09/09/2011 02:15:21 PM No services in use.

 09/09/2011 02:15:21 PM Exported packages

 09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.data;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.dojo;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.dojo.fx;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.server;
version="0.0.0"[exported]

Figure 3.7  Result of running the start and ss commands in the console

headers <bundle-symbolic-name>

This command causes the OSGi header information for the specified bundle to be
printed to the console. This command is convenient for checking information such as the
packages that a specific bundle exports or the bundles that the specified bundle depends

com.ibm.xsp.extlibx.sbt
plugin is listed as ‘ACTIVE’

com.ibm.xsp.extlibx.sbt plugin
is listed as ‘RESOLVED’

Manually stop
com.ibm.xsp.extlibx.sbt plugin

122   Working with the OSGi Console

upon. All the information stored in the bundle’s manifest.mf file is printed to the
console.

Sample usage:

tell http osgi headers com.ibm.xsp.extlib.sbt

Listing 3.13 shows the result of running the headers command on the Domino server
console.

Listing 3.13  Sample Result of Running the headers Command with a Specified
Bundle Name

tell http osgi headers com.ibm.xsp.extlib.sbt

 09/09/2011 04:34:52 PM Bundle headers:

 09/09/2011 04:34:52 PM Bundle-ClassPath = .,lib/httpclient-
4.0.1.jar,lib/httpcore-4.0.1.jar,lib/commons-codec-1.3.jar,lib/
oauth-20100527.jar,lib/
oauth-consumer-

20090617.jar,lib/oauth-consumer-20100527.jar,lib/oauth-httpclient4-

20090913.jar,lib/oauth-provider-20100527.jar

 09/09/2011 04:34:52 PM Bundle-ManifestVersion = 2

 09/09/2011 04:34:52 PM Bundle-Name = IBM Social Business Toolkit

09/09/2011 04:34:52 PM Bundle-SymbolicName = com.ibm.xsp.extlib.
sbt;singleton:=true

 09/09/2011 04:34:52 PM Bundle-Vendor = IBM

 09/09/2011 04:34:52 PM Bundle-Version = 8.5.3.201108111413

 09/09/2011 04:34:52 PM Export-Package =

com.ibm.xsp.extlib.fragment,com.ibm.xsp.extlib.model,com.ibm.xsp.extlib.
resources,com.ibm.xsp.extlib.sbt.activitystreams,com.ibm.xsp.extlib.sbt.
activitystreams.entry,com.ibm.xsp.

extlib.sbt.activitystreams.queue,com.ibm.xsp.extlib.sbt.connections,com.
ibm.xsp.extlib.sbt.connections.meta,com.ibm.xsp.extlib.security.
authorization,com.ibm.xsp.extlib.security

.authorization.beans,com.ibm.xsp.extlib.security.oauth_10a,com.ibm.xsp.
extlib.security.oauth_10a.servlet

 09/09/2011 04:34:52 PM Fragment-Host = com.ibm.xsp.extlib

 09/09/2011 04:34:52 PM Manifest-Version = 1.0

Listing 3.13 lists many different OSGi headers. You can find a full list of OSGi headers
and their descriptions in the official OSGi specification: www.osgi.org/download/r4v43/
r4.core.pdf.

help

This command tells the OSGi platform to print all commands that it supports, along with
a short description of each command.

www.osgi.org/download/r4v43/r4.core.pdf
www.osgi.org/download/r4v43/r4.core.pdf

How to Launch Notes/Designer Along with the OSGi Console    123  

Sample usage:

tell http osgi help

Figure 3.8 shows the sample output from running the help OSGi command on the
Domino server console.

Figure 3.8  Result of running the help command in the console

How to Launch Notes/Designer Along
with the OSGi Console

As of release 8.0 of Lotus Notes and release 8.5.0 of Domino Designer, both applica-
tions have been built upon the Eclipse platform. Eclipse itself is built upon the OSGi
platform. As of Notes 8.5.1, it is now possible to run XPages applications within the
Notes client.

With the emergence of the official XPages extension APIs in Notes/Domino 8.5.2 and
the powerful functionality delivered as extensions to XPages (such as the XPages Exten-
sion Library), it is becoming more likely that, over time, end users will have Extension
Library plug-ins installed into the Notes client platform. Either this can occur directly as
a result of the user manually installing them or the plug-ins may be autoprovisioned to
the platform via policy directives. Undoubtedly, at some point, XPages developers will
need to debug the Notes client to figure out why certain XPages applications or function-
ality is not working as expected. The first step in such debugging should almost always

124  H ow to Launch Notes/Designer Along with the OSGi Console

be analysis to determine whether the extended plug-ins in question are actually installed
and running on the Notes client. The most accurate way to determine whether a plug-in
is installed and running within the Notes client (or Domino Designer) is through the use
of the OSGi console.

All the commands previously discussed and documented are available both on the Dom-
ino server and on the Notes client (and Domino Designer). However, the OSGi console
that runs with the Notes client is a pure OSGi console, so it is not necessary to enter the
HTTP task prefix required on the Domino server console. In the case of the Notes client
OSGi console, it is necessary only to type the actual OSGi command—for example:

diag com.ibm.xsp.core

as opposed to

tell http osgi diag com.ibm.xsp.core.

To display the OSGi console for the Notes client or Domino Designer, the user must
launch Notes with some additional arguments that tell the core Notes code to launch the
console in a separate window when the Notes client is launching.

To do this, the user must navigate to the Notes program directory in a DOS prompt and
enter the following DOS command:

notes.exe –RPARAMS –console

The RPARAMS argument for Notes and Domino Designer signals to both programs that
the user is entering arguments that are to be redirected to the Eclipse and OSGi runtime.
It may be useful to create a new shortcut on your desktop that enables you to easily
launch the OSGi Console with Notes or Domino Designer. To do this, simply copy your
existing Notes or Domino Designer launch shortcut and modify the Target information
as follows:

C:\Notes85\notes.exe -RPARAMS -console "=C:\Notes85\notes.ini"

Here, C:\Notes85\ is the location of your Notes program directory. All the remaining
shortcut information should be the same as your existing Notes or Domino Designer
shortcut, as shown in Figure 3.9.

Arguments after the –RPARAMS parameter are sent to the Eclipse and OSGi runtimes for
processing. Users should be aware that closing the Notes OSGi console window directly
is not supported and can cause undesired behavior, such as causing the Notes program
to hang. All instances of Notes, Domino Designer, and Domino Administrator should be
shut down before running this command. Figure 3.10 shows the OSGi console running
with Notes.

How to Launch Notes/Designer Along with the OSGi Console    125  

Figure 3.10  Notes client running with the OSGi console

You can find more information on specific OSGi commands at these sites:

http://eclipse.org/equinox/

http://fusesource.com/docs/esb/4.1/command_ref/ESBosgi.html

Figure 3.9  Shortcut to launch Notes with the OSGi console

http://eclipse.org/equinox/
http://fusesource.com/docs/esb/4.1/command_ref/ESBosgi.html

126   Common Console Commands You Should Know

Common Console Commands You Should Know

Beyond the realm of OSGi and the XSP command manager, the Domino server has a
rich set of commands. Knowing at least a subset of them will greatly benefit any bud-
ding XPages developer or administrator. Table 3.4 lists some of the more commonly
used commands.

Table 3.4  Common Domino Server Commands

Command Description

help Displays a list of server commands, with a
brief description

load [task name] Loads the named Domino server task

load [task name] -? Gets help for the specified command

quit Tells the Domino server to shut down

restart server Tells the Domino server to shut down
completely and restart

tell [task name] quit Tells the named Domino server task to shut
down

restart task [task name] Tells the name Domino server task to restart

show server Prints all basic statistics relating to the
server to the console

show conf [notes.ini variable] Prints the value of the server’s notes.ini vari-
able to the console

set conf [notes.ini variable=value] Sets the value of the server’s notes.ini vari-
able to the specified value

tell adminp [options] Performs various administrative tasks on the
Domino server

load chronos [options] Updates full-text indexes that are marked to
be updated hourly or daily

load updall [path] [options] Updates the view indexes and the full-text
index for the specified database (or for all
databases, if one is not provided)

load design [source] [target] [options] Updates all databases with design updates
from their master templates

load fixup [path] [options] Locates and fixes corrupted databases on the
server

show allports Shows all enabled and disabled ports on the
server

show diskspace Displays the amount of free disk space on
the server

show heartbeat Displays a value if the server is responding

Common Console Commands You Should Know   127  

Command Description

show memory Displays the amount of RAM available on
the server

show tasks Displays the names of all the Domino server
tasks running

You can obtain a much more extensive list of server commands by reading the Domino
Administrator help, which is installed on the Domino server under the help directory.

help

This command displays a list of server console commands, with a brief description
of each command, the command’s arguments, and a sample of the syntax of each
command.

Sample usage:

help

Figure 3.11 shows a subset of the sample output from running the help command on
the Domino server console.

Figure 3.11  Result of running the help command on the Domino server console

load [task-name]

This command loads and starts the specified server task. It loads tasks that run continu-
ally until the server is stopped or loads a task that runs until complete. Further task
arguments can be passed to the task as needed. This command is convenient because it

128   Common Console Commands You Should Know

enables developers and administrators to dynamically start server tasks without needing
to restart the entire server. For example, the HTTP task can be started without affecting
other tasks running on the Domino server.

Sample usage:

load http

In this example, the HTTP task is loaded, allowing the Domino server to act as a HTTP
server.

Listing 3.14 shows the console output of running the previous command.

Listing 3.14  Result of Running the load http Command on the Domino Server Console

> load http

09/19/2011 08:05:03 PM HTTP Server: Using Web Configuration View

09/19/2011 08:05:07 PM JVM: Java Virtual Machine initialized.

09/19/2011 08:05:07 PM HTTP Server: Java Virtual Machine loaded

09/19/2011 08:05:07 PM HTTP Server: DSAPI Domino Off-Line Services
HTTP extension Loaded successfully

09/19/2011 08:05:12 PM XSP Command Manager initialized

09/19/2011 08:05:12 PM HTTP Server: Started

load [task-name] -?

This command displays help information that relates to the task specified. In general, the
help information lists any options or flags that can or should be passed to the task.

Sample usage:

load chronos -?

Listing 3.15 shows the sample output from running the help command against a specific
task name.

Listing 3.15  Sample Output from Running the help Command Against the
Chronos Task

> load chronos -?

>

Purpose: Performs automatic hourly and daily full text indexing.

Usage: Load CHRONOS [options]...

[options]:

hourly Update all hourly full text indexes.

daily Update all daily full text indexes.

Common Console Commands You Should Know   129  

quit

This command stops the server. The server shuts down completely after running this
command.

Sample usage:

quit

Figure 3.12 shows output from running the quit command on the Domino server
console.

Figure 3.12  Result of running the quit command on the Domino server console

restart server

This command stops the server completely and then restarts the server after a brief delay.

Sample usage:

restart server

Figure 3.13 shows output from running the restart server command on the Domino
server console.

Figure 3.13  Result of running the restart server command on the Domino server console

130   Common Console Commands You Should Know

tell [task-name] quit

This command stops the named task. All other server tasks remain in their current state.

Sample usage:

tell http quit

Listing 3.16 shows the sample console output after executing the quit command on a
specific task.

Listing 3.16  Domino Server Console Output from Running the quit Command on the
HTTP Task

> tell http quit

10/19/2011 08:50:21 PM Domino Off-Line Services HTTP extension
unloaded.

10/19/2011 08:50:21 PM XSP Command Manager terminated

10/19/2011 08:50:22 PM HTTP Server: Shutdown

This sample terminates the HTTP task so that the Domino web server and all other
HTTP functions are shut down. XPages developers might find this useful if the web
server needs to be quickly and independently recycled—say, to reread and apply new
XSP runtime settings.

restart task [task-name]

This command stops and restarts the named task. All other server tasks remain in their
current state. XPages developers will find this to be a particularly powerful command
because it enables them to completely and quickly restart the XPages runtime. This is of
particular importance when debugging OSGi bundles running on the server. Chapter 6
discusses this in greater detail.

Sample usage:

restart task http

Listing 3.17 shows the Domino server output that results from restarting a specific task.

Listing 3.17  Sample Output from Running the restart task http Command

> restart task http

10/19/2011 09:03:10 PM Domino Off-Line Services HTTP extension
unloaded.

10/19/2011 09:03:10 PM XSP Command Manager terminated

10/19/2011 09:03:11 PM HTTP Server: Shutdown

10/19/2011 09:03:13 PM HTTP Server: Using Web Configuration View

10/19/2011 09:03:16 PM JVM: Java Virtual Machine initialized.

10/19/2011 09:03:16 PM HTTP Server: Java Virtual Machine loaded

10/19/2011 09:03:16 PM HTTP Server: DSAPI Domino Off-Line Services

Common Console Commands You Should Know   131  

HTTP extension Loaded successfully

10/19/2011 09:03:19 PM XSP Command Manager initialized

10/19/2011 09:03:19 PM HTTP Server: Started

show server

This command prints all the basic information to the server’s console, including (but
not limited to) the server’s name, data directory location, amount of time since the
server was started, and total number of transactions completed by the server since it was
started.

Sample usage:

show server

Listing 3.18 shows sample output from executing the show server command on the
Domino server console.

Listing 3.18  Sample Output from the show server Command

> show server

 Lotus Domino (r) Server (Build V853_06302011 for Windows/32)
09/14/2011 07:28:42 PM

Server name:	 greenane/GAA - Greenane

Domain name:	 ibm

Server directory:	 C:\Program Files\IBM\Lotus\Domino\data

Partition:	 C.Program Files.IBM.Lotus.Domino.data

Elapsed time:	 1 day 01:38:37

Transactions/minute:	 Last minute: 10; Last hour: 200; Peak: 997

Peak # of sessions:	 60 at 09/14/2011 06:50:06 PM

Transactions: 4524	 Max. concurrent: 40

ThreadPool Threads:	 40 (TCPIP Port)

Availability Index:	 100 (state: AVAILABLE)

Mail Tracking:	 Not Enabled

Mail Journalling:	 Not Enabled

Number of Mailboxes:	 10

Pending mail: 0	 Dead mail: 0

Waiting Tasks: 	 0

DAOS: 	 Not Enabled

Transactional Logging:	 Not Enabled

Fault Recovery:	 Not Enabled

Activity Logging:	 Not Enabled

Server Controller:	 Not Enabled

Diagnostic Directory:	 C:\Program Files\IBM\Lotus\Domino\data\
➥IBM_TECHNICAL_SUPPORT

Console Logging:	 Enabled (10240K)

Console Log File:	 C:\Program Files\IBM\Lotus\Domino\data\
➥IBM_TECHNICAL_SUPPORT\console.log

DB2 Server: Not Enabled

132   Common Console Commands You Should Know

show conf [notes.ini variable]
This command enables the developer or administrator to examine the value of any given
notes.ini variable without needing to physically open the notes.ini file residing in the
Domino server’s program directory. This is a powerful command because it allows
developers and administrators alike to view the values of notes.ini variables that the
runtime is using without needing to wade through the array of variables present in the
Domino server’s notes.ini file.

Sample usage:

show conf HTTPJVMMaxHeapSize

Listing 3.19 shows sample output as a result of executing the show conf command on
the Domino server console.

Listing 3.19  Result of Executing the show conf Command Using the
HTTPJVMMaxHeapSize Variable

> show conf HTTPJVMMAxHeapSize

HTTPJVMMAXHEAPSIZE=256M

set conf [notes.ini variable=value]

This command enables developers and administrators to quickly and easily set a
notes.ini variable in the Domino server’s notes.ini without actually physically opening
the file and editing the value. This command is particularly useful because it enables
users to set the notes.ini variable while the server is running. A typical use case for this
command is one in which the administrator wants to increase the minimum Java heap
size of the HTTP task’s JVM without worrying about accidentally overwriting any other
server settings that may have been written to notes.ini in the time the file was open for
editing.

Sample usage:

set conf JavaMinHeapSize=64M

Figure 3.14 shows how the JavaMinHeapSize notes.ini variable can be reset using
the set conf command and displays how the setting is applied by restarting the HTTP
task.

tell adminp [options]

This command performs various automated administration tasks on the server. A wide
range of options can be passed to this task; you can obtain the complete listing of
adminp options from the Lotus Domino Administrator help, installed in the help direc-
tory of the Domino server.

Sample usage:

tell adminp show databases

Common Console Commands You Should Know   133  

Listing 3.20 shows the output from executing adminp with the show databases
option specified.

Listing 3.20  Result of Executing the adminp Task on the Domino Server Console

> tell adminp show databases

10/20/2011 04:11:32 PM Admin Process: These databases have greenane/
➥GAA designated as their Administration Server.

10/20/2011 04:11:32 PM Title: Administration Requests Path: admin4.nsf

10/20/2011 04:11:32 PM Title: CPP FreeBusy WebService Path:
➥cppfbws.nsf

10/20/2011 04:11:32 PM Title: Domino Directory Cache (6) Path:
➥dbdirman.nsf

10/20/2011 04:11:32 PM Title: Offline Services Path: doladmin.nsf

10/20/2011 04:11:32 PM Title: greenane's Log Path: log.nsf

10/20/2011 04:11:32 PM Title: admin admin Path: mail\aadmin.nsf

10/20/2011 04:11:32 PM Title: Eileen Leonard Path: mail\eleonard.nsf

10/20/2011 04:11:32 PM Title: Frank Adams Path: mail\fadams.nsf

load chronos [options]

This command loads the chronos task on the Domino server. The task is responsible
for updating the full-text indexes of databases that are marked to be updated daily or
hourly. This is useful to XPage developers when the full-text index of a database is
needed to test particular functionality. This task enables developers to force the creation
or update of the index without needing to modify the indexing schedule.

Sample usage:

load chronos hourly

Figure 3.14  Result of running the set conf command on the JavaMinHeapSize
notes.ini variable

Reset JavaMinHeapSize set to 64MB

Restart HTTP
task

JavaMinHeapSize set to 16MB

134   Common Console Commands You Should Know

Listing 3.21 shows the sample output from running the chronos task.

Listing 3.21  Sample Console Output from Running the chronos Task

>load chronos hourly

09/14/2011 08:35:06 PM Chronos: Performing hourly full text indexing

09/14/2011 08:35:09 PM Chronos: Full text indexer terminating

load updall [path] [options]

This command updates all changed views and/or all full-text indexes within the given
database or all databases on the server. Obviously, this is quite useful if you are work-
ing with FTSearch features in your XPages application because testing and debugging
requires an up-to-date full-text index.

You can pass a wide range of options to this task. The Lotus Domino Administrator
help, installed in the help directory of the Domino Server, includes a complete listing of
adminp options.

Sample usage:

load updall XPagesSBT.nsf –f

Listing 3.22 shows the output received on the Domino server console from running the
updall task on the Domino server.

Listing 3.22  Sample Console Output from Running the updall Task to Update Full-Text
Indexes on a Specified Application

> load updall XPagesSBT.nsf -f

09/14/2011 08:44:39 PM Index update process started: XPagesSBT.nsf -f

09/14/2011 08:44:39 PM Updating views in C:\Program
➥Files\IBM\Lotus\Domino\data\XPagesSBT.nsf

09/14/2011 08:44:39 PM Index update process shutdown

load design [source] [target] [options]

This command updates all databases on the server with design updates from their mas-
ter template. This command can be quite useful when an administrator has accidentally
modified the design of a particular database and needs to update the design of that data-
base from the master template outside the regular design update schedule.

Sample usage:

load design rossacussane.swg.myco.com greenane.swg.myco.com –f
➥XPagesSBT.nsf

Listing 3.23 shows the Domino server console output received from executing the design
task on the Domino server.

Common Console Commands You Should Know   135  

Listing 3.23  Sample Console Output from Running the Design Task

> load design rossacussane.swg.myco.com greenane.swg.myco.com
➥-f XPagesSBT.nsf

09/14/2011 08:54:52 PM Database Designer started

09/14/2011 08:54:52 PM Opened session for rossacussane/GAA (Release
➥8.5.3)

09/14/2011 08:54:55 PM Closed session for rossacussane/GAA Databases
accessed: 3 Documents read: 0 Documents written: 0

09/14/2011 08:54:55 PM Opened session for greenane/GAA (Release 8.5.3)
➥09/14/2011

08:54:55 PM Closed session for greenane/GAA Databases accessed:
1 Documents read: 0

Documents written: 0

09/14/2011 08:54:55 PM Opened session for greenane/GAA (Release 8.5.3)

09/14/2011 08:54:55 PM Database Designer shutdown

09/14/2011 08:54:55 PM Closed session for greenane/GAA Databases
➥accessed: 1

Documents read: 0 Documents written: 0

load fixup [path] [options]

This command runs the fixup task on the specified database or on all databases on the
server. The fixup task scans for databases that contain inconsistencies from partially
written operations that may have occurred during a previous failure, such as a hardware
failure or a crash. You can pass a wide range of options to this task. The complete listing
of adminp options is available from the Lotus Domino Administrator help, installed in
the help directory of the Domino server.

Sample usage:

load fixup XPagesSBT.nsf –l

Listing 3.24 shows the result of running the fixup command against a particular data-
base on the Domino server.

Listing 3.24  Sample Console Output from Running the fixup Command

> load fixup XPagesSBT.nsf -l

 09/14/2011 09:08:55 PM Database Fixup: Started: XPagesSBT.nsf -l

 09/14/2011 09:08:55 PM Checking database C:\Program Files\IBM\
➥Lotus\Domino\data\XPagesSBT.nsf

 09/14/2011 09:08:55 PM Performing consistency check on
➥XPagesSBT.nsf...

 09/14/2011 09:08:56 PM Completed consistency check on XPagesSBT.nsf

 09/14/2011 09:08:56 PM Performing consistency check on views in
➥database XPagesSBT.nsf

136   Common Console Commands You Should Know

 09/14/2011 09:08:56 PM Completed consistency check on views in
➥database XPagesSBT.nsf

 09/14/2011 09:08:56 PM Database Fixup: Shutdown

show tasks

This command shows the names of all the Domino Server tasks that are running on the
server. Administrators will find this useful for determining which tasks are running on
any given server.

Sample usage:

show tasks

Figure 3.15 shows the sample output received when running the show tasks command
on a Domino server.

Figure 3.15  Result of running the show tasks command on the Domino server console

show allports

This command prints the configuration of all enabled and disabled ports on the server.

Sample usage:

show allports

Listing 3.25 shows the result of executing the show allports command on the Dom-
ino server console.

Common Console Commands You Should Know   137  

Listing 3.25  Sample Console Output from Running the show allports Command

> show allports

Enabled Ports:

TCPIP=TCP, 0, 15, 0

Disabled Ports:

LAN0=NETBIOS, 0, 15, 0

LAN1=NETBIOS, 1, 15, 0

LAN2=NETBIOS, 2, 15, 0

LAN3=NETBIOS, 3, 15, 0

LAN4=NETBIOS, 4, 15, 0

LAN5=NETBIOS, 5, 15, 0

LAN6=NETBIOS, 6, 15, 0

LAN7=NETBIOS, 7, 15, 0

LAN8=NETBIOS, 8, 15, 0

show diskspace

This command prints the amount of disk space available on the server.

Sample usage:

show diskspace

Listing 3.26 displays the results from executing the show diskspace command.

Listing 3.26  Sample Console Output from the show diskspace Command

> show diskspace

Available disk space 83,342,319,616 bytes

show heartbeat

This command prints a value to the console if the server is still responding.

Sample usage:

show heartbeat

Listing 3.27 shows the result of running the show heartbeat command on the
Domino server console.

Listing 3.27  Sample Console Output for the show heartbeat Command

> show heartbeat

greenane/GAA's elapsed time: 100827 seconds

138   Conclusion

Conclusion

This chapter outlined the most relevant commands available to you as an XPages devel-
oper via the Domino server console and the Notes OSGi console. Over time, these com-
mands will undoubtedly prove to be powerful tools in the resolution of issues. Although
executing the commands is a relatively simple exercise, the result they yield will often
lead you directly to the source of a problem. These commands will also improve produc-
tivity by reducing the amount of time needed to test an application. For example, sched-
uled tasks, such as indexing operations, can be run on demand using these commands,
without having to wait for tasks to execute on schedule. Make the most of them!

All XPages applications execute within a J2EE-compliant web container and are ren-
dered to the end user via a web browser. This is an example of a classic client/server
application architecture, where everything that executes within the web application con-
tainer is server side, while everything that displays and executes within the web browser
container is client side. This chapter is exclusively concerned with the latter—specifi-
cally, with describing the tools that are at your disposal for manipulating the client side
of the model.

Over the past decade, particularly with the advent of Web 2.0, the user experience
within web applications has become progressively richer. To a large extent, this is made
possible through advances in Client Side JavaScript and CSS. In terms of Client Side
JavaScript, the XPages runtime enables you to add your own custom client-side script
code to your applications. This could be anything from a simple inline expression to an
arbitrarily complex library of JavaScript code. In addition to this, XPages also provides
powerful Client Side JavaScript objects that you can directly leverage to build a richer
front-end for your applications. The first of these is a home-grown creation called the
XSP Client Side JavaScript object. The other is the Dojo framework, an open-source
modular JavaScript toolkit that facilitates rapid development of rich browser-based
applications. This chapter discusses both in depth, starting with the XSP Client Side
JavaScript object.

Before you dive in, be sure to download PCGCH04.nsf and open it in Domino Designer
so that you have all the examples covered here. As usual, the sample application is avail-
able from this website: www.ibmpressbooks.com/title/0132943050

What Is the XSP Client Side JavaScript Object?

In Notes/Domino releases prior to version 8.5.3, you can locate the XSP Client Side
JavaScript object by simply navigating to the following subfolder from the Notes client
or Domino server data folder:

domino\js\dojo-1.x.x\ibm\xsp\widget\layout

In this file path, 1.x.x denotes the version number of the Dojo Toolkit that ships with
a particular Notes/Domino release. In Notes/Domino 8.5.3, things are slightly different:
The aforementioned directory path still exists and is based specifically on Dojo 1.5.1,
but the XPages runtime does not use it by default (other components, such as Domino
iNotes, use it). Instead, XPages provides an OSGi plug-in that contains the Dojo 1.6.1
library. The XPages runtime uses this as the default Dojo library in Notes/Domino 8.5.3
unless otherwise specified by the xsp.client.script.dojo.version property,
as described previously in Chapter 1, “Working with XSP Properties.” This plug-in is

Chapter 4

Working with the XSP Client Side
JavaScript Object

www.ibmpressbooks.com/title/0132943050

140   What Is the XSP Client Side JavaScript Object?

packaged as a JAR file and located in a subfolder under the Notes/Domino root installa-
tion folder. In Domino, the location is like this:

osgi\shared\eclipse\plugins\com.ibm.xsp.dojo_8.5.3.yyyymmdd-hhmm.jar

Here, yyyymmdd-hhmm represents a specific time stamp version of the plug-in.

If you open the JAR archive file and navigate to the following inner path, you will find
all the XPages runtime Client Side JavaScript resources for version 8.5.3:

resources\dojo-version\ibm\xsp\widget\layout

Within this plug-in directory are numerous JavaScript files, including the set of xsp-
Client*.* files shown in Listing 4.1. However, it might be simpler just to look at
these resources on the file system in the original location; for the purposes of this chap-
ter, it makes no difference to the material discussed.

Listing 4.1  XSP Client Side JavaScript Modules Provided by XPages

xspClientCA.js

xspClientCA.js.gz

xspClientCA.js.uncompressed.js

xspClientDebug.js

xspClientDebug.js.gz

xspClientDebug.js.uncompressed.js

xspClientDojo.js

xspClientDojo.js.gz

xspClientDojo.js.uncompressed.js

xspClientDojoUI.js

xspClientDojoUI.js.gz

xspClientDojoUI.js.uncompressed.js

xspClientLite.js

xspClientLite.js.gz

xspClientLite.js.uncompressed.js

xspClientMashup.js

xspClientMashup.js.gz

xspClientMashup.js.uncompressed.js

xspClientRCP.js

xspClientRCP.js.gz

xspClientRCP.js.uncompressed.js

No doubt you observe that every XSP client-side object comes in three flavors. The
plain .js version contains obfuscated JavaScript code, with the file size reduced by
placing the entire code contents on one line, minimizing variable names and so forth.
The .js.gz version is a gzipped version of the same file (compressed using the GNU
zip algorithm) that provides a minimized payload for browsers that can accept zipped

What Is the XSP Client Side JavaScript Object?   141  

content. The third version, .js.uncompressed.js, contains the fully formatted text
resource, which is a more human-readable form of the JavaScript code.

Tip  If you are using a version of Notes earlier than 8.5.3, or if in 8.5.3 you have explic-
itly chosen to use a Dojo version earlier than 1.6.1, you can debug an XSP client-side
object in the following way. You should back up and remove the .js and .js.gz
versions of the particular JavaScript object from the folder and then rename the .js.
uncompressed.js version to the .js version. This enables you to step through the
fully formatted JavaScript code in your chosen JavaScript client-side debugger.

Ignoring the three differing flavors for now, Table 4.1 summarizes the single logical
entities.

Table 4.1  XSP Client Side JavaScript Object

Entity Name Description

xspClientCA An extension to the base XSP client-side object containing
JavaScript functions that are useful when an XPage is part of a
Notes composite application (CA).

xspClientDebug An XSP client-side object containing JavaScript debugging
functions for logging errors and dumping diagnostic
information.

xspClientDojo The root XSP Client Side JavaScript object containing a wide
range of utility functions, such as validators and event handlers.

xspClientDojoUI An XSP Client Side JavaScript object that simply includes the
core Dojo UI modules as one simple resource reference.

xspClientLite An XSP client-side object intended for use as a lightweight
client-side framework in the absence of Dojo or other frame-
works. It is not automatically included in the XPages markup
in any use case by the runtime code and does not appear to
be commonly used in the field. This object is still included in
XPages, for backward compatibility as much as for anything
else.

xspClientMashup An extension to the base XSP client-side object containing
JavaScript functions that are useful when an XPage is part of a
web mashup application. For example, the object contains func-
tions that facilitate intercomponent communication.

xspClientRCP An extension to the base XSP client-side object containing
JavaScript functions that are useful when an XPage is running
in the Notes client, also known as the Rich Client Platform
(RCP).

As you can observe from Table 1.1, no single monolithic XSP client-side object exists.
Instead, a number of them are dynamically assembled by the XPages runtime for your
particular runtime context. For example, if you are running an XPages composite appli-
cation in the Notes client, the runtime provides instances of both the xspClientCA

142   What Is the XSP Client Side JavaScript Object?

object and the xspClientRPC object on your XPage, whereas a plain old XPiNC appli-
cation (XPages in the Notes Client) is rendered with only the xspClientRCP object.
A simple example illustrates the point clearly.

	 1.	 In Domino Designer, create a new XPage.

	 2.	 Do not add any content; leave the page empty.

	 3.	 Turn off JavaScript aggregation by unchecking the Application Properties >
XPages > Use runtime optimized JavaScript and CSS resources option.

	 4.	 Preview the page both on the Notes client and on the web.

	 5.	 View and compare the HTML source for both pages.

Even though the XPage is just a skeleton, XPages must provide the bare-bones page
structure appropriate for each runtime environment (Notes and web). This includes
setting up the necessary XSP Client Side JavaScript objects. Listing 4.2 shows the
<script> tags that are included in the XPage on the Notes client. If you compare this
to the markup emitted for the web, you will observe that the second tag containing the
xspClientRCP JavaScript object is not present.

Listing 4.2  HTML Script Resources Included for a Blank XPage on the Notes Client

<script type="text/javascript" src="/xsp/.ibmxspres/dojoroot-1.6.1/ibm/
xsp/widget/layout/layers/xspClientDojo.js">

</script>

<script type="text/javascript">

 dojo.require('ibm.xsp.widget.layout.xspClientRCP')

</script>

As a next step, open the xspClientRCP.js.uncompressed.js file and examine its con-
tent. Some interesting points will help you understand how the collection of different
xsp*.js files conflate together, depending on runtime platform, to form a concrete XSP
Client Side JavaScript object. Listing 4.3 contains two snippets.

Listing 4.3  JavaScript Snippets from xspClientRCP.js.uncompressed.js

///////////////////////////////////////

// Display an alert

///////////////////////////////////////

 XSP.alert=function x_al(s)

 {

 var o = new Object();

 if(s == null)s = "null";

 o.text = s;

 return XSP.callJavaAction("XSP.alert", o, true);

What Is the XSP Client Side JavaScript Object?   143  

 };

// ... lots of other intervening code ...

if(typeof XSP.RCPConstructor == "undefined"){

 XSPRCPConstructor.call(XSP);

}

As you can see, an XSP.alert function is defined in the RCP JavaScript file, which
takes a string input argument and ultimately passes it to the XPages runtime via a
JavaScript-to-Java messaging bridge. This enables the XPages runtime plug-in for Notes
to display a native RCP dialog, thus providing a more natural user experience for that
platform.

You will also note that, at the end of this file, the xspClientRCP object specifies a con-
structor function. This constructor ensures a single instantiation of the object and extends
the XSP Client Side JavaScript object by way of the built-in JavaScript .call()
method. This enables the xspClientRCP object to extend the base XSP Client Side
JavaScript object. As shown in Listing 4.2, the base XSP object is created immediately
prior to xspClientRCP because of the preceding inclusion of xspClientDojo in the
HTML markup—sequential loading ensures this preinclusion. However, this base object
already defines an alert function, as shown in Listing 4.4.

Listing 4.4  JavaScript Snippet from xspClientDojo.js

///////////////////////////////////////

 this.alert = function x_al(s) {

 // Use the browser alert mechanism

 alert(s);

 }

Thus, when running on the web, an XSP.alert("Hello World!") call is displayed
in the browser’s dialog, whereas the same code in Notes results in a native Notes RCP
dialog (and not the standard embedded XULRunner browser dialog, which would just
look wrong in this context). Although this is a simple example, it illustrates how the
XSP object is, in fact, an aggregated class definition that is overridden and extended
as necessary, depending on the running platform. Figure 4.1 illustrates the hierarchy of
XSP client-side objects. Note that xspClientDojoUI.js and xspClientDebug.js
are standalone objects that do not extend the root XSP object. The former is simply a
Dojo layer file (groups a given collection of Dojo files for inclusion), whereas the latter
contains some discrete debugging and logging functions.

Note that if you are running a composite application on the client, both
xspClientRCP.js and xspClientCA.js will be included in your XPiNC pages.
Also, xspClientCA.js and xspClientMashup.js have functions in common (XSP.
publishEvent()) that are designed to do the same task in different enviroments—
composite applications versus web mashups.

144   What Is the XSP Client Side JavaScript Object?

Finally, because the XPages runtime automatically includes the required XSP Client
Side JavaScript object on the rendered page for you, you can use a Client Side Java-
Script debugger to quickly determine what functions are at your disposal. Figure 4.2
shows an example of this using the empty XPage discussed earlier, performed on the
web using the Firebug debugger in Firefox.

Figure 4.2  Using a Client Side JavaScript debugger to expose the XSP object functions

Figure 4.1  XSP client-side object hierarchy

Firebug Panel

Interactive execution of
client-side JavaScript code

XSP function list

Summary of the XSP Client Side JavaScript Object Functions   145  

In the bottom-left corner of the Firebug debugger, you can interactively call any Client
Side JavaScript on the page using the command editor, with the added benefit of func-
tion type-ahead (simply type the characters XSP. and pause to be prompted with a list
of suggestions). All the available XSP Client Side JavaScript functions are thus exposed
(other Client Side JavaScript debuggers should offer similar capabilities).

Summary of the XSP Client Side JavaScript Object
Functions

This section aims to give you a summarized view of the XSP Client Side JavaScript
object functions. It is important to realize that a set of private functions is declared on
the XSP Client Side JavaScript object. These are typically denoted by a leading under-
score character in the function name (for example, XSP._doFireEvent), but some
previous releases did not apply this naming convention. Such private functions could not
subsequently be renamed because doing so would potentially break backward compat-
ibility—that is, they could not be prefixed in a later release with an underscore character
to denote their private scope.

This set of private functions is not intended for reuse within any custom Client Side
JavaScript you write. This is due to the very nature of their function, which typically
is to provide some direct XPages runtime execution service. Therefore, trying to reuse
these functions within any custom Client Side JavaScript code you write only compli-
cates your task; you must provide specific parameters and ensure correct invocation
within a sequence of other function calls. Furthermore, the server-side component tree
representation of the associated XPage being viewed in the client-side browser or device
must also be in a certain state to handle such private function requests correctly. You are
therefore discouraged from trying to use these private functions within your own custom
Client Side JavaScript code. Nonetheless, it will still be helpful for you to understand the
purpose of such functions.

It is also important to point out the fact that the list of public XSP Client Side JavaScript
object functions detailed in this chapter can change through subsequent Notes/Domino
releases. This is further influenced based on any modifications or extensions of the XSP
Client Side JavaScript object that the XPages Extension Library provides. The XPages
Extension Library has its own set of extended XSP Client Side JavaScript object func-
tions and overrides. However, we try to accommodate changes to the XSP Client Side
JavaScript object API during its evolution by providing backward compatibility and
deprecation mechanisms accordingly.

Thus, this section gives you summary information about all the XSP Client Side Java-
Script object functions, both those that will serve you well within your own custom
code and those that are within the private set. Table 4.2 summarizes the public XSP Cli-
ent Side JavaScript object functions, and Table 4.3 details the private XSP Client Side
JavaScript object functions. Both these tables list each function by name, along with a
brief description and indication of the scope of each function. You should refer to these
tables when considering using a particular XSP Client Side JavaScript object function
within your own custom Client Side JavaScript code.

146   Summary of the XSP Client Side JavaScript Object Functions

Recall from reading the previous section “What Is the XSP Client Side JavaScript
Object?” that there is a hierarchy and extension tree for the XSP Client Side JavaScript
object, depending on the running platform. Therefore, Tables 4.2 and 4.3 list all public
and private XSP Client Side JavaScript object functions from the XSP web, mobile,
Notes, Composite Application, IBM Mashup Center, and Debug extensions (IBM
Mashup Center is not part of the Notes/Domino product family, but is an IBM Web-
Sphere offering). The first column of each table gives specifics about availability within
each platform. Where a function is available within all platforms, it is specified within
square brackets as All. Otherwise, the available platforms are listed individually. Sup-
ported platforms are Web, Mobile, Notes, CA (denoting composite application), and
MU (denoting IBM Mashup Center). The description column also includes the name of
the source JavaScript file, for your convenience.

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions

Function Name Description

XSP.alert(message)

[All]

Displays a generic alert dialog. Standard dialog in a
web browser/mobile device, and RCP dialog in the
Notes client. This is an overridable extension point.

[xspClientDojo.js]

XSP.confirm(message)

[All]

Displays a generic confirm dialog, with OK and
Cancel buttons. Standard dialog in a web browser/
mobile device, and RCP dialog in the Notes client.
This is an overridable extension point.

[xspClientDojo.js]

XSP.error(message)

[All]

Displays a generic error dialog. This is an over
ridable extension point.

[xspClientDojo.js]

XSP.prompt(message,
defaultCaption)

[All]

Displays a generic prompt dialog containing the
given message, along with the defaultCaption,
if specified. The defaultCaption value appears
within the prompt dialog’s edit box, enabling the
user to input a value that returns when the dialog is
closed. This is an overridable extension point.

[xspClientDojo.js]

XSP.djRequire(name)

[All]

Loads a Dojo module into the context of the cur-
rent page. Use this only when you do not want to
include the required module in aggregated resources.
Otherwise, use dojo.require().

[xspClientDojo.js]

Summary of the XSP Client Side JavaScript Object Functions   147  

Function Name Description

XSP.addPreSubmit
Listener(formId,
listener, clientId,
scriptId)

[All]

This function adds a custom Client Side JavaScript
function, termed the listener, to a queue of zero or
more other listeners. This queue of listeners gets
executed just before the page is submitted to the
server side. The formId parameter must specify the
ID of the current form the listener will be triggered
against on submission—this is a mandatory parame-
ter. The listener parameter is a function reference
to a custom Client Side JavaScript function—this is
a mandatory parameter. The clientId parameter
can specify the client-side fully namespaced ID
of any single eventHandler or button control
within the current page. This causes the presubmit
listener to trigger only when the specified
clientId eventHandler or button is invoked.
This parameter is optional but should at least be
specified as null. When set to null, the presubmit
listener is triggered when any eventHandler or
button tries to submit the current page. Also note
that the custom client-side listener function does not
need to return any result because this is ignored in
the processing of the presubmit listener queue.

[xspClientDojo.js]

XSP.addQuerySubmit
Listener(formId,
listener, clientId,
scriptId)

[All]

Adds a custom Client Side JavaScript function,
termed the listener, to a queue of zero or more other
listeners. This queue of listeners is executed when
the page tries to submit to the server side. Based on
the return results from any querysubmit listener
functions in the queue, submission can proceed or
be stopped. The formId parameter must specify the
ID of the current form the listener will be triggered
against on submission—this is a mandatory parame-
ter. The listener parameter is a function reference
to a custom Client Side JavaScript function—this is
a mandatory parameter. The clientId parameter
can specify the client-side fully namespaced ID of
any single eventHandler or button control within
the current page. This causes the querysubmit lis-
tener to trigger only when the specified clientId
eventHandler or button is invoked. This param-
eter is optional but should at least be specified as
null. When set to null, the querysubmit listener
is triggered when any eventHandler or button
tries to submit the current page. Also note that the
custom client-side listener function should return a
Boolean result because this is used in the processing
of the querysubmit listener queue to either allow
or stop page submission.

[xspClientDojo.js]

148   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.canSubmit()

[All]

Should be called before any page submission, to
prevent page resubmission, either accidentally
when a user double-clicks on a link or if the user is
impatient compared to the expected time for a page
refresh. If the page has recently been submitted, it
returns false and the submission should be aban-
doned. Otherwise, it assumes that the submission
will occur and updates the lastSubmit value, the
date stamp of the last submission. If the page is not
submitted after this is called, XSP.allowSubmit()
should be invoked so that further user actions can
submit the page. The time allowed between submis-
sions is configured through the submitLatency
variable. Avoid using this function—rare use cases
exist when you need to use this function, such as if
Client Side JavaScript performs page submission, as
with document.forms[0].submit(). Therefore,
controlling page submission using XSP.canSub-
mit() can provide more robust page behavior.

[xspClientDojo.js]

XSP.allowSubmit()

[All]

If the page is not submitted after a call to
canSubmit(), this should be invoked to re-enable
page submission. Avoid using this function—rare
use cases exist when you need to use this function,
such as if Client Side JavaScript performs page sub-
mission, as with document.forms[0].submit().
Therefore, controlling page submission using XSP.
allowSubmit() can provide more robust page
behavior.

[xspClientDojo.js]

XSP.setSubmitValue
(submitValue)

[All]

The SubmitValue property is the value sent to
the XPages server and is available from the context
object. This function usually can be called while
processing a client-side event, right before the event
is submitted to the server. It can be used, for exam-
ple, for passing component-related data.

[xspClientDojo.js]

XSP.getSubmitValue()

[All]

The SubmitValue property is the value sent to
the XPages server and is available from the context
object. This function can be called while processing
a client-side event, usually right before the event is
submitted to the server.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   149  

Function Name Description

XSP.validateAll(formId,
valmode, execId)

[All]

Runs client-side converters and validators before
page submission to the server. The formId param-
eter must specify the form to validate. This is useful
in a multiform page. The valmode integer param-
eter must specify a value of 0, 1, or 2. 0 = No vali-
dation. 1 = Run converters only. 2 = Run Converters
and Validators. The execId string parameter is
optional and can be used to specify a single control
within the current page to validate. If null, the
whole page is validated.

[xspClientDojo.js]

XSP.getFieldValue(node)

[All]

Returns the value of the given HTML DOM node
parameter. A string value is returned for a single
value node, or a comma-separated string is returned
for a multiple-value node (such as an option
control).

[xspClientDojo.js]

XSP.getDijitFieldValue(dj)

[All]

Returns the value of the given Dijit instance, based
on the existence of the dijit.getValue()
function.

[xspClientDojo.js]

XSP.validationError(clientId,
message)

[All]

An overridable extension point similar to the
XSP.alert() and other dialog-based functions.
This gives developers an opportunity to provide a
custom error display to the end user. The default
behavior is to display an error message dialog. The
clientId string parameter must specify the ID of
the failing control. The message string parameter is
used to relay the failing message or warning.

[xspClientDojo.js]

XSP.scrollWindow(x, y)

[All]

Scrolls the current window contents to the specified
x and y integer coordinates.

[xspClientDojo.js]

150   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.
partialRefreshGet(refreshId,
options)

[All]

Programmatically executes GET-based partial refresh
requests to the XPages server-side runtime. The
refreshId string parameter value must specify a
fully namespaced HTML DOM element ID. This
is the target receiver of the partial refresh response
content. The options parameter is optional and
used to send custom parameters to the server side as
GET request parameters. It can also be used to spec-
ify onStart, onError, and onComplete event
function callbacks. These are triggered accordingly
during the request lifecycle.

[xspClientDojo.js]

XSP.
partialRefreshPost(refreshId,
options)

[All]

Programmatically executes POST-based partial
refresh requests to the XPages server-side runtime.
The refreshId string parameter value must specify
a fully namespaced HTML DOM element ID. This
is the target receiver of the partial refresh response
content. The options parameter is optional and
used to send custom parameters to the server side
as POST request parameters. It can also be used
to specify onStart, onError, and onComplete
event function callbacks. These are triggered accord-
ingly during the request lifecycle. An immediate
request parameter can also be included in the options
content to control validation execution.

[xspClientDojo.js]

XSP.attachClientFunction
(targetClientId, _event,
clientSideScriptName)

[All]

Connects a client-side function to an event on an
XPages control.

[xspClientDojo.js]

XSP.attachClientScript(target
ClientId, _event, clientScript)

[All]

This function is used to connect a client-side script
call to an event on an XPages control.

[xspClientDojo.js]

XSP.addOnLoad(listener)

[All]

Attaches a Client Side JavaScript function to the cur-
rent page’s onLoad event. The listener function-
reference parameter is used to specify the Client
Side JavaScript function.

[xspClientDojo.js]

XSP.showSection(sectionId,
show)

[All]

Toggles the expanded state of the specified sec-
tion control using the client-side sectionId string
parameter value and show Boolean parameter value.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   151  

Function Name Description

XSP.findForm(nodeOrId)

[All]

Returns the parent form element for the given node
or client-side element ID.

[xspClientDojo.js]

XSP.
findParentByTag(nodeOrId,
tag)

[All]

Returns the nearest parent element matching the
specified tag string parameter value.

[xspClientDojo.js]

XSP.
getElementById(elementId)

[All]

Retrieves an element from the current HTML DOM
based on the specified elementId string parameter
value. Note that the elementId represents the fully
namespaced client-side element ID.

[xspClientDojo.js]

XSP.hasDijit()

[All]

Determines the presence of any Dijit objects and the
dijit.byId() function within the current HTML
page.

[xspClientDojo.js]

XSP.trim(s)

[All]

Returns the s string parameter value, trimmed of
leading and trailing whitespace.

[xspClientDojo.js]

XSP.startsWith(s, prefix)

[All]

Returns a Boolean value indicating whether the
given s string begins with the specified prefix string
value.

[xspClientDojo.js]

XSP.endsWith(s, suffix)

[All]

Returns a Boolean value indicating whether the
given s string ends with the specified suffix string
value.

[xspClientDojo.js]

XSP.toJson(o)

[All]

Converts an object to a String serialization of that
object.

[xspClientDojo.js]

XSP.fromJson(s)

[All]

Parses a JSON string to return a JavaScript object.

[xspClientDojo.js]

XSP.log(message)

[Web/MU]

Opens a new browser window, with the given
message parameter value written into the window
contents.

[xspClientDojo.js]

152   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.dumpObject(obj, options)

[Web/MU]

Returns a list of property/value pairs available on the
given obj parameter.

[xspClientDebug.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions

Function Name Description

XSP.getMessage(key)

[All]

Retrieves a translated string from the localized
XSP client-side locale bundles.

[xspClientDojo.js]

XSP._pushListener(listeners,
formId, clientId, scriptId,
listener)

[All]

Used internally by the XSP.addPreSubmit
Listener and addQuerySubmitListener
functions and others.

[xspClientDojo.js]

XSP._SubmitListener(formId,
listener, clientId, scriptId)

[All]

Used internally by the XSP.addPreSubmit
Listener and addQuerySubmitListener
functions and others.

[xspClientDojo.js]

XSP._processListeners(listeners,
formId, clientId)

[All]

Processes an array of listeners, either the
querySubmit or preSubmit listeners. When
processing the querySubmit listeners, it stops at
the first listener that returns false.

[xspClientDojo.js]

XSP.attachValidator(clientId,
required, converter, validator1,
..., multipleValueSeparatorString)

Connects a control with any converter and valida-
tion objects specified for that control. Calls to
this function are automatically generated by the
XPages runtime. This is a private function.

[xspClientDojo.js]

XSP._Validator(clientId,
required, converter,
validatorList, multiSep)

[All]

Used internally by the XSP.attachValida-
tor() function. This is a private function.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   153  

Function Name Description

XSP.DateConverter(dateFormat,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.TimeConverter(timeFormat,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.
DateTimeConverter(dateFormat,
timeFormat, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.IntConverter(message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

154   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.NumberConverter(dot,
tho, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.RequiredValidator
(message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.DateTimeRangeValidator
(minTime, maxTime, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.LengthValidator(min,
max, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   155  

Function Name Description

XSP.
NumberRangeValidator(min,
max, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.RegExpValidator(expr,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.ExpressionValidator(expr,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.attachEvent(clientId,
targetClientId, _event,
clientSideScriptName, submit,
valmode, execId)

[All]

Connects an eventHandler to a control in the
client side. Therefore, when the specified event
is triggered in the client side against the tar-
getClientId control, a request is issued to the
server-side component to trigger any correspond-
ing server-side eventHandler code or simple
actions. This is a private function.

[xspClientDojo.js]

XSP._getEventData(targetNode,
targetId, eventName)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

156   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.fireEvent(evt, clientId,
targetId, clientSideScriptName,
submit, valmode, execId)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

XSP._doFireEvent(evt, form,
clientId, clientSideScriptName,
submit, valmode, execId)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

XSP._scrollPosition()

[All]

Used internally by the XSP.scrollWindow()
function and others. This is a private function.

[xspClientDojo.js]

XSP._setAllowDirtySubmit(flag)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP._isAllowDirtySubmit()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._setDirty(flag, formId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._isDirty()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._getDirtyFormId()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   157  

Function Name Description

XSP.attachDirtyListener(clientId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP.attachDirtyUnloadListener
(saveMessage)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag and modifiedMessage. This is a private
function.

[xspClientDojo.js]

XSP._validateDirtyForm(formId,
clientId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for enableModi-
fiedFlag. This is a private function.

[xspClientDojo.js]

XSP._saveDirtyForm(evt, cli-
entId, targetId, clientSideScript-
Name, submit, valmode, execId)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP._doFireSaveEvent(evt,
form, clientId, clientSideScript-
Name, submit, valmode, execId)

[All]

Used internally by the Dirty Save feature to
save any data sources on the current page—see
the<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP.attachPartial(clientId,
targetId, execId, eventName,
scriptName, valmode, refreshId,
onStart, onComplete, onError)

[All]

Used to connect a partial refresh–enabled
eventHandler to a control in the client side.
Therefore, when the specified event is triggered
in the client side against the targetId control, a
partial refresh request is issued to the server-side
component to trigger any corresponding server-
side eventHandler code or simple actions. This
is a private function.

[xspClientDojo.js]

XSP.firePartial(evt, clientId,
targetId, execId, scriptName, val-
mode, refreshId, onStart, onCom-
plete, onError)

[All]

Used internally by the XSP.attachPartial()
/partialRefreshGet/partialRefreshPost
functions. This is a private function.

[xspClientDojo.js]

158   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP._partialRefresh(method,
form, refreshId, options)

[All]

Used internally by the XSP.attachPartial()
/partialRefreshGet/partialRefreshPost
functions. This is a private function.

[xspClientDojo.js]

XSP._replaceNode(refreshId,
content)

[All]

Used internally by the XSP.firePartial()
function and others. This is a private function.

[xspClientDojo.js]

XSP.processScripts(s, ex)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.execScripts(a)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.parseDojo(node)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.attachSimpleConfirm
Submit(clientId, targetClientId,
_event, message)

[All]

Used to connect a confirm handler to the current
page. Generated by the Confirm Simple Action.
This is a private function.

[xspClientDojo.js]

XSP.tagCloudSliderOnChange
(sliderValue, sliderId)

[All]

Used by the Tag Cloud Custom Control in the
Discussion Template to control the visualization
of the expanding/contracting values. This is a pri-
vate function.

[xspClientDojo.js]

XSP._loaded()

[All]

Used internally by the XSP Object when a page
loads. It is used in several page load and submis-
sion functions. This is a private function.

[xspClientDojo.js]

XSP.attachViewColumn
CheckboxToggler(viewId, colId)

[All]

Used internally by the XSP Object to attach a
column header check box toggler for the View
control. This is a private function.

[xspClientDojo.js]

XSP._toggleViewColumn
CheckBoxes(viewId, colId)

[All]

Used internally by the XSP Object to process
column header check box toggling for the View
control. This is a private function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   159  

Function Name Description

XSP.isViewPanelRowSelected
(viewId, ckId)

[All]

Used internally by the XSP Object to identify any
checked rows within a View control. This is a
private function.

[xspClientDojo.js]

XSP.initSectionScript
(targetSectionId, sectionId,
expand)

[All]

Used internally by the XSP Object to initialize
expand/collapse behavior for the Section con-
trol. This is a private function.

[xspClientDojo.js]

XSP._moveAttr
(fromNode, toNode, attrName)

[All]

Used internally by the XSP Object to move an
element attribute from one element to another by
the Section control. This is a private function.

[xspClientDojo.js]

XSP.serialize(o)

[All]

Deprecated in favor of the XSP.toJson() func-
tion. It is being preserved to avoid breakage of
existing scripts.

[xspClientDojo.js]

XSP.logw(message)

[Web/MU]

Used by the XSP.log() function. This is a pri-
vate function.

[xspClientDebug.js]

XSP._dumpObject(obj, name,
indent, depth, options)

[Web/MU]

Used by the XSP.dumpObject() function. This
is a private function.

[xspClientDebug.js]

XSP.publishEvent
(eventName, payload,
payloadType)

[CA/MU]

Empty implementation in xspClientDojo.
js. This is overridden by xspClientCA and
xspClientMashup.js implementations. This
function is automatically output by the XPages
runtime when ComponentPublish*Action
simple actions exist on the XPage. This is a pri-
vate function.

[xspClientDojo.js/xspClientCA.js/xspClientMU.js]

XSP.dispatchEvent(source,
name, value, event)

[All]

Automatically generated by the XPages runtime
for cross-communication with the XPages View
Part in the Notes client. This is a private function.

[xspClientDojo.js]

160  T he Public XSP Client Side JavaScript Object Functions

Function Name Description

XSP.setComponentMode(mode,
params)

[MU]

Empty implementation in xspClientDojo.js.
This is overridden by the xspClientMashup.
js implementation. This function is automatically
output for Set Component Mode simple actions
that exist on the XPage. This is a private function.

[xspClientDojo.js -> xspClientMashup.js]

XSP.dispatchJSONEvent(source,
name, value, event)

[CA]

Automatically generated by the XPages runtime
for cross-communication with the Composite
Application container. This is a private function.

[xspClientCA.js]

XSP.onComponentLoaded()

[MU]

Used by the XSP Object within a mashup to ini-
tialize the widget when the page loads. This is a
private function.

[xspClientMashup.js]

XSP.callJavaAction(actionId,
params, needReturn)

[Notes]

Used internally by the XSP Object in XPages
in the Notes client application. This is a private
function.

[xspClientRCP.js]

XSP._embedControl(id, handle)

[Notes]

Used internally by the XSP Object in XPages in
the Notes client application. This is a private
function.

[xspClientRCP.js]

XSP._resize()

[Notes]

Used internally by the XSP Object in XPages in
the Notes client application. This is a private
function.

[xspClientRCP.js]

The Public XSP Client Side JavaScript Object Functions

This section provides you with details on each of the publicly scoped XSP Client Side
JavaScript object functions listed in Table 4.2. Note that it does not provide any detail on
the private functions listed in Table 4.3. Notes/Domino 8.5.3 has 33 public and 58 pri-
vate XSP Client Side JavaScript object functions. You can also refer to the PCGCH04.
nsf sample application, where you will find the publicXSPFunctions XPage. This
XPage contains working examples of the 33 public XSP Client Side JavaScript object
functions. Figure 4.3 shows this XPage in a browser.

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

The Public XSP Client Side JavaScript Object Functions   161  

Figure 4.3  The publicXSPFunctions XPage in a browser

XSP.alert(message) : void

This function displays a generic alert dialog. It returns void.

A standard browser dialog is displayed in a web browser or mobile device, whereas a
native Rich Client Platform (RCP) dialog is displayed in the Notes client. This behavior
is handled transparently by a reimplementation of the built-in Client Side JavaScript
XSP.alert() function within the Notes container. This allows the XSP.alert() func-
tion to bridge into the underlying Notes client runtime to display the native dialog.

This is an overridable Client Side JavaScript function. Everywhere that the XPages cli-
ent code uses an alert dialog, this method is used to invoke the dialog. So code in your
application can override the XSP.alert() method to do a different behavior instead
of displaying a default alert dialog. You might instead make the text appear in a special
error area on your page, to integrate with the UI styling of your website better than the
default browser pop-up dialog. You can also implement your own application scripts to
use this method so that there is consistent behavior between your own alert dialogs and
the dialogs the XPages runtime provides.

Listing 4.5 details an example call of the XSP.alert() function within an event
handler.

162  T he Public XSP Client Side JavaScript Object Functions

Listing 4.5  Example Call of the XSP.alert() Function

<xp:button value="XSP.alert()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[XSP.alert("Hello World!")]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.confirm(message) : boolean

This function displays a generic confirm dialog. It returns a Boolean value—true if the
OK button is clicked, false if the Cancel button is clicked.

A standard browser dialog is displayed in a web browser or mobile device, whereas a
native rich client (RCP) dialog is displayed in the Notes client. This behavior is handled
transparently by a reimplementation of the built-in Client Side JavaScript XSP.
confirm() function within the Notes container. This allows the XSP.confirm()
function to bridge into the underlying Notes client runtime to display the native dialog.

This is an overridable extension point. Everywhere the XPages client code uses a con-
firm dialog, this method invokes the dialog. So code in your application can override the
XSP.confirm() method to do a different behavior instead of displaying a default con-
firm dialog. You might instead make the text appear in a special error area on your page,
to integrate with the UI styling of your website better than the default browser pop-up
dialog.

Listing 4.6 details an example call of the XSP.confirm() function within an event
handler.

Listing 4.6  Example Call of the XSP.confirm() Function

<xp:button value="XSP.confirm()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var result = XSP.confirm("Are you sure?");

 XSP.alert("You chose " + result);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.error(message) : void

This function displays a generic error dialog. It returns void.

The Public XSP Client Side JavaScript Object Functions   163  

A standard browser dialog is displayed in a web browser or mobile device, whereas a
native rich client (RCP) dialog is displayed in the Notes client. This behavior is handled
transparently by a reimplementation of the built-in Client Side JavaScript XSP.error()
function within the Notes container. This allows the XSP.error() function to bridge
into the underlying Notes client runtime to display the native dialog.

This is an overridable Client Side JavaScript function. Everywhere that the XPages cli-
ent code uses an error dialog, this method invokes the standard error type dialog. Code
in your own application could override the XSP.error() method to provide a different
behavior instead of displaying a default error dialog. You might instead make the text
appear in a special error area on your page, to integrate with the UI styling of your web-
site better than the default browser pop-up dialog.

Listing 4.7 details an example call of the XSP.error() function within an event
handler.

Listing 4.7  Example Call of the XSP.error() Function

<xp:button value="XSP.error()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[XSP.error("An error has occurred!")]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.prompt(message, defaultValue) : string

This function displays a generic prompt dialog with an input field. If specified, the
optional defaultValue parameter populates the input field within the prompt dialog.
This function returns the input field value from the prompt dialog when the OK button
is clicked. It returns null if the Cancel button is clicked.

A standard browser dialog is displayed in a web browser or mobile device, whereas
a native rich client (RCP) dialog is displayed in the Notes client. This behavior is
handled transparently by a reimplementation of the built-in Client Side JavaScript XSP.
prompt() function within the Notes container. This allows the XSP.prompt() func-
tion to bridge into the underlying Notes client runtime to display the native dialog.

This is an overridable Client Side JavaScript function. If future implementations of
XPages applications require a prompt dialog, this method should be used. So code in
your application can override the XSP.prompt() method to do a different behavior
instead of displaying a default prompt dialog. You might instead make the text and edit
box appear in a special area on your page, to integrate with the UI styling of your web-
site better than the default browser pop-up dialog.

Listing 4.8 details an example call of the XSP.prompt() function within an event
handler.

164  T he Public XSP Client Side JavaScript Object Functions

Listing 4.8  Example Call of the XSP.prompt() Function

<xp:button value="XSP.prompt()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var defaultAge = parseInt(Math.random()*100);

 var result = XSP.prompt(

 "What age are you?", defaultAge

);

 XSP.alert("You are age: " + result);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.djRequire(moduleName) : object

This function programmatically includes a Dojo module. It returns the module as an
object. Use this function only if you do not want to include a particular Dojo module in
the aggregated resources of an XPage (where resource aggregation has been enabled in
the application properties of a version 8.5.3 or higher application). Otherwise, use the
dojo.require() function instead. This function and dojo.require() perform the
exact same task; the only difference is that the resource aggregator ignores any XSP.
djRequire() calls. Both functions cache the required module on the initial call within
the page to avoid repeat calls to the same module over a network. Listing 4.9 details an
example call of the XSP.djRequire() function within an event handler.

Listing 4.9  Example Call of the XSP.djRequire() Function

<xp:button value="XSP.djRequire()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 XSP.djRequire("dijit.Dialog");

 myDialog = new dijit.Dialog({

 title: "My Dialog",

 content: "test content",

 style: "width: 300px"

 });

 myDialog.show();

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

The Public XSP Client Side JavaScript Object Functions   165  

XSP.addPreSubmitListener(formId, listener, clientId, scriptId) : void

This function adds a custom Client Side JavaScript function, termed the listener, to a
queue of zero or more other presubmit listeners. This queue of listeners gets executed
just before the page is submitted to the server side. The formId parameter must specify
the ID of the current form the listener will be triggered against on submission—this is
a mandatory parameter. The listener parameter is a function reference to a custom
Client Side JavaScript function—this is a mandatory parameter. The clientId param-
eter can specify the client-side fully namespaced ID of any single eventHandler or
button control within the current page. This causes the presubmit listener to trigger only
when the specified clientId eventHandler or button is invoked. This parameter
is optional but should at least be specified as null. When set to null, the presubmit
listener is triggered when any eventHandler or button tries to submit the current page.
The scriptId parameter is also optional but declares a unique string identifier for the
listener within the listener queue. If you do not specify a scriptId, one is automati-
cally assigned.

The presubmit listener queue is invoked after the query submit listener queue. Also note
that the custom client-side listener function does not need to return any result because
this is ignored in the processing of the presubmit listener queue. Listing 4.10 details an
example call of the XSP.addPreSubmitListener() function within an event handler.

Listing 4.10  Example Call of the XSP.addPreSubmitListener() Function

<xp:scriptBlock id="scriptBlock7">

 <xp:this.value>

 <![CDATA[

 function preSubmitListener(){

 XSP.alert("preSubmitListener: called presubmit!");

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.addPreSubmitListener()" id="button7">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var button = document.getElementById("#{id:button7}");

 var eventHandlerId = "#{id:eventHandler1}";

 var form = XSP.findForm(button);

 XSP.addPreSubmitListener(

 form.id, preSubmitListener,

 eventHandlerId, "preSubmitListenerId"

);

]]>

 </xp:this.script>

166  T he Public XSP Client Side JavaScript Object Functions

 </xp:eventHandler>

</xp:button>

<xp:link id="link8" text="Submit">

 <xp:eventHandler id="eventHandler1" event="onclick" submit="true"

 refreshMode="complete" immediate="true">

 <xp:this.action>

 <![CDATA[#{javascript:

 print("Submission Occurred");

 context.reloadPage();

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:link>

XSP.addQuerySubmitListener(formId, listener, clientId, scriptId) : void

This function adds a custom Client Side JavaScript function, termed the listener, to a
queue of zero or more other listeners. This queue of listeners gets executed when
the page tries to submit to the server side. Based on the return results from any
querysubmit listener functions in the queue, submission can proceed or be stopped.
The formId parameter must specify the ID of the current form the listener will be trig-
gered against on submission—this is a mandatory parameter. The listener parameter
is a function reference to a custom Client Side JavaScript function—this is a mandatory
parameter. The clientId parameter can specify the client-side fully namespaced ID
of any single eventHandler or button control within the current page. This causes the
querysubmit listener to trigger only when the specified clientId eventHandler
or button is invoked. This parameter is optional but should at least be specified as null.
When set to null, the querysubmit listener is triggered when any eventHandler
or button tries to submit the current page. The scriptId parameter is also optional but
declares a unique string identifier for the listener within the listener queue. If you do not
specify a scriptId, one is automatically assigned.

The query submit listener queue is invoked before the pre-submit listener queue. Also
note that the custom client-side listener function should return a Boolean result because
this is used when processing the querysubmit listener queue to either allow or stop
page submission. Listing 4.11 details an example call of the XSP.addQuerySub-
mitListener() function within an event handler.

Listing 4.11  Example Call of the XSP.addQuerySubmitListener() Function

<xp:scriptBlock id="scriptBlock8">

 <xp:this.value>

 <![CDATA[

 function querySubmitListener(){

 var result = XSP.confirm(

 "querySubmitListener: Proceed to submit?"

The Public XSP Client Side JavaScript Object Functions   167  

);

 return result;

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.addQuerySubmitListener()" id="button8">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var button = document.getElementById("#{id:button8}");

 var eventHandlerId = "#{id:eventHandler2}";

 var form = XSP.findForm(button);

 XSP.addQuerySubmitListener(

 form.id, querySubmitListener,

 eventHandlerId, "querySubmitListenerId"

);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link id="link9" text="Submit">

 <xp:eventHandler id="eventHandler2" event="onclick" submit="true"

 refreshMode="complete" immediate="true">

 <xp:this.action>

 <![CDATA[#{javascript:

 print("Submission Occurred");

 context.reloadPage();

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:link>

XSP.canSubmit() : boolean

Try to avoid programmatic page submissions in XPages using Client Side JavaScript
code such as document.forms[0].submit() or dojo.doc.forms[0].submit().
This is because XPages provides a robust and well-managed event-handling and page-
submission mechanism. Of course, in rare use cases, legacy Client Side JavaScript code
or libraries your application uses might be performing page submission using
document.forms[0].submit() or the like. Therefore, consider revising this code
to avoid page submission, instead favoring XPages features or, alternatively, consider
modifying such code to use the XSP.canSubmit(), XSP.allowSubmit(), and XSP.
validateAll() functions to provide a more robust page submission behavior.

168  T he Public XSP Client Side JavaScript Object Functions

The XSP.canSubmit() function can be called just before page submission to prevent
page resubmission, either accidentally when a user double-clicks on a link or if the user
retries to submit the same page before a response has been received. If the page has
recently been submitted, it returns false and the submission should be abandoned.
Otherwise, it assumes that the submission will occur and updates the XSP.lastSubmit
value with the time stamp of the last submission. If the page is not submitted after this
function is called, XSP.allowSubmit() should be called to reenable page submission.
The time allowed between submissions is configured through the XSP.submitLatency
variable, which can also be controlled by the xsp.properties option xsp.partial.
update.timeout discussed in Chapter 1. Listing 4.12 details an example call of the
XSP.canSubmit() function within an event handler.

Listing 4.12  Example Call of the XSP.canSubmit() Function

<xp:button value="XSP.canSubmit()" id="button9">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="norefresh">

 <xp:this.script>

 <![CDATA[

 XSP.alert("1. lastSubmit: " + XSP.lastSubmit);

 var canSubmit = XSP.canSubmit();

 XSP.alert("2. canSubmit: " + canSubmit);

 var reset = XSP.prompt("Reset canSubmit?", "Yes");

 if(reset == "Yes"){

 XSP.allowSubmit();

 XSP.alert("3. lastSubmit: " + XSP.lastSubmit);

 canSubmit = XSP.canSubmit();

 XSP.alert("4. canSubmit: " + canSubmit);

 }

 return canSubmit;

]]>

 </xp:this.script>

 <xp:this.action>

 <![CDATA[#{javascript:print("Submission Occurred")}]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

XSP.allowSubmit() : void

Try to avoid programmatic page submissions in XPages using Client Side JavaScript
code such as document.forms[0].submit() or dojo.doc.forms[0].submit().
This is because XPages provides a robust and well-managed event-handling and page-
submission mechanism. Of course, in rare use cases, legacy Client Side JavaScript
code or libraries your application uses might be performing page submission using

The Public XSP Client Side JavaScript Object Functions   169  

document.forms[0].submit() or the like. Therefore, consider revising this
code to avoid page submission, instead favoring XPages’ own features or alternatively
modifying such code to use the XSP.canSubmit(), XSP.allowSubmit(), and XSP.
validateAll() functions to provide a more robust page submission behavior.

If the page is not submitted after a call to XSP.canSubmit(), this function should be
called to reenable the page submission mechanism. Listing 4.13 details an example call
of the XSP.allowSubmit() function within an event handler.

Listing 4.13  Example Call of the XSP.allowSubmit() Function

<xp:button value="XSP.allowSubmit()" id="button1">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="norefresh">

 <xp:this.script>

 <![CDATA[

 var canSubmit = XSP.canSubmit();

 XSP.alert("1. canSubmit: " + canSubmit);

 XSP.alert("2. lastSubmit: " + XSP.lastSubmit);

 if(XSP.lastSubmit > 0){

 XSP.alert("3. reset using allowSubmit");

 XSP.allowSubmit();

 }

 canSubmit = XSP.canSubmit();

 XSP.alert("4. canSubmit: " + canSubmit);

 XSP.alert("5. lastSubmit: " + XSP.lastSubmit);

 return canSubmit;

]]>

 </xp:this.script>

 <xp:this.action>

 <![CDATA[#{javascript:print("Submission Occurred")}]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

XSP.setSubmitValue(submitValue) : void

This function passes the submitValue parameter value to the server side where it
becomes available on the context object through the context.getSubmitted-
Value() method. This function should be called while processing a client-side event,
just before the event is submitted to the server. The most recent call of this function
takes precedence when multiple calls of this function are made before submission. List-
ing 4.14 details an example call of the XSP.setSubmitValue() function within an
event handler.

170  T he Public XSP Client Side JavaScript Object Functions

Listing 4.14  Example Call of the XSP.setSubmitValue() Function

<xp:button value="XSP.setSubmitValue()" id="button1">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="norefresh">

 <xp:this.script>

 <![CDATA[

 XSP.setSubmitValue(navigator.userAgent)

]]>

 </xp:this.script>

 <xp:this.action>

 <![CDATA[#{javascript:
➥print(context.getSubmittedValue())}]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

XSP.getSubmitValue() : object

This function retrieves the submit value set using the XSP.setSubmitValue() func-
tion prior to event submission. After event submission occurs, this function returns
null. Listing 4.15 details an example call of the XSP.getSubmitValue() function
within an event handler.

Listing 4.15  Example Call of the XSP.getSubmitValue() Function

<xp:button value="XSP.getSubmitValue()" id="button1">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="norefresh">

 <xp:this.script>

 <![CDATA[

 var value = XSP.prompt("1 + 1 equals?", 2);

 XSP.setSubmitValue(value);

 if(XSP.getSubmitValue() != 2){

 XSP.setSubmitValue("Incorrect");

 }

]]>

 </xp:this.script>

 <xp:this.action>

 <![CDATA[#{javascript:
➥print(context.getSubmittedValue())}]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

The Public XSP Client Side JavaScript Object Functions   171  

XSP.validateAll(formId, valmode, execId) : boolean

This function can be used to run client-side converters and validators before page sub-
mission to the server. The formId parameter must specify the form to validate. This is
useful in a multiform page. The valmode integer parameter must specify a value of 0,
1, or 2. 0 = No validation. 1 = Run converters only. 2 = Run Converters and Valida-
tors. The execId string parameter is optional and can be used to specify a single control
within the current page to validate. If null, the whole page is validated. Listing 4.16
details an example call of the XSP.validateAll() function within an event handler.

Listing 4.16  Example Call of the XSP.validateAll() Function

<xp:button value="XSP.validateAll()" id="button21">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var button = document.getElementById("
➥#{id:button21}");

 var form = XSP.findForm(button);

 var valmode = 2;

 var execId = "#{id:inputText3}";

 XSP.log(

 "form.id: " + form.id +

 " valmode=" + valmode +

 " execId=" + execId

);

 var result = XSP.validateAll(form.id, valmode,
➥execId);

 XSP.log("validation passed: " + result);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link id="link6">

 <xp:this.text>

 <![CDATA[#{javascript:

 viewScope.containsKey("r") ?

 "Exclude Field" :

 "Include Field"

 }]]>

 </xp:this.text>

 <xp:eventHandler event="onclick"

 submit="true" refreshMode="complete" immediate="true">

 <xp:this.action>

 <![CDATA[#{javascript:

172  T he Public XSP Client Side JavaScript Object Functions

 viewScope.containsKey("r") ?

 viewScope.remove("r") :

 viewScope.put("r", null)

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:link>

<xp:br></xp:br>

<xp:inputText id="inputText3"

 rendered="#{javascript:viewScope.containsKey('r')}"

 required="true">

 <xp:this.converter>

 <xp:convertDateTime type="both"></xp:convertDateTime>

 </xp:this.converter>

 <xp:this.validators>

 <xp:validateDateTimeRange minimum="2011-01-01T00:00:00"

 maximum="2011-12-31T00:00:00"
➥message="Out of date range!">

 </xp:validateDateTimeRange>

 <xp:validateRequired message="Please supply a date!">

 </xp:validateRequired>

 </xp:this.validators>

 <xp:dateTimeHelper></xp:dateTimeHelper>

</xp:inputText>

XSP.getFieldValue(node) : string

This function returns null if the node parameter is null or no value is set within the
target node. Otherwise, it returns the value as a string. This function returns a comma-
separated string value for the options of a multiple type node. This function returns the
checked value of a radio or check box type node. In the case of Date or Currency type
fields, the return value typically is in nonconverted and nonlocalized format. Listing
4.17 details an example call of the XSP.getFieldValue() function within an event
handler.

Listing 4.17  Example Call of the XSP.getFieldValue() Function

<xp:button value="XSP.getFieldValue()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var cbx = XSP.getElementById("#{id:checkBox1}");

 if(null != cbx){

 XSP.log("field value: " + XSP.getFieldValue(cbx));

The Public XSP Client Side JavaScript Object Functions   173  

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.getDijitFieldValue(dj) : object

This function returns null if the dj Dijit type parameter is null and is not a Dijit
that supports the getValue() function. Otherwise, it returns the value of the
dj.getValue() function as an object type—typically, this is a string value. Listing
4.18 details an example call of the XSP.getDijitFieldValue() function within an
event handler.

Listing 4.18  Example Call of the XSP.getDijitFieldValue() Function

<xp:button value="XSP.getDijitFieldValue()" id="button15">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 if(XSP.hasDijit()){

 var dj = dijit.byId("#{id:inputText4}");

 if(null != dj){

 var s = XSP.getDijitFieldValue(dj);

 XSP.log("digit field value: " + s);

 }

 }else{

 XSP.alert("Please click \"Include Dijit\"");

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link id="link5">

 <xp:this.text>

 <![CDATA[#{javascript:

 viewScope.containsKey("dj1") ?

 "Exclude Dijit" : "Include Dijit"

 }]]>

 </xp:this.text>

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 viewScope.containsKey("dj1") ?

174  T he Public XSP Client Side JavaScript Object Functions

 viewScope.remove("dj1") :

 viewScope.put("dj1", null)

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:link>

<xp:br></xp:br>

<xp:inputText id="inputText4"

 rendered="#{javascript:viewScope.containsKey('dj1')}">

 <xp:typeAhead mode="partial" minChars="1"

 ignoreCase="true" valueListSeparator=",">

 <xp:this.valueList>

 <![CDATA[1,2,3,4,5,6,7,8,9,10,20,30,40,50]]>

 </xp:this.valueList>

 </xp:typeAhead>

</xp:inputText>

XSP.validationError(clientId, message) : void

This function displays the XSP.error() dialog with the given message parameter.
It then shifts focus to the control specified by the clientId parameter. This function
returns void. All the XPages runtime client-side converters and validators use this
method to report any problems with entered data prior to page submission. Developers
who are building their own client-side validation code can use this function to report
problems using the default behavior or by overriding this function.

When XPages Client Side JavaScript code reports a validation or converter error, this
function invokes the XSP.error() dialog. Code in your application can override the
XSP.validationError() function to perform different behavior than that of display-
ing the error dialog. For example, you might make the text appear beside the control
that has the problem, as well as in the pop-up dialog, so that the information about the
problem is still available when the user has clicked OK in the dialog. Or you may want
to display a ToolTip message beside the offending input field.

Listing 4.19 details an example override and call of the XSP.validationError()
function within an event handler.

Listing 4.19  Example Call of the XSP.validationError() Function

<xp:scriptBlock id="scriptBlock6" loaded="${param.v == 'y'}">

 <xp:this.value>

 <![CDATA[

 XSP.validationError = function(clientId, message){

 XSP.djRequire("dijit.Tooltip");

 new dijit.Tooltip({

 connectId: [clientId],

The Public XSP Client Side JavaScript Object Functions   175  

 label: message

 });

 var e = this.getElementById(clientId);

 if(e) {

 if(e.select) e.select();

 if(e.focus) e.focus();

 }

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.validationError()" id="button16">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 XSP.validationError(

 "#{id:inputText5}",

 "Please provide a value!"

);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link style="margin-left:5px" text="Toggle Override" id="link7">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var href = document.location.href;

 if(XSP.endsWith(href, "?v=y")){

 href = href.substring(0, href.length -4);

 document.location.href = href;

 }else{

 document.location.href = href + "?v=y";

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:link>

<xp:br></xp:br>

<xp:inputText id="inputText5" loaded="${param.v == 'y'}">
➥</xp:inputText>

176  T he Public XSP Client Side JavaScript Object Functions

XSP.scrollWindow(x, y) : void

This function scrolls the current window to the specified x and y pixel coordinates. List-
ing 4.20 details an example call of the XSP.scrollWindow() function within an event
handler.

Listing 4.20  Example Call of the XSP.scrollWindow() Function

<xp:button value="XSP.scrollWindow()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var x = screen.availWidth;

 var y = screen.availHeight;

 XSP.scrollWindow(x, y);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.partialRefreshGet(refreshId, options) : void

This function programmatically executes GET-based partial refresh requests to the
XPages server-side runtime. The refreshId string parameter value must specify a fully
namespaced HTML DOM element ID (generated using #{id:<controlId>} syntax,
for example). This is the target receiver of the partial refresh response content. If the
target element cannot be found within the HTML DOM based on the given refreshId,
an error dialog appears with details of the missing element when this function is trig-
gered. The options parameter is optional and used to send custom parameters to the
server-side as GET request parameters. It can also specify onStart, onError,
and onComplete event function callbacks. These are triggered accordingly
during the request lifecycle. Listing 4.21 details an example call of the
XSP.partialRefreshGet() function within an event handler.

Listing 4.21  Example Call of the XSP.partialRefreshGet() Function

<xp:scriptBlock id="scriptBlock5">

 <xp:this.value>

 <![CDATA[

 function partialRefreshOnStart(){

 console.log("Partial Refresh Started");

 }

 function partialRefreshOnError(){

 console.log("Partial Refresh Error");

 }

 function partialRefreshOnComplete(){

The Public XSP Client Side JavaScript Object Functions   177  

 console.log("Partial Refresh Completed");

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.partialRefreshGet" id="button6">

 <xp:eventHandler id="eventHandler2" event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var secs = new Date().getUTCSeconds();

 var milliSecs = new Date().getUTCMilliseconds();

 var partialRefreshOptions = {

 "secs" : secs,

 "milliSecs" : milliSecs

 };

 XSP.partialRefreshGet("#{id:partialRefreshGetField}",

 {params : partialRefreshOptions,

 onStart : partialRefreshOnStart,

 onError : partialRefreshOnError,

 onComplete : partialRefreshOnComplete}

);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:text escape="true" id="partialRefreshGetField">

 <xp:this.value>

 <![CDATA[#{javascript:

 if(!param.isEmpty()){

 return param.secs + " : " + param.milliSecs;

 }

 }]]>

 </xp:this.value>

</xp:text>

XSP.partialRefreshPost(refreshId, options) : void

This function programmatically executes POST-based partial refresh requests to the
XPages server-side runtime. The refreshId string parameter value must specify a fully
namespaced HTML DOM element ID. This is the target receiver of the partial refresh
response content. If the target element cannot be found within the HTML DOM based
on the given refreshId, an error dialog appears with details of the missing element

178  T he Public XSP Client Side JavaScript Object Functions

when this function is triggered. The options parameter is optional and used to send
custom parameters to the server side as POST request parameters. It can also specify
onStart, onError, and onComplete event function callbacks. These are triggered
accordingly during the request lifecycle. An immediate request parameter can also be
included in the options content to control validation execution. Listing 4.22 details an
example call of the XSP.partialRefreshPost() function within an event handler.

Listing 4.22  Example Call of the XSP.partialRefreshPost() Function

<xp:scriptBlock id="scriptBlock5">

 <xp:this.value>

 <![CDATA[

 function partialRefreshOnStart(){

 console.log("Partial Refresh Started");

 }

 function partialRefreshOnError(){

 console.log("Partial Refresh Error");

 }

 function partialRefreshOnComplete(){

 console.log("Partial Refresh Completed");

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.partialRefreshPost" id="button13">

 <xp:eventHandler id="eventHandler3" event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var mins = new Date().getUTCMinutes();

 var secs = new Date().getUTCSeconds();

 var milliSecs = new Date().getUTCMilliseconds();

 var partialRefreshOptions = {

 "mins" : mins,

 "secs" : secs,

 "milliSecs" : milliSecs

 };

 XSP.partialRefreshPost("#{id:partialRefreshPostField}",

 {params : partialRefreshOptions,

 onStart : partialRefreshOnStart,

 onError : partialRefreshOnError,

 onComplete : partialRefreshOnComplete,

 immediate: true}

The Public XSP Client Side JavaScript Object Functions   179  

);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:text escape="true" id="partialRefreshPostField">

 <xp:this.value>

 <![CDATA[#{javascript:

 if(!param.isEmpty()){

 return param.mins + " : " + param.secs +

 " : " + param.milliSecs;

 }

 }]]>

 </xp:this.value>

</xp:text>

XSP.attachClientFunction(targetClientId, eventType,
clientScriptName) : void

This function attaches the clientScriptName function reference parameter to the
specified eventType string parameter value of the targetClientId string parameter
value element. The targetClientId must be a fully namespaced client-side element
ID. This function returns void. The clientScriptName parameter expects a Client
Side JavaScript function reference. Therefore, only function references without param-
eters can be specified. Use the XSP.attachClientScript() if you need to specify
complex function calls that include parameters. Listing 4.23 details an example call of
the XSP.attachClientFunction() function within an event handler.

Listing 4.23  Example Call of the XSP.attachClientFunction() Function

<xp:scriptBlock id="scriptBlock3">

 <xp:this.value>

 <![CDATA[

 var User = function(){

 var _un = "#{javascript:@UserName()}";

 function _UN(){ XSP.alert(_un) }

 return { name : _UN }

 }

 var user = new User();

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.attachClientFunction()" id="button49">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

180  T he Public XSP Client Side JavaScript Object Functions

 <![CDATA[

 XSP.attachClientFunction(

 "#{id:link4}", "onclick", user.name

)

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link style="margin-left:5px" text="Trigger" id="link4">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 // client script will be triggered!

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:link>

XSP.attachClientScript(targetClientId, eventType, clientScript) : void

This function attaches the clientScript string parameter to the specified eventType
string parameter value of the targetClientId string parameter value element. The
targetClientId must be a fully namespaced client-side element ID. This function
returns void. The clientScript parameter is of string type. Therefore, you can con-
struct a complex clientScript function call that includes parameter values within this
string value if required. Listing 4.24 details an example call of the XSP.attachCli-
entScript() function within an event handler.

Listing 4.24  Example Call of the XSP.attachClientScript() Function

<xp:scriptBlock id="scriptBlock3">

 <xp:this.value>

 <![CDATA[

 var User = function(){

 var _un = "#{javascript:@UserName()}";

 function _UN(){ XSP.alert(_un) }

 return { name : _UN }

 }

 var user = new User();

]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.attachClientScript()" id="button49">

 <xp:eventHandler event="onclick" submit="false">

The Public XSP Client Side JavaScript Object Functions   181  

 <xp:this.script>

 <![CDATA[

 XSP.attachClientScript(

 "#{id:link4}", "onclick", "user.name()"

)

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link style="margin-left:5px" text="Trigger" id="link4">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 // client script will be triggered!

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:link>

XSP.addOnLoad(listener) : void

This function attaches a Client Side JavaScript function to the current page’s onLoad
event. The listener function reference parameter must specify the Client Side
JavaScript function to be triggered on page load. Listing 4.25 details an example call
of the XSP.addOnLoad() function within an event handler.

Listing 4.25  Example Call of the XSP.addOnLoad() Function

<xp:scriptBlock id="scriptBlock1" loaded="${param.x == 'y'}">

 <xp:this.value>

 <![CDATA[XSP.addOnLoad(function(){alert("hello world!")})]]>

 </xp:this.value>

</xp:scriptBlock>

<xp:button value="XSP.addOnLoad()" id="button39">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var href = document.location.href;

 if(XSP.endsWith(href, "?x=y")){

 href = href.substring(0, href.length -4);

 }

 document.location.href = href + "?x=y";

]]>

182  T he Public XSP Client Side JavaScript Object Functions

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link style="margin-left:5px" text="Reset" id="link1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var href = document.location.href;

 if(XSP.endsWith(href, "?x=y")){

 href = href.substring(0, href.length -4);

 }

 document.location.href = href;

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:link>

XSP.showSection(sectionId, show) : void

This function toggles the expanded state of the specified section control using the client-
side sectionId string parameter value and show Boolean parameter value. Listing 4.26
details an example call of the XSP.showSection() function within an event handler.

Listing 4.26  Example Call of the XSP.showSection() Function

<xp:button value="XSP.showSection()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var id = "#{id:section1}";

 var section = document.getElementById(id);

 if(null != section){

 var closed = document.getElementById(

 id + "_closed").value;

 closed = (closed == "true") ? true : false;

 XSP.showSection("#{id:section1}", closed);

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:section id="section1" header="Sample Section" initClosed="true">

 <xp:image url="/xpIBMLogo.gif" id="image1"></xp:image>

</xp:section>

The Public XSP Client Side JavaScript Object Functions   183  

XSP.findForm(nodeOrId) : object

This function returns the parent FORM element from the HTML DOM of the current page
relative to the specified nodeOrId object parameter. Listing 4.27 details an example call
of the XSP.findForm() function within an event handler.

Listing 4.27  Example Call of the XSP.findForm() Function

<xp:button value="XSP.findForm()" id="button41">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var buttonId = "#{id:button41}";

 var button = XSP.getElementById(buttonId);

 var idForm = XSP.findForm(buttonId);

 var nodeForm = XSP.findForm(button);

 XSP.log("buttonId: " + buttonId);

 XSP.log("button: " + button);

 XSP.log("idForm: " + idForm);

 XSP.log("nodeForm: " + nodeForm);

 XSP.log("forms match: " + (idForm === nodeForm));

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.findParentByTag(nodeOrId, tag) : object

This function returns the nearest parent element relative to the specified nodeOrId tar-
get element that matches the specified tag string parameter value. Listing 4.28 details
an example call of the XSP.findParentByTag() function within an event handler.

Listing 4.28  Example Call of the XSP.findParentByTag() Function

<xp:button value="XSP.findParentByTag()" id="button41">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var buttonId = "#{id:button41}";

 var button = XSP.getElementById(buttonId);

 var idParent = XSP.findParentByTag(buttonId, "table");

 var nodeParent = XSP.findParentByTag(button, "table");

 XSP.log("buttonId: " + buttonId);

 XSP.log("button: " + button);

 XSP.log("idParent: " + idParent);

 XSP.log("nodeParent: " + nodeParent);

184  T he Public XSP Client Side JavaScript Object Functions

 XSP.log("parents match: " + (idParent ===
➥nodeParent));

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.getElementById(elementId) : object

This function retrieves an element from the HTML Document Object Mode (DOM),
based on the given elementId string parameter. This is similar to the common
document.getElementById() object function call but instead ensures cross-browser
operability. If the given fully namespaced client-side elementId is not found within the
DOM, this function returns void. Listing 4.29 details an example call of the
XSP.getElementById() function within an event handler.

Listing 4.29  Example Call of the XSP.getElementById() Function

<xp:button value="XSP.()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var element = XSP.getElementById("#{id:inputText1}");

 if(null != element){

 XSP.djRequire("ibm.xsp.widget.layout.xspClientDebug");

 var elementDump = XSP.dumpObject(element);

 var elementValue = element.value;

 XSP.log("Element Dump: " + elementDump);

 XSP.log("Element Value: " + elementValue);

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:inputText id="inputText1"

 value="hello!" style="width:50px"></xp:inputText>

XSP.hasDijit() : boolean

This function determines the existence of the dijit.byId() function within the cur-
rent HTML page. If dijit.byId() is present, you can then access Dojo widgets
directly using this function. This means you can retrieve Dojo widget objects directly
from the DOM using dijit.byId() for elements you understand to be Dojo widget
types. This contrasts with XSP.getElementById(), which always returns a plain
HTML DOM node. Listing 4.30 details an example call of the XSP.hasDijit() func-
tion within an event handler.

The Public XSP Client Side JavaScript Object Functions   185  

Listing 4.30  Example Call of the XSP.hasDijit() Function

<xp:button value="XSP.hasDijit()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var hd = XSP.hasDijit();

 XSP.alert("Dijit exists: " + hd);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

<xp:link id="link2">

 <xp:this.text>

 <![CDATA[#{javascript:

 viewScope.containsKey("dj") ?

 "Exclude Dijit" : "Include Dijit"

 }]]>

 </xp:this.text>

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 viewScope.containsKey("dj") ?

 viewScope.remove("dj") :

 viewScope.put("dj", null)

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:link>

<xp:br></xp:br>

<xp:inputText id="inputText2"

 rendered="#{javascript:viewScope.containsKey('dj')}">

 <xp:dateTimeHelper id="dateTimeHelper1"></xp:dateTimeHelper>

 <xp:this.converter>

 <xp:convertDateTime type="date"></xp:convertDateTime>

 </xp:this.converter>

</xp:inputText>

XSP.trim(s) : string

This function returns the given s string parameter value trimmed of leading and trailing
whitespace. Listing 4.31 details an example call of the XSP.trim() function within an
event handler.

186  T he Public XSP Client Side JavaScript Object Functions

Listing 4.31  Example Call of the XSP.trim() Function

<xp:button value="XSP.trim()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var s = " hello world! ";

 var b = s.length;

 s = XSP.trim(s);

 var a = s.length;

 XSP.alert("s length before trim: " + b);

 XSP.alert("s length after trim: " + a);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.startsWith(s, prefix) : boolean

This function determines whether a given string value contains the specified prefix
string at the beginning of its value. The specified prefix can be one or more characters in
length. This function returns a Boolean value. Listing 4.32 details an example call of the
XSP.startsWith() function within an event handler.

Listing 4.32  Example Call of the XSP.startsWith() Function

<xp:button value="XSP.startsWith()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var str = "#{javascript:@UserName()}";

 var result = XSP.startsWith(str, "Anon");

 if(result){

 XSP.alert(str + " starts with 'Anon'");

 }else{

 XSP.alert(str + " does not start with 'Anon'");

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.endsWith(s, suffix) : boolean

This function determines whether a given string value contains the specified suffix string
at the end of its value. The specified suffix can be one or more characters in length. This

The Public XSP Client Side JavaScript Object Functions   187  

function returns a boolean value. Listing 4.33 details an example call of the
XSP.endsWith() function within an event handler.

Listing 4.33  Example Call of the XSP.endsWith() Function

<xp:button value="XSP.endsWith()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var str = "#{javascript:@UserName()}";

 var result = XSP.endsWith(str, "ymous");

 if(result){

 XSP.alert(str + " ends with 'ymous'");

 }else{

 XSP.alert(str + " does not end with 'ymous'");

 }

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.toJson(o) : string

This function converts a JavaScript object parameter value to a String serialization of
that object. It then returns the JSON serialization of that object. Listing 4.34 details an
example call of the XSP.toJson() function within an event handler.

Listing 4.34  Example Call of the XSP.toJson() Function

<xp:button value="XSP.toJson()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var object = { x : "e=mc2", y : 3.14, z : false };

 var json = XSP.toJson(object);

 XSP.log("Type: " + typeof json);

 XSP.log("JSON: " + json);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.fromJson(s) : object

This function parses the specified s string parameter to return a JavaScript object. The
s parameter should contain JSON syntax that will be used in the transformation. If the

188  T he Public XSP Client Side JavaScript Object Functions

given s string parameter contains malformed JSON syntax, this function throws an
exception. The exception includes details of the syntax error. Listing 4.35 details an
example call of the XSP.fromJson() function within an event handler.

Listing 4.35  Example Call of the XSP.fromJson() Function

<xp:button value="XSP.fromJson()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 var json = "{ x : 'e=mc2', y : 3.14, z : false }";

 try{

 var object = XSP.fromJson(json);

 }catch(e){

 XSP.alert(e);

 }

 XSP.log("Type: " + typeof object);

 var dump = XSP.dumpObject(object);

 XSP.log("Dump: " + dump);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.log(message) : void

This function is useful as a client-side debug utility for opening a separate web browser
window where the given message string parameter values will be logged into. The
Notes client does not support this function. The log window is based on the following
characteristics:

width=300, height=600, scrollbars=yes, resizable=yes

status=no, location=no, menubar=no, toolbar=no

The given message parameter value is written into the newly created window contents
in descending order. That is, the most recent invocation of XSP.log() is written at the
top of the window, pushing previous log messages downward. The logging window
remains open during a browser session, allowing multiple XSP.log() messages to be
sequentially written into the log window. This function cannot be used in the Notes
client. Listing 4.36 details an example call of the XSP.log() function within an event
handler.

Listing 4.36  Example Call of the XSP.log() Function

<xp:button value="XSP.log()" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

How XPages Uses the Dojo Framework   189  

 <![CDATA[XSP.log("Hello World!")]]></xp:this.script>

 </xp:eventHandler>

</xp:button>

XSP.dumpObject(object) : string

This function is useful as a client-side debug utility for retrieving the members, proper-
ties, and functions of a given DOM element. This function returns such detail in string
format. It cannot be used in the Notes client. Listing 4.37 details an example call of the
XSP.dumpObject() function within an event handler.

Listing 4.37  Example Call of the XSP.dumpObject() Function

<xp:button value="XSP.dumpObject()" id="btnDumpObject">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 XSP.djRequire("ibm.xsp.widget.layout.xspClientDebug");

 var options = {name:"Dump of button object", depth:2};

 var button = document.getElementById
➥("#{id:btnDumpObject}");

 var dumpResult = XSP.dumpObject(button, options);

 XSP.log(dumpResult);

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

How XPages Uses the Dojo Framework

The Dojo Toolkit is an open-source JavaScript framework, available from dojotoolkit.
org. Among its many functions, Dojo has a set of utilities for use in your scripts, such
as dojo.isIE() to test whether the browser is Internet Explorer. Dojo includes a
set of controls, such as a Slider control allowing a number to be chosen by selecting a
point on a rule, and the BorderContainer control, which can split the page into multiple
areas—perhaps with menus on the left, a header at the top, and the main content in the
center. Dojo also has a handy mechanism for arranging your JavaScript files as modules
that depend on each other. For example, you could put the main scripts for your page in
a module named app.Main, which might depend on your app.Styling script and on the
Dojo dojo.fx animation effects module. Your HTML page would need to declare only a
dependency on the app.Main module, and all the other .js files would be loaded auto-
matically. Leveraging the Dojo Toolkit means that the toolkit usually takes care of dif-
ferences in the context that are available to JavaScript in different browsers. It provides a
useful set of well-documented functionalities.

190   Dojo Types and Attributes

The XPages runtime uses the Dojo Toolkit as the underlying technology for most of its
browser JavaScript functions. The XSP Client JavaScript Object is implemented using
Dojo. Some of the XPages controls are implemented as controls using the Dojo widget
framework. The XPages Date/Time Picker control is Dojo based, as is the Type Ahead
control, which is configured through the Edit Box editor’s Type Ahead tab. The XPages
Rich Text control used the Dojo Editor control in versions 8.5.0 and 8.5.1. Since version
8.5.2, the Rich Text Control has been using the CKEditor from the company CKSource,
with a thin Dojo wrapper used to integrate it into the XPages.

It is often advisable to use the Dojo technology directly in your applications. As dis-
cussed in the previous section, for simpler applications, you don’t actually need to use
Dojo: The XSP Client JavaScript Object has all the functionality you need. However, if
you are doing more advanced scripting, it will probably be useful to use the Dojo APIs
instead of developing your own utilities or attempting to use some other browser frame-
work. Examples of such advanced scripting might be using JavaScript manipulation of
the browser-side element tree (the Document Object Model, or DOM), programmatically
applying styles, and attempting to build reusable controls from HTML with JavaScript
for the user interaction behaviors. Also, although you don’t really need Dojo, the set of
controls it provides can give a richer experience to your users with little extra effort on
your own part.

Chapter 1 discusses where to find Dojo on the Domino server file system, the differ-
ent versions of Dojo that are included in different Domino server versions, and how to
change the current Dojo version. See the discussion of the option xsp.client.script.dojo.
version and the related xsp.client.script.dojo.djConfig option.

Before diving deeper, if you want to get more information on Dojo in general, the
documentation provided on dojotoolkit.org is probably a good place to start:
http://dojotoolkit.org/documentation/.

Dojo Types and Attributes

Properties on various XPage controls facilitate easy configuration of Dojo options
and Dojo controls. If you have existing Dojo-based code that you want to reuse, it is
mostly possible to just treat the Source tab of the XPages editor like an HTML editor
and insert snippets of HTML that use the Dojo controls. However, it is usually more
convenient to use the XPages Dojo integration—indeed, this may be necessary if you
are using input controls that need to save field values to Domino documents. The main
properties that support Dojo are the properties dojoType and dojoAttributes, avail-
able on most controls. You also need to configure the XPage root control to enable the
dojoParseOnLoad property and to configure some Dojo Module resources. Also, if
you are attempting to use a Dojo UI control instead of a utility, you must configure the
themes and styling for the page.

To illustrate, we next show how to enable the Dojo Number Spinner control. This
control contains an edit box with small plus and minus buttons beside it to increase or
decrease the number value present in the edit box. Because control inputs a value, we

http://dojotoolkit.org/documentation/

Dojo Types and Attributes   191  

need to select a server-side XPages control that knows how to process the entered value
and save it to the document field. Here we start with a simple XPage containing an Edit
Box control (with tag xp:inputText) that has been configured to accept number val-
ues, as in Listing 4.38.

Listing 4.38  Sample Page with Edit Box Before Adding Dojo Number Spinner

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="http://www.ibm.com/xsp/core">

 <xp:inputText id="inputText1" value="#{viewScope.age}">

 <xp:this.converter>

 <xp:convertNumber type="number"></xp:convertNumber>

 </xp:this.converter>

 </xp:inputText>

</xp:view>

When using a Dojo control that is simply presentational, doing some layout instead of
inputting a value, you might want to start with an XPages Panel control or the XPages
Paragraph control.

The dojoType property is where you indicate which Dojo control will replace this
XPage control in the browser. When you look up the Dojo documentation for the
Number Spinner control, you will see that its full dojoType name is dijit.form.
NumberSpinner. Dijit is pronounced like digit and is short for Dojo widget. The full
names of the Dojo visual controls begin with dijit; the utilities begin with dojo. You
can set that full dojoType name as the value of the Edit Box dojoType property.

The dojoAttributes property is used to further configure the Dojo control. In the Dojo
documentation, you will find the list of Dojo properties for the Number Spinner control.
For example, you might set the smallDelta property, indicating by how much the
value in the edit box will be increased or decreased when clicking the plus and minus
buttons. To set the smallDelta to 5, you would add a Dojo Attribute, set its name to
smallDelta, and set its value to 5. You can add more Dojo Attribute objects if you
need to further configure the Dojo control.

At this point, we need the dojoParseOnLoad property of the XPage root control. If you
open the XPage in the browser with only the dojoType and dojoAttributes pres-
ent, the HTML page will contain those values, but the edit box will appear unchanged
as a normal Edit Box control. You need to enable an option to ensure that the Number
Spinner dojoType value in the HTML is noticed as corresponding to the Dojo Num-
ber Spinner control so that it attempts to replace the edit box with the Number Spinner
control. This process, which finds all dojoType values and creates the corresponding
Dojo control, is known as the Dojo Parser. Set the dojoParseOnLoad property of the
XPages root control to true to enable the Dojo Parser.

The next step is to add the Dojo Module resource for the number spinner to the XPage
root control. Without the Dojo Module resource, you will be see a browser JavaScript

192   Dojo Types and Attributes

error complaining that it doesn’t understand the full name for the number spinner. The
error message looks like this:

Could not load class 'dijit.form.NumberSpinner'

That problem occurs when you attempt to use a dojoType without declaring a depen-
dency on that full dojoType name in the header of the web page. The dependency is
established by adding a Dojo Module resource to the XPage root control. You need to
add module resource only once for a specific dojoType; after that, you can use that Dojo
control as often as you like in the XPage. In the XPages editor, select the XPage root
control; in the Resources tab, choose Add, Dojo Module; and enter the full dojoType
name as dijit.form.NumberSpinner.

Usually the last step is to set the dojoTheme property on the XPage root control to
true. At this point, the Dojo control appears on the web page but may appear badly
styled, with some elements of the control appearing badly shaped, in ugly colors or not
correctly positioned relative to other elements. The solution here is to ensure that the
CSS styles for the Dojo control are available in the page header and that the page body
is using those styles. The CSS for XPages generally is configured through XPages theme
files, which are XML files that reference CSS files and can define styles for different
types of controls. The XPages theme for an application is configured using the xsp.
theme option, explained in Chapter 1. Dojo has its own Dojo themes, which are named
sets of CSS files providing styling for all the Dojo controls. The integration between
both kinds of themes is achieved through the dojoTheme property on the XPages root
control. That property should be set to true in an XPage to indicate that this page is
using Dojo controls and, hence, that some Dojo theme CSS files should be included for
this page. The default XPages themes, known as webstandard and oneui, honor that
dojoTheme property by adding the CSS files for the Dojo default theme, known as
tundra. (The tundra color scheme generally uses a lot of blue and gray colors and looks
attractive.) If you are providing your own XPages runtime themes, keep in mind that you
need to use one of the Dojo themes when the XPages are using Dojo controls, as some
of the controls are nonfunctional without some vital CSS behavior.

The last few Dojo-related properties in XPages are the dojoForm property and the
Dojo Module Path resource, both on the XPages root control. The dojoForm property
indicates that the automatically generated HTML form tag that appears in every XPage
should have the attribute dojoType="dijit.form.Form". It is not usually neces-
sary—see the Dojo documentation for that control for details. It is also possible
to explicitly specify your own form control by setting the XPages root control
createForm property to false and adding the tag xp:form to the Source tab of the
XPages editor. The Dojo Module Path resource indicates a location from which Dojo
modules, JavaScript files, may be loaded. The resource is used when providing Dojo
modules within your application or somewhere on the server file system instead of just
reusing the existing modules provided by the Dojo Toolkit. For an example, see the dis-
cussion of the xsp.client.script.dojo.djConfig option in Chapter 1.

When the page has been fully configured to use the Dojo Number Spinner, the XPage
Source tab is as shown in Listing 4.39.

Working with Dojo Dijits   193  

Listing 4.39  Sample Page Using a Dojo Number Spinner

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="http://www.ibm.com/xsp/core" dojoParseOnLoad="true"

 dojoTheme="true">

 <xp:this.resources>

 <xp:dojoModule name="dijit.form.NumberSpinner"></xp:dojoModule>

 </xp:this.resources>

 <xp:inputText id="inputText1" value="#{viewScope.age}"

 dojoType="dijit.form.NumberSpinner">

 <xp:this.converter>

 <xp:convertNumber type="number"></xp:convertNumber>

 </xp:this.converter>

 <xp:this.dojoAttributes>

 <xp:dojoAttribute name="smallDelta" value="5"></xp:dojoAttribute>

 </xp:this.dojoAttributes>

 </xp:inputText>

</xp:view>

Working with Dojo Dijits

Aside from the basic instructions on using Dojo Dijit controls given in the previous
section, you need to be aware of various other issues when using Dojo controls with
XPages.

Common issues related to the interaction of Dojo and XPages are listed here:

	 n	 The format of IDs in the HTML source means the #{id: syntax is required.

	 n	 Scripts accessing Dojo controls need to use dijit.byId.

	 n	 Dojo controls are not available while the HTML page is loading.

	 n	 Bad AJAX requests to an XPage can cause loss of data.

	 n	 XPages input validation can interact with Dojo layout controls.

	 n	 Dojo control interaction with XPages partial update.

Those issues will be discussed in more detail in the following sections.

IDs in the HTML Source and the Requirement to Use the
“#{id:” Syntax

In XPages, when you specify the ID of an Edit Box as inputText1, the ID that
appears in the browser looks like view:_id1:inputText1—that is, a prefix, a colon
(:), and then the ID that was present in the XPage source. The actual ID that appears
in the browser is known as the clientId and is likely to change as you develop your
application. This has an impact when you develop applications using Dojo because it is

194   Working with Dojo Dijits

common in Dojo to find the element corresponding to an ID to check the current value,
to change the element’s styling or otherwise interact with the element.

The purpose of the clientIds in XPages is to ensure that IDs in the HTML page will
always be unique to that HTML element. For example, clientIds are used to ensure
HTML ID uniqueness within an XPages repeat control. So for an Edit Box with ID
inputText1, in a Repeat control named repeat1, the generated HTML IDs would be
like so:

view:_id1:repeat1:0:inputText1

view:_id1:repeat1:1:inputText1

view:_id1:repeat1:2:inputText1

Similarly, clientIds ensure uniqueness when different Custom Controls are used.
The XPages XML editor ensures ID uniqueness within a Custom Control, but different
Custom Controls are likely to be using the same IDs for similar controls. If there are
Custom Controls with IDs custom1 and custom2, and each contains an Edit Box with
ID inputText1, then in the HTML source, the Edit Box controls will have HTML IDs
like this:

view:_id1:custom1:inputText1

view:_id1:custom2:inputText1

Usually, Custom Control tag instances do not have explicit IDs. In this case, control IDs
are automatically assigned, as with _id5 and _id6 in the following example. So the pre-
vious example would more likely appear like this:

view:_id1:_id5:inputText1

view:_id1:_id6:inputText1

Those automatically generated IDs are unstable while the application is in active devel-
opment. As you work on pages, adding or removing controls before the edit boxes, the
id5 number increases or decreases accordingly.

The likelihood of clientId values changing during application development means
that the normal Dojo means of accessing elements will not consistently work in XPages.
Listing 4.40 shows a number of such examples.

Listing 4.40  JavaScript Snippet Showing IDs That Do Not Work in XPages

// Bad scripts. These will not work

// consistently in an XPage.

var editBox;

editBox = XSP.getElementById("inputText1");

editBox = dojo.byId("inputText1");

editBox = dojo.byId("view:_id1:inputText1");

editBox = dijit.byId("inputText1");

editBox = dijit.byId("view:_id1:inputText1");

Working with Dojo Dijits   195  

Instead, you should compute the IDs using a server-side computation snippet inserted
into the browser JavaScript scripts. So the first function call in Listing 4.40 could be
changed to either of the examples shown in Listing 4.41.

Listing 4.41  JavaScript Snippet Showing ID Formats That Work in XPages

editBox = XSP.getElementById(

 "#{javascript:getClientId('inputText1')}");

editBox = XSP.getElementById("#{id:inputText1}");

The first example there uses the normal syntax for doing a Server Side JavaScript
computation inline in some browser JavaScript. It invokes the SSJS global function
getClientId(String): String, which finds the first Edit Box control instance
with ID inputText1 in the server-side control tree, relative to the context of the
getClientId() call (within a Custom Control versus within a whole page). The
second example is the specialized id: script engine; because the use case to look up
the clientId occurs so often, there is a special shortened syntax for the lookup. The
second example is functionally the same as the first example; it finds the clientId of
the closest control with the control ID inputText1.

A limitation states that the id: script engine and the Server Side JavaScript syntax will
be evaluated only for client JavaScript that is inline within an XPage. They are not eval-
uated in Client Side JavaScript libraries (within application *.js files). If you do use the
id: syntax within a *.js file, the Client Side JavaScript engine of the target browser sim-
ply treats it as a string literal. There are some common workarounds for that scenario.
You might be able to compute the clientIds in the XPage and pass the computed IDs as
parameters to the functions you’re invoking in your script library. If you know outright
that the control you’re working with is a direct parent or first child of the DOM node
you need to interact with, you can use the DOM parentNode reference or whatever
DOM element API is particular to your situation. Finally, you can set a specific style
class to act as a marker on the control and use the Dojo utilities to do a lookup by class.
So for an age field in an XPage, you might set styleClass="ageField", and then
dojo.query(".ageField") will find the list of nodes with that style class. The dot
in the query means it is matching a class name instead of the node name (div, input
etc)—see the dojo.query documentation for more detail.

Scripts Accessing Dojo Controls Need to Use dijit.byId

Client JavaScript scripts used on an XPage often look up and access the HTML element
corresponding to a control. The most common use case is to check the value of an input
control in the browser, like this:

var value = XSP.getElementById("#{id:inputText}").value;

In this example, the Edit Box control is outputting a single HTML input tag that corre-
sponds to an element in the browser DOM tree; the value of the element is available by
referencing the .value property.

196   Working with Dojo Dijits

Dojo controls are different than plain HTML controls, in that they often consist of mul-
tiple elements in the browser tree. For example, the XPages Date Time Picker control
consists of a container area, an edit box, a button to launch a calendar pop-up, and a
calendar pop-up. In this case, when you attempt to find the element that corresponds to
the date picker ID, the element found is the container area, which does not have a value.
There is no easily predictable way to find the element within a Dojo control that contains
the actual control value.

The solution is, instead of finding the element corresponding to the clientId, to find
the Dijit object that corresponds to the clientId. The Dijit object is created when the
page is loaded and represents the entire Dojo control. The Dojo Toolkit website has API
documentation that explains all the functions and properties available on the controls
provided with Dojo. The Dojo controls that are intended to behave as input controls
usually have a .value property, used to set and retrieve the control value. The method
to find the Dijit object is dijit.byId. Note that the dojo.byId is the same as
XSP.getElementById and returns just the HTML element with the given ID—you
need to ensure that, when dealing with Dojo controls, you use the dijit.byId method
instead of accessing the element. The previous example then becomes this:

var value = dijit.byId("#{id:inputText}").value;

The last point to note about the dijit.byId function is that it is not always available
to call on an XPage; it is available only when there is some Dojo control on the page.
The main dijit object is usually available, though, so before calling the function, you
might need to explicitly check whether the function itself is available. If you’re not sure
whether there is a Dojo control on the XPage, the code to look up a Dijit object looks
like this:

var editBoxDijit = XSP.hasDijit() ? dijit.byId
➥("#{id:inputText1}"):null;

Dojo Controls Are Not Available While the HTML Page Is Loading

Dojo developers will be familiar with the issue surrounding Dojo control availability
while the HTML page is loading, but classic XPages developers might not have encoun-
tered it. An issue arises when you write browser JavaScript code in an HTML script
element or in an XPages Output Script control (xp:scriptBlock) that interacts with
the HTML elements or the Dojo Dijit objects corresponding to Dojo controls. Code
within an HTML script element is executed while the HTML page is loading in the
web browser—code at the top of the page is executed before the server sends the end
of the HTML page. The Dojo Parser process, which creates Dojo Dijit objects from the
HTML output, executes only after the HTML page has finished loading in the browser
because it needs to search the entire HTML page to process every element in the page.
The Dojo controls usually edit the DOM browser tree of elements, replacing the HTML
content sent by the server with a template of HTML particular to this control. For
instance, the XPages Date Time Picker control replaces a single HTML input element
with a container area, an input control, and a button that can launch the calendar pop-
up. So because the HTML element tree changes during the Dojo Parser process, scripts

Working with Dojo Dijits   197  

that interact with the HTML tree upon page load should usually wait until after the Dojo
Parser has completed. Before the parser has completed, the Dojo Dijit objects will not be
available, and the HTML elements that are present initially will be deleted and replaced
by different HTML elements after the Dojo controls apply their control-specific HTML
template.

Any scripts that need to run while the page is initially loading should use either the
onClientLoad event or the XSP.addOnLoad method.

In version 8.5.2, the onClientLoad event was added to the Panel control, the XPage
root control, and the Custom Control root control. The event is triggered after the Dojo
parser has finished processing the HTML page. You can specify some client JavaScript
for the event in the Domino Designer XPages Editor, in the Events view, on the Client
tab. Listing 4.42 shows example XSP markup for the onClientLoad event.

Listing 4.42  XPage Snippet Accessing Dijit Objects When a Page Loads,
After the Dojo Parser

<xp:panel>

 <xp:eventHandler event="onClientLoad" submit="false">

 <xp:this.script><![CDATA[

 var inputText1 = dijit.byId("#{id:inputText1}");

 // modify the Dojo input control here ..

]]></xp:this.script>

 </xp:eventHandler>

</xp:panel>

<xp:scriptBlock id="scriptBlock1">

 <xp:this.value><![CDATA[

 XSP.addOnLoad(function sb1_func(){

 var inputText1 = dijit.byId("#{id:inputText1}");

 // modify the Dojo input control here ..

 });

]]></xp:this.value>

</xp:scriptBlock>

Before version 8.5.3, onClientLoad was not available, so the solution was to use
XSP.addOnLoad in the Output Script control, or in the HTML script element. See
the previous listing for an example. For more details, see the section on the XSP.
addOnLoad function.

Bad AJAX Requests to an XPage Can Cause Loss of Data

Certain Dojo controls are commonly used with AJAX requests. The acronym, which is
short for Asynchronous JavaScript and XML, refers to the technique of using browser
JavaScript in a web page to make a background request to a server for some data. In
some Dojo controls, the data being displayed is separate from the UI widget displaying
the data. In that case, the browser data store object is implemented using the dojo.data

198   Working with Dojo Dijits

APIs. Those data store objects commonly use AJAX requests to fetch the values to be
displayed from the server. An example of a control that uses data stores in this manner is
the dojox.grid.DataGrid control, which displays a spreadsheet-like representation
of a table of values.

When making such AJAX requests in an XPages context, the requested page usually is
either a request to an XPage or a request to another server via the Domino HTTP-Proxy
Servlet. You can search the Domino Administrator help documents to find details of
the HTTP-Proxy. When making repeated requests to an XPage, a danger of data loss
arises for values entered in the current page. When a browser initially opens an XPage,
a control tree instance is created server side for that XPage, and further interaction with
the same page uses the same server-side control tree until you navigate to a different
page. Those control trees are saved on the server in a cache, with only the 5 or 16 most
recently accessed control trees preserved, depending on the cache configuration. If you
configure your page to request the HTML from some XPage and you do not specify
the ID of the control tree to be used, a new control tree is created on the server. If you
repeatedly request new XPage control trees, the cache eventually drops the main page
that the browser displays. In that case, the next time you try to interact with the main
page control tree, it will not be available and all the values entered in the browser will
be lost as the page displays in its initial state. You can find further discussion of the con-
trol tree cache in Chapter 1, in the section discussing the xsp.persistence.mode option,
especially the subsection “Cache Size Limits and XPages Behavior When Limits Are
Encountered.”

To prevent loss of data when doing AJAX requests, including using the commonly
embedded XHR APIs within all modern browsers, you need to include the ID of the
control tree to be restored in your request. The simplest way is to use XSP.partial-
RefreshGet and XSP.partialRefreshPost, which can request only the current
XPage. Those functions ensure that the request includes the control tree ID—they are
discussed earlier in this chapter. The control tree ID is available in the web page in a
hidden input field with the name $$viewid. If you need to request data from a different
XPage instead of the current XPage, you should read that page’s control tree ID from the
first page response and use the same ID in all subsequent requests to that XPage.

Note that there are a few techniques for using an XPage to serve data to be used with
the dojo.data API. In each case, you must ensure that the control tree ID is sent in
the request. Your XPage can serve some JSON or XML content by invoking a partial
update of a Computed Field control with style="display:none" and computed
content in the JSON format. Another technique for using an XPage to serve non-HTML
content was developed by Domino users on the Internet. The technique involves using
the JSF FacesContext and ExternalContext.getResponse() objects—search for XPages
responseComplete for details. Finally, the project XPages Extension Library on
openNTF.org has a REST Service control that provides more intuitive ways of serving
JSON data from an XPage.

XPages Input Validation Can Interact with Dojo Layout Controls

In XPages, it is possible to mark an Edit Box as required. When users attempt to sub-
mit a page where the required value is absent, they will get a pop-up dialog explaining

Working with Dojo Dijits   199  

that the value is required, or the error message may appear in a Display Errors control.
Similarly, if you have an Edit Box that is configured to accept a date value and the user
enters some nondate text, an error displays explaining that the value must be a valid
date. Those error messages can occur whenever an edit box has some configured valida-
tors or converter.

The input validation has implications for Dojo layout controls that do not display all
their content at the same time. For example, the Dojo Tab Container control contains
multiple tab areas that can contain normal controls such as Edit Boxes, but only the
contents of the currently selected tab are shown at any time. The user can click on a dif-
ferent tab to see that tab’s content area, hiding the previous tab’s content area. Similarly,
the Dojo Stack Container control has multiple content areas, with only one area visible
at any time.

In the non-Dojo XPages Tabbed Panel control, when the HTML is output for the page,
only the content of the current tab is sent to the browser. When you switch to a differ-
ent tab, any validation problems in the current tab are displayed and prevent the switch
to the different tab. Only when all the validation problems are resolved is it possible to
switch tabs.

When using the Dojo Tab Container control, usually all the contents of all the tabs are
sent to the browser; when you switch tabs, no interaction with the server takes place and
validation does not occur. When you attempt to do a submit action on a page with a Tab
Container control, the validation occurs for all the content in all the tabs. So you might
get error messages that a required field value is absent, complaining about a field that is
not visible because it is in a deselected tab’s content area.

When such errors occur, usually the edit box values are not saved and the action associ-
ated with the submit event does not occur. If your submit event is not intended to act as
a save action, you can avoid the validation errors by configuring the submit event. To
configure the submit event to neither update the values nor display validation messages,
you can use the Event Handler immediate property. Since version 8.5.2, it is possible
to configure the submit event to both convert and update the values, but not to use the
validators, so only conversion error messages can occur, not validation error messages.
That is configured by using the Event Handler disableValidators property. If your
submit event is intended to do a save action, the user should enter all the required field
values before doing the save. In that case, you should make it easier for the user to
understand which fields have associated error messages, by supplying custom error
messages for each field. The default error message for the required validation is
Validation Error: Value is required. You might change that to something
like The age value is required in the User Details tab.

Dojo Control Interaction with XPages Partial Update

The XPages partial update functionality allows an area of a web page to be updated. The
current browser state is sent to the server, and only the HTML output of the target area
is returned and updated in the web page. From a Dojo point of view, it is necessary to

200   Working with Dojo Dijits

understand the low-level behavior. When the updated area is returned from the server,
the old contents of the area are removed and disposed; then the new content of the area
is inserted and initialized. So the Dojo controls within the target area are discarded and
then re-created.

The most obvious repercussion is that the state of the Dojo control is lost. So if you
have a Dojo Tab Container control where the second tab is selected and you do a partial
update of an area that includes that Tab Container, the Tab Container reverts to its ini-
tial state with the first tab selected. The only state that is likely to remain after a partial
update is the value of input controls. Input control values are submitted, and the server-
side Edit Box control redisplays the submitted value in the response.

The other implications should apply only when you are building your own Dojo control.

When building a Dojo control, you should verify its behavior when placed inside a par-
tial update area. People tend to implement their initialization behavior correctly because
they need it to verify that the control works, but they might not pay as much attention to
their destroy function. The key is to ensure that your control doesn’t leave any artifacts
in the page after it is destroyed. For instance, if your control creates an HTML div ele-
ment under the main body tag (or anywhere outside of the area that will be deleted), it
should remove that element during the destroy function, to prevent duplication of the
element after the new target area content is inserted. Also, if your control program-
matically creates and registers any Dijit objects in the Dijit registry besides the main
Dijit object corresponding to the control ID, you must ensure that your dispose method
removes the Dijit object. Otherwise, when the updated content is inserted, the Dijit reg-
istry will not allow the new copy of the Dijit object to be registered—it will fail, com-
plaining about duplicate IDs.

Finally, when building a Dojo control, you should verify its behavior when the control
is the target of a partial update—that is, when your Dojo control is being explicitly
targeted, not just when your control is within an updated area. Issues might arise if
your control is designed to have multiple Dijit objects. The XPages partial update code
expects the Dijit object corresponding to the control ID to act as the container object and
will destroy that Dijit and replace its domNode HTML element with the response from
the server. If you have multiple Dijit objects that correspond to an XPage control, and
the Dijit using the control ID is not the outermost container Dijit, the outer Dijits can
remain after the main Dijit object is destroyed. This can lead to a build-up of outer ele-
ments because each newly created outer element will remain while the inner Dijit with
the control ID is repeatedly replaced by both an outer and an inner Dijit. If possible, the
solution should be to change your Dojo control so that the outermost Dijit object has the
control ID. Otherwise, you can work around the issue by assigning the outermost Dijit
object the ID with suffix Container. That is, when updating an area with the HTML
ID view:_id1:inputText1, the partial update function will check for the existence of
a Dijit object with the ID view:_id1:inputText1_Container. If found, that Dijit’s
domNode will be used as the target area.

Client-Side Debugging Techniques   201  

Client-Side Debugging Techniques

Now that you have learned about the XSP Client Side JavaScript object and XPages
use of the Dojo framework, no doubt you want to dive in and start writing Client Side
JavaScript code. Before you do so, a quick review of the debugging options available to
you is useful, in case your Client Side JavaScript code does not work according to plan
every time.

When Client Side JavaScript code breaks down, it can be difficult to detect the source
of the error without the aid of debugging APIs and tools. The most primitive initial
step you often see used in tracking down errors is the insertion of alert() statements
directly into the JavaScript code, as the developer desperately seeks to establish whether
a particular piece of code is being called—or, if so, to show the value of critical vari-
ables at that point in the execution stack. This is a perfectly valid technique that works as
well in XPages as any other browser-based development environment. Moving beyond
that, some more advanced debugging features are relevant in both the XSP object and
the Dojo framework, described as follows.

XSP Object Debug Functions

In the earlier section, “The Public XSP Client Side JavaScript Functions,” you learned
details on two useful debug utility functions, XSP.log() and XSP.dumpObject().
Both are listed with worked examples and are used throughout several of other
examples, particularly the XSP.log() function. However, both of these functions are
restricted to the web and mashup platforms. Therefore, incorporating these functions into
your XPiNC application will not break the application because they simply will not do
anything.

The important point to take away is that typical XPages development happens initially
within the web platform before other platforms are considered. Therefore, both of these
functions can be incorporated into your application and used for web debugging from
the start.

One rather useful technique to consider using within your Client Side JavaScript is to
use a debug flag with test blocks. The intent of this technique is to provide a single
global Boolean debug variable or function acting as the debug flag. Then throughout
your Client Side JavaScript code, if test blocks are either entered or bypassed, based
on the debug flag value during execution. If entered, you can do such things as use the
XSP.log() and XSP.dumpObject() functions to output vital debug and state informa-
tion. Listing 4.43 details an example of the aforementioned technique.

Listing 4.43  Example of the Debug Flag and Test Block Debug Technique Using the
XSP.log() and XSP.dumpObject() Functions

<xp:scriptBlock id="scriptBlock7">

 <xp:this.value>

 <![CDATA[

 // flag in Client Side JavaScript scriptBlock function

202   Client-Side Debugging Techniques

 // value is preprocessed using a bean in the server-side

 function isClientSideDebugMode(){

 var _DEBUG_MODE =

 #{javascript:adminBean.isClientSideDebugMode()};

 if(null == _DEBUG_MODE){

 _DEBUG_MODE = true;

 }

 return _DEBUG_FLAG;

 }

]]>

 </xp:this.value>

</xp:scriptBlock>

...

<xp:button value="Execute" id="button1">

 <xp:eventHandler event="onclick" submit="false">

 <xp:this.script>

 <![CDATA[

 // output client-side debug info for debug mode...

 if(isClientSideDebugMode()){

 XSP.djRequire(

 "ibm.xsp.widget.layout.xspClientDebug"

);

 var options = {depth:4};

 var iFld = document.getElementById("#{id:iFld}");

 var dumpResult = XSP.dumpObject(iFld, options);

 XSP.log(dumpResult);

 }

 // process client-side app workflow / logic...

 addToShoppingCart();

 presentCustomerConfirmation();

 // ...

]]>

 </xp:this.script>

 </xp:eventHandler>

</xp:button>

Client-Side Debugging with Dojo

As mentioned in the introduction to this section, the use of the alert() statement as a
basic debugging print output utility has a similar companion in debugging tools, namely
the console.log() function. Basically, this function accepts a string value as an input
parameter and prints it to the debug console, where it can be viewed at runtime using
your favourite JavaScript debugging tool. Unlike the alert() statement, it does not

Client-Side Debugging Techniques   203  

cause a modal dialog to interrupt the execution of your code. Apart from that, however,
they are typically used for the same purposes from a debugging perspective—printing
variable values, showing code path hits in the execution stack, and so forth.

The Dojo framework has many more powerful debugging features that can be turned on
or off via the djConfig object. You were already introduced to the djConfig object in
the section “xsp.client.script.dojo.djConfig” in Chapter 1. There you learned how to use
the xsp.properties file to assign debug parameter values to the djConfig option,
as with isDebug:true. This property instructs Dojo to load its extended debugging
machinery, which can then be surfaced in debugging tools such as Firebug. For example,
Dojo’s built-in debug console is exposed in this way, and you can see the output of any
console.log() statements included in your JavaScript code. Some other djConfig
parameter values that are useful for debugging are debugAtAllCosts and
debugContainerId. The former guarantees an accurate stack trace for any
try/catch errors that may occur in the client-side modules, while the latter can be
used to associate a debug inspector window, such as the FirebugLite console window,
with a particular DOM element. More information is available on these options on
dojotoolkit.org—for instance, here: http://dojotoolkit.org/reference-guide/quickstart/
debugging.html.

Debugging Dojo 1.6.1 or Later Versions

In an earlier tip, a technique was described for debugging versions of Dojo prior to 1.6.1.
Since Dojo 1.6.1 (and any subsequent Dojo version that ships with the XPages runtime)
is kitted as a plug-in, a modified technique is needed to be able to debug the JavaScript
code in an intuitive way. The steps are outlined as follows:

	 1.	 Switch to the traditional Dojo location unjder the Notes/Domino data folder
domino\js\dojo-1.x.x\ibm\xsp\widget\layout.

	 2.	 Create a new directory comprised of the Dojo version name followed by a source
suffix—for example, Dojo-1.6.1.source.

	 3.	 Locate the Dojo plug-in the OSGi folder under the Notes/Domino root direc-
tory (an example follows) and unpack the JAR into the new folder: osgi\shared\
eclipse\plugins\com.ibm.xsp.dojo_8.5.3.yyyymmdd-hhmm.jar.

	 4.	 Find the JavaScript file(s) you want to debug. Back up and remove both the .js
and .js.gz versions of the file(s) and rename the .js.uncompressed.js copy as the
.js file. For example:

rename DateTextBox.js.uncompressed.js DateTextBox.js

	 5.	 Open the application you need to debug in Domino Designer and turn off
JavaScript resource aggregation by deselecting the option Application Properties
> XPages > Use runtime optimized JavaScript and CSS resources.

	 6.	 Open the xsp.properties file for this application and set the xsp.client.script.
dojo.version property to the version of new Dojo folder, xsp.client.script.dojo.
version = 1.6.1.source.

	 7.	 Restart the server, or simply restart the HTTP task or Notes client, and load the
XPage with a Client Side JavaScript debugger enabled.

http://dojotoolkit.org/reference-guide/quickstart/debugging.html
http://dojotoolkit.org/reference-guide/quickstart/debugging.html

204   Client-Side Debugging Techniques

The XPages runtime will then use the Dojo-1.6.1.source folder as the Dojo version for
this application only. When it is up and running, you should be able to debug the Client
Side JavaScript code using the fully formatted uncompressed JavaScript code.

Other Miscellaneous Client-Side Debugging Information

This section gives options for choosing a Client Side JavaScript debugger and discuss
some quirks when debugging applications using XPages in the Notes Client (XPiNC).

XPiNC Quirks

It is important to call attention to some unique aspects of client-side debugging XPiNC
applications. Unlike traditional XPages web applications, XPiNC applications run in
an embedded XULRunner browser component, as opposed to a full-fledged desktop
browser client. This implies some restrictions from a debugging standpoint. For instance,
you cannot install full browser extensions such as Firebug (which uses Firefox menus),
although you can install simple browser plug-ins such as Firebug Lite. Also, you do not
have an independent web browser menu with XULRunner, so performing simple debug
actions such as viewing the source markup must be done in an alternative way. You
learn how in this section.

To compensate for the absence of a traditional browser menu, each XPiNC application
instance has its own toolbar (see Figure 4.4).

Figure 4.4  XPages Client toolbar

The toolbar has some handy utilities to aid with debugging. In particular, the Clear Pri-
vate Data button is handy in overcoming stubbornly cached resources (such as CSS or
JavaScript) that have been updated in the application design and need to be replaced in
the client browser. In addition, View Browser Configuration might be useful to help
you tweak some application settings that affect caching, character sets handling, and so
forth (although it is strongly suggested that you know exactly what you’re doing if you
venture into this domain). You can view the HTML page source using the XPages cli-
ent toolbar shown using the icon highlighted in Figure 4.4. Its content in version 8.5.3
is searchable, whereas previously it was not. Both the View Browser Configuration
and View Page Source buttons are visible in the toolbar only if Domino Designer is

XPiNC Tool Bar

View Page Source

Cache Management Tool

View Browser Configuration

Client-Side Debugging Techniques   205  

installed—in other words the toolbar infers from the presence of Domino Designer that
the Notes client user is a developer because these options would not typically be exposed
to the end user.

Any Client Side JavaScript errors that occur in your code should be reported in the
Notes status bar. For example, a simple typo in an alert instruction is caught and dis-
played at runtime in Figure 4.5.

Figure 4.5  Client Side JavaScript error in the Notes status bar

This status bar shows the faulty alert instruction, the XPage on which it is located, and
the line number in the rendered page. Note that this is the line number not in
the source XPage, but in the rendered HTML page. Incidentally, the dojo.global.
onerror function in the XSP client-side object does this for you (xspClientRCP.js,
to be specific).

To use a client-side debugger, you need to enable Firebug Lite in your XPiNC applica-
tion pages. All you need to do is include one JavaScript resource in your XPage. You
can do this by entering the following tag directly into the XPages source or by add-
ing the src portion of the tag as the link value for a JavaScript library resource in the
Designer Resources property sheet. Listing 4.44 shows the required snippet of XSP
markup.

Listing 4.44  Firebug Lite Tag for XPiNC Applications

<xp:script

 src="http://getfirebug.com/firebug-lite.js"

 clientSide="true">

</xp:script>

You can often reproduce client-side problems that occur in XPiNC apps by running the
application on the web with the equivalent version of Firefox. Remember, XULRun-
ner is the platform on which the Firefox browser is based, so if you can match up the
XULRunner and Firefox versions, you stand a good chance of reproducing the issue in a
standalone browser environment. This gives you the option to use more advanced tool-
ing, such as Firebug instead of Firebug Lite. The astute might think it simpler to navi-
gate to the XPiNC application within a standalone browser if the URL for the XPiNC
application is known. In an ideal world, this is the case, but due to security sandboxing

Notes Status Bar

206   Client-Side Debugging Techniques

of the XPiNC web container, such external requests cannot be issued against an XPiNC
application.

To determine the version of XULRunner installed with your Notes client, locate the
XULRunner plug-in in the Notes installation. For example, on Windows in Notes/Dom-
ino 8.5.x, you can find it under the Notes framework folder, like this:

framework\rcp\eclipse\plugins\com.ibm.rcp.xulrunner.runtime.win32.
➥x86_6.2.2.yyyymmdd-hhmm

If you then move to the xulrunner subfolder and execute the command
xulrunner.exe /v, a dialog box displays the version of XULRunner. Figure 4.6
shows an example.

Figure 4.6  XULRunner version dialog for Notes 8.5.3

The dialog tells you that Notes 8.5.3 ships with XULRunner 1.9.2.10. A quick Internet
search using those terms leads you to the XULRunner 1.9.2 Release Notes document
on developer.mozilla.org, which states that this XULRunner 1.9.2 matches Firefox
3.6.23—bingo!

Picking a Client Side JavaScript Debugger

At this point, it is clear that different debugging tools are available for each web plat-
form. Although Firebug Lite should run in any browser, extended tools are also available
for the various browser clients available today. We do not recommend one particular
tool over another; if you need to debug XPages applications on a particular browser and
are not sure where to begin, Table 4.4 can help you get started.

Table 4.4  Client Side Debugging Tools

Browser Debugger

XULRunner—XPiNC Firebug Lite (runs on any browser)

Firefox Firebug (available as a browser add-on)

Google Chrome Browser has built-in Developer Tools

Safari Browser has built-in Web Inspector tooling

Internet Explorer IE Developer Toolbar (available as a browser add-on)

Finally, other client-side tools are available to help debug and troubleshoot other issues,
such as client-side application performance. Tools such as Yahoo! YSlow and Google

Conclusion   207  

Page Speed are certainly worth evaluating from that perspective. For advanced Dojo
testing, you can also leverage the Dojo Objective Harness unit testing framework, com-
monly referred to as DOH. This provides a way for you to unit-test Dojo objects in
isolation of any particular browser. DOH is documented at the following URL: http://
dojotoolkit.org/reference-guide/util/doh.html.

Conclusion

In this chapter, you learned about the XSP Client Side JavaScript object. You learned
how this object is divided into a hierarchy based on the running platform—web, Notes
client, composite application, Mashup Center, and so forth. An extensive examination
of the public and private functions available on the XSP Client Side JavaScript object
taught you about the purpose of each function. You also have a useful resource at hand
in the publicXSPFunctions XPage within this chapter’s supporting application. This
XPage gives you a worked example of all 33 public XSP Client Side JavaScript func-
tions as of Notes/Domino 8.5.3. You then learned about the ways XPages uses and
extends the Dojo framework. Finally, you saw various aspects of client-side debugging
and trouble-shooting techniques. Hopefully, the sum of these parts provides you with
both the big picture and the small details of working with XPages applications at the
front end.

In the next chapter, you learn about the other side of the coin, with a detailed examina-
tion of server-side scripting. This complements the details described in this chapter, to
give you an overall understanding of JavaScript development in XPages.

http://dojotoolkit.org/reference-guide/util/doh.html
http://dojotoolkit.org/reference-guide/util/doh.html

This page intentionally left blank

If you inspected the design of any given Notes/Domino application, you could well find
quite a sprinkling of different programming languages woven through the various design
elements. The platform itself is more than 20 years old, so it should not be too surpris-
ing to find that some cool and modern XPages application were originally written in
the early 1990s and contain copious amounts of LotusScript, Notes Formula Language,
XML, JavaScript, and Java code. This is both good and perhaps not so good. On one
hand, it is impressive that a slick Notes/Domino application could embrace the Web 2.0
model without going through an extensive rip-and-replace procedure, and instead seam-
lessly evolve as new technologies emerged over time. On the other hand, you might
worry that you need to understand a hodge-podge of programming languages to build a
cool Notes/Domino application. For the latter, worry not!

Despite the multitude of possible coding languages in Notes/Domino, the XPages pro-
gramming model is simple. JavaScript is the default programming language for the
XPages runtime, on both the front-end and back-end sides of the client/server equa-
tion. Thus, if you are creating a new XPages application from scratch, JavaScript is the
language you need in almost all coding situations on both the client side and the server
side. The same holds true if you are extending an existing Notes/Domino application to
use XPages—with the added benefit that you can also leverage preexisting development
assets such as LotusScript libraries and agents by calling them from Server Side Javas-
cript (SSJS) code. If you are familiar with the LotusScript back-end classes, you can use
a parallel set of Java classes for the same purposes via SSJS. If you have spent years
learning the Notes Formula Language, you’ll appreciate that the @Functions you know
and love are already provided for you as built-in SSJS XPages functions. If you already
know the JavaScript language from client-side programming in the web browser, you do
not need to learn a different language to do server-side XPages development.

In short, JavaScript is the core XPages programming language for the application devel-
oper, and Server Side JavaScript is a cornerstone of the overall XPages programming
model. Much of the core feature set of XPages SSJS is already described in various pub-
lications, not the least of which is the Domino Designer help documentation itself. This
chapter explores many of the lesser-known but valuable server-side Java Script nuggets.

As usual, you should download the NSF application containing the examples used in
this chapter—namely PCGCH05.NSF. Open it in Domino Designer and, ideally, have
it available as you read along. From Domino Designer, you can preview the sample
XPages in Notes and/or on a web browser (although the Design > Preview in Web
Browser > Default Browser option appears to be problematical, the other preview
options all work well). All the sample NSFs are downloadable from this website: www.
ibmpressbooks.com/title/0132943050

Chapter 5

Server-Side Scripting

www.ibmpressbooks.com/title/0132943050
www.ibmpressbooks.com/title/0132943050

210   What Can I Do with Server Side JavaScript?

What Can I Do with Server Side JavaScript?

In the XPages programming model, Server Side JavaScript is a many-splendored thing.
That is, it has many different bits and pieces that combine to make it a powerful tool. A
good place to start is to look at two key SSJS elements: its object model and its collec-
tion of scripting objects and system libraries.

XPages Object Model

XPages provides its own object model for Server Side JavaScript. This object model
is a combination of the JavaServer Faces object model, the Domino object model, and
some new objects XPages provides to make the application developer’s life easier. Using
Server Side JavaScript, you can:

	 n	 Manipulate the elements of the XPage—that is, programmatically modify the
structure, properties, and behavior of your application on the server side

	 n	 Read information about the current request, such as parameters, current user, and
user’s locale

	 n	 Interact with the runtime state—for example, determine whether the response has
been rendered

	 n	 Get information about the current application state

	 n	 Use the Domino back-end classes to access the application data, typically via
Domino documents and views

	 n	 Access any arbitrary Java library that happens to be made available on the client
or server (as already discussed in the Chapter 2 section, “Enabling Extended Java
Code with the java.policy File”)

When you create an XPage and add controls, you are actually defining a hierarchical
component tree. Each tag in an XPage corresponds to one or more components. You
can access these components programmatically and manipulate them using Server Side
JavaScript.

Server-Side Scripting Objects and System Libraries

XPages provides a rich set of objects and libraries to support Server Side JavaScript cod-
ing. The reference tab in the JavaScript editor shown in Figure 5.1 provides access to the
list of available global objects and methods plus the system libraries. By default, most
classes and methods are displayed, but you can select the Show advanced JavaScript
option to display the complete list. You can also double-click on any entry to add that
element to your script editor.

Table 5.1 summarizes the objects listed under the Global Objects drop down item fea-
tured in Figure 5.1.

What Can I Do with Server Side JavaScript?   211  

Table 5.1  Server Side JavaScript Global Objects

Object Description

applicationScope Map containing the application scope variables.

context Server Side JavaScript object representing the XSPContext (or
XPages runtime). The context object provides access to the
XPages XSPContext Java object and provides XPages-specific
contextual information about the current request—for example,
access to the associated user, time zone, locale, and so forth.
It also provides a number of utility methods that can be used
within your application logic, such as page navigation and
HTML filtering.

cookie Map containing the cookies for the current request.

currentDocument NotesXspDocument object representing the current in-scope
document data source.

database Server side JavaScript object representing the current Notes/
Domino database. The database server side JavaScript object
provides access to the Database Java object that is an instance
of the lotus.domino.Database class. The database object
provides access to the current Domino database and supports a
wide range of database-centric operations.

Figure 5.1  JavaScript editor reference tab

List of global object, methods and system libraries

Double click to add a class
or method to your script

Select this to get complete list of classes and methods

212   What Can I Do with Server Side JavaScript?

Object Description

facesContext Server Side JavaScript object containing state information relat-
ing to the current request.

header Map containing the HTTP header values for the current request.

headerValues Map consisting of String arrays containing all the header values
for the HTTP headers in the current request.

initParams Map containing the initialization parameters for the current
application.

param Map containing the request parameters for the current request.

paramValues Map consisting of String arrays containing all the parameter
values for the parameters in the current request.

requestScope Map that lasts for the duration of a request and contains the
request attributes for the current request.

session Server Side JavaScript object representing the current user’s
Notes/Domino session. The session Server Side JavaScript
object provides access to the Session Java object, which is an
instance of the lotus.domino.Session class. The session
is assigned credentials based on those of the current user. The
session is restricted by the application’s ACL and the security
tab of the server’s Domino Directory entry.

sessionAsSigner Server Side JavaScript object representing a Notes/Domino
session based on the signer’s ID. The sessionAsSigner
server side JavaScript object provides access to a Session
Java object, which is an instance of lotus.domino.Session.
The session is assigned credentials based on those of the signer
of the XPages design element. The session is restricted by the
application’s ACL and the security tab of the server’s Domino
Directory entry.

sessionAsSigner-
WithFullAccess

Server Side JavaScript object representing a Notes/Domino ses-
sion, based on the signer’s ID with full access privileges. The
sessionAsSignerWithFullAccess object provides access
to a Session Java object, which is an instance of lotus.
domino.Session. The session is assigned credentials based
on those of the signer of the XPages design element and also
allows full administrative access to the application’s data. The
signer must have permission for full administrative access, or
this session is not created and will not be available.

sessionScope Map that lasts for the duration of a user session within an appli-
cation and contains any session variable values.

view UIViewRoot object of the current component tree (page).

viewScope Object that lasts for the duration of a view (XPage instance) and
stores variable values.

What Can I Do with Server Side JavaScript?   213  

All the objects listed in Table 5.1 are implicit global variables. This means that these
objects are already there—you do not need to create them because the XPages runtime
has already done so. Some of these come directly from the underlying JSF layer; others,
such as currentDocument, have been added as XPages extensions. Most of the objects
are self-explanatory and require little or no further expansion. However, the four scope
objects merit some special attention.

Scope Objects

The requestScope, viewScope, sessionScope, and applicationScope global
objects represent a set of objects that are essentially Maps—that is, Java collection
objects that store data items that can be looked up using a key. You can use these to buf-
fer variables within a defined lifecycle for each object.

Three of the four scope objects come directly from the underlying JavaServer Faces
implementation, on which XPages is built. The fourth, the viewScope object, is
provided specifically by XPages. All four are named and referenced in Server Side
JavaScript code exactly as listed in Table 5.1: requestScope, viewScope,
sessionScope, and applicationScope. Each object has a well-defined lifetime.

requestScope

The requestScope object lasts for the duration of a single request. This object is a
Map, so you can add your own variables keyed by name. This Map is not empty by
default, so you need to ensure that you are not overwriting some of the request-specific
variables. A quick check using the Server Side JavaScript _dump(requestScope)
reveals the contents for you. The variables you add do not need to be serializable. A seri-
alizable object is one whose in-memory state can be persisted to a file, typically so that
it can be re-created at a later time by reversing the process (deserialization). The serial-
ization process is sometimes also referred to as marshalling or deflating.

viewScope

The viewScope object enables you to scope your own variables to the lifetime of
the associated view (XPage). As mentioned earlier, the state of a view can be cached
between requests so that multiple requests act on the same state of the XPage. The view
is restored at the beginning and saved at the end of each request, and any view scope
variables are saved and restored as part of this process. The viewScope object is a
Map, so you can add your own variables keyed by name. This Map is empty by default,
so you can select whatever names you want without concern for name clashes. The
variables you add must be serializable for their state to be saved. In Java, a serializable
object must implement the java.io.Serializable interface. In general, you do not
have to concern yourself with these details, but note that certain native Domino objects,
such as Date and DateRange, are not serializable. If you are working with these
objects, you must come up with your own scheme for writing and restoring object state.

214   What Can I Do with Server Side JavaScript?

sessionScope

The sessionScope object lasts for the duration of the user’s session—that is, until the
user session timeout expires or the user logs out. This object is a Map, so you can add
your own variables keyed by name. This Map is empty by default, so you can select
whatever names you want without concern for name clashes. The variables you add do
not need to be serializable.

applicationScope

The applicationScope object lasts for the duration of the application being loaded
in XPages runtime memory. This object is a Map, so you can add your own variables
keyed by name. This Map is empty by default, so you can select whatever names you
want without concern for name clashes. The variables you add do not need to be serializ-
able. Developers should be vigilant about the number and size of the objects stored in
applicationScope, because these objects will be stored even after the user logs out.

Listing 5.1 shows XSP markup from the scopedObjects XPage in the supporting
PCGCH05.nsf application. You can open this in Domino Designer to read and preview
the code. This XPage populates a variable in each of the scoped objects, based on the
current system time. It also includes computed fields to display each of the variable val-
ues. This demonstrates the lifespan of each of the scoped objects.

Listing 5.1  Example XPage Demonstrating Lifespan of the Scoped Objects

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="http://www.ibm.com/xsp/core">

 <xp:this.afterPageLoad>

 <![CDATA[#{javascript:

 var now = new Date();

 if(!requestScope.containsKey("requestVar")){

 requestScope.put("requestVar",

 "Request scope variable added: " + now

);

 }

 if(!viewScope.containsKey("viewVar")){

 viewScope.put("viewVar",

 "View scope variable added: " + now

);

 }

 if(!sessionScope.containsKey("sessionVar")){

 sessionScope.put("sessionVar",

 "Session scope variable added: " + now

);

 }

 if(!applicationScope.containsKey("applicationVar")){

 applicationScope.put("applicationVar",

What Can I Do with Server Side JavaScript?   215  

 "Application scope variable added: " + now

);

 }

 }]]>

 </xp:this.afterPageLoad>

 <xp:table>

 <xp:tr>

 <xp:td>Request scope variable:</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField1"

 value="#{requestScope.requestVar}">

 </xp:text>

 </xp:td>

 </xp:tr>

 <xp:tr>

 <xp:td>View scope variable:</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField2"

 value="#{viewScope.viewVar}">

 </xp:text>

 </xp:td>

 </xp:tr>

 <xp:tr>

 <xp:td>Session scope variable:</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField3"

 value="#{sessionScope.sessionVar}">

 </xp:text>

 </xp:td>

 </xp:tr>

 <xp:tr>

 <xp:td>Application scope variable:</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField4"

 value="#{applicationScope.applicationVar}">

 </xp:text>

 </xp:td>

 </xp:tr>

 </xp:table>

 <xp:button value="Refresh" id="button1">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete" immediate="false" save="true">

 </xp:eventHandler>

 </xp:button>

216   Summary of Server-Side Global Functions

 <xp:button value="Reload" id="button2">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:context.reloadPage()}]]>

 </xp:this.action>

 </xp:eventHandler>

 </xp:button>

</xp:view>

The requestScope variable becomes unavailable when you click the refresh button;
the most typical use of request scope variables is to pass parameters from one page to
another. The viewScope variable becomes unavailable when you click the reload but-
ton or reload the web page in your browser. These variables are useful when you want to
compute a value once and then make it available to use in multiple places within a page.
The sessionScope variable becomes unavailable when the user session expires—for
example, if you are previewing, you can restart the browser. The typical use case is to
store some information about a user that will be needed for the entire user session; for
example, a user name. The applicationScope will still be there and unmodified;
to dispose of it, you need to restart Domino Designer when in preview mode (for a
deployed application, you need to restart the http task on the Domino server or restart
the Notes client, for an XPiNC application). Application-scope variables are used when
you need to compute something once and share it across the entire application so that all
users will see the value. Be careful about the security and multithreading implications of
using these variables.

Other Global Objects

The standard Help documentation available on the various aspects of SSJS has increased
voluminously since the initial release in version 8.5. Figure 5.2 shows the help pages
available in Domino Designer 8.5.3 for all the SSJS elements displayed in Figure 5.1.

In Domino Designer, you can access these pages via the Help > Help Contents > Lotus
Domino Designer XPages Reference. This documentation is also available online at
this website: www.tinyurl.com/XPagesSSJS

The reference information provided in the Help documentation is comprehensive, so
instead of just repeating it all here, this section focuses on areas where you can add real
value. The prime candidates for deeper exploration are the server-side global functions.

Summary of Server-Side Global Functions

The Server Side JavaScript global functions are some common utilities for interacting
with the server-side controls. No new global functions have been added since the initial
release of XPages, version 8.5. New global functions might conflict with application

www.tinyurl.com/XPagesSSJS

Summary of Server-Side Global Functions   217  

developers’ functions in Server Side JavaScript libraries. Instead, new utility functions
have been added to the context global object, such as the context.bundle methods
added in version 8.5.2.

  Server Side JavaScript documentation in Domino Designer help pages

All these functions are evaluated relative to the current XPage control. The current
XPage control is determined by where in the XPage this snippet of JavaScript computa-
tion is defined. JavaScript computations are generally present as computed values of a
control property or as computed values on other objects, such as a Data Source, which
are themselves defined on a control. To be relative to the current XPage control, the
global functions need to start with the current control so that the function can evaluate.
For example, the getView function starts at the current XPage control and searches its
ancestors to find the XPage root control, known as the view. The other functions do dif-
ferent kinds of searches, starting from the current XPage control.

Server Side JavaScript library functions that are invoked from a property computation in
an XPage are considered relative to the control that invokes the function. Consider the
script library in Listing 5.2.

XPages SSJS @Functions Doc

Other XPages Global Objects SSJS Doc

Figure 5.2

218   Summary of Server-Side Global Functions

Listing 5.2  Script Library Using Global Functions While the Library Loads

function testGetComponent(){

 return getComponent("inputText1");

}

//loadTimeFoundComponent = testGetComponent();

That script library loads without error. You can invoke the testGetComponent()
function from an XPage, and it will evaluate correctly, relative to the control invoking
the function.

However, there is a limitation. Server Side JavaScript script library code should not
attempt to use the Global Functions while the script library is loading. While the library
is loading, there is no current XPage control, and the global functions will not be
available.

If you uncomment the last line of that listing, the value loadTimeFoundComponent
will be evaluated while the script library is initially loading. At that time, the
getComponent method will not be available and an error will occur with the message
'getComponent' not found.

The global functions can be used in a script library (just not while it loads), which is
why they are available in the Global Functions area of the Server Side JavaScript Script
Library editor in Domino Designer.

The current control is available in an XPage through the variable name this. So the fol-
lowing Computed Field value evaluates to the Computed Field control instance:

<xp:text escape="true" id="computedField1" value="#{javascript:this}">
➥</xp:text>

The web page output for that control looks like this:

com.ibm.xsp.component.xp.XspOutputText@2ce22ce2

However, in a script library, the value this does not evaluate to the current control; it
evaluates instead to the JavaScript context, either the global JavaScript context or the
current JavaScript object. The global functions, such as getComponent, still work when
the this reference is not a control because the functions don’t rely on the this vari-
able name to find the current control. To use the current control in a script library func-
tion, the this value should be evaluated in the XPage and passed as a parameter to the
function.

When using the this variable name in the Domino Designer Events view, the Java-
Script script is saved to an Event Handler control. So, for instance, in a button onclick
event, this resolves to an event handler control and this.getParent() resolves to
the button, the event handler’s parent.

The current control is assigned to each JavaScript computation object while the XPage
control tree is loaded. Advanced users who are programmatically creating controls might

Summary of Server-Side Global Functions   219  

need to assign the current control programmatically by calling ValueBindingEx.
setComponent or MethodBindingEx.setComponent on the computation object.

getComponent(id:String): UIComponent

The getComponent global function is used to find a server-side control object that cor-
responds to a control ID. The ID used is the control ID present in the XPage Source tab,
not the clientId that is output in the HTML source. The ID of an Edit Box looks like
inputText1 instead of view:_id1:inputText1. The return type full classname is
javax.faces.component.UIComponent, which is the base type of all server-side
control objects. If no control is found with that ID, the function returns null instead
of reporting an error. If multiple controls in the server-side control tree have the same
ID, the search finds the matching control that is closest to the control where the
getComponent function is invoked. The next few paragraphs discuss the method of
searching that determines which control is considered closest.

The usual reason to search for control values is to find the current value of that control.
It can also be useful to find other properties of the control object—whether it is disabled
or enabled, the current style, and so on. Since version 8.5.2, the Domino Designer Server
Side JavaScript editor contains an option in the Reference Libraries drop-down called
Control Declaration Snippets. When you select the Control Declaration Snippets,
you see the ID of each control in the XPage. When you double-click such an ID, some
JavaScript code is generated that uses the getComponent method to find the control
with that ID and declares a variable corresponding to the ID. The variable is defined
with the fully qualified type corresponding to the server-side control object’s Java class.
The generated code for an Edit Box with ID inputText1 looks like this:

var inputText1:com.ibm.xsp.component.xp.XspInputText =
➥getComponent("inputText1");

Because the variable has the fully qualified type, you can type in inputText1 and press
Ctrl+space in the Server Side JavaScript editor to see the full list of methods available
for that class. The Edit Box has a method named getValue, as do the other controls
used to input a value from the browser (List Box, Combo Box, and so on). Before ver-
sion 8.5.2, the type was not automatically available, so it prompted only with the meth-
ods from the base UIComponent class; the method getValue was not in the list. To
find the control class in version 8.5.1 and earlier, you print it to the server console using:
print(inputText1.getClass().getName()), and then update your code to pro-
vide the type inline as in the generated code so that you can see the list of methods avail-
able. Those control classes are documented as part of the XPages Extensibility APIs.

If you are writing Java code and you need to find a control by searching for the control
ID, a utility method is documented as part of the XPages Extensibility APIs. The
method is:

com.ibm.xsp.util.FacesUtil.getComponentFor(UIComponent, String):
➥UIComponent

220   Summary of Server-Side Global Functions

Do not use the UIComponent.findComponent method: It searches only the current
XPage, Custom Control, or Repeat control (or other control implementing the Naming-
Container interface). It does not search the entire control tree when passed a normal
control ID. The JSF API documentation describes that method more fully.

Before getting into the details of the search algorithm, you should be aware of certain
details of the getComponent search. First, if there is no control with the given ID in the
control tree, the search will take a relatively large amount of time. Larger control trees
take proportionally more time, so for performance reasons, it’s best to search for only
controls that will be present. For example, if you’ve computed the loaded property of
some control so that it sometimes does not load and you then want to check whether it
has loaded in some script, it is better not to search for that specific control ID. Instead,
you might wrap a container div tag around that control and then search for the container
and check whether its child is present, like so:

div.getChildCount() > 0

Second, in versions 8.5.1 and earlier, the getComponent method does not find pass-
through HTML tags. Pass-through or markup tags are HTML tags typed into the XPages
Source tab in the Domino Designer editor, as opposed to XPages controls that are cre-
ated using the Controls palette. Since version 8.5.2, the IDs of pass-through tags are used
as control IDs, so the getComponent method finds the control objects that correspond
to the pass-through tags.

The last issue to be aware of is that prior to version 8.5.3 getComponent does not work
with runtime facet areas. Generally, when a control is placed in another control in an
XPage, the contained control is present at runtime in the children list. However if the
container control declares a named facet area, Domino Designer allows contained con-
trols in a this.facets tag in the XPage. Each contained control then has an attribute
xp:key="facetName" that corresponds to a facet area name. So facets are just con-
tained controls that are not part of the children list.

At runtime, when the server-side control tree is loaded, the facet area may then be stored
in a facets Map instead of in the normal children list. In the earlier releases, when
searching for a control with a given ID, the getComponent method does not search
within the runtime facets Map or in any content within the facet areas. The most com-
mon occurrence of facets in an XPage is when using a Custom Control that contains
an Editable Area control. However, the Editable Area facets are changed at load time
from being facets to being present in the children list, so the getComponent function
does work with Editable Areas. The other facets in the XPages runtime controls are the
header and footer facet areas on the Repeat, View Panel, and Data Table controls.
Those are runtime facets, so the getComponent function does not find controls within
those areas. This issue is also likely to be encountered when using third-party controls
that use facets. For example, the XPages Extension Library project on OpenNTF.org
contains some controls that use facets heavily. That project provides the utility method
to use instead of the getComponent method:

ExtLibUtil.getComponentFor(UIComponent, String).

Summary of Server-Side Global Functions   221  

Here we discuss how the getComponent method searches through the server-side con-
trol tree to find the closest control with the given ID. Multiple controls might have the
same ID because IDs are enforced to be unique only in the Source tab of a single XPage
or Custom Control file. The runtime control tree, on the other hand, contains controls
from all Custom Controls that are referenced by the XPage, so the controls from differ-
ent files with the same ID are all present in the control tree. It is useful to understand
the search algorithm when an application is finding the wrong control for a given ID.
An inefficient search for a control also can show up as a performance problem, causing
an application to run more slowly. Knowing the search algorithm can help you choose
a better control as a starting point for the search, yielding faster response times. (The
XPages Toolbox project on openNTF.org can help with such performance problems, as
is discussed in Chapter 6, “Server-Side Debugging Techniques.”)

The XPages getComponent method actually uses two kinds of search algorithms.
First, it searches using a technique particular to the XPages runtime. If that does not
find a match, it tries a broader search technique particular to JSF (JavaServer Faces, the
server-side framework XPages uses). To illustrate, Listing 5.3 gives a representation of
a server-side control tree, using three Custom Controls, three Edit Boxes, and a Button.
The XPage and Custom Controls are provided in the sample application for this chapter.
The sample has styleClass properties that we use to refer to the controls, to avoid
confusion because we’re searching for an ID. Assume that the getComponent evalua-
tion is starting from the xp:eventHandler control under the Button and is searching
for a control with ID inputText1. xp:eventHandler is shaded in gray in
Listing 5.3.

Listing 5.3  Server-Side Control Tree Representation

xp:view styleClass="rootControl"

 xp:div styleClass="XPageContainerDiv"

 xc:firstCustom styleClass="firstCustomControl"

 xp:div styleClass="firstCustomDiv"

 xc:secondCustom styleClass="secondCustomControl"

 xp:div styleClass="secondCustomOuterContainer"

 xp:div styleClass="secondCustomHeaderContainer"

 xp:inputText styleClass="firstEditBox"

 xp:repeat styleClass="repeatContainer"

 xp:div styleClass="secondCustomMainContainer"

 xp:div styleClass="secondCustomInnerContainer"

 xp:button styleClass="mainButton"

 xp:eventHandler

 xp:div styleClass="secondCustomDiv"

 xc:thirdCustom styleClass="thirdCustomControl"

 xp:div styleClass="thirdCustomContainer"

 xp:inputText styleClass="secondEditBox"

222   Summary of Server-Side Global Functions

 xp:div styleClass="firstCustomDiv2"

 xp:div styleClass="XPageDiv2"

 xp:inputText styleClass="thirdEditBox"

The initial search using the XPages-specific technique starts at the current control
(the Event Handler). It then selects each ancestor control and searches through all its
children, excluding Custom Control children. It stops when it reaches a container Cus-
tom Control or the XPage root control. The search compares each control’s ID to the
searched-for ID, except that it does not recheck the previously searched children. So for
the example in Listing 5.3, the sequence of controls whose ID is checked involves first
the Event Handler, then the button, then the secondCustomInnerContainer and its
children (excluding the button), then the secondCustomDiv, and then the third
CustomControl but not its contents (because Custom Control contents are excluded).
Next, the secondCustomMainContainer is checked, followed by the repeat
Container, the secondCustomOuterContainer, secondCustomHeader
Container, and firstEditBox. Then the secondCustomControl is checked.
The search does not move further up the control tree because the XPages-specific search
searches only the current Custom Control or XPage (unlike the JSF search, which is
relative to NamingContainer controls).

If the XPages-specific technique does not find a control, the JSF technique is used and
searches the entire control tree. The JSF technique depends on which controls implement
the NamingContainer interface. The controls included in the XPages runtime that
implement NamingContainer are the Custom Control tag; the Repeat, View Panel,
Data Table, XPage root control; and the Form control. In the JSF technique, instead of
searching up through each ancestor, the search starts at the nearest NamingContainer
ancestor and searches down from there, before moving up to the next Naming
Container ancestor and repeating until it searches from the XPages root control.
Again, areas of the control tree that have already been searched are not rechecked. In
this case, starting at the Event Handler control, the search goes up through the ancestors
to find a NamingContainer control. In this example, the Repeat control is found. It
searches repeatContainer, secondCustomMainContainer, secondCustom
InnerContainer, mainButton, eventHandler, secondCustomDiv, third
CustomControl, thirdCustomContainer, and secondEditBox. Note that it does
descend into Custom Controls used in the current page. After the secondEditBox, if it
still hasn’t found the control with the desired ID, it finds the Repeat control’s next
NamingContainer ancestor, secondCustomControl, and searches through that,
so checking the secondCustom Control, secondCustomOuterContainer,
secondCustomHeaderContainer, and firstEditBox. It skips repeatContainer
because it was already searched. The next NamingContainer ancestor is searched,
so it searches firstCustomControl and firstCustomDiv, skips
secondCustomControl, and searches secondCustomDiv. Then the next
NamingContainer is the XPage root control is searched; it searches its contents,
XPageContainerDiv, XPageDiv2, and thirdEditBox. At this stage, all controls
have been checked, so if the control has not been found, the getComponent method
returns null.

Summary of Server-Side Global Functions   223  

getClientId(id:String): String

The getClientId global function converts from the control ID, as it would appear
in the XPage Source tab in the Domino Designer editor, to the HTML client ID that is
present in the HTML source of the page in a web browser. So it would convert the ID
of an edit box from inputText1 to view:_id1:inputText1 or to view:_id1:_
id5:repeat1:5:inputText1 or to whatever the HTML value should be, based on
where the edit box is found in the server-side control tree.

Chapter 4, “Working with the XSP Client Side JavaScript Object,” discusses why client
IDs need to be different from control IDs in the section “Working with Dojo Dijits.” It
also discusses the #{id:inputText1} syntax, which can be used to compute the cli-
ent ID in a shorter syntax. The function finds the control that corresponds to the given
control ID using the technique described for the getComponent global function. The
UIComponent.getClientId(facesContext:FacesContext) method is then used
to retrieve the client ID. So if your code has already used getComponent to find the
control object, you can invoke the control getClientId(FacesContext) method
directly.

The getClientId function has a few nonintuitive behaviors. First is the interaction
with the Repeat control. As previously discussed, the Repeat control alters the client ID
of its children depending on which row of the repeat data is currently being processed.
So the same Edit Box control has many different client IDs, like this:

view:_id1:repeat1:0:inputText1

view:_id1:repeat1:1:inputText1

view:_id1:repeat1:2:inputText1

This means that scripts that request the ID of an Edit Box in a Repeat will get different
values, depending on where the script using the global function is itself situated. If the
script is being executed from the first row, it will evaluate to the client ID containing
:0:. If the global function is being executed in the third row, it will evaluate to the
client ID containing :2: However, the really odd part is that if the global function is
being evaluated in a script that’s outside the Repeat control, the result of the expression
will be like view:_id1:repeat1:inputText1. That is, from outside the Repeat
control, the Repeat contents appear to have client IDs that do not contain any repeat
row number. That is incorrect—the HTML IDs in the web page all contain repeat row
numbers for the different Edit Box instances. The client ID from outside the Repeat
control will not resolve to any element in the web browser DOM tree. Basically, you
shouldn’t invoke the getClientId method for elements in a Repeat control in code
that’s executing outside the Repeat control. Any time you need to perform some action
on the content of a Repeat control, the simplest solution is to put the action button into
the Repeat control so that it can act on the Edit Box in the same row of the Repeat. The
other option is to use View Panel controls in Domino Designer: You can enable a check
box to appear in each row. Then in server-side actions, you can use UIViewPanel.
getSelectedIds():String[] to get the document IDs of all the rows that were
selected in the browser.

224   Summary of Server-Side Global Functions

Another issue relating to getClientId is that it shouldn’t be used at page load time—
while the server-side control tree is being constructed. Scripts that are executed during
page load include the beforePageLoad and afterPageLoad events on the XPage
and Custom Control root controls, and property computations that use the Script Editor
dialog’s Compute on Page Load option instead of the default Compute Dynamically.
Also for this discussion of getClientId, the afterRestoreView event on the XPage
root control exhibits similar behavior. A few problems arise with using getClientId
during page load.

First, and similar to the issue with the Repeat control, the client IDs computed at that
point will be inaccurate and will not correspond to controls in the HTML page output.
That will lead to errors if you are attempting to programmatically partial update the con-
trol or otherwise use the clientID.

Second, the invocation of getClientId on controls causes the automatically assigned
control IDs to be assigned earlier than usual. So a control that would normally have been
assigned a generated ID of _id26 might have an ID of _id2 instead. This can occasion-
ally cause problems at runtime as the automatically generated ID is different than those
which may be expected either by scripts or test automation.

Finally, and most seriously, the control hierarchy at page load time might not reflect
the control hierarchy at runtime. This occurs when controls load their content initially
and then move them to a different place in the server-side control tree during the page
load phase. Examples include the View Panel control, the Editable Area control, and the
Repeat with repeatContents="true". There are others as well. When this problem
occurs, not only is the client ID incorrect at page load time, but it is also incorrect while
the HTML is being generated during the initial page display (because the client ID value
is cached). The client ID reverts to the correct ID in subsequent page redisplays. This
leads to hard-to-diagnose problems, in which the page displays and works initially but
breaks when you click some button or when you experience a partial update in an area
of the page. This issue generally occurs during the performance-enhancing phase of
application development; developers follow the guidelines which encourage reducing
computations by ensuring that values that can be computed dynamically are changed
to compute only at page load time, to prevent wasteful recomputation. In summary, the
computation of client IDs should not be done at page load time and must be computed
dynamically.

getLabelFor(component:UIComponent):UIComponent

This global function finds an XPages Label control whose target for property points to
the given control. Usually, a label control is paired with an Edit Box or some other input
control, as the for target. When a for target is provided, the Label control outputs an
HTML label element; otherwise, it just outputs as text. The HTML label element is an
accessibility-friendly way of providing text for the purpose of a control where it is used
in an XPage. Screen reader software for visually impaired people reads out the label
associated with an input control when the input control gains focus. This getLabelFor
function can be used in error-handling or validation-handling code, to retrieve the label
control and label text corresponding to some edit box. It is useful when attempting to

Summary of Server-Side Global Functions   225  

reuse validation messages such as The field {0} is required, where the edit box label
might be dynamically inserted at the {0} location instead of translating multiple valida-
tion messages for each edit box.

Note that the search for the label control starts from the control passed as an argument,
using a search technique similar to the JSF search technique explained in the previous
section on the getComponent function. Because the search is relative to the Edit Box
control, the result does not depend on the location of this script in the XPage.

An alternate form of this function is used like getLabelFor("inputText1"). In this
case, the argument is the String control ID of the Edit Box or the label’s target control.
The ID is resolved to a control using the getComponent search, and the getLabelFor
function searches for a label control targeting the resolved control.

getView(): UIViewRoot

The getView method is usually the same as the view global object. It finds the XPage
root control at the top of the current XPage’s server-side control tree. It is resolved start-
ing at the current control and iterates up through the ancestors using the UIComponent.
getParent() method. This means that it does not resolve during load-time computed
values; such values are computed after a control is created but before it is added to the
server-side control tree, so no ancestors can be found. It is otherwise available during the
page load phase, though—it is resolved in the beforePageLoad and afterPageLoad
events. Accessing the view through the global object is slightly faster because it avoids
searching through the ancestor controls.

The XPage root object is useful to access the various values it holds. For example, the
current XPage name is available through view.getPageName(). The result is similar
to /page1.xsp, with a preceding / and .xsp at the end. It also maintains the ID of the
server-side control tree instance, available through view.getViewId(). For more, see
the XPages Extensibility API JavaDocs on the UIViewRootEx control.

getForm(): UIForm

This global function searches through the ancestors of the current control until it finds a
control based on the class javax.faces.component.UIForm. Usually, each XPage
has one form control that the XPage root control generates automatically. To disable the
automatic form, you can set createForm="false" on the XPage root control and use
the xp:form tag to configure a form in the XPage Source tab of the Domino Designer
editor. The main reason to find the form control is to get the form’s client ID for use in
browser scripts, like so: getForm().getClientId(facesContext). The form is
involved in the page submission to the server from the browser, although there are some
issues to be aware of before you attempt to programmatically trigger form submission.
The “Working with Dojo Dijits” section of Chapter 4 discusses some issues to ensure
that the server-side control tree instance is correctly restored in response to requests.
You might also want to use the XSP.validateAll methods and related XSP.
canSubmit to ensure that your form submission behaves well with regard to XPages
form validation. Chapter 4 also discusses those methods.

226   Working with Java Made Simpler

save():void

The save global function saves all data sources in the server-side control tree. The
implementation resolves the root control as described for the getView function and
uses the UIViewRootEx.save() method to save the data sources. It behaves the same
as the Save simple action, available in the Events view in Domino Designer. The save
behavior starts at the XPage root control and searches through the entire server-side con-
trol tree, saving each data source it encounters. If you know for certain that your page is
editing only a single Domino Document data source, you can avoid searching the control
tree by using the Save Document simple action instead. The Save Document simple
action saves one specific named data source instead of doing a general save of all data
sources. For noneditable data sources, such as the Domino View data source, this save
function has no effect.

Working with Java Made Simpler

As you now know, Server Side JavaScript can readily access and manipulate Java
objects. With the release of Domino Designer 8.5.3, access to Java artifacts from within
the Domino Designer client has become more straightforward with the introduction of
the Java design element. Knowing how to access the resulting Java code from within
your Server Side JavaScript code will add greatly to your skill set.

Importing Java Packages into Server Side JavaScript

As a means of making it easier to reference Java classes, you can use the importPack-
age() global function in SSJS code. This eliminates the need to fully qualify Java
classes with their respective package name. This is particularly useful when writing
script code that references several Java classes multiple times.

Listing 5.4 details Server Side JavaScript code using the importPackage() global
function. This example is taken from the importingJava XPage in the PCGCH05.nsf
supporting application. It demonstrates how Java utility classes in this package, such as
StringUtil and TSystem, can be used without having to use the fully qualified class
names in each case. Note how the SSJS snippet also includes an @Function call (@
UserName()). Remember that, in XPages, @Functions are implemented in JavaScript
and can be called in SSJS code just like any other SSJS function.

Listing 5.4  Server Side JavaScript Code Using the importPackage() Global Function

<xp:button value="Import Package" id="button2">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 importPackage(com.ibm.commons.util);

 var userName = @UserName();

 if(StringUtil.isNotEmpty(userName)){

Working with Java Made Simpler   227  

 print("Username: " + userName);

 }

 print("VM Vendor: " + TSystem.getVMVendor());

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Creating Custom Java Classes

Before version 8.5.3, it was possible to integrate Java code into your XPages application,
but it took a little more effort. Developers typically created their Java class within their
application simply by switching to the Java perspective and creating a new Java class
file from there. One of the major pitfalls of this technique was that a consistent location
for the Java code was never defined. As a result, developers were placing their Java code
in arbitrary folder locations within the database. In most cases, this worked okay, but in
some cases it caused maintenance issues because it was not obvious to developers where
the Java code resided for any given application. The Java design element was introduced
to Domino, Notes, and Domino Designer as of release 8.5.3.

Another, more significant issue was also quickly realized. In many cases, developers
were placing custom Java code within the Local folder within their database. The Local
folder is a reserved location in the application structure in Domino Designer. The con-
tents of the Local folder are saved directly to the file system instead of being saved into
the NSF application. Thus, Java files saved to the Local folder were never saved to the
database, meaning that if the developer had the misfortune to delete the local copy of
the database, or performed a clean build on the database, the custom Java code was lost.
Version 8.5.3 introduced the Java design element mainly to provide a consistent method
of integrating Java code into XPages applications. The Java design element serves as a
fully fledged design element that allows XPage developers to write Java code that can be
integrated into their XPage applications. The Java code within the Java design element
can be called directly from within your Server Side JavaScript code. As described in
Chapter 6, it is possible to debug the Java code directly from within Domino Designer.

Creating Managed Beans

In Notes/Domino 8.5.2, XPages introduced support for Managed Beans, which are just
plain old JavaBeans whose creation and lifespan are “managed” by the underlying run-
time framework. (They come to XPages from JSF.) It should be pointed out though,
that XPages makes it easy to develop an application using Managed Beans. Indeed, the
Notes/Domino 8.5.2 Discussion Template actually includes a Managed Bean to make the
allDocumentsView Custom Control much more interactive and efficient.

As the name implies, some degree of automated management is involved. A Managed
Bean has both an execution lifecycle and a scope under which it lives. The managed part
is related to the management of that lifecycle and scope. This makes it pretty easy to
develop Managed Beans: All the infrastructural code is already in place within the JSF

228   Working with Java Made Simpler

layer. Where XPages lends a further helping hand is in its support for Managed Beans.
This support provides a registration mechanism through the faces-config.xml file,
but it also enables you to work directly with Managed Beans in your Server Side Java
Script code. You also do not have to worry about initializing or constructing any Man-
aged Bean instances; the XPages runtime takes care of this the first time you call a
method on a Managed Bean in Server Side JavaScript code.

Reviewing a Working Example

The PCGCH05.nsf application was actually created from the Notes/Domino 8.5.3 Dis-
cussion Template. This means that it contains the same Managed Bean code provided by
the Discussion Template. The first place to look in Domino Designer is the WebContent/
WEB-INF/faces-config.xml file using the Package Explorer view. When you have
found it, simply double-click on it to open it in Domino Designer. Listing 5.5 shows the
content of this file.

Listing 5.5  The faces-config.xml from the PCGCH05.nsf Application

<?xml version="1.0" encoding="UTF-8"?>

<faces-config>

 <managed-bean>

 <managed-bean-name>previewBean</managed-bean-name>

 <managed-bean-class>

 com.ibm.xpages.beans.PreviewBean

 </managed-bean-class>

 <managed-bean-scope>view</managed-bean-scope>

 </managed-bean>

 <!--AUTOGEN-START-BUILDER: Automatically generated by

 IBM Lotus Domino Designer. Do not modify.-->

 <!--AUTOGEN-END-BUILDER: End of automatically generated section-->

</faces-config>

This is an XML-based file used to declare JSF-related artifacts for an application. In this
case, one Managed Bean is being declared:

	 1.	 The <managed-bean-name> element declares the name that will be used to ref-
erence the Managed Bean in Server Side JavaScript or EL Language code. Names
should be unique within each application.

	 2.	 The <managed-bean-class> element declares the implementation Java class.

	 3.	 The <managed-bean-scope> element declares the scope under which the
Managed Bean will live. Valid scopes are application, session, request,
and view. These scopes are comparable to the Server Side JavaScript-scoped
objects detailed in the “Summary of the Scoped Objects” section earlier in this
chapter.

Working with Java Made Simpler   229  

You can declare as many Managed Beans as you need within each of the scopes using
the faces-config.xml file. For instance, you might require several Managed Beans
in your application that do different things within the view scope, and perhaps another
couple that work with the session scope.

The next part to study is the implementation Java class for this Managed Bean. As
shown in Listing 5.5, the <managed-bean-class> element declares com.ibm.
xpages.beans.PreviewBean to be the implementation Java class. In Domino
Designer, you should use Package Explorer view to examine the Build Path for the
PCGCH05.nsf application. This shows you that a directory named source has been con-
figured to be included in the compilation build path for the application. This means that
any *.java source files within that directory are automatically compiled. The compiled
*.class files are then part of the executable application. Figure 5.3 shows the Java Build
Path editor for the PCGCH05.nsf application.

Figure 5.3  The Java Build Path editor

Using the Java Build Path editor, you can see that the WebContent/WEB-INF/source
directory is on the build path. You are free to create directories under the WebContent
folder as required—in this example, the source directory resides under the Web
Content/WEB-INF folder so that its content is not accessible using a web URL. Any
content under the WebContent/WEB-INF folder is protected from web URL access.

Adding a source folder to the project build path

230   Working with Java Made Simpler

Close the Java Build Path editor and return to the Package Explorer view, where you
should fully expand the WebContent/WEB-INF/source Java folder. Inside you will
find the declared Managed Bean implementation Java package and class file, as shown
in Figure 5.4.

Figure 5.4  The declared Managed Bean implementation Java package and class

If you double-click the PreviewBean.java file, it opens in a Java editor within Domino
Designer. Listing 5.6 also details the main parts of the code within this class file.

Listing 5.6  Source Code for the com.ibm.xpages.PreviewBean Class

package com.ibm.xpages.beans;

...

public class PreviewBean implements Serializable {

 ...

 private Map<String,Boolean> _previews=new
HashMap<String,Boolean>();

 public PreviewBean(){}

 public void setVisible(final String noteId, final boolean visible)
{

 if(_previews.containsKey(noteId)) {

 if (false == visible) {

Managed Bean source code – double click to open

Working with Java Made Simpler   231  

 _previews.remove(noteId);

 return;

 }

 }

 _previews.put(noteId, true);

 }

 public void toggleVisibility(final String noteId) {

 if(_previews.containsKey(noteId)) {

 _previews.remove(noteId);

 }else{

 _previews.put(noteId, true);

 }

 }

 public boolean isVisible(final String noteId) {

 if(_previews.containsKey(noteId)) {

 return (_previews.get(noteId).booleanValue());

 }

 return (false);

 }

 public String getVisibilityText(

 final String noteId, final ResourceBundle resourceBundle) {

 String moreLinkText = "More";

 String hideLinkText = "Hide";

 if(null != resourceBundle){

 moreLinkText = resourceBundle.getString(

 "alldocuments.more.link"

);

 hideLinkText = resourceBundle.getString(

 "alldocuments.hide.link"

);

 }

 if(_previews.containsKey(noteId)) {

 return (hideLinkText);

 }

 return (moreLinkText);

 }

 public String getSelectedClassName(final String noteId) {

 if(_previews.containsKey(noteId)) {

 return ("xspHtmlTrViewSelected");

232   Working with Java Made Simpler

 }

 return ("xspHtmlTrView");

 }

 public String getVisibilityLinkStyle(final String noteId) {

 if(_previews.containsKey(noteId)) {

 return ("visibility:visible");

 }

 return ("visibility:hidden");

 }

}

The implementation class for this Managed Bean is not complex. It simply declares a
number of public methods that are used by Server Side JavaScript code in the allDocu-
mentsView Custom Control, as you will see shortly. The main point to remember here
is that a Managed Bean should declare a public no-parameter constructor and should also
implement the java.io.Serializable interface. This enables the Managed Bean
to be serialized and deserialized between requests to an XPage that uses the Managed
Bean. This supports the scope mechanism; without it, the Managed Bean would not per-
sist between requests, therefore invalidating the notion of any declared scope.

The final item to examine here is the allDocumentsView Custom Control, to see how
Server Side JavaScript code leverages this Managed Bean. Open this Custom Control
in Domino Designer and, within the Design editor, click on the link with the ID
moreLink. Then switch over to the Source editor, where you see the full range of
Server Side JavaScript calls being used by this link control against the Managed Bean.
Listing 5.7 shows the key lines of code in the XSP markup for the moreLink control.

Listing 5.7  XSP Markup for the moreLink Link in the allDocumentsView Custom Control

<xp:link id="moreLink"

text=

"#{javascript:previewBean.getVisibilityText(rowData.getNoteID(), res)}"

style=

"#{javascript:previewBean.getVisibilityLinkStyle(rowData.getNoteID())}">

 <xp:eventHandler event="onclick" submit="true" ...>

 <xp:this.action>

 <![CDATA[

 #{javascript:previewBean.toggleVisibility(rowData.getNoteID())}

]]>

 </xp:this.action>

 ...

 </xp:eventHandler>

</xp:link>

Working with Java Made Simpler   233  

As you can see in Listing 5.7 (and also within the allDocumentsView Custom Control,
if you have Domino Designer opened), the moreLink is making extensive use of the
Managed Bean. The interesting aspect of this is the direct reference to the Managed
Bean name, previewBean, within the Server Side JavaScript.

Now take the opportunity to preview the allDocuments XPage. With this new knowl-
edge about how the allDocumentView Custom Control is working, you should toggle
the moreLink on different rows of the view and also page back and forth through the
view. Take note of how the previewBean is maintaining the state of expanded and col-
lapsed rows for the allDocumentsView Custom Control, changing the style of the rows,
and also changing the text of the moreLink for each row (see Figure 5.5).

Figure 5.5  The allDocumentView Custom Control and previewBean in action

Managed Bean Properties and Server Side JavaScript

We have already described the powerful functionality that Managed Beans provide.
Another feature of Managed Beans that merits mention is Managed Bean Properties.
Similar to Managed Beans themselves, Managed Bean Properties enable the developer
to associate properties with the bean that can be resolved by the XPages runtime. These

Expand/Collapse state controlled by Managed Bean

Row coloring controlled by Managed Bean

234   Working with Java Made Simpler

managed properties may also be directly referenced from within your Server Side Java
Script code. This functionality provides a huge amount of flexibility to the application
developer because it enables applications—or, more specifically, Managed Beans—to be
configured with default properties on an application-by-application basis. Managed Bean
Properties allow applications to be highly configurable. The Managed Bean Property
enables the application developer to create properties that vary from installation to instal-
lation and can be configured by a system administrator upon installation.

As is often the case, an example best illustrates the power of Managed Bean Properties.

Listing 5.8 shows the markup necessary to define basic Managed Bean Properties via
faces-config.xml.

Listing 5.8  The faces-config.xml Definition of Managed Bean Properties

<?xml version="1.0" encoding="UTF-8"?>

<faces-config>

 <managed-bean>

 <managed-bean-name>connections</managed-bean-name>

 <managed-bean-class>com.ibm.ser.FileService
➥</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>proxyEnabled</property-name>

 <value>true</value>

 </managed-property>

 <managed-property>

 <property-name>authentication</property-name>

 <value>basic</value>

 </managed-property>

 <managed-property>

 <property-name>authenticationPage</property-name>

 <value>_BasicLogin</value>

 </managed-property>

 </managed-bean>

</faces-config>

In Listing 5.8, the developer has created a Managed Bean within an application and
associated a number of properties with it. Note that the syntax for declaring the Managed
Bean is identical to that described earlier. The following three steps describe the extra
XML markup necessary to define a Managed Bean Property.

	 1.	 The <managed-property> tag denotes the beginning of a managed property
definition.

	 2.	 The <property-name> markup denotes the name of the Managed Bean Property
to be set.

	 3.	 The <value> tag sets a default value for the Managed Bean Property.

Working with Java Made Simpler   235  

It is worth noting at this point that the Managed Bean Properties are actual properties
that can be set or gotten from the Managed Bean class. To avoid runtime errors, the
Managed Bean class must have getter and setter methods for each Managed Bean
Property associated with the Managed Bean. For instance, in Listing 5.8, the File
Service class must have a getter and setter method for proxyEnabled
(getProxyEnabled(), setProxyEnabled(String)), authentication
(getAuthentication(), setAuthentication(String)), authentication-
Page (getAuthenticationPage(), and setAuthenticationPage(String)).
Such getter and setter methods should be compliant with the standard Java Bean
specification. This also means that Boolean types should have an isXYZ type getter.
If the getters and setters are not provided for any faces-config.xml declared
Managed Bean property, a runtime error occurs.

Tip  If you are not already familiar with JavaBeans, then a quick-start tutorial is recom-
mended. Many such resources are freely available on the web. You can start by looking
at the JavaBeans 101 tutorial here: http://java.sun.com/developer/onlineTraining/Beans/
bean01/

In the example, the developer has created a FileService Managed Bean class that con-
nects to various online file services. However, each service that the Managed Bean can
connect to can itself be configured differently. Instead of having to write a different
application for each configuration, the developer can provide properties that the applica-
tion administrator/owner can set, depending on the configuration of the desired service
they are connecting to. Another convenience of Managed Bean Properties is that they
can be directly referenced from within Server Side JavaScript code or EL property bind-
ing using simple notation: beanName.propertyName.

Listing 5.9 shows a snippet from PCGCH05.nsf’s faces-config.xml. Listing 5.10
illustrates how the Managed Bean Properties defined in faces-config.xml are refer-
enced directly from within Server Side JavaScript code (in the managedBeans XPage in
the same application).

Listing 5.9  Snippet from faces-config.xml in PCGCH05.nsf Application

<managed-bean>

 <managed-bean-name>myApplicationBean</managed-bean-name>

 <managed-bean-class>

 com.ibm.xpages.beans.MyApplicationBean</managed-bean-class>

 <managed-bean-scope>application</managed-bean-scope>

 <managed-property>

 <property-name>title</property-name>

 <value>#{javascript:database.getTitle()}</value>

 </managed-property>

</managed-bean>

http://java.sun.com/developer/onlinetraining/Beans/bean01/
http://java.sun.com/developer/onlinetraining/Beans/bean01/

236   Working with Java Made Simpler

Those with a keen eye will quickly notice one important subtlety in the definition of the
title Managed Bean Property in Listing 5.9: The value of the property is computed
using Server Side JavaScript.

As you can imagine, the potential uses for such functionality are far reaching; not only
do Managed Bean Properties allow the developer to provide default properties for Man-
aged Beans on an application-by-application basis, but these properties are also comput-
able. The XPages runtime supports computing these property values using Server Side
JavaScript or Expression Language. You can also use either approach to directly refer-
ence some other declared direct reference to Managed Beans, as with this:

<value>#{myOtherManagedBean.beanProperty}</value>

Using this approach, you should ensure that the other referenced Managed Bean instance
will be within an available scope to the current bean. For example, a bean declared
within the applicationScope that is configured to get the value of a requestScope
bean property will not have access to this property. This is because the application-
Scope bean is instantiated before the requestScope bean instance. Therefore, when
the faces-config.xml property declaration is processed, an exception occurs because
the requestScope bean property cannot be found. If this scenario were configured the
other way, with the requestScope bean property configured to obtain the value of
 an applicationScope bean property, no exception would occur. This is because
the applicationScope bean would be within scope at instantiation time of the
requestScope bean.

Listing 5.10 demonstrates how both methods can be combined to access Managed Bean
properties.

Listing 5.10  Snippet from the managedBeans XPage in PCGCH05.nsf Application
Using Managed Bean Properties

<xp:tr>

 <xp:td>

 <xp:span style="font-weight:bold">

 myApplicationBean.title</xp:span>data binding</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField4"

 value="#{myApplicationBean.title}"></xp:text>

 </xp:td>

</xp:tr>

<xp:tr>

 <xp:td>

 <xp:span style="font-weight:bold">

 myApplicationBean.title</xp:span>Server Side JavaScript</xp:td>

 <xp:td>

 <xp:text escape="true" id="computedField5">

 <xp:this.value>

Working with Java Made Simpler   237  

 <![CDATA[#{javascript:

 return "Using SSJS " + myApplicationBean.title}]]>

 </xp:this.value>

 </xp:text>

 </xp:td>

</xp:tr>

You can also set Managed Bean property values to be passed by reference of other bean
instances. Listing 5.11 shows an example fragment from a faces-config.xml file
where a bean property value is set to accept another bean instance. As described earlier,
the rules of scoping also apply when using this approach.

Listing 5.11  Snippet from faces-config.xml Showing a Bean Instance Property Value

<managed-bean>

 <managed-bean-name>workFlowManagerBean</managed-bean-name>

 <managed-bean-class>

 com.ibm.xpages.beans.WorkFlowManagerBean</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>workFlowHelper</property-name>

 <value>#{workFlowHelperBean}</value>

 </managed-property>

</managed-bean>

<managed-bean>

 <managed-bean-name>workFlowHelperBean</managed-bean-name>

 <managed-bean-class>

 com.ibm.xpages.beans.WorkFlowHelperBean</managed-bean-class>

 <managed-bean-scope>view</managed-bean-scope>

</managed-bean>

Finally, Managed Bean properties can be declared with an explicit property type. This is
done by specifying the property type class in the faces-config.xml property declara-
tion. Listing 5.12 shows an example in which the serverName property has its
<property-class> set to java.lang.String. This is a standard Java language
datatype and differs from the appBean property type, in that it is a user-defined
type. Again, the <property-class> has been set to the fully qualified class name
accordingly.

Listing 5.12  Snippet from faces-config.xml Showing a Bean Property Type Class
Declaration

<managed-bean>

 <managed-bean-name>myRequestBean</managed-bean-name>

 <managed-bean-class>

 com.ibm.xpages.beans.MyRequestBean

238   Conclusion

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property>

 <property-name>serverName</property-name>

 <property-class>java.lang.String</property-class>

 <value>#{javascript:database.getServer()}</value>

 </managed-property>

 <managed-property>

 <property-name>appBean</property-name>

 <property-class>

 com.ibm.xpages.beans.MyApplicationBean

 </property-class>

 <value>#{myApplicationBean}</value>

 </managed-property>

</managed-bean>

PCGCH05.nsf contains several examples of how to use Managed Bean Properties. Over
time, the use of such properties will prove to be an invaluable asset in your repertoire of
XPages development skills.

Conclusion

This chapter took you on a grand tour of server-side programmability. As you can see,
server-side scripting has many different facets and requires a certain amount of trial and
error to build up the level of expertise required to exploit all the tools at your disposal.
In recognition of the fact that your learning curve will inevitably lead to occasional
unexpected results, the next chapter is dedicated to debugging XPages applications on
the server side.

As of Notes/Domino 8.5.3, Domino Designer has no Server Side JavaScript (SSJS)
debugger. However, it has a powerful Java debugger. You already know from Chapter
5, “Server-Side Scripting,” that you can write SSJS code to directly incorporate Java
object code into your applications. This built-in Java debugger can be an essential tool
when it comes to debugging Java code called from SSJS. But what about debugging the
actual script code itself? In the absence of a full-blown Server Side JavaScript debugger,
you can still help yourself by using some simple XPages features. This chapter starts by
describing two useful server-side global functions and a simple programming construct
that you can readily use as a debugging aid in your SSJS code—hence the title of the
next section, “The ‘Poor Man’s’ Debugger.” It then moves on to look at the various tools
and tricks you can employ to debug everything from your own custom Java classes, to
Managed Beans, to plug-ins that extend the XPages runtime.

Before starting this chapter, you should download the PCGCH06.nsf supporting appli-
cation and then open and sign it with your own Notes ID in Domino Designer. You will
then have all the examples covered here. The sample application is available from this
website: www.ibmpressbooks.com/title/0132943050.

The “Poor Man’s” Debugger

In Domino Designer, open the poorMansDebugger.xsp page found in PCGCH06.nsf
and run it in a browser to work through the examples discussed here. Figure 6.1 shows
the poorMansDebugger XPage in a browser.

print(message) : void & println(message) : void

This is the XPages Server Side JavaScript equivalent of the XSP.log() Client Side
JavaScript XSP Object function. The given message parameter is typecast to a String
value and output to the console writer. For an XPages application running in a Domino
server, this output is sent to the Domino server console window and also to the Domino
console log file, which can be found under the Domino data folder in IBM_TECHNI-
CAL_SUPPORT/console.log. For an XPages application running in the Notes client,
this output can be viewed using the Help > Support > View Trace menu option. Ulti-
mately, all Notes trace files reside under the Notes data folder in workspace/log/trace-
log-n.xml (where n is replaced with an integer value between 0 and 9, 0 being the log
for the most recent Notes client session). If you have launched your Notes or Domino
Designer client using the RPARAMS –console switch (as described in Chapter 3,
“Working with the Console”), the print() or println() output will also be readable
in the OSGi Console window. Both the print() and println() functions produce the
same output.

Chapter 6

Server-Side Debugging
Techniques

www.ibmpressbooks.com/title/0132943050

240  T he “Poor Man’s” Debugger

Developers should use debug constructs in their code to avoid having print statements
execute throughout production code, as this can have an impact on performance (where
large recursive operations are writing to the log file).

Figure 6.1  The poorMansDebugger XPage in a browser

Listing 6.1 details example calls to the print() and println() server-side functions.

Listing 6.1  Example Calls of the print () and println() Functions

<xp:button id="button1">

 <xp:this.value>

 <![CDATA[print() & println()]]>

 </xp:this.value>

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[[#{javascript:

 print("UserName: " + @UserName());

 println("Database Name: " + database.getFileName());

 print("10.5 x 10.5 = " + (10.5 * 10.5));

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

The “Poor Man’s” Debugger   241  

Listing 6.2 shows the console output after running the print() and println() Server
Side JavaScript functions, as detailed in Listing 6.1.

Listing 6.2  Console Output of the print() and println() Functions

HTTP JVM: UserName: Anonymous

HTTP JVM: Database Name: PCGCH06.nsf

HTTP JVM: 10.5 x 10.5 = 110.25

_dump(object) : void

This is the XPages Server Side JavaScript equivalent of the XSP.dumpObject() Client
Side JavaScript XSP Object function. The given object parameter is interrogated for
presence of a toString() method on the object. If present, this is invoked. Also, an
internal reflection call occurs on the object parameter to summarize the member/values
of the object. The output behavior is the same as for the print() function.

Listing 6.3 details an example call and console output of the _dump()server-side func-
tion. A simple one-dimensional array object is passed into the function.

Listing 6.3  Example Call of the _dump() Function for a Simple 1D Array Object

<xp:button value="_dump(arrayOfStuff)" id="button5">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 var arrayOfStuff:Array = new Array();

 arrayOfStuff[0] = "hello";

 arrayOfStuff[1] = "world";

 _dump(arrayOfStuff);

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.4 shows the sample output is recorded to log after executing the script in
Listing 6.3.

Listing 6.4  Sample Output from Call of _dump() Function for a Simple 1D Array Object

#1 HTTP JVM: Array

#2 HTTP JVM: =

#3 HTTP JVM: hello,world

#4 HTTP JVM:

#5 HTTP JVM: +-

242  T he “Poor Man’s” Debugger

#6 HTTP JVM: [0]

#7 HTTP JVM: :

#8 HTTP JVM: string

#9 HTTP JVM: =

#10 HTTP JVM: hello

#11 HTTP JVM:

#12 HTTP JVM: +-

#13 HTTP JVM: [1]

#14 HTTP JVM: :

#15 HTTP JVM: string

#16 HTTP JVM: =

#17 HTTP JVM: world

In the case of Listing 6.4, line numbers (such as #1) have been manually inserted for
clarity. The same is true for the remaining listings in this section that list Domino con-
sole output. In this instance, the toString() method is found on the Array object.
This results in the output hello,world in Listing 6.4, line 3. Thereafter, the internal
reflection member/values are seen in the console output. This results in output for each
of the object members. Line 8 shows a string type member with the value hello in line
10, and so forth.

Listing 6.5 details an example call to the _dump()server-side function where a custom
Server Side JavaScript object is passed into the function. This custom object does not
declare a toString() method in its class. This results in reflection output only on the
console output, as shown in Listing 6.6. Interestingly, you also see reflection output on
the console for the commonName function definition—this shows that more than just
simple values are visible using the _dump() function.

Listing 6.5  Example Call of the _dump() Function for a Custom Server Side JavaScript
Object Without a toString() Method Available

<xp:button value="_dump(user)" id="button2">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 var User = function(){

 var _cn = session.getCommonUserName();

 function _CN(){return _cn;}

 return {commonName : _CN}

 }

 var user = new User();

 _dump(user);

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

The “Poor Man’s” Debugger   243  

Listing 6.6 shows the console output of running the code snippet in Listing 6.5.

Listing 6.6  Sample Console Output of the _dump() Function for a Custom Server Side
JavaScript Object Without a toString() Method Available

#1 HTTP JVM: Object

#2 HTTP JVM: =

#3 HTTP JVM: [object Object]

#4 HTTP JVM:

#5 HTTP JVM: +-

#6 HTTP JVM: commonName

#7 HTTP JVM: :

#8 HTTP JVM: Function

#9 HTTP JVM: =

#10 HTTP JVM: [function Function]

#11 HTTP JVM:

#12 HTTP JVM:

#13 HTTP JVM: +-

#14 HTTP JVM: prototype

#15 HTTP JVM: :

#16 HTTP JVM: Object

#17 HTTP JVM: =

#18 HTTP JVM: [object Object]

Listing 6.7 details an example call of the _dump()server-side function in which a cus-
tom Server Side JavaScript object is passed into the function. The difference between
this example and the previous one in Listing 6.5 is the fact that this time the custom
object declares a toString() method in its class. This results in the reflection output
showing both the output from the toString() invocation and the standard reflection
information on the console output, as shown in Listing 6.8.

Listing 6.7  Example Call of the _dump() Function for a Custom Server Side JavaScript
Object with a toString() Method Available

<xp:button value="_dump(user) with toString()" id="button3">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 var User = function(){

 var _cn = session.getCommonUserName();

 function _CN(){return _cn;}

 function _tos(){return "commonName(_cn)=" + _cn;}

 return {

 commonName : _CN,

244  T he “Poor Man’s” Debugger

 toString : _tos

 }

 }

 var user = new User();

 _dump(user);

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.8 shows the console output that results from executing the code snippet in
Listing 6.7.

Listing 6.8  Example Console Output from Executing the _dump() Function for a
Custom Server Side JavaScript Object with a toString() Method Available

#1 HTTP JVM: Object

#2 HTTP JVM: =

#3 HTTP JVM: commonName(_cn)=taurus

#4 HTTP JVM:

#5 HTTP JVM: +-

#6 HTTP JVM: commonName

#7 HTTP JVM: :

#8 HTTP JVM: Function

#9 HTTP JVM: =

#10 HTTP JVM: [function Function]

#11 HTTP JVM:

#12 HTTP JVM:

#13 HTTP JVM: +-

#14 HTTP JVM: prototype

#15 HTTP JVM: :

#16 HTTP JVM: Object

#17 HTTP JVM: =

#18 HTTP JVM: [object Object]

#19 HTTP JVM:

#20 HTTP JVM: +-

#21 HTTP JVM: toString

#22 HTTP JVM: :

#23 HTTP JVM: Function

#24 HTTP JVM: =

#25 HTTP JVM: [function Function]

#26 HTTP JVM:

#27 HTTP JVM:

#28 HTTP JVM: +-

#29 HTTP JVM: prototype

The “Poor Man’s” Debugger   245  

#30 HTTP JVM: :

#31 HTTP JVM: Object

#32 HTTP JVM: =

#33 HTTP JVM: [object Object]

The toString() output is listed as HTTP JVM: commonName(_cn)=taurus at line
3 in Listing 6.8.

Listing 6.9 details an example call to the _dump()server-side function in which the
Server Side JavaScript database object is passed into the function. Note the print()
call just before the _dump() call. This highlights the fact that the toString() method
output is equivalent within each of these calls—one invoking it explicitly, the other
invoking it implicitly.

Listing 6.9  Example Call of the _dump() Function for the Server Side JavaScript
Database Object

<xp:button value="_dump(database)" id="button4">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 print("database.toString() = " + database.toString());

 _dump(database);

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.10 shows the console output from running the code snippet in Listing 6.9. Note
the presence this time of the fully qualified datatype com.ibm.domino.xsp.module.
nsf.NSFComponentModule$XPagesDatabase for the database object. This is
inline with the expected output of the _dump() function.

Listing 6.10  Console Output from Calling the _dump() Function for the Server Side
JavaScript Database Object

HTTP JVM: database.toString() = PCG\PCGCH06.nsf

HTTP JVM: com.ibm.domino.xsp.module.nsf.NSFComponentModule$XPages
➥Database

HTTP JVM: =

HTTP JVM: PCG\PCGCH06.nsf

Listing 6.11 details an example call to the dump()server-side function in which the
Server Side JavaScript requestScope and viewScope objects are passed into the
function. The requestScope object contains several items based on the current request,

246  T he “Poor Man’s” Debugger

as shown in Listing 6.12. The viewScope in this example has been assigned a custom
variable that also appears in the console output.

Listing 6.11  Example Call of the _dump() Function for the Server Side JavaScript
requestScope and viewScope Objects

<xp:button value="_dump(scoped vars)" id="button5">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 print("requestScope _dump:");

 _dump(requestScope);

 print("viewScope _dump:");

 viewScope.pi = 3.14159265;

 _dump(viewScope);

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.12 shows the sample console output after running the code snippet in
Listing 6.11.

Listing 6.12  Console Output of the _dump() Function for the Server Side JavaScript
requestScope and viewScope Objects

#1 HTTP JVM: requestScope _dump:

#2 HTTP JVM: com.sun.faces.context.RequestMap

#3 HTTP JVM: =

#4 HTTP JVM: {cookie={SessionID=javax.servlet.http.Cookie@17a417a4},

#5 context=com.ibm.xsp.designer.context.ServletXSPContext@9d009d,

#6 _xspconvid=null,

#7 componentParameters=com.ibm.xsp.application.ComponentParameters@288,

#8 database=PCG\PCGCH06.nsf, com.ibm.xsp.SESSIO_ID=CYYUY5WTEG,

#9 session=CN=taurus/O=renovations}

#10 HTTP JVM: viewScope _dump:

#11 HTTP JVM: javax.faces.component.UIViewRoot$ViewMap

#12 HTTP JVM: =

#13 HTTP JVM: {pi=3.14159265}

Using try/catch Blocks

A simple technique you can apply to your Server Side JavaScript code is the use of
try/catch blocks. An optional finally clause also is available for a try/catch
block. The principles behind this programming construct are the same as in C++, Java,

How to Set Up a Server for Remote Debugging   247  

and any other programming language that supports it. Basically, code within the try
clause is executed within a reversible instruction stack. If the code causes an error, the
instruction stack is unwound and the catch clause is entered. Within the catch clause,
you can then handle the error accordingly by outputting debug statements and so forth.
You also have access to the raised error object through the catch error parameter—note
that this can be any arbitrarily named reference. From this reference, you can obtain
the error message implicitly by simply referencing the error parameter or explicitly by
calling e.getMessage() (where e is the arbitrarily named error reference used in this
example).

Listing 6.13 details an example try/catch/finally block along with console output.

Listing 6.13  Example try/catch/finally Block

<xp:button value="try/catch/finally" id="button2">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete">

 <xp:this.action>

 <![CDATA[#{javascript:

 var x = @Now();

 try{

 x = someNonExistentObject;

 }catch(e){

 print("error occurred: " + e);

 }finally{

 // finally clause is optional

 print("now: " + x);

 }

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.14 shows the console output from executing the code snippet in Listing 6.13.

Listing 6.14  Console Output from Executing a try/catch/finally Code Block

HTTP JVM: error occurred: 'someNonExistentObject' not found

HTTP JVM: now=30/09/11 11:38

How to Set Up a Server for Remote Debugging

The vast majority of XPages applications are run on a Domino server. Sooner rather
than later, the XPages developer must debug an application that does not run on a local
computer. When that time arrives, the XPages developer needs to be equipped with the
know-how and confidence to connect to a remote server and debug the issue.

248  H ow to Set Up a Server for Remote Debugging

It is worth clarifying at this juncture that, in Java terms, to debug remotely simply means
to debug code that is running in a separate JVM instance. That is, the Domino server
might be on the same machine as Domino Designer, but it requires a remote Debug Con-
figuration to debug the code on the Domino server.

To debug an application running remotely, the developer or administrator must first set
up the server in such a way that it can be debugged. This is achieved by adding a num-
ber of variables to the server’s notes.ini file, some of which Chapter 2, “Working with
Notes/Domino Configuration Files,” briefly touched upon.

Table 6.1 describes the various notes.ini variables that can be added to allow the server
to be debugged. None of these are specified in notes.ini by default. After these variables
are added to the notes.ini file, the HTTP task must be restarted for the JVM to start in
debug mode.

Table 6.1  NOTES.INI Java Debug Variables

Variable Name Description

JavaEnableDebug Notifies the Domino server that it should start the JVM in
debug mode. Specifying a value of 1 enables this setting.

JavaDebugOptions Provides a comma-separated list of arguments to the JVM.

JavaOptionsFile Provides a full path to a text file that contains a list of
parameters to be passed to the JVM as VM args.

The JavaEnableDebug and JavaDebugOptions variables are utility variables
that enable the user to pass debug arguments to the JVM without having to specify a
JavaOptionsFile. In some cases when it is necessary to pass a number of arguments
to the JVM, a more convenient method is to use the JavaOptionsFile parameter in
place of the JavaEnableDebug and JavaDebugOptions parameters. Listing 6.15
shows a sample application of the JavaEnableDebug and JavaDebugOptions
variables.

Listing 6.15  notes.ini Snippet to Enable Java Debugging on the Server

Enable server's JVM to start in debug

JavaEnableDebug=1

JavaDebugOptions=transport=dt_socket,server=y,suspend=n,

➥address=8000

Listing 6.15 shows how to start the server’s JVM in debug mode. Setting
JavaEnableDebug to 1 tells the server to start the JVM instances in debug mode by
passing the –Xdebug VM argument to the JVM instance. The parameters set with the
JavaDebugOptions variable are passed directly to the JVM as options for the
-Xrunjdwp VM argument. Passing the -Xdebug and -Xrunjdwp arguments to the
JVM causes the JVM to start in debug mode in a state to accept Java debug connections.

How to Set Up a Server for Remote Debugging   249  

Tip  You can start the local preview server (the server that is used when you preview
an application on your local computer instead of a server) in debug mode by add-
ing the same variables to the notes.ini located in your Notes client program directory
(JavaEnableDebug and JavaDebugOptions). If you are debugging applications on
a Domino server and on the local preview server at the same time, you should set the
debug address for the local preview server to be a different number than the Domino
server—for instance, 8005 instead of 8000. This requires modifying the port number in
the Debug Configuration used in Domino Designer also.

All the parameters passed to the JVM via the JavaDebugOptions variable must con-
form with the official Oracle VM invocation options. Table 6.2 describes the various
options that were passed to the JVM in Listing 6.15.

Table 6.2  JavaDebugOptions Parameters

Option Name Required Description

transport Yes Name of transport method to use when connect-
ing to the debugger application. Typically set to
dt_socket, which is the default transport socket
for debugging Java applications.

server Yes In the case of the Domino server, this option should
always be set to true. This option notifies the
JVM that it is acting as a debug server—that is, it
will be listening for debugger connections.

suspend No Defaults to y (yes). If set to y, all threads within
the JVM are suspended on startup until a debugger
connects to the JVM. In general, setting this option
to y is advisable only when an issue is occurring
during initialization; otherwise, the server will not
complete initialization until a debugger connects to
the JVM.

address Yes Tells the server’s JVM which port to listen to for
debugger connection requests.

Table 6.1 also lists a third parameter that can be used to enable a server to be remotely
debugged. JavaOptionsFile enables the user to set a file path to a text file that con-
tains all the debug options that the user wants to pass into the server’s JVM to enable
debugging. Listing 6.16 shows a sample usage of the JavaOptionsFile notes.ini
variable.

Listing 6.16  notes.ini Snippet to Enable Java Options File on the Domino Server

Enable server to read from options file

JavaOptionsFile=C:\Domino\MyJavaOptions.txt

Listing 6.17 shows sample content for the JavaOptionsFile variable (in this case, the
MyJavaOption.txt file).

250   Debugging Java Code and Managed Beans

Listing 6.17  Possible Value of Java Options File to Enable Server-Side Debugging

Enable server to read from options file

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8000

The net result of Listings 6.16 and 6.17 is the same as that of Listing 6.15. In both cases,
the server’s JVM is started in debug mode. The case for using the JavaOptionsFile
variable is more often made when it is necessary to pass many VM arguments to the
JVM upon startup, such as when you need to profile your XPages application using a
profiling tool such as the XPages Toolbox. This is described in the “XPages Toolbox”
section at the end of this chapter.

After your server has been configured to start in debug mode, a message is printed to
the server console. You should verify that such a message has been received before you
attempt to connect a debug client to the server. Figure 6.2 illustrates how the console
looks when the server is ready to accept debug connections.

Figure 6.2  Domino server’s HTTP task started in debug mode

Debugging Java Code and Managed Beans

After the developer/administrator has started the Domino server in debug mode, the
server is in a position to accept debug connections from your Java debug client of
choice. For XPages developers, this is likely Domino Designer. As of Notes/Domino
8.5, Domino Designer is built upon the Eclipse IDE platform. Eclipse is equipped with a
rich set of Java debugging features, all of which are available to Domino Designer users.

When developers are creating and debugging their own XPages Extension Library plug-
ins, they might want to use the Eclipse IDE to develop and debug XPage library plug-ins
instead of using Domino Designer. After all, in this situation, the developer is dealing
with pure Eclipse plug-ins. Both scenarios are outlined in the following sections.

In the first scenario, a user has created a Java class that contains some application
logic. The Java class is referenced from within some Server Side JavaScript inside an
XPage. After executing the business logic, the developer realizes that the Java code is
not producing the correct results. To make this use case easier to understand, the sup-
porting PCGCH06.nsf application has an XPage and Java class that you can use to
follow along. This example is designed to work in Domino and Domino Designer 8.5.3

The console will log when the JVM is starting in debug mode

Debugging Java Code and Managed Beans   251  

or later. Because this chapter is dedicated to debugging applications on the server,
you need to copy the sample application onto your Domino server, start it in debug
mode (as described in the previous sections), and open the application within Domino
Designer. The XPage in question is named remoteJavaDebugger, and the Java class is
called DateCalculator. Figure 6.3 shows both of these design elements within Domino
Designer.

Figure 6.3  remoteJavaDebugger and DateCalculator in the Domino Designer
Applications Navigator

To debug the business logic, the developer must first open the suspect Java class, Date-
Calculator. For the purposes of this example, you should set a breakpoint in the first
line of the offending method; in this example, this is line 12, highlighted with a shaded
background in Listing 6.18.

Listing 6.18  Contents of DataCalculator.java Design Element

1 package pcg;

2

3 import java.util.Calendar;

4 import java.util.Date;

5 import java.util.GregorianCalendar;

6

7 public class DateCalculator {

8 /*

9 * Add 5 years and 5 months to the start date

252   Debugging Java Code and Managed Beans

10 */

11 public static Date computeSabbatical(Date startDate){

12 if(startDate == null){ // <-- SET BREAKPOINT AT THIS LINE

13 return null;

14 }

15 Calendar calendar = new GregorianCalendar();

16 calendar.setTime(startDate);

17 calendar.add(Calendar.YEAR, 5);

18 calendar.add(Calendar.MONTH, 4); // <-- error typo

19 return calendar.getTime();

20 }

21 }

To set a breakpoint, the developer simply right-clicks in the leftmost column of the Java
Editor and selects the Toggle Breakpoint menu item, as illustrated in Figure 6.4.

Figure 6.4  Enabling a breakpoint in the Domino Designer Java Editor

When the breakpoint is set, the next step is to create a Debug Configuration. This is
where all your debug settings are stored and applied whenever your application is
launched in debug mode. To do this, you should select the Run > Debug Configurations
menu option, as shown in Figure 6.5. To make this menu option available, simply open
the Java editor (by opening a Java class), or switch to the Debug perspective by using the

Debugging Java Code and Managed Beans   253  

Window > Show Perspective > Other menu item and choosing the Debug perspective
from the resulting dialog. In Eclipse, a perspective is a particular configuration of views
and editors designed for a particular purpose. Domino Designer has its own “Domino
Designer” perspective, which you probably work in all the time. There is another per-
spective for Java developers, a specialized perspective for debugging, and so forth.

Figure 6.5  Debug Configurations menu item in Domino Designer

This launches the Debug Configurations dialog. As explained earlier in the chapter,
you need to create a Remote Java Application Debug Configuration because the XPages
runtime is not running within the same JVM instance as Domino Designer. To create a
new Remote Java Application Debug Configuration, simply right-click the Remote Java
Application item in the list of possible Debug Configurations and click the New menu
item, as shown in Figure 6.6.

Depending on the context from which you created the Debug Configuration, the fields of
the Debug Configuration dialog might be prepopulated. If they are not, you must provide
a Configuration Name. The Project Name should be set as the name of the database
(project) that contains the design element being debugged—in this example, PCGCH06.
nsf. You need to select a Connection Type, which should always be set to Standard
(Socket Attach). Finally, you must enter a Host Name and Port Number to con-
nect to. If the server you are debugging is running on the local machine, localhost will
suffice as the hostname; otherwise, a qualified IP address is required. The port number
supplied must be identical to the host number configured as the listen port in notes.ini
on the server, as shown in Listing 6.17 (in this case, 8000). Figure 6.7 shows how the
debug configuration for the PCGCH06.nsf application should be set up when the appli-
cation resides on a server running on the local machine.

254   Debugging Java Code and Managed Beans

Congratulations, you are now ready to start debugging! When you have confirmed that
the Domino server has been restarted with its Java debug INI variables in place, the
next step is to launch the Debug Configuration you have just created. To do this, simply
bring up the Debug Configurations dialog, select the newly created configuration, and
press the Debug button. If you have not already switched to the Debug perspective, you

Figure 6.6  Creating a Remote Java Application Debug Configuration in Domino
Designer

Figure 6.7  A Remote Java Application Debug Configuration in Domino Designer

Debugging Java Code and Managed Beans   255  

should do so now. Figure 6.8 shows the Debug perspective in Domino Designer when
the Java Debugger is connected to a remote JVM.

Figure 6.8  Domino Designer connected to a remote JVM

To debug the Java code, simply attempt to preview the remoteJavaDebugger XPage in
a web browser. This causes the Java class to be invoked, and the debugger pauses execu-
tion of the Java code at the exact place where the breakpoint is set, as shown in Figure
6.9. Eclipse provides Domino Designer with a slew of Eclipse Views that make it easy
to debug the Java code. From this point, you can debug through the Java code just as
you would with any regular Java application.

It is beyond the scope of this book to provide exhaustive Java debugging techniques
when debugging XPages Java code. However, we recognize that many XPages develop-
ers might be new to Java development, so some basic tips on how to get up and running
in the Eclipse Debug perspective might be helpful. Figure 6.10 provides a number of
callouts highlighting various parts of the Eclipse Debug view and the Eclipse Variables
view.

Table 6.3 lists all the areas highlighted in Figure 6.10 and gives a brief description of the
functionality provided by the same.

256   Debugging Java Code and Managed Beans

Table 6.3  Descriptions of Debug and Variables Views UI

UI Item Description

Stack information Provides a full view of the stack of method and class calls
made to arrive at the current breakpoint’s position.

Resume Results in the JVM continuing to execute the program as
normal until the next breakpoint is encountered.

Disconnect Responsible for terminating the connection between the
debugger client and debug server—in this case, between
Domino Designer and the Domino server.

Figure 6.9  Domino Designer’s Debug, Variables, and Breakpoint views

Figure 6.10  Eclipse Debug view and Eclipse Variables view

Disconnect

Step into
Step over

Step out Variable Names
Current Breakpoints

Variable Values (editable)

Currently selected variable’s value

Stack
information

Resume

Debugging Java Code and Managed Beans   257  

UI Item Description

Step into Tells the debugger that the user wants to step into the cur-
rent method or constructor. If the Java source code for the
method/constructor is not available, the user is presented
with the Eclipse Java Class editor. This editor basically
lists some rudimentary information about the class file but
does not enable the user to read the Java source code for
the class.

Step over Tells the debugger to step over the current Java statement.
The current Java statement is evaluated and the program
progresses to the next statement to be executed.

Step out Tells the debugger to step out of the current method or
constructor. All remaining statements in the current meth-
od/constructor are executed and debugging resumes at the
next statement in the class/method that called the current
method/constructor.

Variable names Column in the Variables Eclipse view that lists the names
of all the variables currently in scope. These variables
include variables defined within the current method, along
with class variables that are in scope.

Variable values Column in the Variables Eclipse view that lists the val-
ues of all the variables that are currently in scope. It is
worth noting one powerful feature of this column makes
it possible to change the value of primitive variables (and
Strings) via this column. The developer can change the
current value of a variable simply by double-clicking in the
value column of the variable to edit. To set the value of an
Object, the developer can right-click the variable and select
the Change Value menu option. This feature provides a
huge amount of flexibility to developers by enabling them
to change the values of variables within the code as the
code is executing.

Currently selected
variable’s value

Shows the value of the currently selected variable as com-
puted using the variable’s toString() method. If the
selected Object does not override the toString() method
and the developer wants to obtain some useful debug infor-
mation from the selected item, the developer can option-
ally override the toString() behavior by providing a
Detail Formatter for the selected variable. This is done
by right-clicking a variable and selecting the New Detail
Formatter context menu item. This is another powerful
function that developers will make much use of over time.

258   Debugging Java Code and Managed Beans

UI Item Description

Current breakpoints Lists all the breakpoints currently configured within the
application. A significant amount of hidden functional-
ity also is available within this view. Each breakpoint can
be configured to be enabled only when certain scenarios
are met. These scenarios can be as simple as a certain hit
count being met (that is, the breakpoint has been reached a
specific number of times) to as complex as the breakpoint
being dependent on the values of certain variables within
the system. These conditions can be set on a breakpoint by
right-clicking the breakpoint and choosing the Breakpoint
Properties context menu item.

When debugging issues within XPages applications, developers often find that the
application is failing to function because an exception is being generated either within
the code or within one of the phases in the JSF lifecycle. The Eclipse debugging func-
tionality that is embedded within Domino Designer provides one powerful feature in
this regard: the capability to set breakpoints that are triggered when a specified type of
exception occurs. As you can imagine, this feature is particularly useful when debugging
stack traces where unfamiliar code is involved. In such cases, the developer can simply
set a breakpoint for the type of exception being generated and perform the action that
causes the exception to occur for the breakpoint to be invoked. To make this concept a
little easier to understand, the accompanying application (PCGCH06.nsf) has a simple
example built in.

To see this example in action, simply preview the remoteJavaDebugger XPage (on a
server running in debug mode). After the page renders in the browser, click the Gener-
ate FacesExceptionEx button. The XPage then generates an exception. We provide
information and tips on how to read a stack trace such as the one generated in this situa-
tion (see “Interpreting a Stack Trace: Where to Go from Here?”) later in this chapter; for
now, scroll to the bottom of the stack trace to find the name of the type of exception that
caused the page to fail to render. You will find that a FacesExceptionEx caused the
failure. This is identified by the following line in the stack trace:

com.ibm.xsp.FacesExceptionEx: Demo exception; failed to complete
➥request

You are now armed with a vital piece of information. You know that a com.ibm.xsp.
FacesExceptionEx exception is causing the page to fail to render. To backtrack
through this issue, the first step is to go to the Debug perspective in Domino Designer.
From the Debug perspective, locate the Breakpoints Eclipse view. The toolbar button
farthest to the right enables you to add a breakpoint based on any type of exception.
Figure 6.11 highlights this button and the dialog that results from pressing the button.

Table 6.3  Descriptions of Debug and Variables Views UI (continued)

Debugging Java Code and Managed Beans   259  

Figure 6.11  Adding a Java Exception breakpoint in Domino Designer

The Add Java Exception Breakpoint dialog enables the developer to enter the name
of the type of exception being thrown—in this case, FacesExceptionEx. When set,
this breakpoint will be hit any time the specified exception is thrown. Developers can
add several such breakpoints to catch any range of exceptions being generated. In this
example, we are concerned with only one type of exception (the com.ibm.xsp.
FacesExceptionEx exception). When this breakpoint is set, the user must reopen
the remoteJavaDebbuger XPage in a browser and again press the GenerateFaces
ExceptionEx button. After the button is pressed, the Domino Designer Java debugger
kicks in and pauses program execution at the point in the code where the exception is
about to be thrown (see Figure 6.12).

When the breakpoint is hit, the developer is free to debug the code in the same way
other Java classes are debugged.

The breakpoints detailed earlier in this chapter are static in nature. However, breakpoints
that are invoked as a result of encountering a certain type of exception are dynamic in
nature and provide a great deal of flexibility to developers when debugging issues for
which the full source for the application is not available

All XPages developers should be aware of one particular pitfall when debugging Java
code. Setting up the server to start in debug mode implies that all JVMs running on the
server will be started with the same debug settings. If the server has databases that have

Add Exception Breakpoint dialog Add Java Exception Breakpoint toolbar button

260   Debugging Java Code and Managed Beans

Java agents that happen to be running when the developer attempts to launch the Debug
Configuration, the debugger within Domino Designer might connect to the wrong JVM.
If Domino Designer is indicating that it is connected to the remote JVM, but the debug-
ger is not stopping at its breakpoints, the debugger likely has connected to the wrong
JVM. To resolve this, disconnect the debugger and, if possible, change the schedule of
the Java agents on the server so they do not conflict with your XPage debug session.
Alternatively, you may temporarily switch off the Agent Manager by running the follow-
ing command in the Domino server console:

tell AMgr quit

Figure 6.12  Java Exception breakpoint in action

This command tells the server to stop the Agent Manager task. Note that all agents (not
just Java agents) will be disabled until the Agent Manager is re-enabled. To reload the
Agent Manager, simply type the following command into the Domino server’s console:

load AMgr

As described in Chapter 5, it is possible to add Java application logic to your XPage
applications through the use of Managed Beans. The good news for the XPage devel-
oper is that the method of debugging Managed Beans is identical to the process used for
debugging Java classes, as previously described in this chapter.

PCGCH06.nsf contains an XPage and Managed Bean Java class that can be debugged
in a manner similar to that just described here. In this case, set a breakpoint at the start

Program execution paused at exception

Exception
about to be

thrown

Java variables are available to be read
Java Exception Breakpoint enabled

Debugging XPages Extension Plug-ins   261  

of the getFahrenheit() method in the Temperature Managed Bean—or, to be
completely explicit:

com.ibm.xpages.beans.TemperatureBean.getFahrenheit()

After the breakpoint is set and the Debug Configuration has been launched, simply run
the remoteJavaBeanDebugger XPage in a web browser to debug the Managed Bean.
Over time, this means of debugging server-side Java code residing within the application
will become second nature and prove to be an invaluable skill.

Debugging XPages Extension Plug-ins

As the creation of XPage controls becomes more mainstream, developers will require
more powerful tools to quickly deploy and debug their extension library plug-ins. Enter
the IBM Lotus Domino Debug plug-in. The IBM Lotus Domino Debug plug-in is an
Eclipse update site that adds powerful capabilities to the Eclipse IDE. As discussed in
Chapter 2, the OSGi runtime is layered on top of the Domino HTTP task. The XPages
runtime is packaged as OSGi bundles (plug-ins) that run within the OSGi platform. Sim-
ilarly, any extensions to the XPages runtime are also packaged as OSGi bundles.

The IBM Lotus Domino Debug plug-in enables developers to create a Debug Configu-
ration (similar to the Debug Configuration previously discussed in this chapter) from
within the Eclipse IDE. This makes the OSGi platform running on the Domino server
aware of the plug-ins within the developer’s workspace. This offers many benefits, the
most significant being that developers can debug their plug-ins directly from their work-
space without needing to export and deploy the plug-ins every time a change is made.
The IBM Lotus Domino Debug plug-in is an OpenNTF project, freely available for
download. It can be found at OpenNTF.org: http://tinyurl.com/3jxsvux.

The project is accompanied by complete documentation detailing how to install the tool
into Eclipse. It is worth going over some of the higher-level concepts of the tool so that
you can understand the benefits of the tool.

This tool was developed solely to make the development of extension plug-ins easier.
The tool enables developers to create an OSGi Debug Configuration that sets a host of
settings within the Domino server’s OSGi platform. The settings instruct the platform to
read plug-ins from a second location, the developer’s own workspace. The workspace in
question must be on the same computer as the server being debugged. Thus, when the
OSGi platform is starting, it reads the plug-ins from the Domino server and also from
the developer’s workspace, where the latter takes precedence. The developer can then
remotely debug the plug-ins as they are executing on the Domino server. This eliminates
the need for the developer to deploy the plug-ins to the Domino server before debugging
them, which is a tedious process, at best.

We have all encountered situations in which it is difficult to tell from the symptoms of
the problem the end user reports where exactly the code is failing. In such situations,
it can be frustrating to try to set breakpoints at various points in the code and basically
backtrack to a point in the code where the problem is thought to be originating. In such

http://tinyurl.com/3jxsvux

262  H ow to Configure notes.ini and rcpinstall.properties for Logging

cases, it is normally much more practical (and efficient) to enable logging in the system
and judge from the output of the logs where the issue is occurring.

How to Configure notes.ini and rcpinstall.properties
for Logging

The XPages runtime has a significant amount of logging built into it. All the loggers
within the XPages runtime conform to the JSR47 specification for logging in Java.
You will see through the following examples that the loggers are themselves highly
configurable, with options to output the log content to various locations, along with the
capability to filter the amount of content produced by the loggers on a logger-by-logger
basis. Fortunately, enabling and disabling logging is easy within XPages and within the
Domino server in general.

Logging for the XPages runtime is enabled in three ways:

	 n	 notes.ini, which enables logging for the JVM

	 n	 rcpinstall.properties, which enables logging for different parts of the XPages
runtime

	 n	 bootstrap.properties, which enables the developer to specify a custom file that is
responsible for configuring the XPages runtime’s loggers

Table 6.4 lists notes.ini variables that you can use to debug the Domino server’s JVM.

Table 6.4  NOTES.INI Java Logging Variables

Variable Name Description

JavaVerbose Enables verbose logging within all JVM instances running on
the Domino server

JavaVerboseGC Enables verbose logging for all Garbage Collection events in
the Domino server JVM instances

Listing 6.19 shows how these variables are set in notes.ini. Users should be aware that
setting these variables will cause a lot of information to be printed to the console. The
logs these variables generate are of most use when class loading issues are suspected as
the cause or at least a contributor to a runtime issue.

Listing 6.19  NOTES.INI Variables to Enable JVM Logging

JavaVerbose=1

JavaVerboseGC=1

Listing 6.20 shows a snippet of the Domino server console output showing some of the
messages logged with verbose JVM logging enabled.

How to Configure notes.ini and rcpinstall.properties for Logging    263  

Listing 6.20  Sample Domino Server Console Output with JavaVerbose and
JavaVerboseGC Enabled

10/02/2011 01:58:04 PM HTTP JVM: class load: java/io/
➥InvalidClassException

10/02/2011 01:58:04 PM HTTP JVM: class load: com.ibm.xsp.application.
➥FileStateManager$1 from: file:/C:/Program

Files/IBM/Lotus/Domino/osgi/shared/eclipse/plugins/com.ibm.xsp.
➥core_8.5.3.20110629-1645/lwpd.xsp.core.jar

10/02/2011 01:58:04 PM HTTP JVM: class load:

➥java/util/concurrent/ThreadPoolExecutor$Worker

10/02/2011 01:58:04 PM HTTP JVM: class load: java/util/concurrent/
➥locks/LockSupport

10/02/2011 01:58:04 PM HTTP JVM: class load: com.ibm.xsp.http.
➥IUploadRequestWrapper from: file:/C:/Program

Files/IBM/Lotus/Domino/osgi/shared/eclipse/plugins/com.ibm.xsp.
➥extsn_8.5.3.20110629-1645/lwpd.xsp.extsn.jar

10/02/2011 01:58:04 PM HTTP JVM: class load: com.ibm.xsp.http.
➥FileUploadRequestWrapper from: file:/C:/Program

Files/IBM/Lotus/Domino/osgi/shared/eclipse/plugins/com.ibm.xsp.
➥extsn_8.5.3.20110629-1645/lwpd.xsp.extsn.jar

10/02/2011 01:58:22 PM HTTP JVM: class load:
➥org.eclipse.osgi.internal.resolver.StateWriter from: file:/C:/Program

Files/IBM/Lotus/Domino/osgi/rcp/eclipse/plugins/org.eclipse.
➥osgi_3.4.3.R34x_v20081215-1030-RCP20110624-1648.jar

When analyzing issues in XPages for which the cause is not obvious, it is often neces-
sary to enable logging to get a better picture of where exceptions are occurring. Logging
is enabled in a couple ways. Both are equally effective, but depending on the frequency
at which the logging needs to be enabled and disabled, one technique might be more
convenient.

XPages logging is enabled by directly editing rcpinstall.properties located in the dom-
ino/workspace/.config subfolder under the Domino data directory. rcpinstall.properties
governs many of the settings used by the OSGi platform, so it is advisable to make a
backup copy of this file before you edit it. It is normal to enable logging via this method
if the logging is to be enabled for a relatively long period of time.

Loggers in the XPages runtime are divided into logical groups. Instead of providing
one logger that will output messages for every functional part of the XPages runtime,
several loggers have been provided so that the developer or administrator can get log
information for targeted parts of the runtime. You can see a full list of the logical groups
by scrolling to the bottom of rcpinstall.properties. All these loggers are disabled by
default; the collective output would probably drown out the details needed to identify a
problem. Instead, the developer or system administrator must enable loggers as needed
and also set the level of logging required from the enabled loggers.

264  H ow to Configure notes.ini and rcpinstall.properties for Logging

All the loggers defined within the XPages runtime conform to the official JSR47 stan-
dards for logging. Each logger can be configured to output varying amounts of detail,
depending on the level at which the logger is configured. Nine predefined logging levels
exist; Table 6.5 describes them.

Table 6.5  Logging Levels Available to XPages Runtime Loggers

Level Name Definition

ALL This is the most verbose level available. Tells the logger frame-
work that all logged events should be reported to the log file.

OFF This level tells the logger framework that no logged events should
be reported to the log file.

SEVERE This is the least verbose of the logging levels that allows for log
messages to be output. This level is reserved for all severe system
events, typically events that prevent the system from continuing
to function normally. This level normally has an exception associ-
ated with it, as in Failed to open database test.nsf,
could not find file on server serverA/ibm.

WARNING A little more verbose than SEVERE, this level is reserved for sys-
tem events that are of interest to end users and system administra-
tors. The events reported at this level report potential problems,
but problems that do not prevent the system from functioning.
An example is Failed to connect to server serverA/
ibm, failed over to serverB/IBM.

INFO Reserved for events that may be of interest to end users but that
do not inhibit system function. Typically, messages at this level
report successful events/operations, as in created database
test.nsf at 11:45AM.

CONFIG This level is normally used to provide static configuration infor-
mation generated by the system. Typically used to provide OS,
system version, memory info, and so on.

FINE The three levels FINE, FINER, and FINEST are meant to be rela-
tive levels. FINEST is the most verbose level, and FINE the least
verbose.

The FINE level is normally used to log information that is inter-
esting to developers debugging the system.

FINER This level is normally reserved for granular tracing events. Events
logged at this level should provide a clear indication of the code
path within the system—for example, entering method xyz.

FINEST This tells the logger to output even the most detailed messages
and is rarely needed. It is usually thought of as developer or
debug tracing. This level is sometimes used during development
to track the behavior of the system at a fine level or when trying
to diagnose difficult issues.

How to Configure notes.ini and rcpinstall.properties for Logging    265  

To enable a logger, it is necessary to add a definition for the logger to rcpinstall.prop-
erties. The definition is always of this form:

loggerName.level=level

The JSR47 provides a great deal of flexibility when defining loggers and how their
messages are to be output and stored. The JSR47 specification allows for handlers
and formatters to also be defined.

Handlers are responsible for exporting the contents of the log message. The contents can
be exported to wherever the handler defines. Typically, a handler exports the contents of
the log message to a console (the Domino server console) or to a file.

As the name suggests, formatters are responsible for formatting the contents of a log
message. Typically, a formatter is applied to a handler and is responsible for format-
ting the contents of the information exported by the handler. Listing 6.21 shows the
contents of rcpinstall.properties that deals with defining loggers, handlers, and
formatters.

Listing 6.21  Sample rcpinstall.properties

JSR47 Logging Configuration

handlers=com.ibm.domino.osgi.core.adaptor.DominoConsoleHandler
com.ibm.rcp.core.internal.logger.boot.RCPLogHandler
com.ibm.rcp.core.internal.logger.boot.RCPTraceHandler.level=WARNING

com.ibm.rcp.core.internal.logger.boot.RCPLogHandler.level=WARNING

com.ibm.rcp.core.internal.logger.boot.RCPTraceHandler.level=FINEST

com.ibm.domino.xsp.bridge.http.manager.level = ALL

com.ibm.domino.xsp.bridge.http.config.level = ALL

We explain what each line of the previous listing means and how they affect logging on
the server.

handlers=com.ibm.domino.osgi.core.adaptor.DominoConsoleHandler

com.ibm.rcp.core.internal.logger.boot.RCPLogHandler

com.ibm.rcp.core.internal.logger.boot.RCPTraceHandler

This sets the handlers to be used by the logging framework to save the contents of the
log. As you can see, it is possible to save the contents to several different locations.
In this case, the contents of the log are output to the Domino server console, to a log
file, and to a trace file. RCPLogHandler and RCPTraceHandler are both handlers
that the Domino server provides; they save the log files in an XML format (identical
to the format used by the Notes client). For convenience, the Notes client and Domino
server provide an XSL viewer to enable users to view trace and log files formatted in a

266  H ow to Configure notes.ini and rcpinstall.properties for Logging

user-friendly format. The viewer is invoked when trace or log files are viewed within
a browser. By default, the XSL viewer resides within <Notes data directory>/work-
space/logs within the Notes client and within the <Domino data directory>/domino/
workspace/logs directory on the Domino server.

.level=WARNING

This sets the level of all loggers that do not specifically have their own level set. In
this case, all loggers default to a level of WARNING unless they are specifically set to
another logging level via either rcpinstall.properties or bootstrap.properties.

com.ibm.rcp.core.internal.logger.boot.RCPLogHandler.level=WARNING

com.ibm.rcp.core.internal.logger.boot.RCPTraceHandler.level=FINEST

Each handler can be configured to export only log messages of a certain level and above.
In this case, the RCPLogHandler is configured to save only messages that are declared
to be WARNING messages and above. The RCPTraceHandler is configured to save
all log messages.

com.ibm.domino.xsp.bridge.http.manager.level = ALL

com.ibm.domino.xsp.bridge.http.config.level = ALL

Finally, we define which loggers are actually to be enabled. In this case, we have
defined that both loggers are to output all messages.

Tip  You will find the XPages log files within the following client or server installation
directory:

<Notes/Domino root folder>\data\IBM_TECHNICAL_SUPPORT

Each time the Notes client or Domino server is booted, a new XPages log file is created
for that session when an XPages runtime exception occurs. If no runtime exception
occurs during that session, there will be no associated XPages log file. The naming for-
mat for the XPages log files is as follows:

xpages_exc_server_yyyy_mm_dd@hh_mm_ss.log

For example:

xpages_exc_taurus_2011_09_21@08_15_23.log

You also find a console.log within this directory. Typically, if an exception occurs
that the XPages runtime cannot handle, the Domino HTTP stack handles the exception
instead. Such exceptions are severe and get logged in the console.log file.

Basically, any stack trace information that you see in the XPages runtime error page or
take from the requestScope.error object is also written into the XPages log and
console log files in greater detail. Therefore, it is always a good idea to analyze the
XPages log and console log files if a problem is not obvious. This log information is
also written to a separate log, in a tabular format within an XML log file. The XML log
file can be found at workspace\logs under the Notes data folder, and at the
domino\workspace\logs directory under the Domino server data folder.

As you can see from reading rcpinstall.properties, the file contains many settings.
Editing this file often is not desirable because it increases the chance of unintention-
ally modifying a setting. As an alternative to editing rcpinstall.properties directly,

How to Configure notes.ini and rcpinstall.properties for Logging    267  

developers (or administrators) can also add a bootstrap.properties and log.properties
file to the XSP directory residing in the Domino program files directory (for example
C:\Domino\xsp). The developer (or administrator) need only modify the contents of log.
properties to configure the log settings on the Domino server, without needing to worry
about unintentionally changing some other setting stored within rcpinstall.properties.
On non-Windows platforms, users must have root access to create files located under the
Domino bin directory. Users must also set the correct permissions on bootstrap.proper-
ties and log.properties so the Domino server can read them.

Listing 6.22 shows the contents of a sample bootstrap.properties. Listing 6.23
shows the sample contents of log.properties.

Listing 6.22  Sample Contents of bootstrap.properties

#log groups enablement

log_configuration=xsp/log.properties

Log system out

logdir=c:/Domino/log

Listing 6.23 shows sample content for log.properties that can be used to enable various
levels of logging.

Listing 6.23  Sample Contents of log.properties

Specify the handlers to create in the root logger

The following creates two handlers

handlers = java.util.logging.ConsoleHandler java.util.logging.
➥FileHandler

Save the log info to the following file

java.util.logging.FileHandler.pattern = c:\\domino\\log\\jdklog.txt

#Set the level of the root logger

.level=ALL

Set the default logging level for new ConsoleHandler instances,

only show ALL in the console

java.util.logging.ConsoleHandler.level = ALL

Set the default logging level for new FileHandler instances

java.util.logging.FileHandler.level = ALL

Set the default formatter for new ConsoleHandler instances

java.util.logging.ConsoleHandler.formatter = java.util.logging.
➥SimpleFormatter

java.util.logging.FileHandler.formatter = java.util.logging.
➥SimpleFormatter

Set the default logging level for the logger named com.mycompany

com.ibm.domino.xsp.bridge.http.manager.level = ALL

com.ibm.domino.xsp.bridge.http.config.level = ALL

com.ibm.domino.xsp.bridge.http.native.level = ALL

com.ibm.domino.xsp.bridge.http.servlet.level = ALL

268   Interpreting a Stack Trace: Where to Go from Here?

We have already explained most of the settings defined in Listing 6.23. However,
Listing 6.23 introduces two new types of handler: java.util.logging.Console-
Handler and java.util.logging.FileHandler. Both of these are standard Java
handlers. Their names are self-descriptive. java.util.logging.ConsoleHandler
prints all log messages to the System.err output stream, which, in the case of the
XPages runtime, is conveniently the Domino server console. java.util.logging.
FileHandler enables the developer to output the log messages to a designated .log
file that the developer can access.

As a test, you should try some of these settings. You will be surprised by the amount of
detailed information that you can gather from the resulting log files.

Interpreting a Stack Trace: Where to Go from Here?

If you read the “Error Management Properties” section in Chapter 1, “Working with
XSP Properties,” you are already familiar with XPages error handling options such as
Display XPage runtime error page > Standard server error page. Indeed, you may
have experimented with providing your own custom error page. For the really adventur-
ous, there is also the possibility of embedding captured error information within a cus-
tom error page using Server Side JavaScript. This error information, otherwise known as
the stack trace information, is made available via the requestScope.error object.

Regardless of whether the stack trace information is displayed as an error page in the
client browser or within Notes/Domino log files, you are faced with the task of having
to reverse-engineer this information to draw a conclusion and, ultimately, find the cause
of an exception. This can be an even bigger challenge if, for example, a customer sends
you a log file—that is, you have pretty much nothing else to work with to decipher the
cause of some critical error within the application. As the developer, tester, or adminis-
trator, you must be able to interpret and translate these typically terse stack traces. The
following sections detail various concepts and techniques that make reading and under-
standing these mystical stack traces a lot easier. Developing this skill will undoubtedly
set you ahead of the pack—and also make your own job a much more enjoyable once in
such situations.

Understanding the XPages Request Handling Mechanism

As a starting point for interpreting a stack trace, it is important to understand the funda-
mentals of how the XPages runtime handles a request. This enables you to understand
where the entry point into the XPages runtime is and where a request ultimately ends up
within the runtime before failing or causing an exception. You can then use this knowl-
edge to either set breakpoints within your own custom Java source code (if you are using
this) or within the runtime .class files themselves (you won’t have the source, but
you can still set breakpoints on the binaries). You can then view and modify the running
variables stack in Domino Designer’s Debug perspective. You learned about setting up a
remote debugging configuration in Domino Designer earlier in this chapter.

Interpreting a Stack Trace: Where to Go from Here?   269  

First, when a request enters the XPages runtime on a Domino server, it does so through
the XSP Command Manager’s service() method. This is a dedicated request handler
that is embedded within the HTTP stack process, ntthp.exe. In a stack trace, you can
identify this by the following class/method name:

com.ibm.domino.xsp.bridge.http.engine.XspCmdManager.service()

This is slightly different in XPiNC, in which a different web container handles XPages
requests. The entry point in this case is through the following class/method:

com.ibm.domino.xsp.module.nsf.NSFService.doService()

Following these two platform-specific entry points, the XPages runtime takes over. The
incoming request is processed through a sequence of request-handling classes and meth-
ods before reaching the next interesting class/method:

com.ibm.xsp.webapp.DesignerFacesServlet.service()

This is the common denominator, regardless of platform used, whether Domino server
or XPiNC. From this point, the incoming request follows the exact same execution path
into the XPage component tree, the underlying server-side object representation of the
XPage itself. Any exceptions that occur within the component tree are specific to that
XPage, so you must analyze the stack trace accordingly for details of any failing compo-
nent tree object method.

The important point to note here is that the previously mentioned entry points should
be your first port of call when it comes to debugging and tracing an incoming request
against the XPages runtime.

Understanding the XPages Request Processing Lifecycle

As a starting point, it is important to understand the fundamentals of the XPages request
processing lifecycle. This lifecycle bounds a request submitted to the XPages runtime,
which can potentially pass through six distinct processing phases.

The JSF request processing lifecycle consists of a number of well-defined phases that
describe how each request is handled. Of course, these phases also apply to XPages. The
phases on the standard request processing lifecycle are as follows:

	 1.	 Restore View

	 2.	 Apply Request Values

	 3.	 Process Validations

	 4.	 Update Model Values

	 5.	 Invoke Application

	 6.	 Render Response

270   Interpreting a Stack Trace: Where to Go from Here?

Figure 6.13 illustrates how the processing lifecycle operates.

Response
Complete

Response
Complete

Faces
Request Restore

View
Process
Events

Process
Events

Apply Request
Values

Process
Validations

Faces
Response Render

Response
Process
Events

Process
Events

Invoke
Application

Update Model
Values

Render Response

Response
Complete

Response
Complete

Conversion Errors/
Render Response

Validation/Conversion
Errors/Render Response

Figure 6.13  JSF request processing lifecycle

The Restore View phase retrieves the JSF view for the request. If no JSF view exists,
a new one is created and cached for later use. Maintaining a consistent representation
of the JSF view between requests simplifies the programming task for the application
developer. It simplifies the application logic to focus on the business problem without
having to maintain information about the state of the view.

The Apply Request Values phase enables the JSF components to update their state based
on the values from the current request—if the component represents an editable value,
the component stores the current value. Action and editable components have a special
behavior during this phase. If the component immediate property is set to true, the
JSF lifecyle is short-circuited. For an action component, the action processing happens at
the end of this phase instead of later during the lifecycle. For an editable component, the
validation processing happens immediately.

The Process Validations phase enables any validators associated with components in the
view and any built-in validation associated with a specific component to be executed.
All components that can be used to edit a value and that support validation will have a
property named valid (to indicate whether the current value is valid). When validation
errors occur, messages are queued and the valid property of the associated component
is set to false. Validation error messages can be displayed to the end user using the
xp:message or xp:messages tags. Validation errors typically terminate the lifecycle
processing and result in a response sent immediately to the end user.

Interpreting a Stack Trace: Where to Go from Here?   271  

If the Update Model Values phase is reached, the values provided in the request are
assumed to be valid (as defined by any validators specified in the view). The current
values are stored in the localValue property of the associated component. During this
phase, the application data is updated with the new values. In the case of an XPages
application, the values are written to the Domino document during this phase.

If the Invoke Application phase is reached, the application data is assumed to have been
updated. The relevant application logic specified in the view is executed during this
phase. In an XPages application, if application logic is associated with a button and that
button caused the page to be submitted, the logic is executed now.

The Render Response phase generates the response and saves the state of the view.
In the XPages case, the response is an HTML page and the rendering is performed
using a platform-specific render kit. The application developer has control over the
state saving—that is, the developer can decide not to save any state, to optimize server
performance.

In terms of being able to interpret a stack trace, it is important to understand that the
processing of a request can fail within any one of the six request processing lifecycle
phases, therefore causing the lifecycle to failover. In this condition, the XPages runtime
either skips all lifecycle phases apart from the final sixth phase and renders a page with
validation errors, or alternatively displays the chosen error page or default server error
page. In the former case, the user is presented with an XPage rendering that typically
includes validation error information, enabling the user to correct the problem. This is a
highly controlled and robust feature of the XPages runtime that actually is triggered dur-
ing the third request processing lifecycle phase, namely, the Process Validations phase.
In the latter case, the request processing lifecycle has failed with a critical exception that
cannot be handled within the context of the XPages runtime in a stable and recoverable
manner. Hence, the end user is presented with the configured error page option, and the
exception stack trace information is written into the XPages runtime log files for analysis
purposes.

This is where having a grasp on the request processing lifecycle becomes important.
When reading through stack traces in the XPages log files or in a browser, your first port
of call is in identifying which phase of the six phase XPages request processing lifecycle
the runtime exception occurred. This information might not always be present within the
stack trace—for example, a critical exception might occur that does not allow the request
to enter the request processing lifecycle. Knowing which phase has failed, along with
understanding the intricacies of the lifecycle itself, will help you quickly resolve runtime
issues that would otherwise be extremely difficult to identify even with powerful debug-
ging tools.

For example, Listing 6.24 shows a stack trace fragment in which the triggering of a
server-side onclick event caused the Invoke Application phase to fail. In this case, it
is obvious from reading the stack trace summary information that a problem occurred
when the Server Side JavaScript code was executed. The summary information details

272   Interpreting a Stack Trace: Where to Go from Here?

the name of the application, the source XPage, and the actual control and type of event
where the exception occurred.

Listing 6.24  Stack Trace Detailing Failure Within the Invoke Application Phase

Exception Thrown

Context Path: /PCG/PCGCH06.nsf

Page Name: /stackTrace.xsp

Control id: button1

Property: onclick

Script interpreter error, line=3, col=9: [TypeError] Method
➥XSPContext.redirectToPage(XSPUrl) not found, or illegal parameters

 1: var url:XSPUrl = new XSPUrl("viewResults");

-> 2: context.redirectToPage(url);

javax.faces.FacesException: Error while executing JavaScript action
➥expression

 at com.sun.faces.lifecycle.InvokeApplicationPhase.
➥execute(InvokeApplicationPhase.java:102)

 ...

com.ibm.domino.xsp.bridge.http.engine.XspCmdManager.
➥service(XspCmdManager.java:272)

Caused by: com.ibm.xsp.exception.EvaluationExceptionEx: Error while
executing JavaScript action expression

 ... 19 more

Caused by: com.ibm.jscript.InterpretException: Script
interpreter error, line=2, col=9:[TypeError] Method XSPContext.
redirectToPage(XSPUrl) not found, or illegal parameters

 ... 26 more

Unfortunately, not all runtime exceptions occur during the Invoke Application phase.
Listing 6.25 is a fairly typical example, demonstrating failure of an eventHandler
SSJS code during this phase. The stack trace is self-explanatory.

But consider the case in which an exception occurs before the Invoke Application phase
is reached. Assume, for instance, that you have print() or __dump() calls within an
eventHandler and, thus, you are expecting to see debug information output. In this
case, the eventHandler code is not processed and you will not see any console out-
put from the print() and _dump() calls. You must therefore be able to establish the
reason for the nonexecution of the eventHandler code. This is where the stack trace
is useful. Listing 6.26 shows a stack trace fragment for this case, in which the expected
triggering of an event handler as detailed in Listing 6.25 never occurred because the
Update Model Values phase failed. This, in turn, caused the request processing lifecycle
to failover by not continuing with subsequent phases and raising the exception. By fail-
ing in this manner, it prevented the event handler from being executed in the Invoke
Application phase.

Interpreting a Stack Trace: Where to Go from Here?   273  

Listing 6.25  XSP Markup and Stack Trace Detailing Failure Within the Update Model
Values Phase

<xp:button id="button4" value="Save">

 <xp:eventHandler event="onclick" submit="true"

 refreshMode="complete" immediate="false" save="true">

 <xp:this.action>

 <![CDATA[#{javascript:

 if(adminBean.isDebugMode()){

 print(">> memberBean debug info:")

 _dump(memberBean);

 print(">> end");

 }

 context.redirectToPage("members");

 }]]>

 </xp:this.action>

 </xp:eventHandler>

</xp:button>

Listing 6.26 shows a sample stack trace that results while executing the code listed in
Listing 6.25.

Listing 6.26  Sample Stack Trace in Which the Update Model Values Phase Has Failed

Exception Thrown

The last packet sent successfully to the server was 0 milliseconds
ago. The driver has not received any packets from the server.

 at sun.reflect.NativeConstructorAccessorImpl.
➥newInstance0(Native Method)

 at sun.reflect.NativeConstructorAccessorImpl.newInstance(Native
➥ConstructorAccessorImpl.java:56)

 at sun.reflect.DelegatingConstructorAccessorImpl.newInstance
➥(DelegatingConstructorAccessorImpl.java:39)

 at java.lang.reflect.Constructor.newInstance(Constructor.
➥java:527)

 ...

com.ibm.xsp.beans.MemberBean.setDisplayName(MemberBean.java:51)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 ...

com.ibm.xsp.component.UIInputEx.updateModel(UIInputEx.java:573)

 at javax.faces.component.UIInput.processUpdates(UIInput.
➥java:484)

 ... com.ibm.xsp.component.UIViewRootEx.
➥processUpdates(UIViewRootEx.java:1492)

 at com.sun.faces.lifecycle.UpdateModelValuesPhase.
➥execute(UpdateModelValuesPhase.java:98)

274   Interpreting a Stack Trace: Where to Go from Here?

 at com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.
➥java:210)

 at com.sun.faces.lifecycle.LifecycleImpl.execute(LifecycleImpl.
➥java:96)

 at com.ibm.xsp.controller.FacesControllerImpl.
➥execute(FacesControllerImpl.java:250)

 at com.ibm.xsp.webapp.FacesServlet.serviceView(FacesServlet.
➥java:223)

 at com.ibm.xsp.webapp.FacesServletEx.
➥serviceView(FacesServletEx.java:200)

 at com.ibm.xsp.webapp.FacesServlet.service(FacesServlet.
➥java:160)

 at com.ibm.xsp.webapp.FacesServletEx.service(FacesServletEx.
➥java:137)

 at com.ibm.xsp.webapp.DesignerFacesServlet.
➥service(DesignerFacesServlet.java:103)

 ...

com.ibm.domino.xsp.bridge.http.engine.XspCmdManager.
➥service(XspCmdManager.java:272)

The important point to take from this example is that if you did not read the log file
or browser stack trace, it would be extremely difficult to establish the fact that the
eventHandler code never triggered. Understanding that the Update Model phase runs
before the Invoke Application phase where eventHandler code is executed enables
you to establish the fact that the Invoke Application phase is never actually reached in
this example.

When reading a stack trace, look for details on the lifecycle phase, if available, as a
starting point. Table 6.6 gives details on the XPages request processing lifecycle phases.
You can use this to identify the phases and order of execution when reading a stack
trace. Remember, Server Side JavaScript code is typically executed within event
Handler objects that are executed during the Invoke Application phase. Hence, any
failure in the lifecycle phases before this phase can potentially prevent your Server Side
JavaScript code from running.

Table 6.6  Lifecycle Phases and Running Order

Phase Name Class Name Order

Restore View com.sun.faces.lifecycle.RestoreViewPhase 1st

Apply Request Values com.sun.faces.lifecycle.
ApplyRequestValuesPhase

2nd

Process Validations com.sun.faces.lifecycle.
ProcessValidationsPhase

3rd

Update Model Values com.sun.faces.lifecycle.
UpdateModelValuesPhase

4th

Invoke Application com.sun.faces.lifecycle.
InvokeApplicationPhase

5th

Render Response com.sun.faces.lifecycle.RenderResponsePhase 6th

XPages Toolbox   275  

Therefore, having a good understanding of the XPages request processing lifecycle can
prove beneficial when it comes to deciphering stack trace information where exceptions
have occurred during lifecycle execution.

XPages Toolbox

As a final section in this chapter on debugging, it is fitting to mention the XPages Tool-
box. The XPages Toolbox is an OpenNTF project that provides a powerful set of analy-
sis features that enable the developer to closely analyze the performance of an XPages
application. The XPages Toolbox is a set of web-based tools that provide the following
features to the XPages developer:

	 n	 CPU profiler

	 n	 Memory profiler

	 n	 Back-End Class profiler

	 n	 Runtime monitoring

	 n	 Java logging group management

The XPages Toolbox is freely available for download from OpenNTF: www.openntf.
org/projects/pmt.nsf/ProjectLookup/XPages%20Toolbox.

The CPU profiler is a high-level profiler that records how much CPU time is spent in
various parts of the XPages code. Using the XPages Toolbox, the XPages developer can
enable and disable profiling on demand, allowing certain events or actions to be profiled
as needed.

The Memory profiler shows how much memory the XPages runtime is using and shows
the applications using that runtime. Just as you would expect from a memory-profiling
tool, it is possible to create memory snapshots with the XPages toolbox. These snapshots
enable the XPages developer to quickly figure out which parts of the XPages application
are holding on to memory.

The Back-End Class profiler gathers information on how the Domino back-end classes
are being called and how much time is spent in each call. This enables XPages develop-
ers to determine which back-end calls are the most expensive and to limit the number of
calls to such methods or classes as much as possible.

The Runtime monitoring functionality of the XPages Toolbox enables the XPages devel-
oper to gather a high-level view of what memory the HTTP JVM is using, as well as the
number of active applications on the server.

As discussed in the previous section, various loggers are available within the XPages
runtime; each of these loggers is configurable. The XPages Toolbox allows the devel-
oper (or administrator) to enable or disable loggers on the fly (without needing to restart
the HTTP task). The XPages Toolbox also enables the developer to set the level of each
of the loggers within the XPages runtime.

www.openntf.org/projects/pmt.nsf/ProjectLookup/XPages%20Toolbox
www.openntf.org/projects/pmt.nsf/ProjectLookup/XPages%20Toolbox

276   Conclusion

Extensive documentation is available on OpenNTF on how to install and use the XPages
toolbox. Read that documentation to get further information on how to use the XPages
Toolbox and also on what patterns you can apply to your XPages applications to make
full use of the XPages Toolbox when debugging and profiling your applications.

Conclusion

This chapter gave you as much information as possible on built-in debug features and
techniques for server-side debugging. Yes, it’s true that Domino Designer does not have
a Server Side JavaScript debugger—yet. But you can do many things to help yourself
while debugging server-side code. Beyond this, you do have a powerful Java debug-
ger within Domino Designer. If you are doing Server Side JavaScript and Java coding
together, you have a useful and efficient debugging platform. You also learned how to
set up a Domino server for logging and how to make sense of the logging information
within. As XPages applications become more sophisticated, you will more likely need
these skills sooner than later.

As you no doubt are aware, XPages is based on JSF, which is a standardized Java frame-
work through the Java Standard Request (JSR) process. As is the case with many web
technologies, XPages is based on and uses many different web standards. This appendix
serves as a reference to those standards. Some technologies (such as HTML 5) are not
fully supported by XPages (as of Release 8.5.3), whereas others, such as JSF, are fully
supported.

Table A.1  Definitive XPages Resources

Name URL

JSF Specification www.oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html

Java 1.5 Specification http://java.sun.com/j2se/1.5.0/docs/api

J2EE 1.5 Specification http://download.oracle.com/javaee/5/api

W3C DOM Specification www.w3.org/DOM

HTML 5 (not final at time of this
writing)

http://dev.w3.org/html5/spec/Overview.html

CSS Specification www.w3.org/Style/CSS

Dojo Toolkit www.dojotoolkit.org

Eclipse Equinox www.eclipse.org/equinox

XPages Domino Object Map www-10.lotus.com/ldd/ddwiki.nsf/dx/
XPages_Domino_Object_Map_8.5.2

Domino Java APIs www.tinyurl.com/DominoJavaAPIs

Domino Designer and XPages
Reference Guides

www.tinyurl.com/
DominoDesignerAndXPagesRef

Domino Designer & XPages 8.5.3
APIs

www-10.lotus.com/ldd/ddwiki.nsf/dx/Domino_
Designer_Extensibility_APIs_Javadoc_8.5.3

XPages 8.5.2 APIs www-10.lotus.com/ldd/ddwiki.nsf/dx/
XPages_Extensibility_API_Documentation

Understanding XPages www.tinyurl.com/UnderstandingXPages

XPages Extension Library http://extlib.openntf.org

XULRunner https://developer.mozilla.org/en/XULRunner

Appendix A

Definitive Resources

www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://java.sun.com/j2se/1.5.0/docs/api
http://download.oracle.com/javaee/5/api
www.w3.org/DOM
http://dev.w3.org/html5/spec/Overview.html
www.w3.org/Style/CSS
www.dojotoolkit.org
www.eclipse.org/equinox
www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_Object_Map_8.5.2
www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_Object_Map_8.5.2
www.tinyurl.com/DominoJavaAPIs
www.tinyurl.com/DominoDesignerAndXPagesRef
www.tinyurl.com/DominoDesignerAndXPagesRef
www-10.lotus.com/ldd/ddwiki.nsf/dx/Domino_Designer_Extensibility_APIs_Javadoc_8.5.3
www-10.lotus.com/ldd/ddwiki.nsf/dx/Domino_Designer_Extensibility_APIs_Javadoc_8.5.3
www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Extensibility_API_Documentation
www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Extensibility_API_Documentation
www.tinyurl.com/UnderstandingXPages
http://extlib.openntf.org
https://developer.mozilla.org/en/XULRunner

This page intentionally left blank

You’ll find lots of useful XPages resources out there on the web. Table B.1 provides a
snapshot of some of the authors’ favorites—sorry if your site is missing!

Table B.1  Useful XPages Resources

Name URL

Debugging with Dojo www.dojotoolkit.org/reference-guide/quickstart/
debugging.html

Domino Debug Plugin www.tinyurl.com/DominoDebugPlugin

DominoGuru.com www.dominoguru.com

Eclipse Memory Analyser www.eclipse.org/mat

Explore Eclipse’s OSGi
Console

www.ibm.com/developerworks/library/os-ecl-
osgiconsole

IBM Active Content
Filtering Technology

www.tinyurl.com/IBMProjectZero

IBM Dump Analyser www.ibm.com/developerworks/java/library/j-ibmtools1

IBM Memory Analyser www.ibm.com/developerworks/java/jdk/tools/dtfj.html

Installing IBM Dump
Analyser

www.tinyurl.com/IBMJavaDumpAnalyzer

IQJam www.iqjam.net/iqjam/iqjam.nsf/home.xsp?iqspace=
Domino+Development%7EXPages

JavaBeans 101 java.sun.com/developer/onlineTraining/Beans/bean01

John Mackey’s Blog www.jmackey.net

JVM Launch Options www.tinyurl.com/JVMLaunchOptions

Mastering XPages
Development

www.ibmpressbooks.com/bookstore/product.
asp?isbn=9780132486316

Matt White’s Blog www.mattwhite.me

Notes/Domino 8.5 Forum www-10.lotus.com/ldd/nd85forum.nsf/
Dateallthreadedweb?OpenView

Notes/Domino Application
Development Wiki

www.lotus.com/ldd/ddwiki.nsf/xpViewTags.
xsp?categoryFilter=xpages

NotesIn9 Screencast www.notesin9.com

OpenNTF www.openntf.org

OpenNTF Blog www.openntf.org/blogs/openntf.nsf/
FullArchive?openview

OSGi Console Commands www.tinyurl.com/OSGiConsoleCommands

Appendix B

Useful Online Resources

www.dojotoolkit.org/reference-guide/quickstart/debugging.html
www.dojotoolkit.org/reference-guide/quickstart/debugging.html
www.tinyurl.com/DominoDebugPlugin
www.dominoguru.com
www.eclipse.org/mat
www.ibm.com/developerworks/library/os-ecl-osgiconsole
www.ibm.com/developerworks/library/os-ecl-osgiconsole
www.tinyurl.com/IBMProjectZero
www.ibm.com/developerworks/java/library/j-ibmtools1
www.ibm.com/developerworks/java/jdk/tools/dtfj.html
www.tinyurl.com/IBMJavaDumpAnalyzer
www.iqjam.net/iqjam/iqjam.nsf/home.xsp?iqspace=Domino+Development%7EXPages
www.iqjam.net/iqjam/iqjam.nsf/home.xsp?iqspace=Domino+Development%7EXPages
www.jmackey.net
www.tinyurl.com/JVMLaunchOptions
www.ibmpressbooks.com/bookstore/product.asp?isbn=9780132486316
www.ibmpressbooks.com/bookstore/product.asp?isbn=9780132486316
www.mattwhite.me
www-10.lotus.com/ldd/nd85forum.nsf/Dateallthreadedweb?OpenView
www-10.lotus.com/ldd/nd85forum.nsf/Dateallthreadedweb?OpenView
www.lotus.com/ldd/ddwiki.nsf/xpViewTags.xsp?categoryFilter=xpages
www.lotus.com/ldd/ddwiki.nsf/xpViewTags.xsp?categoryFilter=xpages
www.notesin9.com
www.openntf.org
www.tinyurl.com/OSGiConsoleCommands
www.openntf.org/blogs/openntf.nsf/FullArchive?openview
www.openntf.org/blogs/openntf.nsf/FullArchive?openview

280   Appendix B  Useful Online Resources

Name URL

Planet Lotus www.planetlotus.org/search.php?search=xpages&sort=1

Pushing Policy Settings to
the Notes Client

www.tinyurl.com/PushNotesIniSettings

Reading the Contents of a
JavaDump File

www.ibm.com/support/docview.wss?uid=swg21181068

Taking Notes Podcast www.takingnotespodcast.com

The Learning Continuum
Company

www.tlcc.com

The XCast www.thexcast.net

XPages Blog www.xpagesblog.com

XPages Info Site www.xpages.info

XPages Toolbox www.tinyurl.com/OpenNTF-XPagesToolbox

XPages Wiki www-10.lotus.com/ldd/ddwiki.nsf

Pages.TV www.xpages.tv

XPages101 Video Training www.xpages101.net

YouAtNotes XPages Wiki www.xpageswiki.com

www.planetlotus.org/search.php?search=xpages&sort=1
www.tinyurl.com/PushNotesIniSettings
www.ibm.com/support/docview.wss?uid=swg21181068
www.takingnotespodcast.com
www.tlcc.com
www.thexcast.net
www.xpagesblog.com
www.xpages.info
www.tinyurl.com/OpenNTF-XPagesToolbox
www-10.lotus.com/ldd/ddwiki.nsf
www.xpages.tv
www.xpages101.net
www.xpageswiki.com

Appendix C

Make Your Own Journal

282  �282﻿

﻿   283  

284  �284﻿

Index

Symbol
 “#{id:” syntax, 193-195

A
Active Content Filtering properties, 61-64
AJAX properties, 57

xsp.ajax.renderwholetree, 57-59
applicationScope, 214-216
Apply Request Values phase, 270
attributes, Dojo, 190-193
avoiding unnecessary network

transactions, INI variables, 95-96

B
b <bundle-symbolic-name>, 120-121
Back-End Class profiler, 275
bad AJAX requests, Dojo Dijits, 197
bundles, OSGi, 112-114

C
cache size limits, XPages behavior, 26
classes, custom Java classes, 227
client memory usage, optimizing,

96-97
client side debugging techniques,

202-203
with Dojo, 202-203
picking debuggers, 206
XPiNC quirks, 204-206

XSP object debug functions,
201-202

Client Side JavaScript, 139
client side JavaScript properties, 37

xsp.client.script.dojo.djConfig,
42-44

xsp.client.script.dojo.version, 37-39
commands, 126-127

help, 127
load chronos [options], 133-134
load design [source] [target]

[options], 134-135
load fixup [path] [options], 135
load [task-name], 127-128
load [task-name]-?, 128-129
load updall [path] [options], 134
quit, 129
restart server, 129
restart task [task-name], 130-131
set conf [notes.ini

variable=value], 132
show allports, 136-137
show conf [notes.ini variable], 132
show diskspace, 137
show heartbeat, 137-138
show server, 131
show tasks, 136
tell adminp [options], 132-133
tell [task-name] quit, 130

composite data properties, 75
xsp.theme.

preventCompositedDataStyles,
75-76

286   configuring

dijit.byId, 195-196
IDs in HTML source and

requirements to use”#{id:”
syntax, 193-195

input validation, 199-200
unavailable controls while HTML

pages are loading, 196-197
XPages partial update, 199-200

Dojo framework, 189-190
dojo.isIE(), 189
Dojo Toolkit resources, 37
dojoType, 190-193
_dump(), poorMansDebugger,

241-246

E
Eclipse plug-ins, 112
error-management properties, 50-51

xsp.error.page, 52-54
xsp.error.page.default, 50-52

errors
control state saving issues, 28
serialization problems, 27-28

executing XSP Command Manager
commands, 103-104

heapdump, 109
javadump, 109-110
show data directory, 104-105
show modules, 108
show program directory, 105
show settings, 106-107
show version, 105-106
systemdump, 111-112

extended Java code, enabling with java.
policy file, 97-100

JavaUserClasses, 100-101

F
file upload properties, 21

xsp.upload.directory, 21
xsp.upload.maximumsize, 21-23

configuring
notes.ini, 262-268
rcpinstall.properties, 262-268

control library properties, 73-74
xsp.library.depends, 73-74

control state saving issues, 28
CPU profiler, 275
custom Java classes, creating, 227

D
debugging

Client Side JavaScript, 201-202
debugging with Dojo, 202-203
XPiNC quirks, 204-206
XSP object debug functions,

201-202
Java code, 250-261
Managed Beans, 250-261
server-side debugging

techniques, 239
poorMansDebugger. See

poorMansDebugger
remote debugging, 247-250

XPages extension plug-ins, 261-262
Designer

choosing persistence mode, 25-26
launching with OSGi console,

123-125
diag <bundle-symbolic-name>, 114-116
dijit.byId, 195-196
dijits, IDs in HTML source and

requirements to use”#{id:”
syntax, 193-195

disk is full, 28-29
Dojo

client side debugging techniques,
203-204

installing multiple versions, 40-42
reasons to use different versions,

39-40
types and attributes, 190-193

dojoAttribute, 190-193
Dojo Dijits, 193

bad AJAX requests, 197

JSF persistence properties   287  

INI variables, avoiding unnecessary
network transactions, 95-96

input validation, Dojo Dijits, 199-200
installing Dojo, multiple versions,

40-42
Invoke Application phase, 271

J-K
Java classes, creating custom, 227
Java code, debugging, 250-261
Java debug variables, notes.ini, 248
Java heap

HTTPJVMMaxHeapSizeSet
variable, 89

HTTPJVMMaxHeapSize variable,
88-89

JavaDebugOptions variable, 90
JavaEnableDebug variable, 90
JavaMaxHeapSize variable, 89-90
JavaMinHeapSize variable, 90
JavaUserClasses variable, 90
notes.ini, 86-88
OSGI_HTTP_DYNAMIC_

BUNDLES variable, 91-92
XPagesPreload variable, 92
XPagesPreloadDB variable, 93

Java packages, importing into SSJS,
226-227

java.policy file, enabling extended Java
code with, 97-100

JavaUserClasses, 100-101
JavaDebugOptions parameters, 249
JavaDebugOptions variable, 90
javadump, 109-110
JavaEnableDebug variable, 90
JavaMaxHeapSize, 88-90
JavaMinHeapSize, 88-90
JavaScript, 209
JavaUserClasses, 90, 100-101
js.gz versions, 140
js.uncompressed.js, 141
JSF persistence properties, 23

xsp.persistence.dir.xsppers, 35-36
xsp.persistence.dir.xspstate, 34-35

G
garbage collection, 86
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
global functions, SSJS, 216-218

getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

Global Objects, SSJS, 216-217
gzipped verions, 140

H
headers <bundle-symbolic-name>,

121-122
heapdump, 109
help, 122-123, 127
HTML page-generation properties, 44

xsp.client.validation, 48
xsp.compress.mode, 47
xsp.html.doctype, 44-46
xsp.html.page.encoding, 47-48
xsp.html.preferredcontenttypexhtml,

46-47
xsp.redirect, 49

HTML page-generation properties, xsp.
html.meta.contenttype, 45

HTTPJVMMaxHeapSize, 88
HTTPJVMMaxHeapSizeSet

variable, 89
HTTPJVMMaxHeapSize variable, 88-89
HTTP tasks, notes.ini, 85

I
ibm.jscript.cachesize, 5, 60-61
ibm.xpath.cachesize, 5, 60-61
importing Java packages into SSJS,

226-227

288   JSF persistence properties

N
Notes, launching with OSGi console,

123-125
notes.ini, 83-85

configuring, 262-268
HTTP tasks, 85
Java debug variables, 248
Java heap, 86-88
settings, 84

Notes JVM, 96
NotSerializableException, 27-28

O
object model (XPages), SSJS, 210
objects

XSP Client Side JavaScript, 141
XSP Client Side JavaScript object

functions, 145-146
public functions. See public

functions
optimizing client memory usage, 96-97
OSGi console, 112-114

b <bundle-symbolic-name>,
120-121

commands, 113
diag <bundle-symbolic-name>,

114-116
headers <bundle-symbolic-name>,

121-122
help, 122-123
launching Notes/Designer, 123-125
ss, 116-119
ss <bundle-name-prefix>, 116-119
ss <bundle-symbolic-name>,

116-119
start <bundle-symbolic-name>,

119-120
stop <bundle-symbolic-name>, 120

OSGI_HTTP_DYNAMIC_BUNDLES
variable, 91-92

OSGi (Open Services Gateway
initiative), bundles, 112-114

xsp.persistence.dir.xspupload, 35-36
xsp.persistence.discardjs, 23-24
xsp.persistence.file.async, 32
xsp.persistence.file.gzip, 32
xsp.persistence.file.maxviews, 30
xsp.persistence.file.threshold, 33-34
xsp.persistence.stateview, 30-32
xsp.persistence.tree.maxviews,

29-30
jvm.properties, 97

L
launching Notes/Designer with OSGi

console, 123-125
link management properties, 69

xsp.default.link.target, 69-71
xsp.save.links, 71-72

load chronos [options], 133-134
load design [source] [target] [options],

134-135
load fixup [path] [options], 135
load [task-name], 127-128
load [task-name]-?, 128-129
load updall [path] [options], 134
locating xsp.properties, 7-9
logging, configuring notes.ini and

rcpinstall.proerties for, 262-268

M
Managed Bean Properties, SSJS,

233-237
Managed Beans

creating, 227-233
debugging, 250-261

memory, client memory usage,
optimizing, 96-97

Memory profiler, 275

Runtime monitoring   289  

XSP.log(), 188
XSP.partialRefreshGet(), 176-177
XSP.partialRefreshPost(), 177-178
XSP.prompt(), 163-164
XSP.scrollWindow(), 176-177
XSP.setSubmitValue(), 169-170
XSP.showSection(), 182
XSP.startsWith(), 186
XSP.toJson(), 187
XSP.trim(), 185-186
XSP.validateAll(), 171-172
XSP.validationError(), 174-175

Q–R
quit, 129

rcpinstall.properties, configuring for
logging, 262-268

refresh, 108-109
remote debugging, 247-250
Render Response phase, 271
repeating control properties, 66

xsp.repeat.allowZeroRowsPerPage,
67-68

request handling mechanisms, stack
trace, 268

request processing lifecycle, stack trace,
269-274

request properties, 78-79
requestScope, 213
resource properties, 18

xsp.resources.aggregate, 18-20
resource servlet properties, 65

xsp.expires.global, 65-66
restart server, 129
restart task [task-name], 130-131
Restore View phase, 270
Runtime monitoring, 275

P
partial update, Dojo Dijits, 199-200
partial update properties, 68

xsp.partial.update.timeout, 68-70
persistence mode, choosing in

Designer, 25-26
poorMansDebugger,

_dump(), 241-246
print(), 239-240
printIn(), 239-240
try/catch blocks, 246-247

preloading, importance of, 93-94
print(), poorMansDebugger, 239-240
printIn(), poorMansDebugger,

239-240
Process Validations phase, 270
public functions

XSP.addOnLoad(), 181-182
XSP.addPreSubmitListener(),

165-166
XSP.addQuerySubmitListener(),

166
XSP.alert(), 161-162
XSP.allowSubmit(), 168-169
XSP.attachClientFunction(),

179-180
XSP.attachClientScript(), 180
XSP.canSubmit(), 167-168
XSP Client Side JavaScript object

functions, 160
XSP.confirm(), 162
XSP.djRequire(), 164
XSP.dumpObject(), 189
XSP.endsWith(), 186-187
XSP.error(), 162-163
XSP.findForm(), 183-184
XSP.findParentByTag(), 183
XSP.fromJson(), 187-188
XSP.getDijitFieldValue(), 173-174
XSP.getElementById(), 184
XSP.getFieldValue(), 172-173
XSP.getSubmitValue(), 170
XSP.hasDijit(), 184-185

290   save()

show modules, 108
show program directory, 105
show server, 131
show settings, 106-107
show tasks, 136
show version, 105-106
space, lack of, 28-29
ss, OSGi console, 116-119
ss <bundle-symbolic-name>, 116-119
SSJS (Server Side JavaScript), 209

global functions, 216-218
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

importing Java packages, 226-227
Managed Bean Properties, 233-237
server-side scripting objects,

210-213
Global Objects, 216-217
scope objects, 213-216

system libraries, 210-213
XPages object model, 210

stack trace, 268
request handling mechanisms, 268
request processing lifecycle,

269-274
start <bundle-symbolic-name>,

119-120
stop <bundle-symbolic-name>, 120
system libraries, SSJS, 210-213
systemdump, 111-112

T
tell adminp [options], 132-133
tell [task-name] quit, 130
theme properties, 13

xsp.theme, 13-14
xsp.theme.notes, 15-18
xsp.theme.web, 14

themes, applying properties, 80

S
save(), 226
scope objects, SSJS, 213

applicationScope, 214-216
requestScope, 213
sessionScope, 214
viewScope, 213-214

screen reader software, 224
script cache size properties, 60

ibm.jscript.cachesize, 60-61
ibm.xpath.cachesize, 60-61

serialization problems,
NotSerializableException, 27-28

server-side debugging techniques, 239
poorMansDebugger

_dump(), 241-246
print(), 239-240
printIn(), 239-240
try/catch blocks, 246-247

remote debugging, 247-250
Server Side JavaScript (SSJS), 209

global functions, 216-218
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

importing Java packages, 226-227
Managed Bean Properties, 233-237
server-side scripting objects,

210-213
Global Objects, 216-217
scope objects, 213-216

system libraries, 210-213
XPages object model, 21

server-side scripting objects, SSJS,
210-213

sessionScope, 214
set conf [notes.ini variable=value], 132
show allports, 136-137
show conf [notes.ini variable], 132
show data directory, 104-105
show diskspace, 137
show heartbeat, 137-138

XSP Client Side JavaScript objects   291  

XSP.addPreSubmitListener(), 147, 166
XSP.addQuerySubmitListener(),

147, 166
xsp.ajax.renderwholetree, 5, 57-59
XSP.alert(), 146, 161-162
XSP.alert function, 143
XSP.allowSubmit(), 148, 168-169
xsp.application.forcefullrefresh, 2, 13
xsp.application.time, 10
xsp.application.timeout, 2
XSP.attachClientFunction(), 150, 179-180
XSP.attachClientScript(), 150, 180
XSP.attachDirtyListener(), 157
XSP.attachDirtyUnloadListener(), 157
XSP.attachEvent(), 155
XSP.attachPartial(), 157
XSP.attachSimpleConfirmSubmit(), 158
XSP.attachValidator(), 152
XSP.attachViewColumnCheckbox

Toggler(), 158
XSP.caIUavaAction(), 160
XSP.canSubmit, 148
XSP.canSubmit(), 167-168
xspClientCA, 141
xspClientDebug, 141-143
xspClientDojo, 141-143
xspClientDojoUI, 141-143
xspClientLite, 141
xspClientMashup, 141
xspClientRCP, 141-143
xspClientRCP.js.uncompressed.js, 142
xsp.client.script.dojo.djConfig, 4, 42-44
xsp.client.script.dojo.version, 4, 37-39
xsp Client Side JavaScript, 142
XSP Client Side JavaScript, 139-144
XSP Client Side JavaScript objects, 141

functions of, 145-146
XSP Client Side JavaScript objects

public functions
XSP.addOnLoad(), 181-182
XSP.addPreSubmitListener(),

165-166
XSP.addQuerySubmitListener(),

166
XSP.alert(), 161-162

timeout properties, 9
xsp.application.forcefullrefresh, 13
xsp.session.timeout, 10-11
xsp.session.transient, 12

try/catch blocks, poorMansDebugger,
246-247

types, Dojo, 190-193

U
unresolved constraint status, 115
Update Model Values phase, 271
updating xsp.properties, 7-9
user preferences properties, 55

xsp.user.timezone, 55-57
xsp.user.timezone.roundtrip, 56

V-W
viewroot properties, 77-78
viewScope, 213-214
vmarg.Xms, 97
vmarg.Xmx, 97

X-Y-Z
Xms (minimum heap size), 86
Xmx (maximum heap size), 86
XPages

behavior when cache size limits are
encountered, 26

Dojo framework, 189
problems when storing pages on file

systems, 26
XPages Extensibility APIs, 28
XPages extension plug-ins, debugging,

261-262
XPages object model, SSJS, 210
XPages partial update, Dojo Dijits,

199-200
XPages Toolbox, 275-276
XPagesPreload variable, 92
XPagesPreloadDB variable, 93
XPiNC quirks, 204-206
XSP.addOnLoad(), 150, 181-182

292   XSP Client Side JavaScript objects

show version, 105-106
systemdump, 111-112

xsp.compress.mode, 4, 47
XSP.confirm(), 146, 162
XSP.DateConverter(), 153
XSP.DateTimeConverter(), 154
XSP.DateTimeRangeValidator(), 154
xsp.default.link.target, 6, 69-71
XSP.dispatchEvent(), 159
XSP.dispatchJSONEvent(), 160
XSP.djRequire(), 146, 164
XSP._doFireSaveEvent(), 158
XSP._dumpObject(), 159
XSP.dumpObject(), 152, 189
XSP._embedControl(), 160
XSP.endsWith(), 151, 186-187
XSP.error(), 146, 162-163
xsp.error.page, 5, 52-54
xsp.error.page.default, 5, 50-52
XSP.execScripts(), 158
xsp.expires.global, 6, 65-66
XSP.ExpressionValidator(), 155
XSP.findForm(), 151, 183-184
XSP.findParentByTag(), 151, 183
XSP.fireEvent(), 156
XSP.firePartial(), 157
XSP.fromJson(), 151, 187-188
XSP.getDijitFieldValue(), 149, 173-174
XSP._getDirtyFormId, 156
XSP.getElementById(), 151, 184
XSP._getEventData(), 155
XSP.getFieldValue(), 149, 172-173
XSP.getMessage(), 152
XSP.getSubmitValue(), 148, 170
XSP.hasDijit(), 151, 184-185
xsp.html.doctype, 44-46
xsp.htmlfilter.acf.config, 6
xsp.html.meta.contenttype, 4, 45
xsp.html.page.encoding, 4, 47-48
xsp.html.preferredcontenttypexhtml,

4, 46-47
XSP.initSectionScript(), 159
XSP.IntConverter(), 153
XSP._isAllowDirtySubmit, 156
XSP._isDirty, 156

XSP.allowSubmit(), 168-169
XSP.attachClientFunction(),

179-180
XSP.attachClientScript(), 180
XSP.canSubmit(), 167-168
XSP Client Side JavaScript

object functions, 160
XSP.confirm(), 162
XSP.djRequire(), 164
XSP.dumpObject(), 189
XSP.endsWith(), 186-187
XSP.error(), 162-163
XSP.findForm(), 183-184
XSP.findParentByTag(), 183
XSP.fromJson(), 187-188
XSP.getDijitFieldValue(),

173-174
XSP.getElementById(), 184
XSP.getFieldValue(), 172-173
XSP.getSubmitValue(), 170
XSP.hasDijit(), 184-185
XSP.log(), 188
XSP.partialRefreshGet(),

176-177
XSP.partialRefreshPost(),

177-178
XSP.prompt(), 163-164
XSP.scrollWindow(), 176-177
XSP.setSubmitValue(), 169-170
XSP.showSection(), 182
XSP.startsWith(), 186
XSP.toJson(), 187
XSP.trim(), 185-186
XSP.validateAll(), 171-172
XSP.validationError(), 174-175

xsp.client.validation, 4, 48
XSP Command Manager, 103

executing commands, 103-104
heapdump, 109
javadump, 109-110
refresh, 108-109
show data directory, 104-105
show modules, 108
show program directory, 105
show settings, 106-107

xsp.properties   293  

composite data properties, 75
xsp.theme.
preventCompositedDataStyles,

75-76
control library properties, 73-74

xsp.library.depends, 73-74
error-management properties, 50-51

xsp.error.page, 52-54
xsp.error.page.default, 50-52

file upload properties, 21
xsp.upload.directory, 21
xsp.upload.maximumsize, 21-23

HTML page-generation
properties, 44
xsp.client.validation, 48
xsp.compress.mode, 47
xsp.html.doctype, 44-46
xsp.html.page.encoding, 47-48
xsp.html.preferredcontenttype

xhtml, 46-47
xsp.redirect, 49

HTML page-generation properties
xsp.html.meta.contenttype, 45

JSF persistence properties, 23
xsp.persistence.dir.xsppers,

35-36
xsp.persistence.dir.xspupload,

35-36
xsp.persistence.discardjs, 23-24
xsp.persistence.file.async, 32
xsp.persistence.file.gzip, 32
xsp.persistence.file.max

views, 30
xsp.persistence.file.threshold,

33-34
xsp.persistence.mode, 24-25
xsp.persistence.stateview, 30-32
xsp.persistence.tree.maxviews,

29-30
JSF persistence properties

xsp.persistence.dir.xspstate,
34-35

link management properties, 69
xsp.default.link.target, 69-71

XSP.isViewPanenlRowSelected(), 159
XSP.LengthValidator, 154
xsp.library.depends, 6, 73-74
XSP._loaded(), 158
XSP.log(), 151, 188
XSP.logw(), 159
XSP._moveAttr(), 159
XSP.NumberConverter(), 154
XSP.NumberRangeValidator(), 155
XSP object debug functions, 201-202
XSP.onComponentLoaded(), 160
XSP.parseDojo(), 158
XSP._partialRefresh(), 158
XSP.partialRefreshGet(), 150, 176-177
XSP.partialRefreshPost(), 150, 177-178
xsp.partial.update.timeout, 6, 68-70
xsp.persistence.dir.xsppers, 4, 35-36
xsp.persistence.dir.xspstate, 3, 28, 34-35
xsp.persistence.dir.xspupload, 4, 35-36
xsp.persistence.discardjs, 3, 23-24
xsp.persistence.file.async, 3, 32
xsp.persistence.file.gzip, 3, 28, 32
xsp.persistence.file.maxviews, 3, 30
xsp.persistence.file.threshold, 3, 29, 33-34
xsp.persistence.mode, 3, 24-25, 198

JSF persistence properties, 24-25
xsp.persistence.stateview, 30-32

JSF persistence properties, 30-32
xsp.persistence.tree.maxviews, 3, 29-30
xsp.persistence.viewstate, 3, 29
XSP._processListeners(), 152
XSP.processScripts(), 158
XSP.prompt(), 146, 163-164
xsp.properties

Active Content Filtering properties,
61-64

AJAX properties, 57
xsp.ajax.renderwholetree, 57-59

applying properties using
themes, 80

client side JavaScript properties, 37
xsp.client.script.dojo.djConfig,

42-44
xsp.client.script.dojo.version,

37-39

294   xsp.properties

Xsp.richtext.default.htmlfilter, 5
Xsp.richtext.default.htmlfilterin, 5
xsp.resources.aggregate, 2, 18-20
XSP._saveDirtyForm(), 157
xsp.save.links, 6, 71-72
XSP._scrollPosition, 156
XSP.scrollWindow(), 149, 176-177
XSP.serialize(), 159
xsp.session.timeout, 2, 10-11, 29
xsp.session.transient, 12, 29
XSP._setAllowDirtySubmit(), 156
XSP.setComponentMode(), 160
XSP._setDirty(), 156
XSP.setSubmitValue(), 148, 169-170
XSP.showSection(), 150, 182
XSP.startsWith(), 151, 186
XSP._SubmitListener(), 152
XSP.tagCloudSliderOnChange(), 158
xsp.theme, 2, 13-14
xsp.theme.notes, 2, 15-18
xsp.theme.preventComposited

DataStyles, 6, 75-76
xsp.theme.web, 2, 14
XSP.TimeConverter, 153
XSP._toggleViewComunCheck

Boxes(), 158
XSP.toJson(), 151, 187
XSP.trim(), 151, 185-186
xsp.upload.directory, 3, 21
xsp.upload.maximumsize, 2, 21-23
xsp.user.timezone, 5, 55-57
xsp.user.timezone.roundtrip, 5, 56
XSP.validateAll(), 149, 171-172
XSP._validateDirtyForm(), 157
XSP.validationError(), 149, 174-175
XSP._Validator(), 152

locating, 7-9
partial update properties, 68

xsp.partial.update.timeout, 68-70
repeating control properties, 66

xsp.repeat.
allowZeroRowsPerPage,
67-68

request properties, 78-79
resource properties, 18

xsp.resources.aggregate, 18-20
resource servlet properties, 65

xsp.expires.global, 65-66
script cache size properties, 60-61
theme properties, 13

xsp.theme, 13-14
xsp.theme.notes, 15-18
xsp.theme.web, 14

timeout properties, 9
xsp.application.forcefull-

refresh, 13
xsp.application.time, 10
xsp.session.timeout, 10-11
xsp.session.transient, 12

updating, 7-9
user preferences properties, 55

xsp.user.timezone.roundtrip, 56
viewroot properties, 77-78

XSP.publishEvent(), 159
XSP._pushListener(), 152
xsp.redirect, 5, 49
XSP.RegExpValidator(), 155
xsp.repeat.allowZeroRowsPerPage, 6,

67-68
XSP._replaceNode(), 158
XSP.RequiredValidator(), 154
XSP._resize(), 160

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

universal_register your product 6x9 7/22/10 8:38 AM Page 1

* Available to new subscribers only. Discount applies to the Safari Library and is valid for  rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: GIGREAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have dif� culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of XPages Portable Command Guide includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every IBM Press
book is available online through Safari Books Online, along with thousands of books and
videos from publishers such as Addison-Wesley Professional, Cisco Press, Exam Cram, O’Reilly
Media, Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much
more.

FREE
Online Edition

	Contents
	CHAPTER 1 Working with XSP Properties
	Locating and Updating xsp.properties
	The Timeout Properties
	xsp.application.timeout
	xsp.session.timeout
	xsp.session.transient
	xsp.application.forcefullrefresh

	The Theme Properties
	xsp.theme
	xsp.theme.web
	xsp.theme.notes

	The Resources Properties
	xsp.resources.aggregate

	The File Upload Properties
	xsp.upload.maximumsize
	xsp.upload.directory

	The JSF Persistence Properties
	xsp.persistence.discardjs
	xsp.persistence.mode
	xsp.persistence.tree.maxviews
	xsp.persistence.file.maxviews
	xsp.persistence.viewstate
	xsp.persistence.file.gzip
	xsp.persistence.file.async
	xsp.persistence.file.threshold
	xsp.persistence.dir.xspstate
	xsp.persistence.dir.xspupload
	xsp.persistence.dir.xsppers

	The Client Side JavaScript Properties
	xsp.client.script.dojo.version
	xsp.client.script.dojo.djConfig

	The HTML Page-Generation Properties
	xsp.html.doctype
	xsp.html.meta.contenttype
	xsp.html.preferredcontenttypexhtml
	xsp.html.page.encoding
	xsp.compress.mode
	xsp.client.validation
	xsp.redirect

	The Error-Management Properties
	xsp.error.page.default
	xsp.error.page

	The User Preferences Properties
	xsp.user.timezone
	xsp.user.timezone.roundtrip

	The AJAX Properties
	xsp.ajax.renderwholetree

	The Script Cache Size Properties
	ibm.jscript.cachesize
	ibm.xpath.cachesize

	The Active Content Filtering Properties
	The Resource Servlet Properties
	xsp.expires.global

	The Repeating Control Properties
	xsp.repeat.allowZeroRowsPerPage

	The Partial Update Properties
	xsp.partial.update.timeout

	The Link Management Properties
	xsp.default.link.target
	xsp.save.links

	The Control Library Properties
	xsp.library.depends

	The Composite Data Properties
	xsp.theme.preventCompositeDataStyles

	Other Ways of Applying xsp.properties Settings
	Viewroot Properties
	Request Properties
	Applying Properties Using a Theme
	What Works Where?

	Conclusion

	CHAPTER 2 Working with Notes/Domino Configuration Files
	INI Variables You Should Know About
	The Java Heap
	HTTPJVMMaxHeapSize Variable
	HTTPJVMMaxHeapSizeSet Variable
	JavaMaxHeapSize Variable
	JavaMinHeapSize Variable
	JavaEnableDebug Variable
	JavaDebugOptions Variable
	JavaUserClasses Variable
	OSGI_HTTP_DYNAMIC_BUNDLES Variable
	XPagesPreload Variable
	XPagesPreloadDB Variable
	When and Why Is Preloading Important?
	Avoid Unnecessary Network Transactions in Your Application Code

	Optimizing Client Memory Usage
	vmarg.Xms
	vmarg.Xmx

	Enabling Extended Java Code with the java.policy File
	JavaUserClasses

	Conclusion

	CHAPTER 3 Working with the Console
	About the XSP Command Manager
	How to Execute the XSP Command Manager Commands
	show data directory
	show program directory
	show version
	show settings
	show modules
	refresh
	heapdump
	javadump
	systemdump

	Working with the OSGi Console
	diag <bundle-symbolic-name>
	ss, ss <bundle-symbolic-name>, or ss <bundle-name-prefix>
	start <bundle-symbolic-name>
	stop <bundle-symbolic-name>
	b <bundle-symbolic-name>
	headers <bundle-symbolic-name>
	help

	How to Launch Notes/Designer Along with the OSGi Console
	Common Console Commands You Should Know
	help
	load [task-name]
	load [task-name] -?
	quit
	restart server
	tell [task-name] quit
	restart task [task-name]
	show server
	show conf [notes.ini variable]
	set conf [notes.ini variable=value]
	tell adminp [options]
	load chronos [options]
	load updall [path] [options]
	load design [source] [target] [options]
	load fixup [path] [options]
	show tasks
	show allports
	show diskspace
	show heartbeat

	Conclusion

	CHAPTER 4 Working with the XSP Client Side JavaScript Object
	What Is the XSP Client Side JavaScript Object?
	Summary of the XSP Client Side JavaScript Object Functions
	The Public XSP Client Side JavaScript Object Functions
	XSP.alert(message) : void
	XSP.confirm(message) : boolean
	XSP.error(message) : void
	XSP.prompt(message, defaultValue) : string
	XSP.djRequire(moduleName) : object
	XSP.addPreSubmitListener(formId, listener, clientId, scriptId) : void
	XSP.addQuerySubmitListener(formId, listener, clientId, scriptId) : void
	XSP.canSubmit() : boolean
	XSP.allowSubmit() : void
	XSP.setSubmitValue(submitValue) : void
	XSP.getSubmitValue() : object
	XSP.validateAll(formId, valmode, execId) : boolean
	XSP.getFieldValue(node) : string
	XSP.getDijitFieldValue(dj) : object
	XSP.validationError(clientId, message) : void
	XSP.scrollWindow(x, y) : void
	XSP.partialRefreshGet(refreshId, options) : void
	XSP.partialRefreshPost(refreshId, options) : void
	XSP.attachClientFunction(targetClientId, eventType, clientScriptName) : void
	XSP.attachClientScript(targetClientId, eventType, clientScript) : void
	XSP.addOnLoad(listener) : void
	XSP.showSection(sectionId, show) : void
	XSP.findForm(nodeOrId) : object
	XSP.findParentByTag(nodeOrId, tag) : object
	XSP.getElementById(elementId) : object
	XSP.hasDijit() : boolean
	XSP.trim(s) : string
	XSP.startsWith(s, prefix) : boolean
	XSP.endsWith(s, suffix) : boolean
	XSP.toJson(o) : string
	XSP.fromJson(s) : object
	XSP.log(message) : void
	XSP.dumpObject(object) : string

	How XPages Uses the Dojo Framework
	Dojo Types and Attributes
	Working with Dojo Dijits
	IDs in the HTML Source and the Requirement to Use the “#{id:” Syntax
	Scripts Accessing Dojo Controls Need to Use dijit.byId
	Dojo Controls Are Not Available While the HTML Page Is Loading
	Bad AJAX Requests to an XPage Can Cause Loss of Data
	XPages Input Validation Can Interact with Dojo Layout Controls
	Dojo Control Interaction with XPages Partial Update

	Client-Side Debugging Techniques
	XSP Object Debug Functions
	Client-Side Debugging with Dojo
	Other Miscellaneous Client-Side Debugging Information

	Conclusion

	CHAPTER 5 Server-Side Scripting
	What Can I Do with Server Side JavaScript?
	XPages Object Model
	Server-Side Scripting Objects and System Libraries

	Summary of Server-Side Global Functions
	getComponent(id:String): UIComponent
	getClientId(id:String): String
	getLabelFor(component:UIComponent):UIComponent
	getView(): UIViewRoot
	getForm(): UIForm
	save():void

	Working with Java Made Simpler
	Importing Java Packages into Server Side JavaScript
	Creating Custom Java Classes
	Creating Managed Beans

	Conclusion

	CHAPTER 6 Server-Side Debugging Techniques
	The “Poor Man’s” Debugger
	print(message) : void & println(message) : void
	_dump(object) : void
	Using try/catch Blocks

	How to Set Up a Server for Remote Debugging
	Debugging Java Code and Managed Beans
	Debugging XPages Extension Plug-ins
	How to Configure notes.ini and rcpinstall.properties for Logging
	Interpreting a Stack Trace: Where to Go from Here?
	Understanding the XPages Request Handling Mechanism
	Understanding the XPages Request Processing Lifecycle

	XPages Toolbox
	Conclusion

	Appendix A: Definitive Resources
	Appendix B: Useful Online Resources
	Appendix C: Make Your Own Journal
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V-W
	X-Y-Z

