
Development Tips and
Best Practices for XPages
Contents:
Page 2 IBM Domino Application Development Futures

Page 14 Responsive Application Development for Xpages

Page 25 Take Your XPages Development to the Next Level

Page 59 From XPages Hero To OSGi Guru: Taking The Scary Out Of
 Building Extension Libraries

Page 78 Ten Lines Or Less: Interesting Things You Can Do In Java With
 Minimal Code

Page 99 XPages and JavaServer Faces

Page 129 Be Open - Use WebServices and REST in XPages Application

Page 147 XPages Performance and Scalability

Page 165 Taking XPages Applications from Out-of-the-Box to Outstanding

Page 173 Improve XPages Application Performance with JSON-RPC

Visit SocialBizUG at https://www.socialbizug.org

2

IBM Domino Application
Development Futures

Eamon Muldoon, IBM
Pete Janzen, IBM

3

4

5

6

7

8

9

10

11

12

13

14

Responsive Application
Development for Xpages

Brian Gleeson, IBM
Tony McGuckin, IBM

15

16

17

18

19

20

21

22

23

24

25

Take Your XPages Development
to the Next Level

Brad Balassaitis, PSC

Paul T. Calhoun, NetNotes Solutions Unlimited, Inc.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

From XPages Hero To OSGi Guru:
Taking The Scary Out Of Building
Extension Libraries

Paul Withers, Intec Systems Ltd

Christian Güdemann, WebGate Consulting AG

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Ten Lines Or Less: Interesting
Things You Can Do In Java With
Minimal Code

Julian Robichaux, panagenda

Kathy Brown, PSC Group

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

This excerpt is from the 2nd Ed. of ‘Mastering XPages: A Step-by-Step Guide to

XPages Application Development and the XSP Language’ by Martin Donnelly,

Mark Wallace, Tony McGuckin, published by Pearson/IBM Press, ISBN 978-0-13-

337337-0. For more info, please visit the publisher site:

http://www.ibmpressbooks.com/store/mastering-xpages-a-step-by-step-guide-to-

xpages-application-9780133373370.

Take advantage of a 40% member discount for SocialBiz members for this book.

Simply apply the following code during checkout: SOCIALBIZUG.

157

 C H A P T E R 5

 XPages and JavaServer Faces

 As mentioned in the beginning of this book, XPages evolved from a previous runtime technology
called XFaces. XFaces was conceived as a way for IBM to provide a universal user-interface pro-
gramming model that could be adopted across its diverse portfolio of application development
platforms. As a runtime technology, it needed to cater to developers of differing skill sets, such
as Java/J2EE developers, Domino developers, and so forth. These categorizations are not mutu-
ally exclusive, and many organizations contain developers with both sets of skills who might be
working on the same projects. In fact, many such developers want to choose which tools to use
based on the task they need to accomplish at any given time. (For example, they might need to
rapidly create a user interface using a WYSIWYG tool and then switch to using Java to add some
complex application logic.)

 What IBM set out to achieve with XFaces was to define a programming model that would
be suitable for a so-called script-level developer, such as someone who knows how to program
using a markup language and JavaScript. This programming model was intended to allow devel-
opers to target multiple platforms, such as web and the Eclipse Rich Client Platform (RCP).
Also, this programming model was based on the JavaServer Faces (JSF) standard-based web
application development framework. Achieving this goal would provide the following benefits to
application developers:

 • Learn Once, Write Anywhere: Developers need only learn one model for development
across these platforms. The model must be flexible and powerful to allow programmers
to fully exploit and optimize the UI for any particular platform.

 • Write Once, Run Anywhere™: Developers can create a single set of artifacts that can
run across multiple platforms.

 • Provide a script-based programming model: A model that would be familiar for
developers with a Domino Designer (or similar) and dynamic HTML programming
background (no Java skills required).

100

158 Chapter 5 XPages and JavaServer Faces

 • Allow artifacts to be shared between Java and Script developers who work on the
same project: For example, script developers create the frontend user interface and Java
developers create the backend application logic.

 • Flexibility: Allows developers to use the most appropriate tool for the task they perform.

 As XFaces morphed into XPages, these design points were all retained. This chapter exam-
ines the relationship between XPages and JSF. Although one of the goals in XPages is to hide
all the Java and J2EE-centric aspects of the JSF programming model, having an understanding
of the underlying technology is a major asset for any XPages developer. By understanding how
JSF works, and especially the workings of the JSF lifecycle, you learn how your XPages are
processed as your application executes. This helps understanding why your application behaves
in a particular fashion. Also, both XPages and JSF are designed to be extended. For the Domino
Developer, you are no longer restricted to what is provided within the platform as delivered by
IBM; it’s now possible to extend the platform either to solve a particular problem or as a way to
start a new business. Please refer to Chapter 12 , “XPages Extensibility,” for more information on
the options available to extend the XPages runtime.

 This chapter is aimed at developers who are interested in extending the XPages runtime
using Java by creating new XSP components or developers who are coming from a J2EE back-
ground and want to understand how XPages extends JavaServer Faces. This chapter uses the
standard JSF terminology when explaining how JSF works and the relationship between JSF and
XPages. In JSF parlance, a component is a UI element or what has been previously referred to
as a UI control (an edit box or button). JSF uses the terms view and component tree interchange-
ably. XPages also uses view (remember the root tag of every XPage is the xp:view tag) and
an XPages’ view is, in fact, a component tree. Knowing this means the working definition of
XPages can be extended to this: XPages is an XML-based language that can be used to define
JSF views, and an XPage is a static representation of a JSF component tree.

 Be sure to download the Chp05Ed2.nsf files provided online for this book to run through
the exercises throughout this chapter. You can access these files at www.ibmpressbooks.com/
title/9780133373370 .

 What Is JavaServer Faces?
 JSF is a component-based, user interface framework for building Java-based web applications.
The framework provides the following capabilities:

 • A set of reusable user-interface components that can be used to easily create an applica-
tion frontend or can be used as the starting point to create new custom user interface
components

 • A Model-View-Controller (MVC) programming model that supports event-driven
programming

101

JSF Primer 159

 • A state-full server representation of the user interface that can be synchronized with the
client representation

 • A mechanism to allow data flow to and from the user interface, including the capability
to perform data conversion and data validation

 • A framework that can be extended using Java programming techniques

 Using the JSF framework as the starting point when creating a web application frees the
application developer from having to deal with the stateless nature of HTTP—without the use of
a framework, no application state is maintained on the server between requests. The developer
can create the required user interface using the standard UI components (a.k.a controls) provided
by JSF. Then, the developer can bind these controls to the application data (in the form of Java
beans) and then trigger server-side application logic in response to user actions on the application
user interface. A Java bean is a reusable Java-based software component (see http://docs.
oracle.com/javase/tutorial/javabeans/ for more details). This type of programming
model is familiar to developers of rich client-based applications using technologies such as the
Standard Widget Toolkit (SWT); however, at the time JSF was introduced, it was pretty much a
new concept for web developers.

 The following JSF Primer sidebar provides a basic introduction to JSF and is written with
the assumption that you have no knowledge of Java2 Enterprise Edition (J2EE). The relevant
J2EE concepts are briefly explained in this sidebar. The JSF lifecycle is also explained in the
sidebar; this is a key concept that all XPages developers should understand. For a detailed look at
the JSF technology, the authors recommend the following resources:

 • JavaServer Faces Specification, version 1.1 (http://docs.oracle.com/cd/
E17802_01/j2ee/j2ee/javaserverfaces/1.1/docs/api/)

 • JavaServer Faces (O’Reilly)

 • Mastering JavaServer Faces (Wiley)

 JSF Primer
 To run a JSF-based application, you need a Java web container, such as an Apache Tomcat
server, and an implementation of the JSF specification. A Java web container is a Java-based
server for running Java web applications. JSF 1.1 (which is the version used in the XPages run-
time) requires a web container that implements, at a minimum, the Servlet 2.3 and JavaServer
Pages 1.2 specifications. (XPages requires support for the Servlet 2.4 specification.) IBM Web-
Sphere Application Server (WAS) and Portal Server support the Servlet and JSP specifications.

 A servlet is a Java class that runs in the web container, processes client requests, and gen-
erates responses. A servlet is passed parameters that represent the request and response and, in
simple cases, all the processing logic can be included within the servlet. Typically, a servlet is
defined as the entry point or front controller for a web application. A servlet typically delegates

102

160 Chapter 5 XPages and JavaServer Faces

to request handlers to process the client requests and a presentation tier to generate the responses.
 Listing 5.1 shows the source code for a simple HTTP servlet. This servlet handles an HTTP GET
request and responds with a HTML page that displays the text Hello World. The code to handle
the request has access to a request object, which can be used to retrieve information about the
request being processed and a response object, which can be used to write the response that is
returned to the client.

 Listing 5.1 Sample HTTP Servlet

 package mxp.chap05;

 import java.io.IOException;
 import java.io.PrintWriter;

 import javax.servlet.ServletException;
 import javax.servlet.http.HttpServlet;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 /**
 * Sample Servlet
 */
 public class SampleServlet extends HttpServlet {

 /**
 * Handle a HTTP GET request.
 */
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Hello World</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");
 out.println("Hello World");
 out.println("</BODY>");
 out.println("</HTML>");
 }
 }

103

JSF Primer 161

 JavaServer Pages (JSP) is a presentation logic layer that can generate HTML pages in
response to client requests. A JSP page looks like a HTML page, but it contains a mix of static
HTML and JSP directives, which can be used to generate dynamic content or performing some
processing associated with generating the client response. JSP uses tag libraries to allow special
tags to be declared, which can then be invoked by the JSP engine. A JSP implementation comes
with a standard tag library called the JavaServer Pages Standard Tag Library (JSTL).

 Listing 5.2 shows a sample JSP page that uses the JSF tag library to embed JSF compo-
nents within an HTML page. Based on what you have learned so far about XSP markup, this
sample should be readable. It contains a mix of HTML and JSF tags. The JSF tags cause JSF
components to be created and results in a HTML form being created, which contains an edit box
that can be used to enter a value and a button that can be used to submit the form.

 Listing 5.2 Sample JSP with JSF Tags

 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <BODY>
 <f:view>
 <h:form id="form1">
 Enter some value:
 <h:inputText
 id="inputText1" value="#{ModelBean.someValue}"/>
 <h:commandButton
 id="commandButton1" action="success" value="Submit"/>
 </h:form>
 </f:view>
 </BODY>

 JSP is the default presentation tier used by the JSF reference implementation. The presen-
tation tier is the layer in an application framework that is responsible for displaying the applica-
tion data in a human-readable format. The presentation tier defines the JSF component tree (also
known as the JSF view), which is the hierarchy of controls that is presented in the user interface.
A typical starting point for a JSF-based application is where a user requests a JSP, such as typing
a URL like this into a browser:

 http://somehost/jsfapp/somepage.jsp

 This causes the JSP engine to load and execute the specified JSP. If this page contains JSF
components (using the standard JSF tag library), a JSF component tree is also created in addition
to the regular JSP processing (the JSF tags are responsible for creating the JSF component tree).
The JSF components generate the HTML markup that is presented to the user and the view is
cached for the user (see section 2.1.1 of the JSF 1.1. specification, “Non-Faces Request Gener-
ates Faces Response”).

104

162 Chapter 5 XPages and JavaServer Faces

 Now, if the same page is submitted back to the server, it is handled by the JSF servlet. This
servlet is part of the JSF implementation and acts as a front controller for all JSF-based applica-
tions. JSF requests are processed in accordance with the rules defined by the JSF request process-
ing lifecycle. The JSF request processing lifecycle consists of a number of well-defined phases
that describe how each request is handled and, of course, these phases also apply to XPages. The
phases on the standard request processing lifecycle are as follows:

 1. Restore View

 2. Apply Request Values

 3. Process Validations

 4. Update Model Values

 5. Invoke Application

 6. Render Response

 Figure 5.1 illustrates how the processing lifecycle operates.

Response
Complete

Response
Complete

Faces
Request Restore

View
Process
Events

Process
Events

Apply Request
Values

Process
Validations

Faces
Response Render

Response
Process
Events

Process
Events

Invoke
Application

Update Model
Values

Render Response

Response
Complete

Response
Complete

Conversion Errors/
Render Response

Validation/Conversion
Errors/Render Response

 Figure 5.1 JSF request processing lifecycle

105

JSF Primer 163

 The Restore View phase retrieves the JSF view for the request. If no JSF view exists, a new
one is created and cached for later use. Maintaining a consistent representation of the JSF view
between requests simplifies the programming task for the application developer by simplifying
the application logic to focus on the business problem and not having to maintain information
about the state of the view.

 The Apply Request Values phase is used to allow the JSF components to update their state
based on the values from the current request; for example, if the component represents an edit-
able value, the component stores the current value. Action and editable components have a spe-
cial behavior during this phase. If the component immediate property is set to true , the JSF
lifecyle is short circuited. For an action component, the action processing happens at the end of
this phase instead of during the lifecycle. For an editable component, the validation processing
happens immediately.

 The Process Validations phase allows any validators associated with components in the
view and any built-in server side validation associated with a specific component to be exe-
cuted. All components that can be used to edit a value and support validation, have an associated
property (aptly named valid) to indicate whether the current value is valid. When validation
errors occur, messages are queued and the valid property of the associated component is set
to false . Validation error messages can be displayed to the end user using the xp:message or
 xp:messages tags as described in Chapter 4 , “Anatomy of an XPage.” Validation errors typi-
cally cause the lifecycle processing to terminate and result in a response being immediately sent
back to the end user.

 If the Update Model Values phase is reached, it is assumed that the values provided in
the request are valid (as defined by any validators specified in the view). The current values are
stored in the localValue property of the associated component. During this phase, the applica-
tion data is updated with the new values. In the case of an XPages application, the values are writ-
ten to the Domino document during this phase.

 If the Invoke Application phase is reached, it is assumed that the application data has been
updated. The relevant application logic specified in the view is executed during this phase. In an
XPages application, if application logic is associated with a button and that button caused the
page to be submitted, it is now that the logic is executed.

 The Render Response phase generates the response and saves the state of the view. In the
XPages case, the response is an HTML page and the rendering is performed using a platform-
specific renderkits, and the application developer has control over the state saving (for example,
to optimize server performance, he can decide not to save any state). The JSF response rendering
model is flexible and is discussed further.

 From Figure 5.1 , you see that, after certain phases, there is an event-processing operation
that can result in the lifecycle being short circuited and the response being rendered. This typi-
cally happens if there is a conversion or validation error, which means that data specified by the
end user is not valid, so it doesn’t make sense to update the application data or to execute any
application logic.

106

164 Chapter 5 XPages and JavaServer Faces

 Numerous other key concepts in JSF are important to understand before looking at how
XPages builds on top of this foundation:

 1. Integration with JSP

 2. User Interface Component Model

 3. Value Binding and Method Binding Expression Evaluation

 4. Per-Request State Model

 5. Application Integration

 6. Rendering Model

 7. JSF APIs

 JSF implementations must support JSP as the page-description language (the mechanism
for defining the JSF component tree). This allows J2EE developers to start creating JSF-based
applications using a well-known technology. When JSF tags are added to a JSP page, they cause
the JSF component tree to be created when the page is executed.

 A JSF user interface is created as a tree of components (known as controls in XPages).
Components typically are rendered to the user as HTML markup, which produces the applica-
tion interface. However, not all components render as visual elements in the UI; they can render
no markup or just client-side JavaScript and thereby add behavior to the UI. Components can be
manipulated on the server, and this can result in changes to the application UI (the Button sample
in Chapter 4 shows an example of this). Components can have different types, such as have the
ability to trigger application logic, can be a container for other components, can have an associ-
ated value, or can edit its associated value. A well-defined data conversion model associated with
components allows application data to be converted between the underlying data types and string
values and back again. This is essential as data is going to be represented as string values in the
HTML markup. There is also a well-defined validation model that allows multiple checks to be
performed on user input and prevents application logic executing on invalid data. JSF imple-
mentations provide a standard set of user interface components, and these form the basis for the
controls you can add to an XPage. Finally, a standard set of data model classes can be used with
the standard controls; refer to the JSF Java documentation for the javax.faces.model pack-
age for more information.

 Binding expressions are how application logic and data binding is performed in JSF. Value
bindings are used when you need to compute a component property or when you want to bind
application data to a component for display and\or editing. JSF uses Expression Language (EL)
to specify value binding expressions. EL is fully defined in the JavaServer Pages specification
(version 2.0) and the JSF usage only differs in the delimiters used, such as #{ and } instead of
 ${ and } and the fact that EL functions are not supported. EL can be used in XPages applica-
tions, as demonstrated in examples in Chapter 4 .

 Method-binding expressions are a variation on value bindings where parameters can be
passed to the method being invoked and the result can be returned. Method bindings invoke

107

JSF Primer 165

application logic, which in JSF applications is code in Java. XPages additionally supports appli-
cation logic written in JavaScript. JSF supports an extensible mechanism for resolving binding
expression variables and properties. By default, JSF supports Java beans-based property resolu-
tion and a well-defined set of variables. This Java-centric approach has been extended in XPages
to better support the use of JavaScript and Domino.

 During the JSF request processing lifecycle, the request state is represented by a set of JSF
objects, such as FacesContext , FacesMessage , ResponseStream , ResponseWriter , and
 FacesContextFactory . JSF provides a mechanism to allow built-in request related objects to
be available during request processing.

 The JSF programming model is Java-based, and there is a well-defined model for the
execution of the JSF-based application. XPages provides a dynamic HTML-like programming
model (combination of JavaScript and Markup Language) on top of JSF. This can be achieved
because JSF provides an extensible mechanism to modify the execution of a JSF application.
The application integration APIs in JSF provide access to modify the behavior of how JSF-based
applications are executed.

 During the execution of a JSF request, the incoming request values need to be decoded
at the start of the lifecycle during the Apply Request Values phase and subsequently encoded
when the response is generated. JSF allows each component to handle the decoding and encod-
ing processes directly. One disadvantage with this approach is that it can tie a component to a
particular platform or rendering technology, such as a component that decodes HTTP requests
and encodes HTML responses that can’t be used with a VoiceML client. To address this problem,
JSF supports a model where each component can delegate the encoding and decoding processes
to an associated renderer . Now, different renderer implementations can be provided for different
client types, and JSF provides a simple mechanism to group these renders into a renderkit along
with the ability to switch between renderkits. This keeps the components platform independent.
JSF provides a default HTML renderkit.

 The JSF reference implementation comes in two parts:

 1. JSF API

 2. JSF Implementation

 The JSF API is a Java API that consists of interfaces and abstract classes that define the
abstractions that make up the JSF engine. JSF allows key parts of the implementation to be
extended while still preserving the default behavior. This is achieved by means of a delegation
model, where the new extension has the option to execute first and then delegate to the default
implementation when appropriate. The JSF API provides abstract Java classes for the modules,
which can be extended. JSF also has an XML configuration file format and a mechanism for
loading multiple instances of this file. To override a module in the JSF engine, you need to pro-
vide your custom implementation and a Faces configuration XML file that specifies that your
implementation should be loaded and used instead of the default one. Consider the following
quote from the JavaServer Faces specification:

108

166 Chapter 5 XPages and JavaServer Faces

 “JSF’s core architecture is designed to be independent of specifi c protocols and markup.
However it is also aimed directly at solving many of the common problems encoun-
tered when writing applications for HTML clients that communicate via HTTP to a Java
application server that supports servlets and JavaServer Pages (JSP) based applications.”

 Although JSF is Java-centric and J2EE-based, the API provides sufficient flexibility to allow
the JSF framework to be used in other contexts. So, it is possible to create a non Java-centric
programming model on top of JSF and still maintain the benefits of providing a standards-based
solution, and this is what has been achieved in XPages.

 How Does XPages Extend JSF?
 As previously mentioned, JSF provides a delegation model whereby key modules in the JSF
engine can be replaced. To do this, you need to create your own Java class that extends the base
class, which defines the module you want to extend. This class must have a constructor that takes
a single argument, which is an instance of the class defining the module you are extending. A
concrete example of this would be the custom variable resolver that is provided in XPages. The
default variable resolver in JSF provides access to a number of built-in variables (see Table 5.1).

 Table 5.1 JSF Default Variables

 Name Value

 applicationScope Map containing the application scope values

 cookie Map containing the cookies for the current request

 facesContext The FacesContext instance for the current request

 header Map containing the HTTP header values for the current request

 headerValues Map containing arrays that contain the header values for the HTTP headers
for the current request

 initParam Map containing the initialization parameters for the web application

 param Map containing the request parameters for the current request

 paramValues Map containing arrays that contain the parameter values for request param-
eters for the current request

 requestScope Map containing the request attributes for the current request

 sessionScope Map containing the session attributes for the current request

 view UIViewRoot of the current component tree

 XPages extends these variables to include some additional ones, which are relevant for a
Domino application developer, such as the current database. JSF provides a pluggable mecha-
nism to allow what is called a variable resolver to be configured for a JSF application. This

109

How Does XPages Extend JSF? 167

variable resolver must provide the default behavior as defined in the JSF specification but can
provide additional functionality. To do this, the following two steps are required:

 1. An implementation of javax.faces.el.VariableResolver must be provided. It
either must implement the default behavior or else delegate to the default implemen-
tation.

 2. The faces-config.xml file for the JSF application must be edited to specify the
new variable resolver implementation.

 The faces-config.xml file is the main configuration file for a JSF-based application.
It is used to configure the behavior of the application and the JSF runtime. You need to switch
to the Java perspective in Domino Designer to perform both of these steps. The faces-con-
fig.xml file is located in the \WebContent\WEB-INF folder. Starting in Domino Designer 9.0,
you can show the faces-config.xml file in the Applications navigator by editing the Domino
Designer navigator preferences.

 Listing 5.3 shows the Java code for a variable resolver, which adds support for an addi-
tional variable called “magic,” which resolves to a string value “Abracadabra.” This class pro-
vides a constructor that takes a single variable, which is an instance of VariableResolver ; this
delegate provides the default behavior. The custom implementation can delegate to this and still
provide the default behavior and be compliant with the JSF specification.

 Listing 5.3 Sample Variable Resolver

 package mxp.chap05;

 import javax.faces.context.FacesContext;
 import javax.faces.el.EvaluationException;
 import javax.faces.el.VariableResolver;

 /**
 * Sample variable resolver
 */
 public class SampleVariableResolver extends VariableResolver {

 private VariableResolver delegate;

 /**
 * Constructor which takes delegate VariableResolver
 */
 public SampleVariableResolver(VariableResolver resolver) {
 delegate = resolver;
 }

110

168 Chapter 5 XPages and JavaServer Faces

 /**
 * Return the object associated with the specified variable name.
 */
 public Object resolveVariable(FacesContext context, String name)
 throws EvaluationException {
 if ("magic".equals(name)) {
 return "Abracadabra";
 }
 return delegate.resolveVariable(context, name);
 }
 }

 To get this instance to load, an entry must be added to the faces-config.xml specifying
that this class as the variable resolver. Listing 5.4 shows what this entry looks like in the faces-
config.xml .

 Listing 5.4 Variable Resolver Configuration

 <?xml version="1.0" encoding="UTF-8"?>
 <faces-config>
 <application><variable-resolver>
 mxp.chap05.SampleVariableResolver
 </variable-resolver>
 </application>
 <!--AUTOGEN-START-BUILDER: Automatically generated by IBM Lotus Domino
 Designer. Do not modify.-->
 <!--AUTOGEN-END-BUILDER: End of automatically generated section-->
 </faces-config>

 After these two changes are made, you can now reference the “magic” variable from the
 SampleVariableResolver XPage. Listing 5.5 shows the XSP markup that contains Com-
puted Fields that reference the new “magic” variable.

 Listing 5.5 Variable Resolver Sample XPage

 <?xml version="1.0" encoding="UTF-8"?>
 <xp:view xmlns:xp="http://www.ibm.com/xsp/core">
 <xp:text escape="true" id="computedField1" value="#{magic}">
 </xp:text>
 </xp:view>

 When you preview this page, you see the results illustrated in Figure 5.2 .

111

How Does XPages Extend JSF? 169

 Figure 5.2 Variable resolver sample preview

 XML-Based Presentation Tier
 As mentioned earlier, the default presentation tier in JSF version 1.1 is JSP. There are well-
known issues with using JSP and JSF, but the biggest hurdle from the Domino developer per-
spective is that JSP is a Java-based technology, and not all Domino developers are familiar with
Java. Domino developers are, however, familiar with creating HTML markup and, therefore, it
was decided to create a new markup-based presentation for JSF. Additionally, JSF developers
use the faces-config.xml file to configure certain aspects of their application, such as navi-
gation rules and managed beans. In designing the new presentation tier, it was decided to allow
the developer to perform most of the application configuration within the XPage itself including
page navigation, the configuration of data sources, and the inclusion of application logic. This
new presentation tier became the XSP language.

 JSF provides the capability for a custom implementation to be provided for the Render
Response and Restore View phases of the JSF lifecycle. An abstract Java class called ViewHan-
dler can be extended and then this new implementation configured to be the view handler for
the JSF application (as demonstrated previously with the custom navigation handler). This mech-
anism is used in XPages to provide the XSP markup-based presentation tier. So, the first and
most important enhancement that XPages provides on top of JSF is the capability to create the
JSF view using a markup language. Additionally, XPages provides some custom options for the
Restore View phase. The default behavior for saving the state of the JSF view is to walk the com-
ponent tree and request that each component save its state. The state data is then either stored on
the server or serialized into the HTML response and stored on the client. Saving view state on the
server has performance implications for the server. Saving state in the response increases the size
of the response and, therefore, increases the network traffic. In some cases, there is no need to
store the full state of the view (for example, when the page is being used for display only).

 Request Processing Lifecycle
 XPages allows you to execute the JSF request processing lifecycle on a portion of the component
tree. To do this, use the execMode and execId properties of the event handler. The execMode
property allows you to specify that either the complete or partial execution of the lifecycle. When
partial execution is specified by setting execMode="partial" , only a portion of the component

112

170 Chapter 5 XPages and JavaServer Faces

tree is used when executing the lifecycle. Components that are not part of this subtree are not
processed during the lifecycle. The execId property specifies the component ID of a control
within the pages component tree, which is the root of the subtree to be used when executing in the
lifecycle. This allows you to optimize the execution of the lifecycle as a much smaller number of
components need to be processed. This is something you will want to do to decrease the load on
your server and to improve the performance of your XPages.

 XPages also provides an optimization for the Render Response phase of the lifecycle,
which either limits or eliminates the response. The event handler has two properties— refresh-
Mode and refreshId —which specify and control partial refresh (partial or no rendering of
the response). When partial refresh is specified by setting refreshMode="partial" , only a
portion of the component tree contributes to the generated response. The response can also be
completely eliminated by setting refreshMode="norefresh" . The refreshId is used in
conjunction with a partial refresh to specify the portion of the component tree, which is used to
generate the response, the specified control ID, which should be the root of the subtree that is
used. Partial or no refresh is another optimization technique. The responsiveness of your XPages
and the end user’s experience can be significantly improved by using partial refresh to update just
a part of the page and to reduce the number of page reloads.

 User Interface Component Model
 JSF uses the term component to refer to user interface components or what are known as controls
in XPages. These components are the user interface elements used to create the application user
interface. JSF provides the following:

 • A fundamental API for user interface components

 • Component behavioral interfaces that allow components to provide specific functional-
ity, such as access to a data model

 • A facility to convert data values (for example, to string representation for use in the pre-
sentation tier)

 • A facility for validating user input

 XPages builds on top of the JSF user interface component model to provide the following:

 • XPages behavioral interfaces that allow components to contribute to the XPages-specific
pages

 • XPages converters, which extend the default conversion facility provided by JSF

 • XPages validators, which extend the default user validation provided by JSF

 XPages Behavioral Interfaces

 The behavioral interfaces are implemented by user-interface components that support XPages-
specific behavior. For example, in regular JSF, you must add a tag corresponding to a form

113

How Does XPages Extend JSF? 171

component in the view definition to have a HTML form rendered in the response. For conve-
nience, the standard XPages view root component automatically adds a form to each XPages
view. But, what happens now if you want to manually add the form yourself? When you do
this, the standard XPages form component automatically disables the automatic form creation by
finding the parent, which creates the form and tells it not to automatically create a form. This list
describes the XPages behavioral interfaces:

 • FacesAjaxComponent: Implemented by user-interface components that can handle an
AJAX request and return a valid response. The type-ahead component implements this
interface and returns the list of suggestions in XML format as the response to an AJAX
request.

• FacesAttrsObject: Implemented by user-interface components that allow arbitrary
extra attributes to be output on their base tag. This is also used to allow attributes to be
specified, which are passed through and emitted on the page. All the XPages controls
implement this interface. This allows controls to be forward-compatible as attributes,
such as Dojo attributes, can be added later without requiring updates to the controls or
their renderers.

 • FacesAutoForm: Implemented by user-interface components that automatically create
a form component and is used to ensure that when a form is manually inserted into the
view that an automatic form is not created. The XPages view root component imple-
ments this interface and normally automatically creates a form for each XPage.

 • FacesComponent: Implemented by user-interface components that need to perform
some initialization before and/or after their children are created or want to build their
own children. The repeat component implements this because it builds its own children.
The repeat container component (which is the parent for each row of children in a repeat)
also implements this interface to ensure the correct row data is available to its children as
they are being created.

 • FacesDataIterator: Implemented by user-interface components that iterate over a
value and is used to get information about the data model being used and the rows of data
that is displayed. The repeat component implements this.

 • FacesDataProvider: Implemented by user-interface components that can be config-
ured with a data source. The view root and panel control, among others, implement this
and can be configured with a Domino document or view data source.

 • FacesInputComponent: Implemented by input components and is used to disable
validation and to disable the behavior in the Notes client where the user gets prompted
if a value is modified and might need to be saved before closing an XPage. The XPages
standard input component (described in the next section) implements this interface.

114

172 Chapter 5 XPages and JavaServer Faces

 • FacesInputFiltering: Implemented by input components that support input filter-
ing and find the correct input filter to be applied. The XPages standard input component
implements this interface and supports the filtering of active content.

 • FacesNestedDataTable: Implemented by user-interface components that render
using multiple tables and is used to support AJAX requests that replaces the component
rendering. The XPages standard view panel component (described in the next section)
implements this interface.

 • FacesOutputFiltering: Implemented by output components that support output fil-
tering and is used to find the correct output filter to be applied. The XPages standard
output component (described in the next section) implements this interface and supports
the filtering of active content.

 • FacesPageIncluder: Implemented by user-interface components that include another
XPage and need to perform some initialization before and/or after their children are
created or want to build their own children. The include component implements this
interface because it is used to include another XPage. The standard include composite
component (described in the next section) also implements this interface because includ-
ing a Custom Control is a special case of including another XPage.

 • FacesPageProvider: Implemented by user-interface components that act as the root
of a page during the create view phase of the JSF lifecycle. This is only intended for
internal use by the XPages page-loading mechanism and must never be implemented by
a third party.

 • FacesParentReliantComponent: Implemented by user-interface components that
have a strict child/parent relationship and does not behave correctly if an additional con-
tainer is inserted between them, and their parent and is used with Custom Controls to
force the include composite component to remove itself when the children of the Cus-
tom Control all rely on the parent. The XPages select item component implements this
because it depends on its parent to render the selection it represents.

 • FacesPropertyProvider: Implemented by the include composite component and
used in the publishing of composite data. This must not be implemented by third parties.

 • FacesRefreshableComponent: Implemented by user-interface components that can
be refreshed by one of its children in response to an AJAX request. If the component
changes its client ID while rendering its children (this is allowed for a NamingCon-
tainer), the child uses the wrong client ID and the refresh fails. This interface allows
the child to get the correct client ID for use in a partial refresh. The XPages standard data
component implements this interface.

• FacesRowAttrsComponent: Implemented by user-interface components that output
an HTML TABLE and TR elements. The attributes (provided via FacesAttrsObject)
are output on the TABLE element and the row attributes are output on each TR element.

115

How Does XPages Extend JSF? 173

 • FacesRowIndex: Implemented by user-interface components that support a row index
and is used by data sources to compute the components bean ID. The XPages standard
data component implements this interface.

 • FacesSaveBehavior: Implemented by action components which support the save
property and is used to check if the data sources on the page should be saved after the cor-
responding action is performed. The XPages standard command component (described
in the next section) implements this interface.

 • FacesThemeHandler: Implemented by user-interface components that handle setting
their own default styles. The XPages standard file download component implements this
interface.

 • FacesDojoComponent: Implemented by user-interface components that support Dojo
attributes. The XPages type-ahead component implements this interface.

 • FacesDojoComponentDelegate: Implemented by user-interface components that
support Dojo attributes on behalf of another component. The XPages date time helper
component implements this interface.

 • ThemeControl: Implemented by user-interface components that support style kits. The
majority of the XPages components support this.

 You could use the behavioral interfaces if you decide to extend XPages (for example, by
building your own Java components for XPages). This subject is covered in Chapter 12 , “XPages
Extensibility.”

 XPages Converters

 JSF defines a mechanism to perform conversion to and from the string representation of the data
model value. Model values need to be converted to a string representation to be displayed for the
user and, when the user edits a value, it is received as a string value and needs to be converted to
the correct type for the underlying data model. The javax.faces.convert.Converter inter-
face defines the converter behavior. JSF provides a standard set of converters for common data
types: various number formats and date\time values. XPages extends two of the standard convert-
ers and provides one new converter implementation:

 • DateTimeConverter: The XPages data/time converter extends the standard JSF date/
time converter, but it uses the International Components for Unicode (ICU) libraries for
the conversions. For more information on ICU, visit http://site.icu-project.org .

 • MaskConverter: The XPages mask converter applies the specified mask to the string
representation of the value being converted. Table 5.2 shows a table listing the supported
mask characters.

 • NumberConverter: The XPages number converter handles the fractional part of inte-
gers and can handle the result of XPath.

116

174 Chapter 5 XPages and JavaServer Faces

 Table 5.2 Mask Characters

 Mask
Character

 Description

 # Any valid decimal digit number (uses Character.isDigit)

 ' Used to escape any of the special formatting characters

 U All lowercase letters are mapped to uppercase (uses Character.isLetter)

 L All lowercase letters are mapped to lowercase (uses Character.isLetter)

 A Any valid decimal digit or letter (uses Character.isDigit and

 Character.isLetter)

 ? Any letter

 * Anything

 H Any valid hex character (0–9, a–f, or A–F)

 XPages Validators

 JSF defines a mechanism to provide the validation (checks) of user inputted values. Although
only a single converter may be associated with an input control, multiple validators can be
assigned to a control. The reason for this is that the data might need to pass several validation
checks before being persisted;, for example, the value is required (not empty), the value is a num-
ber, or the value is a credit card number. The javax.faces.validator.Validator interface
defines the validator behavior. Again, JSF provides some standard validators for checking that
numbers or strings lie within a specific range. XPages provides some additional validators and
some additional interfaces to customize the validator behavior. The following list describes the
XPages validators in detail:

 • ClientSideValidator: Implemented by validators that support client-side valida-
tion. Validators that support client-side validation are asked to provide a single line of
JavaScript to be included in the rendered response. For XPages validators, this Java
Script references the xspClientDojo.js library and emits a call to the appropriate valida-
tor method. Listing 5.6 shows the JavaScript that gets included in a page that contains an
edit box with a length validator and a submit button. Note the call to attach the length
validator to the input control in the HTML page; this associates the length validator with
the edit box whose contents it needs to validate.

 Listing 5.6 Length Validator Client-Side JavaScript

 <script type="text/javascript">
 XSP.addOnLoad(function() {
 XSP.attachValidator("view:_id1:inputText1",null,null,new

117

How Does XPages Extend JSF? 175

 XSP.LengthValidator(0,5,"Incorrect length"));
 XSP.attachEvent("view:_id1:_id4", "view:_id1:button1", "onclick", null,
true, false);
 });
 </script>

 • FacesRequiredValidator: Implemented by the required validator and used by the
XPages standard input component to identify if a required validator has been added to its
list of validators.

 • ConstraintValidator: Validates using the specified regular expression or, if the
regular expression is set to one of the predefined keywords, performs the associated
standard validation. Table 5.3 shows the predefined keywords the constraint validator
supports.

 Table 5.3 Predefined Constraint Checks

 Regex Description

 AlphabetOnly Checks if the value contain only letter characters

 DigitOnly Checks if the value contain only number characters

 AlnumOnly Checks if the value contain only letter and number characters

 • DateTimeRangeValidator: Validates that a date value lies within the specified time
period. Client-side validation and computed properties are supported.

 • DoubleRangeValidatorEx2: Extends the standard JSF validator to support client-
side validation and computed properties.

 • ExpressionValidator: Enables you to provide custom logic for the client-side and
server-side validation.

 • LengthValidatorEx and LongRangeValidatorEx2: The XPages version of these
validators extends the standard JSF validator to support client-side validation and com-
puted properties.

 • ModulusSelfCheckValidator: Performs a modulus self check (for modulus 10 and
11 only). Client-side validation is not supported. A modulus self check is a standard
mechanism for validating identification numbers; for example, modulus 10 (or Luhn
algorithm) is a single checksum formula used to validate credit-card numbers.

 • RequiredValidator: Checks that a value has been specified.

118

176 Chapter 5 XPages and JavaServer Faces

 Standard User-Interface Components
 JSF provides a standard set of user interface components which cover the standard control types.
Each of these components has a well-defined behavior which is platform independent. The inten-
tion is that the JSF standard components would be extended to provide specific implementations
for different client platforms. In fact, JSF extends these standard components to provide HTML-
specific components. XPages extends the standard components to add XPages-specific behavior
and also defines its own completely new standard components. XPages then extends these com-
ponents to provide the specialized XPages user interface components that are used in Domino
Designer and supports the browser and IBM Notes clients. Figure 5.3 shows the hierarchy of user
interface components. If you are going to create your own user interface components, you will
normally be extending one of the JSF or XPages standard components.

UIComponentBaseUIComponent

JSF Component Interface

UIComponentBaseUIGraphic, UIData, …

JSF Standard Components

UIComponentBaseUIDataEx, UIFileDownload, …

XPages Standard Components

UIComponentBaseXspInputText, XspSection, …

XPages Specialized Components

 Figure 5.3 XPages user interface component hierarchy

 The following list briefly describes each of the standard user interface components:

 • UICallback: Represents an area in Custom Control where the user of the Custom Con-
trol can add additional content. This component builds its own contents and, after its

119

How Does XPages Extend JSF? 177

children are added, it checks if they are all instances of NamingContainer and, if they
are, it removes itself from the component hierarchy.

 • UIColumnEx: Represents a single column of data and expects to have a parent UIData .
 UIColumnEx implements FacesParentRelientComponent to signal this depen-
dency on its parent.

 • UICommandButton: Represents a button that, when clicked by the user, can trigger
some application logic.

 • UICommandEx2: Represents a control that, when activated by the user, can trigger some
application logic. UICommandEx2 implements FacesSaveBehavior , which means
that, when triggered, it can cause the saving of all data sources on the XPage.

 • UIComponentTag: An abstract component that is extended by specialized XPages com-
ponents which represent a tag, such as a div, span, table, and so on.

 • UIDataColumn: Extends UIColumnEx , but currently does not add any new behavior.

 • UIDataEx: Represents a multirow data model. The only allowed children are instances
of UIColumnEx , which collectively define the presentation a row of data from the model.

 • UIDataIterator: Like UIDataEx , this component represents a multirow data model,
but does not have any restriction on what type of children it will have. The children pro-
cess multiple rows of data, but in a free format rather than the tabular format that UIData
uses.

 • UIDataPanelBase: Represents a component that organizes the layout of its children
and provides data (it implements FacesDataProvider) that is scoped to its children.

 • UIDateTimeHelper: Used to transform an edit box into a date time picker.

 • UIEventHandler: Used to handle events on behalf of its parent. It can be configured to
handle both client-side events or server-side actions for the component that is its direct
parent.

 • UIFileDownload: Represents a control that can be used to download one or more files.

 • UIFileuploadEx: Represents a control and can be used to upload a file from a user to
the server.

 • UIFormEx: Represents a HTML form and ensures an XPage doesn’t contain nested
forms because of the automatic creation of a form elsewhere in the component hierarchy.

 • UIGraphicEx: Represents a control that displays a graphical image to the user. Cur-
rently, the XPages version does not add any new behavior, but it might do so in the
future.

 • UIInclude: Used to support including one XPage within another.

 • UIIncludeComposite: Used to support including a Custom Control within an XPage.

 • UIInputCheckbox: Represents a checkbox control.

120

178 Chapter 5 XPages and JavaServer Faces

 • UIInputEx: Used for controls that display a value and allow that value to be edited.
 UIInputEx adds support for HTML filtering, disabling the validation, and Dojo.

 • UIInputRadio: Represents a radio button control.

 • UIInputRichText: Represents a rich text edit control.

 • UIInputText: Represents an edit box control.

 • UIMessageEx: Supports the display of error messages for a specific component and
adds style kit support.

 • UIMessagesEx: Supports the display of error messages not related to a specific compo-
nent and adds theme support.

 • UIOutputEx: Used to display data model values to the user and adds HTML filtering
support.

 • UIOutputLink: Represents a HTML link.

 • UIOutputText: Displays a computed value.

 • UIPager: Used to display a pager control to allow paging through the rows of data asso-
ciated with the UIData or UIDataIterator component.

 • UIPagerControl: Used to display one of the buttons in a pager control, such as first,
previous, next, or last buttons.

 • UIPanelEx: Used as a base component for the controls that are used include an XPage.

 • UIPassThroughTag: Used whenever a non-xsp tag is added to an XPage. There is no
associated xsp tag for this component, but it is used by the page-loading mechanism and
appears in the XPages page-translation source code.

 • UIPassThroughText: Used whenever text added to an XPage. There is no associated
xsp tag for this component, but it is used by the page-loading mechanism and appears in
the XPages page translation source code.

 • UIPlatformEvent: Represents a control that can handle a platform event. When the
specified platform event occurs, the associated script is executed.

 • UIRepeat: This component is a FacesDataIterator and has two modes of opera-
tion: It can either use either a single instances of its children (like a UIData component)
or it can create one instance of its children for every row of data.

 • UIRepeatContainer: Used by the UIRepeat component when it is creating multi-
ple instances of its children. Each instance of UIRepeats children are nested inside a
 UIRepeatContainer , and the container provides access to the row data and index.

 • UIScriptCollector: Automatically added to the root of an XPages component tree.
Its job is to aggregate all the JavaScript code that needs to be included in the generated
HTML and to include it within a single script tag at the bottom of the page.

121

How Does XPages Extend JSF? 179

 • UISection: Represents a container control that displays as a section and can be
expanded and collapsed.

 • UISelectItemEx: Represents a single selection option for a control that allows the user
to select from a number of choices, such as a listbox.

 • UISelectItemsEx: Represents multiple section options for a control that allows the
user to select from a number of choices, such as a listbox.

 • UISelectListbox: A listbox control, which will have nested UISelectItemEx or
 UISelectIvtemsEx , representing the available choices. Depending on whether the
listbox is configured for multiple selection, a different specialized XPages component is
used, either XspSelectManyListbox or XspSelectOneListbox .

 • UISelectManyEx: Represents a control that allows the user to select multiple values
from a number of choices.

 • UISelectOneEx: Represents a control that allows the user to select one value from a
number of choices.

 • UITabbedPanel: Represents a control that contains children which are instances of
 UITabPanel and displays the children as a series of tabs.

 • UITabPanel: Represents a single tab in a tabbed panel control.

 • UITypeAhead: A helper component that is used with an edit box to provide type-ahead
functionality, such as the ability for the user to start typing in the edit box and see a list of
suggestions.

 • UIViewColumn: Represents a single column in a view control.

 • UIViewColumnHeader: Represents the header for a single column in a view control.

 • UIViewPager: Represents a pager in a view control.

 • UIViewPanel: Represents a view control that can be bound to the data in a Domino
view.

 • UIViewRootEx2: The root component of all XPages component hierarchies.

 • UIViewTitle: Represents the title of a view control.

 You could use one the standard user interface components as the base class if you were
building your own Java components for XPages. This subject is covered in Chapter 12 .

 Value Binding and Method Binding Expression Evaluation
 JSF supports two types of binding expressions:

 • Value binding: Computes a value for a property and can support both reading and writ-
ing a value

 • Method binding: Executes some logic

122

180 Chapter 5 XPages and JavaServer Faces

 Binding expressions are identified using the #{ and } expression delimiters. JSF supports
Expression Language (EL) for value and method bindings. JSF defines the javax.faces.
el.ValueBinding abstract class to represent a value binding expression and javax.faces.
el.MethodBinding to represent a method binding. The JSF application object is responsible
for creating instances of these for use in the JSF processing. XPages extends support for expres-
sion binding to include the following:

 • Using JavaScript

 • Using a special syntax to resolve client IDs

 • Support for multipart expressions

 • Simple actions

 JavaScript Binding Expressions

 A JavaScript binding expression is delimited using #{javascript: and } . Listing 5.7 shows
an example of a JavaScript value binding expression being used to compute the value for a Com-
puted Field. When this code is executed, a string representation of the database property is dis-
played in the Computed Field. This value binding expression is computed each time the property
is accessed. There is an alternative syntax that starts with ${ , which gets evaluated just once
when the page is loaded.

 Listing 5.7 JavaScript Value Binding Expression

 <xp:text escape="true"
 id="computedField2"
 value="#{javascript:database}">
 </xp:text>

 Listing 5.8 shows the syntax for the JavaScript method binding. When the button is clicked,
the XPage is submitted and the JavaScript executes. The output from the print statement can be
seen in the Domino console or Notes trace file.

 Listing 5.8 JavaScript Method Binding Expression

 <xp:button value="Execute JavaScript" id="button1" type="submit">
 <xp:this.action>
 <![CDATA[#{javascript:print("Executed JavaScript")}]]>
 </xp:this.action>
 </xp:button>

123

How Does XPages Extend JSF? 181

 Client ID Binding Expressions

 An ID binding expression is delimited using #{id: and } . The ID of the user component whose
client ID you want to compute is specified in the content of the computed expression, as shown in
 Listing 5.9 . ID expressions are typically used as part of a multipart expression.

 Listing 5.9 Client ID Binding Expression

 <xp:text escape=" true "
 id="computedField3"
 value="#{id:computedField3}">
 </xp:text>

 Multipart Binding Expressions

 A multipart expression allows static and dynamic content to be mixed. In Listing 5.10 , the value
of the Computed Field combines static text, a client ID computed expression, and a JavaScript
computed expression.

 Listing 5.10 Multipart Value Binding Expression

 <xp:text escape=" true "
 id="computedField4"
 value="ID: #{id:computedField4} DB: #{javascript:database}">
 </xp:text>

 Simple Actions

 A simple action is a special type of method binding which is represented by a tag in the XPage
and its behavior can be configured using properties. Listing 5.11 shows how to configure a sim-
ple ExecuteScript action, which, in turn, invokes a JavaScript method binding.

 Listing 5.11 Simple Action Method Binding Expression

 <xp:button value="Execute Simple Action" id="button2" type="submit">
 <xp:this.action>
 <xp:executeScript
 script="#{javascript:print('Executed Simple Action')}">
 </xp:executeScript>
 </xp:this.action>
 </xp:button>

124

182 Chapter 5 XPages and JavaServer Faces

 XPages Default Variables
 Earlier in this chapter, the default JSF variables were listed (see Table 5.1). XPages provides
some additional default variables for the Domino application developer. Table 5.4 shows a list-
ing of all the default variables, their values, and a short description of each variable. Refer to the
XPage named DefaultVariables in Chp05Ed2.nsf to see how this table was generated. At the end
of the list, the six new XPages default variables are listed:

 • viewScope: Map containing the view scope values

 • context: XspContext instance for the current request

 • database: Database instance for the current request

 • session: Session instance for the current request

 • sessionAsSigner: Session instance with the credentials of the XPage signer

 • sessionAsSignerWithFullAccess: Session instance with the credentials based on
those of the XPager signer and with fill administrative access

 Table 5.4 Table of Default Variables

 Name String Value Description

 applicationScope {com.sun.faces.OneTimeInitialization=com.
sun.faces.OneTimeInitialization, com.sun.faces.
ApplicationAssociate=com.sun.faces.application.
ApplicationAssociate@51a551a5

com.sun.faces.HTML_BASIC=com.ibm.xsp.renderkit.
ReadOnlyRenderKit@45f045f0

javax.servlet.context.tempdir=C:\Users\Mark\
AppData\Local\Temp\notes0E3C5E\xsp\chp05ed2.nsf}

 Map containing the
application scope
values

 cookie {SessionID=javax.servlet.http.Cookie@63a863a8} Map containing the
cookies for the
current request

 facesContext com.ibm.xsp.domino.context.DominoFacesContext@
6d346d34

 The FacesContext
instance for the
current request

125

How Does XPages Extend JSF? 183

 Name String Value Description

 header {Cookie=SessionID=81A74A5C8161D376B0373C275
603E4BB8E12AE5B

Accept-Encoding=gzip, deflate

Accept=text/html,application/xhtml+xml,application/
xml;q=0.9*/*;q=0.8

Accept-Language=en-ie,en;q=0.7

en-us;q=0.3

User-Agent=Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:23.0) Gecko/20100101 Firefox/23.0

Referer=http://localhost/chp05ed2.nsf

Connection=keep-alive, Host=localhost}

 Map containing the
HTTP header val-
ues for the current
request

 headerValues {Accept=com.ibm.domino.xsp.bridge.http.util.
SingleValueEnumeration@43d843d8

Referer=com.ibm.domino.xsp.bridge.http.util.
SingleValueEnumeration@443c443c

Accept-Encoding=com.ibm.domino.xsp.bridge.http.
util.SingleValueEnumeration@441c441c

Connection=com.ibm.domino.xsp.bridge.http.util.
SingleValueEnumeration@44eb44eb

Accept-Language=com.ibm.domino.xsp.bridge.http.
util.SingleValueEnumeration@43fa43fa

User-Agent=com.ibm.domino.xsp.bridge.http.util.
SingleValueEnumeration@43b843b8

Cookie=com.ibm.domino.xsp.bridge.http.util.
SingleValueEnumeration@44ca44ca

Host=com.ibm.domino.xsp.bridge.http.util.SingleValue
Enumeration@43974397}

 Map containing
arrays which contain
the header values for
the HTTP headers for
the current request

 initParam {com.sun.faces.forceLoadConfiguration=true

com.ibm.xsp.SHARED_CONFIG=true

com.sun.faces.verifyObjects=false}

 Map containing the
initialization param-
eters for the web
application

 param {} Map containing
the request param-
eters for the current
request

126

184 Chapter 5 XPages and JavaServer Faces

 Name String Value Description

 paramValues {} Map containing
arrays which contain
the parameter values
for request param-
eters for the current
request

 requestScope {com.ibm.xsp.SESSION_ID=81A74A5C8161D376B0
373C275603E4BB8E12AE5B

__xspconvid=null

database=chp05ed2.nsf

session=CN=MarksW520/O=DEV

com.sun.faces.FORM_CLIENT_ID_ATTR=view:_id1

context=com.ibm.xsp.designer.context.ServletXSP-
Context@f450f45

com.sun.faces.INVOCATION_PATH=.xsp

cookie={SessionID=javax.servlet.http.
Cookie@63a863a8}

componentParameters=com.ibm.xsp.application.Com-
ponentParameters@ff80ff8}

 Map containing the
request attributes for
the current request

 sessionScope {__XSP_STATE_BASIC=com.ibm.xsp.application.
BasicStateManagerImpl$ViewHolder@44f444f4
VIEW LIST: !dnms5mob49!/Index

__notescontext_publicaccess=com.ibm.domino.
xsp.module.nsf.NotesContext$AccessPrivile
ges@47544754

xspIsBot=false

xsp.sessionData=com.ibm.xsp.designer.context.Persis-
tentSessionData@fb90fb9}

 Map containing the
session attributes for
the current request

 view com.ibm.xsp.component.UIViewRootEx2@753f753f UIViewRoot of the
current component
tree

 viewScope {} Map containing the
view scope values

 context com.ibm.xsp.designer.context.ServletXSPContext@
f450f45

 The XspContext
instance for the cur-
rent request

 database chp05ed2.nsf The Database
instance for the
current request

127

How Does XPages Extend JSF? 185

 Name String Value Description

 session CN=MarksW520/O=DEV The Session instance
for the current
request

 sessionAsSigner CN=MarksW520/O=DEV The Session instance
with the credentials
of the XPage signer

 sessionAsSigner-

WithFullAccess
 CN=MarksW520/O=DEV The Session instance

with the credentials
of the XPage signer
and with full admin-
istrative access

 Chapter 6 , “Building XPages Application Logic,” covers XPages default variables and
examples of their usage in more detail. A short description of each of the XPages default vari-
ables is provided next.

 viewScope

 XPages introduces this new scoped variable to supplement the default scoped variables:
 requestScope , sessionScope , and applicationScope . The viewScope variable allows
you to scope your own variables to the lifetime of the associated view, such as XPage. As previ-
ously mentioned, the state of a view can be cached between requests so that multiple requests
act on the same state of the XPage. The view is restored at the beginning and saved at the end
of each request and any view scope variables are saved and restored as part of this process. The
 viewScope object is a map, so you can add your own variables keyed by name. By default, this
map is empty, so you can select whatever names you want without concern for name clashes. The
variables you add must be serializable for their state to be saved.

 context

 The context variable provides access to the XPages XSPContext object, which is an instance
of com.ibm.xsp.designer.context.XSPContext . The context object provides XPages-
specific contextual information about the current request, such as access to the associated user,
timezone, locale, and so on. It also provides numerous utility methods that can be used within
your application logic, such as page navigation, HTML filtering, and so on.

 database

 The database variable provides access to the Database object, which is an instance of lotus.
domino.Database . The database object provides access to the current Domino database and
supports a wide range of database centric operations. The complete documentation for the

128

186 Chapter 5 XPages and JavaServer Faces

 Database class is available in the Java/CORBA Classes section of the IBM Domino Designer
Basic User Guide and Reference help document, which is part of the Domino Designer help. Use
 Help > Help Contents to access this documentation.

 session

 The session variable provides access to the Session object, which is an instance of lotus.
domino.Session . The session is assigned credentials based on those of the current user. The
session is restricted by the application’s ACL and the security tab of the server’s Domino Direc-
tory entry. The complete documentation for the Session class is available in the Java/CORBA
Classes section of the IBM Domino Designer Basic User Guide and Reference help document.

 sessionAsSigner

 The session variable provides access to the Session object, which is an instance of lotus.
domino.Session . The session is assigned credentials based on those of the signer of the
XPages’ design element. The session is restricted by the application’s ACL and the Security tab
of the server’s Domino Directory entry. The complete documentation for the Session class is
available in the Java/CORBA Classes section of the IBM Domino Designer Basic User Guide
and Reference help document.

 sessionAsSignerWithFullAccess

 The session variable provides access to the Session object, which is an instance of lotus.dom-
ino.Session . The session is assigned credentials based on those of the signer of the XPages’
design element and allows full administrative access to the application’s data. The signer must
have permission for full administrative access or this session is not created and will not be
available. The complete documentation for the Session class is available in the Java/CORBA
Classes section of the IBM Domino Designer Basic User Guide and Reference help document.

 Conclusion
 This concludes the overview of how XPages is built on top of JSF. You learned how XPages
extends JSF to add new capabilities and enhanced behaviors while maintaining the JSF standard.
As previously mentioned, XPages is currently built with JSF version 1.1, so if you plan to read
more about JSF, this is the version to reference.

129

Be Open - Use WebServices and
REST in XPages

Bernd Hort, assono GmbH

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

XPages Performance and
Scalability

Tony McGuckin, IBM

Paul Withers, Intec

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Taking XPages Applications from
Out-of-the-Box to Outstanding

Brad Balassaitis

Kathy Brown

The User Interface (UI) is a critical compo-

nent for modernizing an application. Users

won’t use your application if doesn’t provide

a modern look-and-feel similar to the other

consumer applications that they use frequently. Internal users may not be given

a choice, but user adoption and application success is heavily influenced by the

application interface.

Out of the box, you can create professional-looking applications with OneUI, but

your apps will look like every other app created with OneUI. Many developers have

turned to using other frameworks like Twitter Bootstrap and KendoUI to create

more modern-looking apps, but just like with OneUI, those apps look like every

other app created with the entry-level examples of those frameworks.

How can you modernize your application and still give it the WOW factor, without

spending hundreds of hours just on UI (with no guarantee that it will look good)?

UI themes. With predefined CSS and plugins included, a theme can transform your

application. UI themes are typically responsive, so your XPages applications will

look great on the desktop, mobile devices, and tablets.

UI Frameworks and Themes
Let’s start by talking about the differences between UI frameworks and themes.

A UI framework is a collection of components with a pre-defined look-and-feel.

Some well-known JavaScript-based examples include Twitter Bootstrap, KendoUI,

Sencha Ext JS, and Foundation. Major JavaScript libraries such as jQuery and

Dojo also include many UI components.

These frameworks are a good starting point for building an interface because good

programmers are not necessarily good UI designers. Often, the focus is put on

the application logic, and the UI doesn’t get the same level of attention. Instead of

166

enhancing the application, it detracts from it. We shoot for web 2.0 but end up with

web two-point-ewww.

UI frameworks help by providing a well-designed, standardized look and feel with

predefined CSS styling for framework components. You can even customize the

look and feel by overriding the default styling as needed. This is a big leap forward

from creating your own styling completely from scratch.

This may sound like what you think of as a theme, but there is a distinct difference

– themes are a fleshed-out UI implementation, containing styling (CSS) and layout

for the entire page’s look and feel. They can also include additional resources (such

as plugins) that are part of the interface. The resources all work together and look

good together. A theme can be built on an existing framework or it could be creat-

ed by a UI designer from scratch.

You could think of a framework as the materials for building a house and the theme

as the blueprint.

OneUI
If you’ve developed XPages applications, then you’re most likely familiar with OneUI

– a standardized web application UI that was developed by IBM and used on many

of their sites.

OneUI is an example of a UI theme that’s built into the XPages platform. It includes

a number of stylesheets that define the look and feel and uses many Dojo widgets

for UI components. It’s designed to work with the Application Layout control to

make it very easy for you to easily implement an application-wide page structure.

Figure 1 shows what a form looks like with the application layout control but no

theme enabled in the application. Figures 2 and 3 show the same page with OneUI

v2.1 and OneUI v3.2 enabled, respectively.

167

Figure 1: XPage Form Table with Application Layout and No Theme

Figure 2: XPage Form Table with Application Layout and OneUI v2.1

Figure 3: XPage Form Table with Application Layout and OneUI v3.2

168

Advantages of OneUI
• If you don’t have a UI already designed or the time (or skills) for design, OneUI

makes it easy to implement a consistent, application-wide look and feel.

• Assuming you are using the same version of OneUI as IBM, your application

will also look consistent with other IBM products such as IBM Connections.

• There are numerous simple color schemes readily available because they come

installed on the Domino server.

• It’s designed to handle browser inconsistencies; if you look at the source of a

OneUI theme file, you’ll see many conditional references to browser-specific

stylesheets.

• The application layout control is designed to work with OneUI, and it provides

property panel options to easily add or remove key layout regions around the

main content area (banner, footer, left column, right column, etc.) and add com-

ponents to each region.

• It is designed to handle right-to-left screen layout as well as left-to-right.

• Data Views are feature-rich data display controls that are designed to have a

better look with OneUI on a desktop as well as on a mobile device.

• Form Tables are designed to work with OneUI styling, so they allow you to easily

set up a form layout structure with consistent styling.

Disadvantages of OneUI
• For several years now, it has not been a modern-looking interface; it just does

not compare to readily-available current frameworks.

• The layout is not responsive, so it does not adapt well to different screen sizes.

• The forms, in particular, do not look appealing.

• The form layout is table-based and adjusts to some extent based on screen

size, but the columns often end up different widths within a given section and

are very hard to keep in line across different sections if you break the form up

into several tables based on the layout needs of different sections.

• Customization can be difficult beyond the basics of color and logo.

• Most OneUI applications look the same.

169

There are clear advantages to having a UI theme, but we need something that’s

more modern-looking and also provides a responsive layout.

Enter Twitter Bootstrap.

Bootstrap
There are many options available, but we’re going to focus on Twitter Bootstrap be-

cause it is by far the most popular UI framework, having been used to build millions

of websites. It is the most popular project on GitHub; its star count is more than

double the next-highest project. Its popularity has allowed it to mature very quickly

and means that there are many resources available to get started and to get help

with any problems you face because others have undoubtedly faced them before.

Advantages of Bootstrap

• The layout is a fluid grid structure, which is far more flexible than a table-based

layout structure.

• Bootstrap was designed to be responsive. Its mobile-first design provides the

capability to build applications where one implementation can work well on any

device size.

• It is based on jQuery, the most popular JavaScript library in the world.

• The styling is well-designed, with built-in typography and many UI controls includ-

ing navigation bars, buttons, toggles, badges, dialogs, and much, much more.

• A flexible icon font (Glyphicons) is built-in to Bootstrap.

All of these things are already designed to handle browser inconsistencies, so

they’re widely usable. Twitter Bootstrap is also easy to get up-to-speed on.

Bootstrap Themes
Bootstrap is an extremely strong foundation on which to build an application inter-

face. But the challenge is getting beyond the default layout that most developers

use when first getting started; for a time, there were many, many websites that

implemented Bootstrap and all looked virtually the same because they all had the

black top navigation bar as shown in Figure 4.

170

Figure 4: Basic Bootstrap

A framework is a great start, but it’s not a finished UI design. Since programming

and UI design are very different skillsets, many developers are not also good UI

designers. You can easily spend many, many hours on UI design and still have it

not look very good if you’re doing it from scratch.

 If you don’t have a corporate standard UI design or a good designer available, a

great solution is a Bootstrap theme.

Themes provide professionally-designed full-page layouts. They include the CSS

for the look and feel and are often designed to use Bootstrap’s responsive UI fea-

tures, so a single UI can work well on any screen or device.

They provide a consistent user experience from page-to-page and often include

plugins for additional features. They generally provide sample pages for you to use

as a model. Without using a Bootstrap theme, you could use Bootstrap’s styling

and add your own plugins, however you will have to load them individually and en-

sure they work well together and don’t conflict. A Bootstrap theme will have done

that work for you.

There are hundreds of free and paid themes available to transform your XPages ap-

plication. Because it’s Bootstrap, it’s responsive, so those XPages applications will

look great on the desktop, mobile devices, and tablets as you can see in Figure 5.

171

Bootstrap-Related UI Features Available in (or Coming
Soon to) XPages
If you’ve heard of Bootstrap4XPages or attended any of the ConnectED sessions

by IBM’s XPages development team, you may be wondering how all of these fit in

with Bootstrap features that are available in XPages.

Bootstrap4XPages is an OpenNTF project that was added to the Extension Library

in November 2014.

It adds Bootstrap resources (CSS, jQuery, icon fonts) to the application and uses

custom renderers to modify XPages applications using the Application Layout

control to render Bootstrap elements. It makes it very easy to add Bootstrap to a

OneUI application and render the application.

There are enhancements coming soon, as mentioned in Brian Gleeson’s session at

ConnectED on Responsive Application Development for XPages:

• Navbar control: creates a Bootstrap navigation bar and has properties to de-

fine the header, links, and content and choose whether it’s fixed or inverted

• Dashboard control: lets you easily display and format glyphicons and label

text with badges

• Carousel: displays a slideshow of images and contains properties to customize it

The main difference between Bootstrap4XPages and a custom theme is that a

theme is a fully-designed page layout. Although Bootstrap4XPages makes add-

ing Bootstrap even simpler and has a growing library of controls, you still need to

172

design your UI with Bootstrap4XPages. Your source code will still use the OneUI

class and style names, which can be confusing and difficult to customize.

Up Next: Implementing a Professionally-Designed UI
Theme
In this part of Taking XPages Applications from Out-of-the-Box to Outstanding,

we’ve covered the difference between a framework and a professionally-designed

theme. We’ve also discussed why you may want to use a theme. In the next part

of this article, we will discuss how to implement a Bootstrap theme in your applica-

tion. There is more involved than just picking a theme and installing it. We’ll cover

tips and tricks we learned to integrate a theme with your application.

Brad Balassaitis is an IBM Champion for Collaboration Solutions (2014 and 2015)

and a Senior Consultant in the Collaboration practice at PSC Group. He has 18

years of experience developing innovative Notes/Domino applications, primarily

working with XPages over the past several years. He has presented sessions on

XPages at IBM Connect, user groups, and on webinars. He has also contributed

several tutorials to NotesIn9.com along with a database with several Dojo Data

Grid samples in XPages toOpenNTF. Brad blogs frequently about XPages at Xcel-

lerant.net, and you can also find him on Twitter at @Balassaitis.

Kathy Brown is a Senior Consultant with PSC Group, LLC. Kathy is located in

New Hampshire and has worked with IBM Notes since 1995. She has presented

at events such as Lotusphere, THE VIEW Developer conference, and numerous

user group conferences around the world. She also writes for various industry

publications, including SocialBizUg.org’s Developer Edition newsletter. Kathy

blogs about IBM Notes (and other things) at her website www.runningnotes.net.

She is an IBM Champion, a twitter addict (15 accounts and counting), and proud

to be a Nerd Girl!

173

Improve XPages Application
Performance with JSON-RPC

Brad Balassaitis, PSC Group

One of the best-kept secrets of XPages is JSON-RPC control.

It is the ideal solution for application developers who want:

• Their XPages applications to be more efficient and run faster

• To easily implement client-side and server-side JavaScript interaction

Historically Executing Server-Side Code from
Client-Side Code
If you’ve ever needed to trigger server-side JavaScript (SSJS) from client-side

JavaScript in XPages, especially in earlier versions, you probably used a kludgy

workaround like this:

1. Add a Button control to the page with the required SSJS logic

2. Set the button to always be hidden via CSS

3. Use client-side JavaScript from any event handler to get a handle to the hidden

button and trigger its click() event

Even worse, if you had to pass a value from client-side JavaScript to the server

side to be available when the SSJS runs, you may have used a hacktastic solution

similar to mine:

1. Add a Hidden Input control to the page and bind it to a scope variable

2. Use client-side JavaScript to put a value into the hidden field

3. Use client-side JavaScript to trigger a partial refresh on that Hidden Input con-

trol to push the value to the component tree on the server

4. Use client-side JavaScript to trigger the click() event of a hidden button control

with the required SSJS logic

If you’re still using methods like these to implement client-side and server-side

code interaction, I have good news: There’s a much better way! JSON-RPC is a

much cleaner method for making applications perform more efficiently.

174

JSON-RPC Explained
The Remote Service control uses JSON-RPC to allow you to set up simple, effi-

cient interactions between client-side and server-side JavaScript.

JSON-RPC is a specification that was created to be a simpler alternative to SOAP.

Nearly 10 years old, it has been at version 2 since 2010, after which it was added

to XPages. JSON-RPC is defined by JSONRPC.org as a “stateless, light-weight

remote procedure call (RPC) protocol.” But don’t let that seemingly simple descrip-

tion belie the tremendous benefits that it can provide.

A remote procedure call is a mechanism for client-side code to trigger a proce-

dure to run on the server. JavaScript Object Notation (JSON) is the format of the

communication between the client and server (see json.org for more information).

Putting the two sides together, JSON-RPC provides a way for client-side code to

remotely trigger server-side code and pass information back and forth in the form

of JSON.

If you’d like to hear the role of a JSON-RPC client explained in detail by animated

robots, by all means, check out this YouTube video.

JSON-RPC in XPages
JSON-RPC is available in XPages via the Remote Service control, which can be

found in the Data Access drawer of the Controls palette, as shown in Figure 1.

Figure 1 Use JSON-RPC via the Remote Service control in the Controls palette

http://www.jsonrpc.org/specification
http://www.json.org/
https://www.youtube.com/watch?v=FmeyLUKHI4Q

175

When you drag the control onto an XPage or custom control and switch to the

Source view, you’ll see that it creates an <xe: jsonRpcService> tag:

<xe:jsonRpcService id=”jsonRpcService1”></xe:jsonRpcService>

This control has been a part of the Extension Library since an 8.5.2 version of the

library was released in December 2010. It is also part of the 8.5.3 Upgrade Pack 1

installation and is built into IBM Notes 9.x.

Benefits of JSON-RPC
Let’s look at the many benefits to using JSON-RPC via the Remote Service control.

It Enables Client-Side to Server-side Code Execution and Communication

Client-side JavaScript can be used to trigger SSJS logic to run on the server. You can

pass parameters to the remote method and return a response to the client-side code.

It is Asynchronous

JSON-RPC does not block the user’s interaction with the application because the

remote procedure is triggered asynchronously. Therefore, the user can continue

working on the page regardless of how long the remote procedure takes to complete.

You can execute a remote procedure quietly or you can attach a callback function

so that you can run client-side JavaScript after the remote procedure has finished

and, optionally, returned a value.

It is Faster

There is no HTTP POST or form submission when a remote procedure is triggered.

JSON-RPC doesn’t need information other than the method you’re calling, the pa-

rameters you pass to it, and any return value that is created.

Unlike the normal XPages partial Refresh model, the response from the server does

not send back any HTML output because it does not require an update to the page.

It is Easy to Use

JSON-RPC is already designed to be a simplified version of SOAP, but the Remote

Service control makes it even easier! The communication between client-side and

server-side JavaScript is performed behind the scenes via JSON, and you don’t

have to worry about how to format or handle it.

You also don’t have to write extra code on the client or the server to handle the

communication. The control provides the client, and the Domino server provides

176

the remote environment in which the methods can be executed. In addition, the

control hides some of the requirements, such as the version specification and ID,

keeping it very simple.

The control automatically creates a JavaScript variable that you can use to refer-

ence it from anywhere on the page.

Important Caveat

The biggest performance advantage of JSON-RPC is also a caveat that you need

to keep in mind.

Because the form is not submitted, any changes made to the form since the last

submissions are not available to the SSJS logic running in the remote procedure.

Also, if you make any changes to the current page in the SSJS procedure, they will

be lost.

Note

This is true for all intents and purposes. However, it is possible to work around this

caveat and save any changes made by a JSON-RPC method. This challenge and

solution were documented and described brilliantly (of course) by Tim Tripcony.

Getting Started with JSON-RPC
To get started with JSON-RPC, we’ll set up a remote method that puts a message

into a scope variable. This is not otherwise possible from client-side JavaScript

(without several extra steps), but it’s a good simple example of client-side code

triggering server-side code. Follow these steps:

1. Drag and drop a Remote Service control onto an XPage

2. In the Properties view, select All Properties

3. Under basics, define the serviceName. This will be the name by which you will

refer to the RPC with client-side JavaScript.

4. Also under basics, click in the Value column next to methods, and click the +

button to add a method. You should see remoteMethod[0] under methods in

the properties, as shown in Figure 2.

http://timtripcony.com/

177

Figure 2 Setting up a Remote Service

Next, implement the remote method as follows:

1. Give it a name and select the script property

2. Click the external property editor icon (not the blue diamond) and add a line of

SSJS that sets a scope variable, as shown in Figure 3

178

Figure 3 Add SSJS that sets a scope variable in the remote method

Here’s the source code that’s generated for the control:

<xe:jsonRpcService id=”jsonRpcService1”
 serviceName=”myRpcService”>
 <xe:this.methods>
 <xe:remoteMethod name=”setScopeVar”
 script=”sessionScope.put (‘myRPCTest’, ‘Hello, JSON RPC’);”>
 </xe:remoteMethod>
 </xe:this.methods>
</xe:jsonRpcService>

The control creates an <xe: jsonRpcService> tag. The tag has an <xe:this.meth-

ods> tag that includes one or more <xe:remoteMethod> tags, each of which con-

tains a remote procedure.

Next, we’ll need to trigger the method. To call a remote method, use this general form:

serviceName.methodName()

Following are the steps to call a remote method:

1. Add a button to the page and switch to the Client tab of the Events view for the

button

2. Add the following statement to trigger the method (see Figure 4):

myRpcService.setScopeVar();

179

Figure 4 Add a client-side JavaScript statement to trigger the remote method

3. In order to easily verify that the remote method works, add a Computed Value

control to the page that displays the value of the scope variable.

4. Finally, since the RPC method does not refresh the page, add a second button

that performs a full-page refresh when clicked.

Note

The first button could have just as easily refreshed the page, but to get the most

benefit from JSON-RPC, I recommend you think about using it without refreshing

the page or submitting anything.

Figure 5 shows what my test page looks like when I first open it:

Figure 5 A test page showing the addition of the RPC method and a button to

refresh the page

180

Once I click the Trigger RPC Method button and then the Refresh Page button, I

see the scope variable that was set by the RPC method, as shown in Figure 6.

Figure 6 Displaying the scope variable set by the RPC method shows when you

click on the Trigger RPC Method and Refresh Page buttons

Following is the entire source of that test page:

<?xml version=”1.0” encoding=”UTF-8”?>
<xp:view xmlns:xp=”http://www.ibm.com/xsp/core” xmlns:xe=”http://
www.ibm.com/xsp/coreex”>

 <xe:jsonRpcService id=”jsonRpcService1” serviceName=”myRpcService”>
 <xe:this.methods>
 <xe:remoteMethod name=”setScopeVar”
 script=”sessionScope.put(‘myRPCTest’, ‘Hello, JSON RPC’);”>
 </xe:remoteMethod>
 </xe:this.methods>
 </xe:jsonRpcService>

 sessionScope.myRPCTest:
 <xp:text escape=”true” id=”computedField1” value=”#{sessionScope.
 myRPCTest}” style=”font-weight:bold”>
 </xp:text>

 <xp:button value=”Trigger RPC Method” id=”button1”>
 <xp:eventHandler event=”onclick” submit=”false”>
 <xp:this.script><![CDATAmyRpcService.setScopeVar();]></xp:this.script>
 </xp:eventHandler>
 </xp:button>
 <xp:button value=”Refresh Page” id=”button2”>

181

 <xp:eventHandler event=”onclick” submit=”true”
 refreshMode=”complete”>
 </xp:eventHandler>
 </xp:button>

</xp:view>

Granted, this isn’t an eye-popping example, but it shows how easy it is to remotely

trigger server-side code.

Monitoring JSON-RPC Calls
Even though triggering the remote procedure does not cause the page to be sub-

mitted, a call is still made in order to execute the method. You can see this on the

Net tab of your browser developer tools as seen in Figure 7.

Figure 7 Remote method request with no parameter

As mentioned earlier, the request is minimal — all that is sent out is an ID, a meth-

od name, and an array of parameters. (In this example, no parameters are sent

along with the request, but the next example includes parameters.)

External Property Editor vs. Blue Diamond

The difference between adding the code for a remote method via the external

property editor icon and adding it by clicking the blue diamond to compute the

value is subtle but very important.

When you enter the code via the external property editor, it is passed directly

through to the <xe:this.script> tag as follows:

<xe:this.script><![CDATA[// Your code here

182

However, when you click the blue diamond to compute the value, the code is

wrapped within #{javascript: }, which causes it to be parsed differently, creating

problems that are not easy to track down. For example, parameter values are not

accessible:

<xe:this.script><![CDATA#{javascript: // Your code here

The downside is that the property editor has no script help, so it’s just like writing

code in a plain text editor, as Figure 8 shows.

Figure 8 Using the property editor is like using a plain text editor—there is no

script help

The computed value has the normal script editor that you would expect. Since it’s

not advisable to write a lot of code in the property editor, it is easier to keep the

code in the property editor simple and just call a script library function.

Passing Arguments

Next, we’ll look at a method for adding arguments to a remote procedure call,

183

starting with our previous example. To let the remote method know to expect an

argument, perform the following steps:

1. Select the Remote Service control and go to All Properties in the Properties view

2. Under basics > methods > remoteMethod[0], click arguments and click the

+ button to add an argument

3. Set the name of the argument and (optionally) define the type to be string,

boolean, number, or list

4. To use the argument, simply refer to it by name within the remote method

script. In this example, I’ve updated it to put the value of the argument into the

scope variable.

5. When calling the remote method from client-side JavaScript, add the value to

be passed into the argument, as shown in Figure 9

Figure 9 Add the argument to pass when calling the remote method from

client-side JavaScript

Update the client-side JavaScript to call the method to pass a string value to the

remote method:

myRpcService.setScopeVar(‘Hello’);

Click the Trigger RPC Method button and then the Refresh Page button to see the

scope variable that was set along with the value that was passed to the remote

method, as shown in Figure 10.

184

Figure 10 See the scope variable and the value that was passed to the remote

method by clicking the Trigger RPC Method and Refresh Page buttons

This is the full source of the Remote Service control now. Adding an argument

added an <xe:remoteMethodArg> tag within an <xe:this.arguments> tag under the

<xe:remoteMethod> tag

<xe:jsonRpcService id=”jsonRpcService1” serviceName=”myRpcService”>
 <xe:this.methods>
 <xe:remoteMethod name=”setScopeVar”
 script=”sessionScope.put(‘myRPCTest’, ‘My argument value: ‘ +
 myFirst Argument);”>
 <xe:this.arguments>
 <xe:remoteMethodArg name=”myFirstArgument” type=”string”>
 </xe:remoteMethodArg>
 </xe:this.arguments>
 </xe:remoteMethod>
 </xe:this.methods>
</xe:jsonRpcService>

Figure 11 shows what the request looks like in Firebug. You can see that the argu-

ment was passed to the remote method as part of the params object.

Figure 11 The request as it appears in Firebug, including the argument passed to

the remote method

185

Passing Dynamic Arguments

The example of passing arguments was simplistic because it passed a hard-coded

value. However, you can easily modify it to pass a dynamic value by updating the

client-side JavaScript that calls the remote method. You can pass any value that

you can retrieve from the page via client-side JavaScript and you can even pass

values that need to be retrieved from server-side JavaScript using expression lan-

guage (EL) syntax.

For example, if you have a repeat control with a collection named myRepeat and

a property named myProperty, you could pass/retrieve it in client-side JavaScript

with this syntax:

‘#{javascript: myRepeat.myProperty}’

Then your call to the remote method would look like this:

myRpcService.setScopeVar(‘#{javascript: myRepeat.myProperty}’);

This syntax tells the server to evaluate the expression while generating the page

and put the value into the generated client-side JavaScript, so it will only work for

values that can be computed at the time the page is loaded (or refreshed).

You can call remote methods from outside an XPages component, but you cannot

evaluate server-side expressions into client-side JavaScript without an XPages

component.

As mentioned previously, the RPC method does not know anything about changes

that have been made since the page was last posted, but that does not preclude

you from passing an updated value to the method. Just get a handle to a field in

client-side JavaScript, read the value, and pass it in to the remote method. If you

want to get an Edit Box component’s value, you could use EL syntax to get the

generated ID for the field in client-side JavaScript so you can get a handle to the

field and retrieve its value.

Continuing with the previous example, if you wanted to pass in the current value of

an Edit Box component named myField to put in the scope variable, you could use

a statement like this when calling the remote method:

myRpcService.setScopeVar(document.getElementById(‘#{id: myField}’).
value);

186

Adding a Callback Function and Accepting a Return Value

The examples shown thus far open the door for plenty of uses for the Remote Ser-

vice control, but it becomes even more useful when you add a callback function.

The callback runs when the Remote Service is finished, and it allows you to accept

a return value and then take further action based on it.

The general syntax for attaching a callback and retrieving the response is as follows:

serviceName.methodName().addCallback(function(response){
 // do stuff
});

You do not have to accept a response — the callback function can take no param-

eters. Here’s an example of the callback function in action:

01 <xe:jsonRpcService id=”jsonRpcService1” serviceName=”myRpcService”>
02 <xe:this.methods>
03 <xe:remoteMethod name=”rpcGetUserName”
04 script=”return context.getUser().getCommonName();”>
05 </xe:remoteMethod>
06 </xe:this.methods>
07 </xe:jsonRpcService>
08
09 <div id=”responseDiv” style=”height:100px; width:200px;”></div>
10

11
12 <xp:button value=”Trigger RPC Method” id=”button1”>
13 <xp:eventHandler event=”onclick” submit=”false”>
14 <xp:this.script><![CDATA[
15 myRpcService.rpcGetUserName().addCallback(function(response){
16 console.log(‘RPC Response: ‘ + response);
17 document.getElementById(‘responseDiv’).innerHTML = ‘RPC
 Response: ‘ + response;
18 });
19]]></xp:this.script>
20 </xp:eventHandler>
21 </xp:button>

Lines 01-07 define a remote method that gets the current user name and returns it.

187

Line 09 defines a pass-thru HTML <div> tag where the response will be displayed.

Lines 14-19 are the client-side script that calls the remote method and adds a call-

back function that accepts the response and displays it both in the browser con-

sole and in the div shown in line 09.

Pretty simple! Now we can asynchronously trigger server-side methods, pass pa-

rameters, accept a response, and trigger additional logic with a callback.

Figure 12 shows the remote method request in Firebug. The method is being called

with no parameters because none were defined for this remote method.

Figure 12 Remote method request with a callback function in Firebug

Since there was a return value, we can also see data populated in the request

response, as shown in Figure 13.

Figure 13 See data populated in the remote method response on the Response

tab in Firebug

188

Suggestions for Logic in an RPC Callback

To help get the gears turning for potential uses, you might consider doing the fol-

lowing within the callback:

• Display a response in the browser console, in an alert, as an inline message on

the page, or — even better — as a growl-style message that floats up on the

screen and does not block user interaction.

• Launch a dialog box to display a related document

• Trigger a partial refresh if something behind the scenes needs to update part of

the page

Handling Errors

If an error is thrown in the remote method, it will show in the server console but

not on the page. Take care to handle errors in your remote method so that they fail

gracefully and return a response that you can check for in your callback. Other-

wise, the only way you’ll know that there’s an error is if you check the request in the

browser tools and see an error status, as shown in Figure 14.

Figure 14 An error in the remote method shows up as an HTTP 400 error in the

browser tools

A Success Story

I had an application for which I used a Remote Service to pass a value from cli-

ent-side JavaScript to SSJS and then run client-side code so that a dialog box

could be opened to display a document based on the unique identifier (UNID) in the

scope variable. I replaced a method as I described at the beginning of this article

189

with an RPC call that passes the UNID, uses SSJS to store it in a scope variable,

and then uses client-side JavaScript within the callback to open the dialog box to

display the correct document based on the UNID in the scope variable.

The original logic ran in an average of 75.7 ms while the RPC call ran in an average

of 20.1 ms (73.4% faster). And this comparison is only of the time it takes to get a

value into a scope variable!

Remotely Useful

Another great use that I’ve found for Remote Services is viewing a list of docu-

ments and displaying one in a slideout panel when a row is clicked. This can be

done smoothly with JSON-RPC without requiring a page refresh for the following

reasons:

• The slideout panel contains a document data source where the UNID is com-

puted to read from a scope variable

• When a row is clicked, a client-side JavaScript event handler passes the UNID

to a remote method

• The remote method simply puts the UNID into a scope variable

In a callback attached to the remote method execution, the slideout panel is

opened and an XSP.partialRefreshGet() is triggered to update the document in

the slideout

Even with the partial refresh, it’s more efficient because it’s not executing a POST.

Another variation is opening up a document in a dialog during the callback.

Conclusion

By now, you are no doubt starting to see some of the many ways that the Remote

Service control can be useful in your applications.

JSON-RPC = simplicity, speed, and client-server code interaction.

	Untitled

