
ptg7987094

ptg7987094

Mastering XPages
A Step-by-Step Guide to XPages
Application Development and the
XSP Language
By Martin Donnelly, Mark Wallace,

and Tony McGuckin

ISBN: 0-13-248631-8

The first complete, practical guide to XPages

development—direct from members of the

XPages development team at IBM Lotus.

Martin Donnelly, Mark Wallace, and Tony

McGuckin have written the definitive program-

mer’s guide to utilizing this breakthrough

technology. Packed with tips, tricks, and best

practices from IBM’s own XPages developers,

Mastering XPages brings together all the

information developers need to become

experts—whether you’re experienced with

Notes/Domino development or not. The authors

start from the very beginning, helping developers

steadily build your expertise through practical

code examples and clear, complete explanations.

Readers will work through scores of real-world

XPages examples, learning cutting-edge XPages

and XSP language skills and gaining deep

insight into the entire development process.

Drawing on their own experience working directly

with XPages users and customers, the authors

illuminate both the technology and how it can be

applied to solving real business problems.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks/newsletters

XPages Portable
Command Guide
A Compact Resource to
XPages Application Development and
the XSP Language
By Martin Donnelly, Maire Kehoe, Tony McGuckin,

and Dan O’Connor

ISBN: 0-13-294305-0

Now, there’s a perfect portable XPages quick

reference for every working developer. Straight

from the experts at IBM, XPages Portable
Command Guide offers fast access to work-

ing code, tested solutions, expert tips, and

example-driven best practices. Drawing on their

unsurpassed experience as IBM XPages lead

developers and customer consultants, the authors

explore many lesser known facets of the XPages

runtime, illuminating these capabilities with

dozens of examples that solve specific XPages

development problems. Using their easy-to-adapt

code examples, you can develop XPages solu-

tions with outstanding performance, scalability,

flexibility, efficiency, reliability, and value.

ptg7987094

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Web 2.0 and Social
Networking for the Enterprise
Guidelines and Examples for
Implementation and Management
Within Your Organization
By Joey Bernal

ISBN: 0-13-700489-3

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott

ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of

proven resolutions to common problems and has

streamlined processes for infrastructure support.

Elliott systematically addresses support solutions

for all recent Lotus Notes and Domino

environments.

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David M. Byrd, Gary Wood,

Tim Speed, Michael Martin, Suzanne Livingston,

Jason Moore, and Morten Kristiansen

ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM

Lotus Connections 2.5 experts thoroughly intro-

duces the newest product and covers every facet

of planning, deploying, and using it success-

fully. The authors cover business and technical

issues and present IBM’s proven, best-practices

methodology for successful implementation. The

authors begin by helping managers and technical

professionals identify opportunities to use social

networking for competitive advantage–and by

explaining how Lotus Connections 2.5 places full-

fledged social networking tools at their fingertips.

IBM Lotus Connections 2.5 carefully describes

each component of the product–including

profiles, activities, blogs, communities, easy social

bookmarking, personal home pages, and more.

ptg7987094

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master
Data Management
An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for
Security Professionals
Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Lotus Notes
Developer’s Toolbox
Elliott
ISBN: 0-13-221448-2

The Social Factor
Innovate, Ignite, and Win through Mass
Collaboration and Social Networking
By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
firewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specific techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.

Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

ptg7987094

This page intentionally left blank

ptg7987094

XPages Extension
Library

ptg7987094

This page intentionally left blank

ptg7987094

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

XPages Extension
Library

A Step-by-Step Guide to the Next
Generation of XPages Components

Paul Hannan, Declan Sciolla-Lynch, Jeremy Hodge,
Paul Withers, and Tim Tripcony

IBM Press
Pearson plc

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

ibmpressbooks.com

ptg7987094

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
the use of the information or programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer
Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Stephane Nakib
Acquisitions Editor: Mary Beth Ray
Publicist: Heather Fox
Development Editor: Eleanor Bru
Editorial Assistant: Vanessa Evans
Technical Editors: Brian Benz, Chris Toohey
Managing Editor: Kristy Hart
Cover Designer: Alan Clements
Project Editor: Jovana Shirley
Copy Editor: Gill Editorial Services
Indexer: Lisa Stumpf
Compositor: Gloria Schurick
Proofreader: Mike Henry
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

ptg7987094

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM Press logo, Notes, Domino,
Lotusphere, Lotus, Rational, WebSphere, Quickr, developerWorks, Passport Advantage, iNotes, DB2,
Sametime, LotusLive, IBM SmartCloud, and LotusScript. A current list of IBM trademarks is available on
the web at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates. Windows and Microsoft are trademarks of Microsoft Corporation in the United States, other
countries, or both. Other company, product, or service names may be trademarks or service marks of
others.

The Library of Congress cataloging-in-publication data is on file.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-290181-9

ISBN-10: 0-13-290181-1

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing May 2012

www.ibm.com/legal/copytrade.shtml

ptg7987094

To Katie and Alec, my family—Paul H.
To my wonderful wife, Terri, for all her support—Declan

To the IBM Lotus XPages team for giving us all this
Open Source ExtLib goodness—Jeremy

To Mandy, my wife—Paul W.
To Paul Hannan: This book was your vision, and it owes its existence to your

persistence, diligence, and enthusiasm.—Tim

ptg7987094

xi

Contents

Foreword xv

Preface xix

Acknowledgments xxv

About the Authors xxvii

Contributing Authors xxix

Part I: The Extension Library, Installation, Deployment,
and an Application Tour

Chapter 1 The Next Generation of XPages Controls 3
So How Did We Get Here? 4
Then Came Domino R.8.5.2, and the Extensibility Door Opened 4

OpenNTF and the Controls Too Good Not to Release 5
To Extensibility and Beyond 5
What Makes an XPages Control Next Generation? 5
What Is the XPages Extension Library? 6

Making Domino Application Development Easier, Faster, and Better 8
What Are the Most Important Controls and Why? 8
XPages Learning Shortcuts 9
Bells and Whistles: Welcome to the Future 10

Get Social 10
Upwardly Mobile 11
Relational Data 11
RESTful Web Services 12

Doing It Yourself with Java 12
Conclusion 12

Chapter 2 Installation and Deployment of the XPages
Extension Library 13

Downloading the ExtLib 13
Installing the ExtLib via the Upgrade Pack 17
Deploying ExtLib to Developers in Designer 18

Uninstalling the Extension Library from Designer 27

ptg7987094

Server Deployment 28
Automatic Server Deployment in Domino 8.5.3 28
Automatic Server Deployment in Domino 8.5.2 34
Manually Deploying Libraries to a Server 38

Deploying the Extension Library to End Users 40
Widget Catalog Setup 41
Creating a Widget Configuration 42
Provisioning the Extension Library Widget to Other Users 50

Conclusion 52

Chapter 3 TeamRoom Template Tour 53
Where to Get the TeamRoom Template and How to Get Started 54
The TeamRoom Template and Why It Was a Good Candidate for Modernization 55
TeamRoom Redesign Brief and Features 56

Application Layout 56
Recent Activities: The Home Page 59
All Documents 60
The Document Form 61
Calendar 63
Members 64
Mobile 66

Lessons Learned and Best Practices 67
Conclusion 68

Part II: The Basics: The Application’s Infrastructure

Chapter 4 Forms, Dynamic Content, and More! 71
Form Layout Components 71

Form Table (xe:formTable, xe:formRow, xe:formColumn) 71
Forum Post (xe:forumPost) 78

Dynamic Content 80
In Place Form Control (xe:inPlaceForm) 80
Dynamic Content (xe:dynamicContent) 83
Switch (xe:switchFacet) 88

Miscellaneous Controls 89
Multi-Image (xe:multiImage) 89
List Container (xe:list) 91
Keep Session Alive (xe:keepSessionAlive) 92

Conclusion 93

xii Contents

ptg7987094

Chapter 5 Dojo Made Easy 95
What Is Dojo? 95
Default Dojo Libraries Using Dojo Modules in XPages 96

Simple Dojo Example: dijit.form.ValidationTextBox 99
Dojo Example for Slider 100
Dojo Themes 102

Dojo Modules and Dojo in the Extension Library 103
Benefits and Differences of Dojo Extension Library Components 104

Dojo Extensions to the Edit Box Control 104
Dojo Text Box (xe:djTextBox) 104
Dojo Validation Text Box (xe:djValidationTextBox) 106
Dojo Number Text Box, Dojo Currency Text Box (xe:djNumberTextBox and

xe:djCurrencyTextBox) 113
Dojo Number Spinner (xe:djNumberSpinner) 115
Dojo Date Text Box and Dojo Time Text Box (xe:djDateTextBox and

xe:djTimeTextBox) 116
Dojo Extensions to the Multiline Edit Box Control 119
Dojo Extensions to the Select Control 120

Dojo Combo Box and Dojo Filtering Select (xe:djComboBox and
xe:djFilteringSelect) 120

Dojo Check Box and Dojo Radio Button 126
Dojo Extensions to Buttons 126

Dojo Toggle Button Control 128
Composite Dojo Extensions 130

Sliders 131
Dojo Link Select (xe:djLinkSelect) 135
Dojo Image Select 137

Dojo Effects Simple Actions 140
Dojo Fade and Wipe Effects 140
Dojo Slide To Effect 142
Dojo Animation 143

Conclusion 147

Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers 149
Tooltip (xe:tooltip) 149
Dialogs 153

Dialog (xe:dialog) 153
Tooltip Dialog (xe:tooltipDialog) 160

Value Picker (xe:valuePicker) 162
Dojo Name Text Box and Dojo List Text Box (xe:djextNameTextBox and
xe:djextListTextBox) 164
Name Picker (xe:namePicker) 165

Validating a Picker 167
Conclusion 170

Contents xiii

ptg7987094

Chapter 7 Views 171
Dynamic View Panel (xe:dynamicViewPanel) 171
Data Grid 175

REST Service 176
Dojo Data Grid Control (xe:djxDataGrid) 179
Dojo Data Grid Contents 182
InViewEditing 184
View Events 186

iNotes ListView (xe:listView) 187
Dynamic ListView 188
ListView Column 192

iNotes Calendar (xe:calendarView) 194
Calendar Views in the Notes Client 194
REST Service: calendarJsonLegacyService 196
REST Service: Notes Calendar Store 197
Notes Calendar Control 200
View Events 203

Data View (xe:dataView) 206
Pagers 207
PagerSaveState (xe:pagerSaveState) /View State Beans 212
Columns 214
Multiple Columns 219

Forum View 220
Conclusion 221

Chapter 8 Outlines and Navigation 223
The Dojo Layout Controls 223

The Content Pane 223
The Border Container and Border Pane 225
Accordion Container and Accordion Pane 229
The Tab Container and the Tab Pane 231
The Stack Container and the Stack Pane 238

Understanding the Tree Node Concept 239
Standard Node Types 239
The Advanced Node Types 242

Using the Navigator Controls 247
The Navigator Control 247
The Bread Crumbs Control (xe:breadCrumbs) 249
The List of Links Control (xe:linkList) 250
The Sort Links Control (xe:sortLinks) 251
The Link Container Controls 251
The Pop-up Menu Control (xe:popupMenu) 252
The Toolbar Control (xe:toolbar) 254

xiv Contents

ptg7987094

The Outline Control (xe:outline) 255
The Accordion Control (xe:accordion) 256
The Tag Cloud Control (xe:tagCloud) 257
The Widget Container Control (xe:widgetContainer) 260

Conclusion 261

Chapter 9 The Application’s Layout 263
History of OneUI 263
Easy OneUI Development with the Application Layout Control 264

Legal 267
Navigation Path 268
The Footer 269
The Placebar 270
Search Bar 271
The Banner 272
The Title Bar 273
Product Logo 273
Mast Header and Footer 273

The Layout Control Tooling in Designer 274
Using the Application Layout Within a Custom Control 276
Conclusion 280

Part III: Bell and Whistles: Mobile, REST, RDBMS, and Social

Chapter 10 XPages Goes Mobile 283
In the Beginning… 283
The XPages Mobile Controls the Extension Library 284

The Basics of the XPages Mobile Controls 284
The Single Page Application Control<xe:singlePageApp> 286
The Mobile Page Control<xe:appPage> 288
The Page Heading Control<xe:djxmHeading> 288
Rounded List (xe:djxmRoundRectList) 289
Static Line Item (xe:djxmLineItem) 291
Mobile Switch (xe:djxmSwitch) 292
Tab Bar (xe:tabBar) 295
Tab Bar Button (xe:tabBarButton) 298

The XPages Mobile Theme 298
Hello Mobile World Tutorial 300

1. Enable the App for the Extension Library and Mobile 300
2. Create a New XPage and Mobile Application 301
3. Add a View Document Collection to the Mobile Page 302
4. Display More Rows 304
5. Opening a Document from the Data View 306
6. Editing and Saving Document Changes 311

Contents xv

ptg7987094

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 315
Outline Control 315
Hash Tags 318
Form Table Control (xe:formTable) 318
Dynamic Content Control 320
Data View Control 321
More Link 322
Filter Data 323
Multiple Controls 324
Move to Mobile Page Action 325
Heading (xe:djxmheading) 325
Large Content 326
Using Dojo to Modify Controls 327

XPages Mobile Phone Application Gotchas 327
The Differences Between Web App and Mobile App Layout 327
What Stays the Same? 330
What Has Changed? 330

Conclusion 333

Chapter 11 REST Services 335
REST Services in the XPages Extension Library 336
XPages REST Service Control (xe:restService) 338

Standard Attributes for REST Service Control 338
Standard Attributes for Each Service Type 340

Hello REST World 1: Using the pathInfo Property 340
Example of an XPage that Uses the REST Service Control 340

Hello REST World 2: Computed Column to Join Data 341
Example of a REST Service Control with a Computed Column 341

Hello REST World 3: REST Service in a Data Grid 342
Example of Binding a Grid to a REST Service Control 342

Domino REST Service from XPages Samples 343
Data Service 344
Data Services—Contacts and All Types 345
Dojo Grid Using JSON Rest Data Services 345
Dojo NotesPeek 347

Consuming Service Data with Other Controls 348
iNotes List View 348
iNotes Calendar 349

Calling a Remote Service from Domino 351
JSON-RPC Service 351

Consuming Service Data from External Applications 353
OpenSocial Gadgets 353

xvi Contents

ptg7987094

Accessing Data Services from Domino as a Built-In Service 356
Enabling the Service on the Domino Server 357

Domino Data Services 360
Database JSON Collection Service 360
View JSON Collection Service 361
View JSON Service 362
View Design JSON Service 366
Document Collection JSON Service 367
Document JSON Service 368

Developing Custom REST Services 375
Conclusion 375

Chapter 12 XPages Gets Relational 377
Accessing Relational Data Through JDBC 377

Installing a JDBC Driver 379
Creating a Connection to the RDBMS 406

Using Relational Datasources on an XPage 410
Working with the xe:jdbcQuery Datasource 413
Working with the xe:jdbcRowSet Datasource 414
Properties Common to Both the xe:jdbcQuery and xe:jdbcRowSet Datasources 415
JDBC Datasources and Concurrency 415

Server-Side JavaScript JDBC API for XPages and Debugging 417
Java JDBC API for XPages 425
Conclusion 428

Chapter 13 Get Social 429
Going Social 429
Get Started 430

Setup 431
OAuth 431

OAuth Dance 431
OAuth Token Store Template 434
Configure Applications to Use OAuth 439

REST API Calls and Endpoints 439
Endpoint Configuration 440
Access Endpoints 446
REST API Calls 447
Utilities for Parsing 449

REST Datasources 450
The Connections Datasource (xe:connectionsData) 452
File Service Data (xe:fileServiceData) Datasource 452
Activity Stream Data (xe:activityStreamData) 454

Contents xvii

ptg7987094

Proxies 455
Domino Proxy 455
ExtLib Proxies 457

User Profiles and Identities 457
User and People Beans 458
Extensions to User and People Beans 459
Enablement of Extensions 462
Caching of User Information 464
User Identities 465

User Interface Controls 467
Files Controls for Dropbox, LotusLive, and Connections 467
Sametime Controls 471
Connections Controls 474
Facebook Controls 478

IBM Social Business Toolkit 482
Conclusion 485

Part IV: Getting Under the Covers with Java

Chapter 14 Java Development in XPages 489
Benefits of Java Development 489
Referencing Native Java in Server-Side JavaScript 490
Using Java That Others Have Written 491
Setting Up Domino Designer to Create Java Classes 499
Introduction to Java Beans 506
Managed Beans 508
The User and People Bean 509
Conclusion 512

Appendix A Resources 513
Other Resources 514

Index 515

xviii Contents

ptg7987094

xix

Foreword

XPages is a truly groundbreaking technology. Its initial release in 2009 revolutionized web appli-
cation development on Notes®/Domino® and brought new life and vibrancy to the developer com-
munity. As a runtime framework built on top of standards-based technologies and open source
libraries, it greatly simplified the art of web development for the existing community and
removed barriers to entry for non-Domino developers. Suddenly, it was a breeze to create a web
page that pulled data from a Domino view or extracted a set of fields from a Notes document. The
process of weaving these pages together to form compelling web applications became a no-
brainer. In a nutshell, the advent of XPages meant that cranking out a half-decent Domino web
application was easy and fast.

The good news is that after the 2009 revolution, XPages evolution continued apace. Within
just nine months of XPages’ official debut, we shipped a new release in Notes/Domino 8.5.1,
which included lots of new features and, most notably, support for the Notes Client. This meant
that users could take XPages web applications offline and run them locally in Notes! While we
were working hard to push out more XPages technology, its adoption continued to grow. By
Lotusphere® 2010, we were getting invaluable customer feedback on real-world XPages applica-
tion development—the good, the bad, and the ugly. (It was mostly good!) A key theme emerged
from the community at this time, one that really resonated with us. The message was simple: Yes,
it was indeed easy and fast to write XPages web applications, but developing truly sleek and pro-
fessional applications remained difficult and required expertise that was often beyond the core
skill set of the typical Domino developer. Solving this would be our next big challenge.

One means of enabling the community to write better applications was through technical
empowerment. Opening the XPages application programming interfaces (APIs) would allow
developers to add their own XPages components to the framework and consume assets from other
third parties. Thus, for Notes/Domino 8.5.2, we released the first public XPages APIs and

ptg7987094

integrated the OSGi framework into the Domino server. As a means of illustrating how to use the
APIs, we decided to provide a set of sample artifacts. The thinking was that if customers learned
from these samples to build their own controls and shared them with each other across the com-
munity, developing top-drawer web applications would be easier to achieve. This led to the cre-
ation of a new XPages extension project, initially named Porus.

According to Plato, Porus was the personification of plenty, so this new library was
intended to provide an abundance of new capabilities. True to its name, Porus quickly grew and
soon boasted a large set of new controls, datasources, and other XPages assets. In fact, it was so
effective that we wanted to build our next generation of XPages application templates on top of it,
and that’s where we ran into a problem: The library was simply too big to fit into the next
Notes/Domino maintenance release. Moreover, we didn’t want to wait for the next release.
We wanted our customers to benefit from all the bountiful goodies of Porus as quickly as
possible, and that meant being able to install it on top of the latest Notes/Domino release (8.5.2).
What to do?

With the benefit of 20-20 hindsight, perhaps moving our internal Porus library to a public
open source model out on OpenNTF.org was the obvious next move, but this was not so clear cut
at the time. You must bear in mind that none of the core XPages runtime or Notes/Domino plat-
form code is available as open source, so going down this road would be a new departure for us.
The advantages of an open source model, however, were appealing. First, we could share our
library with the development community more or less immediately and then update it when
needed. This would allow us to deliver before the next Notes/Domino maintenance release and be
independent of its constraints. It would also allow us to provide all the benefits of our Extension
Library (ExtLib) while they are their most relevant to the community. The IT industry evolves at
a rapid pace, so what’s new and cool today can be old hat tomorrow; the timeliness of technology
delivery can be a crucial factor in its success or failure. Being at the bleeding edge requires an
agile delivery model, and we recognized that our traditional model simply could not adapt and
respond quickly enough to the rapidly mutating demands of the market.

Of course, we had firsthand experience of the dynamic nature of open source systems by
virtue of the fact that XPages depends on such components. The Dojo JavaScript library, which is
at the core of XPages, is a perfect example. It typically provides two major releases per year, plus
some maintenance updates. Not only do these releases constantly add new features and fixes, they
target the latest browsers available in the market. With the most popular browsers piling through
major release after major release in quick-fire succession and auto-updating themselves on end-
user desktops, the Dojo project is well adapted to what is required to stay relevant in the modern
IT world. The Notes/Domino product release cycle, on the other hand, is a heavyweight process.
The last months in our release cycles are spent solidifying the products, with no new features
being added, to minimize quality risks. On the one hand, this process helps to produce high-
quality software, but on the other, it doesn’t keep pace with the overall evolution rate of the
modern industry.

xx Foreword

ptg7987094

Quite apart from speed and agility, however, is the critical element of transparency.
Twenty-first century developers no longer want black boxes of code that they can use blindly.
They expect to go further: They want to understand what the code does and how it works. They
want to be able to debug it, to extend it. They want to share with a community. If you don’t pro-
vide these capabilities, developers will find a way to get access to your code anyway. By nature,
script languages are delivered in source form (if sometimes obfuscated), and even compiled lan-
guages such as Java™ or C# can be easily introspected.

September 1, 2010 was a landmark date for XPages, because it was when the XPages
ExtLib was introduced as an open source project on OpenNTF.org. The response was amazing.
The community latched on to this project from the get-go and ran with it. Today it proudly stands
well clear of the field as the most active project on OpenNTF, with more than 26,000 downloads.

Despite the XPages ExtLib’s runaway adoption success, other issues arose. Soon it became
clear that although the open source model gave us many benefits, it was by no means perfect.
Open source projects are often started by developers who put a greater emphasis on the code
itself, leaving other pieces, such as documentation, test, accessibility, and support, behind. This is
generally not acceptable for enterprise software intended for production. In fact, installing open
source software in production environments is prevented by policy in many organizations. Per-
haps even more significant is the fact that open source projects generally rely heavily on a small
set of core developers. Open source repositories, like SourceForge and GitHub, are full of static
projects that individuals started in their spare time and then left behind as the founders moved on
to new pastures. For these projects to be successful, organizations that are prepared to stand
behind the projects must endorse them. Without this endorsement, the use of open source soft-
ware inevitably carries a certain amount of risk.

At this juncture, it was natural to wonder if we had gone full circle. To give customers the
latest and greatest cutting-edge technology, we had to put a greater emphasis on code develop-
ment. The open source model helped us achieve this. To give customers a system that IBM® fully
supports and endorses, we needed to reinvest in all the aforementioned elements that we had sac-
rificed along the way for speed of innovation. Was it impossible to have both? We thought long
and hard on this problem to come up with alternative distribution models that could satisfy the
largest spectrum of users, from the early adopters to the more risk-averse conservative con-
sumers. Our strategy can be summarized in three practices:

• We continue to deliver source code as early and frequently as possible to OpenNTF.org.
Early adopters can continue to consume these offerings, which are supported not by
IBM but by the ExtLib community. Thus, answers to questions and fixes to problems
can be delivered promptly.

• Periodically, we package a subset of the ExtLib functionality available on OpenNTF.org
and include this in an Upgrade Pack (UP) for Notes/Domino. Such UPs are fully sup-
ported by IBM and install on top of the latest shipping version of the Notes/Domino
platform.

Foreword xxi

ptg7987094

• The latest UP, plus any important subsequent features or fixes from OpenNTF, is always
rolled into the next release of the product. Thus, between Notes/Domino release cycles,
there is the potential for multiple UPs.

This three-tiered model has numerous advantages. It allows us to continue to get real feed-
back from the early adopters—the consumers of the OpenNTF project. By the time the code actu-
ally makes the official UP, or later into the core product, it has already been used in many
projects, making it robust as we fix and deliver the open source project on a frequent basis. Also,
regardless of the distribution mode, the source code is always provided. On December 14, 2011,
we delivered on this proposed model by shipping our first UP: Notes/Domino 8.5.3 UP1. There
are more to come!

In a long-standing software organization, like Notes/Domino, UP was a real revolution—
2009 all over again! It was the first time IBM Collaboration Solutions (aka Lotus®) had delivered
significant pieces of software in this way. It was a huge challenge, but we successfully achieved it
because of the high level of commitment of the XPages team, the help of the broader
Notes/Domino application development teams, and, most importantly, the great support of the
community. Thanks to all of you, the Upgrade Pack has been a tremendous success.

Speaking of success, the release of the first XPages book, Mastering XPages, at Lotusphere
2011 exceeded our initial expectations. Despite having shipped three times the normal stock lev-
els to the Lotusphere bookstore, because of the high number of online preorders, the book was
completely sold out by Tuesday morning. That had never happened before. Coincidentally, this
was also the first Lotusphere that discussed the ExtLib. So with the buzz of Mastering XPages in
full flow, we floated the idea of another book, dedicated to the ExtLib. This proposal was a little
different. By this time we were surfing the social wave; given the open source model on which the
project rested, we wanted to get the community involved. Later that same Tuesday, the idea of a
new ExtLib book was tweeted, proposing that a different author write each chapter. This social
technique worked well. We rapidly got a list of volunteers from the community, which demon-
strated both the great commitment of our community as well as the power of social media today.
As a result, we ended up with a team of great experts, la crème de la crème, contributing to
this book.

You’ll note as you leaf through the chapters that the XPages ExtLib is moving to Social. We
added numerous social-oriented features, which are certainly going to evolve rapidly over time.
Take advantage of them, add social capabilities to your applications, and connect them to the
world. There are fantastic opportunities opening up in this space. At the time Mastering XPages
was published in 2011, we claimed we were at the beginning of a great XPages odyssey. Without
a doubt, the success of the ExtLib has proven this. But we’re not done; the story relentlessly con-
tinues. Further adventures in Social and Mobile will be our major themes going forward, and the
XPages ExtLib will continue to be at the core of our innovation.

Enjoy the ExtLib as much as we do!

—Philippe Riand and Martin Donnelly, XPages Architects

xxii Foreword

ptg7987094

xxiii

Preface

Lotusphere 2011 was memorable in a lot of ways. It was another rip-roaring success for XPages
as it continues to gain traction, make converts out of once-skeptics, and project a vision of what
application development is going to look like in the years to come. The same event was also
notable for the publication of the first real technical book on this technology, Mastering XPages
by Martin Donnelly, Mark Wallace, and Tony McGuckin. Its approach was to document XPages
in a way that hadn’t been done before. It created a fantastic stir at Lotusphere 2011 that has rever-
berated throughout the coming year. Lotusphere, similar to other events, brings like-minded
people together to meet face to face and talk. It was at Lotusphere 2011 that a group of XPagers
(anyone who develops XPages applications) was talking about how wonderful the Mastering
XPages book was and expressing how they couldn’t wait until the next XPages book was written.
This started the ball rolling.

We all have ideas. Some of these ideas never see the light of day, which is not necessarily a
bad thing. Other ideas don’t go away. The idea for another XPages book began to snowball. By
the end of Lotusphere week, more than a few of us nearly swore in blood that we would write this
book. And so we did.

The initial target for publication of this book was Lotusphere 2012. When we started to
write this book in June 2011, that target was realistic. But as the long summer progressed, those
busy bees in the XPages development team were deep into a process of reshaping the XPages
ExtLib so IBM would fully support it. Add on the new support for relational databases and the
new features to support social application development released to OpenNTF in the latter half of
the year; the authors were effectively writing about a moving target. Each moving target stops
occasionally to catch its breath.

A milestone was developing with the release of the Lotus Notes Domino 8.5.3 Upgrade
Pack (UP) in December 2011. It was a significant release, because it was the first of its type in the

ptg7987094

20-year history of Lotus Notes Domino. New features were being released to the market between
major releases of the core project, which brought forth the fully IBM-supported version of the
XPages Extension Library (ExtLib). What better event to base a book around?

This Book’s Approach
The main desire for this book is to collate the knowledge of the XPages ExtLib and to communi-
cate that knowledge to you, the reader. We seek to do this in a progressive way, starting with the
basics and finishing with the more technical areas. And it’s these advanced areas that we believe
will take XPages application development to new heights.

Most chapters, apart from Chapter 13, “Get Social,” use one or two applications for refer-
ence: the XPages ExtLib Demo application (XPagesExt.nsf) and the TeamRoom XL template
(teamrm8xl.ntf). At the time of writing, both of these applications contain examples for 100% of
the controls and components available from the XPages ExtLib. In these examples, we will take
you through how to use these controls, describe what the various properties are for, and in some
cases recommend how you can take advantage of such controls.

This book targets the December 2011 releases of the XPages ExtLib, be it in the form of the
Lotus Notes Domino 8.5.3 UP 1 release or the release to the OpenNTF project. The feature set
encapsulated in these releases represents a high point in the story of the technology. But this is
not to say that this story is complete—far from it. There may be another book in the offing that
will tell the story of how this technology will reach its next high point. Only time will tell.

We recommend that before picking up this book, you become familiar with XPages. One
excellent shortcut for this is reading the Mastering XPages book, which will give you a firm
grounding before you step into the XPages ExtLib. However, you don’t have to be an expert in
XPages. A basic knowledge of XPages is all you need to take advantage of the ExtLib and build
better, more efficient applications more quickly.

Some Conventions
This book employs a few conventions of note that will make reading smooth.

User-interface elements, such as menus, buttons, links, file paths, folders, sample XPages,
and Custom Control and so on in Domino Designer or in applications, are styled in the text as
bold, for example, “Go to the Download/Releases section.” Attributes and their options that are
selectable from the All Properties view in Designer are also in bold.

Code, be it programming script, markup, or XSP keywords in the text, is typically styled in
mono font size. For example, “Developers who have used the Dojo dialog in the past will know
that it is opened via Client-Side JavaScript using the show() function and closed using the
hide() function.”

Also, in code, the XPages XML markup examples that typically form the listings through-
out the book have split multiple attributes to a new line. This makes it easier to read the markup.

Those experienced with reading XPages markup will recognize the default prefix used for
the core controls namespace: xp, as in xp:viewPanel or xp:button. They will also recognize

xxiv Preface

ptg7987094

that Custom Controls have their own prefix: xc as in xc:layout from the Discussion XL tem-
plate. The XPages ExtLib namespace has its own prefix, xe, which is used for the more than 150
ExtLib controls; for example, xe:dataView.

How This Book Is Organized
This book is divided into four parts, each a progression for you to navigate through various levels
of XPages ExtLib knowledge.

Part I, “The Extension Library, Installation, Deployment, and an Application Tour”:
This part is aimed at getting you started with the XPages ExtLib. It explains what it is and how
you install and deploy it, and it demonstrates in a production-ready application how and why it
is used.

• Chapter 1, “The Next Generation of XPages Controls”: This chapter introduces
you to the XPages ExtLib, explains why the controls and components contained
within will take XPages application development to the next level, and describes some
of the areas that are likely to help grow the XPages technology even further.

• Chapter 2, “Installation and Deployment of the XPages Extension Library”:
This chapter describes the various ways to install and deploy versions of the ExtLib,
be it IBM Lotus Notes Domino R8.5.2 or R8.5.3, or server, Domino Designer, or
Notes Client.

• Chapter 3, “TeamRoom Template Tour”: The purpose of this chapter is twofold.
First, it is to gently introduce you to the XPages ExtLib. Second, it is to demonstrate
how an existing template was modernized with this exciting new technology with fea-
tures that are built entirely using the ExtLib in a production-ready application.

Part II, “The Basics: The Applications Infrastructure”: This is the part of the book
where each of more than 150 controls in the XPages ExtLib is described. These six chapters are
laid out in a way that a typical Domino application developer might expect; start with a form, and
then move on to views and to the overall navigation and layout. That is not to say that you have to
read these chapters in that sequence to get a full understanding of the controls. An XPages app
developer typically starts with the application layout and navigation before moving on to view
and form controls. The sequence in how you read them is up to you. Each chapter can be taken in
a standalone fashion.

• Chapter 4, “Forms, Dynamic Content, and More!”: This chapter, along with
Chapters 5 and 6, describes those controls that are typically used in the form of an
XPage. With the use of Form Layout, Post, and Dynamic Content and Switch con-
trols, you can quickly take advantage of these prebuilt and preformatted components
to deploy complex layouts and design patterns.

Preface xxv

ptg7987094

• Chapter 5, “Dojo Made Easy”: Whether you are familiar with Dojo or not, this
chapter is aimed at how you can take advantage of this toolkit, which has been encap-
sulated into the Dojo controls for the XPages ExtLib. Without the ExtLib, configuring
Dojo components can be tricky. The controls in the ExtLib make it easier.

• Chapter 6, “Pop-Ups: Tooltips, Dialogs, and Pickers”: The ExtLib contributes
tooltips for displaying additional content, dialogs for displaying or managing content,
and pickers for facilitating selection of values. The XPages ExtLib makes this easier
for developers, overcoming some of the challenges of integrating Dojo and XPages.
This chapter describes all this.

• Chapter 7, “Views”: Before the ExtLib, there were three available core container
controls for displaying a collection of documents: the View Panel, the Data Table, and
the Repeat Control. The ExtLib provides some new controls to help you take the dis-
play of a data collection to new levels. This chapter describes each one of these new
view controls.

• Chapter 8, “Outlines and Navigation”: For the end user to be able to switch
between the different views in the application, you need to create an application lay-
out and navigation. This chapter covers both the Dojo layout controls and navigation
controls that have been added to the XPages ExtLib.

• Chapter 9, “The Application’s Layout”: In this chapter, you learn use of the Appli-
cation Layout control, which helps you meet the challenge of creating an effective
application interface that is not only pleasing, but intuitive and consistent, allowing
users to predict what behaviors will produce the desired effect. All this is despite the
difficulties presented when developing applications with the browser as your target
platform.

Part III, “Bell and Whistles: Mobile, REST, RDBMS, and Social”: In this part of the
book, the big four deliverables to the XPages ExtLib in 2011 are described. If Part II of this book
marks a step up in developing XPages applications, this part marks another. The next four chap-
ters effectively describe the direction application development will progress in the coming years.
Each of these chapters stands alone.

• Chapter 10, “XPages Goes Mobile”: Mobile is the technology of the age. Owning a
mobile device is no longer a luxury but a necessity. This fact is becoming increasingly
important in business, as desktops and laptops are being superseded by tablets and
smartphones. This transition has many challenges, ranging from the user interface
(UI) design to security. XPages and the ExtLib are in place to meet these mobile chal-
lenges. This chapter shows how to meet and overcome these obstacles.

xxvi Preface

ptg7987094

• Chapter 11, “REST Services”: REpresentational State Transfer (REST) is important
to the new Web 2.0 programming model. New technologies like OpenSocial and
Android are embracing REST services to allow remote clients access to Server-Side
data. The XPages ExtLib has RESTful services in place, so a whole range of exciting
data-handling options open for the XPages developer.

• Chapter 12, “XPages Gets Relational”: This chapter reviews concepts behind inte-
grating relational data and the new relational database components that the ExtLib
provides, including JDBC, the Connection Pool and Connection Manager, the data-
sources, and the Java and Server-Side JavaScript (SSJS) APIs included to integrate
relational data into an XPages application.

• Chapter 13, “Get Social”: Social and social business are the buzzwords of the age.
This chapter uses a definition of social applications in the context of XPages, custom
application development, and IBM Lotus Domino/IBM XWork Server. It describes
the new requirements, maps them to technologies, and shows how the ExtLib helps
implement these new requirements.

Preface xxvii

Part IV, “Getting Under the Covers with Java”: Gaining a fuller understanding of
XPages Extensibility can be achieved with a little knowledge of Java. In this part of the book, the
aim is to help you round out this knowledge and enable you to get the most out of the ExtLib.

• Chapter 14, “Java Development in XPages”: With the addition of XPages to IBM
Lotus Notes Domino, the capacity for inclusion of Java in applications has never been
easier or more powerful. This chapter provides a glimpse into some of the many ways
Java can take your applications to the next level, as well as a few ways that you can
get even more use out of some of the XPages ExtLib controls already described in
previous chapters.

NOTE: At the time we were writing this manuscript, we were using the product called
LotusLive™. This product has since been renamed IBM SmartCloud™ for Social
Business.

ptg7987094

This page intentionally left blank

ptg7987094

xxix

Acknowledgments

Books aren’t produced by one person. If they were, there would be very few of them. It takes a
team of people to get a book to its rightful place on the shelf. That’s stating the obvious, we know,
but it’s to make the point that we would like to thank a whole ream of people who have helped us
get this book out the door.

First, we would like to thank the contributing authors for helping out on the book. Without
Niklas Heidloff, Stephen Auriemma, Lorcan McDonald, and Simon McLoughlin, we wouldn’t
be where we are.

A sincere expression of gratitude has to go to the technical reviewers, Brian Benz and Chris
Toohey. You guys rock! Your patience, insight, and expertise were a great help to us. Thanks for
sticking with us through our adventure.

Thanks for all the leadership help of the Notes Domino Application Development team,
especially Eamon Muldoon, Martin Donnelly, Philippe Riand, Pete Janzen, and Maureen Leland
for supporting this book from the beginning to the end.

Still at IBM, we would like to thank the following people, who helped put the XPages
ExtLib on the map: Andrejus Chaliapinas, Brian Gleeson, Darin Egan, Dan O’Connor, Dave
Delay, Edel Gleeson, Elizabeth Sawyer, Graham O’Keeffe, Greg Grunwald, Jim Cooper, Jim
Quill, Joseph J Veilleux, Kathy Howard, Kevin Smith, Lisa Henry, Maire Kehoe, Mark Vincen-
zes, Michael Blout, Mike Kerrigan, Padraic Edwards, Peter Rubinstein, Rama Annavajhala,
Robert Harwood, Robert Perron, Teresa Monahan, Tony McGuckin, and Vin Manduca.

Going back to the beginning, we would like to thank Philippe Riand (yes, him again)
for lighting the fire with that Twitter post (https://twitter.com/#!/philriand/status/
32730855042457601) at Lotusphere 2011. This tweet reverberated, and the XPages community
and the wider Lotus Community responded. It is safe to say that without this community, the idea
for the book would never have gotten off the ground, so a great big thank-you to all. There aren’t

https://twitter.com/#!/philriand/status/32730855042457601
https://twitter.com/#!/philriand/status/32730855042457601

ptg7987094

enough pages available to thank everyone in the community, but we would like to mention Bruce
Elgort, Darren Duke, David Leedy, John Foldager, John Roling, Matt White, Michael Bourak,
Michael Falstrup, Nathan T. Freeman, Per Henrik Lausten, Phil Randolph, René Winkelmeyer,
Tim Clark, Tim Malone, and Ulrich Krause for the help and inspiration in achieving liftoff and
flight.

Still in the community, we would like to thank all those who have participated in the ExtLib
project through OpenNTF who have been the early adopters of this technology. Without your
feedback, this project likely wouldn’t have gotten off the runway.

Finally, we would like to thank Mary Beth Ray, Chris Cleveland, Ellie Bru, Vanessa Evans,
Jovana Shirley, Lori Lyons, Steven Stansel, Ellice Uffer, and Karen Gill at IBM Press and
Pearson Education for being such wonderful partners in this project.

xxx Acknowledgments

ptg7987094

xxxi

About the Authors

This book has many authors, all from the XPages community.
Paul Hannan is a senior software engineer in the IBM Ireland software lab in Dublin and a

member of the XPages runtime team. He has worked on XPages since it was known as XFaces in
Lotus Component Designer. Previous to this, he worked on JSF tooling for Rational® Application
Developer, and before that on Notes Domino 6 back to Notes 3.3x and Lotus ScreenCam. A
native of County Sligo, Paul now lives in Dublin with his wife Katie and son Alec. A recent con-
vert (dragged kicking and screaming) to opera (not the web browser), Paul also enjoys thinking
about stuff, taking pictures, commanding the remote control, and playing with his son and
his Lego.

Declan Sciolla-Lynch was born in Dublin, Ireland and now lives in Pittsburgh, Pennsylva-
nia. Declan has been working with IBM Lotus Notes/Domino for more than 15 years. He wrote
one of the first XPages learning resources on his blog and is widely considered one of the com-
munity’s XPages gurus. Declan has spoken at Lotusphere on a number of occasions and has con-
tributed popular projects to OpenNTF, the community’s open source hub. He is also an IBM
Champion. He and his wife have three dogs and three cats and go to Disney theme parks when-
ever they get a chance.

Jeremy Hodge, from southern Michigan, is a software architect with ZetaOne Solutions
Group and has more than 15 years’ experience in the software design industry. He has designed
and implemented applications in the vertical market application, custom application, Software as
a Service (SaaS), and off-the-shelf product spaces in many platforms and languages, including
IBM Lotus Notes/Domino, C/C++/Objective-C, Java, Object Pascal, and others. He has served as
the subject matter expert for courses with IBM Lotus Education, including those on XPages
applications. He blogs on XPages at XPagesBlog.com and his personal blog at hodgebloge.com.

ptg7987094

Paul Withers is senior Domino developer and team leader at Intec Systems Ltd, an IBM
Premier Business partner in the UK. He is an IBM Champion for collaboration solutions and the
cohost of The XCast XPages podcast. Paul has presented at Lotusphere and various Lotus User
Groups across Europe. He has written blogs, wiki articles, and a NotesIn9 episode. He has
authored reusable XPages controls and an application, XPages Help Application, on OpenNTF.
Outside of work, Paul is a Reading FC supporter and netball umpire in the England Netball
National Premier League.

Tim Tripcony leads the Transformer ExtLib development team at GBS, creating XPage
components and other JSF artifacts that extend the native capabilities of the Domino platform. He
maintains a popular technical blog, Tip of the Iceberg (TimTripcony.com), offering tips on
cutting-edge Domino development techniques. He frequently speaks at user group meetings and
technical conferences, including Lotusphere. Tim is a globally recognized expert on advanced
XPage and JSF development and has been designated an IBM Champion.

xxxii About the Authors

ptg7987094

xxxiii

Contributing
Authors

Niklas Heidloff is a software architect working for the software group in IBM. He is focused on
invigorating the application development community and promoting XPages as IBM’s web and
mobile application development platform for collaborative and social applications. In this role,
he is the technical committee chair and a director of the Board of Directors of the open source site
OpenNTF.org. Previously, Niklas was responsible for other application development areas in the
IBM Lotus Domino space, including composite applications. Before this, he worked on IBM
Lotus Notes, IBM WebSphere® Process Choreographer, and IBM Workplace Client Technology.
In 1999, he joined IBM as part of the Lotus Workflow team. Niklas studied at the university
in Paderborn, Germany, and has a degree in Business Computing (Diplom
Wirtschaftsinformatiker).

Stephen Auriemma is an advisory software engineer currently working in the IBM Little-
ton software lab on an XPages and Domino Access (REST). Stephen has a master’s degree in
computer science from Boston University. In the past, he worked as a developer on various
projects, including Composite Applications for Notes 8.0, the open source project on Apache
called Xalan for IBM Research, and Domino Offline Services for Lotus. Stephen started his
career with IBM in 1996, providing development technical support for Notes programmability.
He lives in Chelmsford, Massachusetts, with his wife and two daughters, Jessica and Amanda.

Simon McLoughlin is a graduate software developer in the IBM Ireland software lab in
Dublin working for the XPages mobile team. A graduate of the Institute of Technology, Tallaght,
he was responsible for reworking and adding the mobile front end to the Discussion and Team-
Room templates delivered with the XPages ExtLib. In college, he studied computer science. In
his last year there, he joined with IBM on a research project; the result was a smartphone push
alert system to alert native iPhone/Android users that a server undergoing a long run test was run-
ning low on resources or approaching some critical state. This project finished in the top 3 for the

ptg7987094

Irish software awards for the student category of most commercially viable/innovative. Living in
Dublin, Simon enjoys experimenting with new mobile technology and suffers greatly from an
addiction to computer games.

Lorcan McDonald is a senior software engineer on the XPages team in the Dublin office
of the IBM Ireland software lab. He is the tech lead on the XPages Mobile controls project and
has worked on the Domino platform for three years, split between the XPages Runtime team and
Quickr® Domino. Before coming to IBM, Lorcan worked on financial web applications for the
credit card and trading industries. Born and raised in Sligo, he has been living in Dublin for more
than a decade. He never stops thinking about computing problems. He has been known to per-
form and record music as 7800 beats, presumably via some sort of web interface.

xxxiv Contributing Authors

ptg7987094

1

PART I

The Extension
Library, Installation,
Deployment, and an
Application Tour

1 The Next Generation of XPages Controls

2 Installation and Deployment of the
XPages Extension Library

3 TeamRoom Template Tour

ptg7987094

This page intentionally left blank

ptg7987094

3

C H A P T E R 1

The Next Generation
of XPages Controls

With the release of IBM Lotus Notes Domino 8.5.2 came many exciting new features, one of which
is the XPages Extensibility application programming interface (API). It is the notion of extending
the core XPages controls with customized controls. The XPages Extensibility framework allows
developers to expand upon existing XPages capabilities, build their own artifacts, and move
beyond the out-of-the-box features that come with XPages. It allows developers to create and pro-
vide their own solutions. Theoretically, consumers no longer need IBM to answer their request for
new XPages controls; they can build the controls in-house immediately, without waiting years for
them to be part of a release. The power to do this comes with XPages Extensibility.

A prime example of this extensibility is the XPages Extension Library. It’s a set of controls and
artifacts that form one of the biggest releases to open source by IBM. The controls are easily con-
sumable and deployable, enabling efficient, effective, and fast development. They are the next
generation of XPages controls designed to elevate application development and become more up-
to-date to meet the software challenges of today and maybe even tomorrow. The extensibility
infrastructure facilitates this; only the imagination of the application developers and their ability
to create hold it back.

The release of IBM Lotus Notes Domino 8.5.3 in October 2011 allowed for even further progres-
sion of the XPages Extension Library. Core changes in the code made it possible for many more
exciting features: REST services, mobile support, social business application support, and rela-
tional data support.

The release of the IBM Lotus Notes Domino 8.5.3 Upgrade Pack 1 demonstrates that IBM is tak-
ing the XPages Extension Library seriously. It’s no longer a toy. It’s IBM supported and ready for
production.

ptg7987094

So How Did We Get Here?
XPages has come a long way since 2009, when it was released as part of IBM Lotus Notes
Domino R8.5.0. It was revolutionary for Domino because it truly facilitated the modernization of
Domino web application development. XPages is the web-application framework for Notes
Domino and the recommended approach for anyone writing new web applications or extending
or upgrading existing applications to modern web standards. It is an important addition to
Domino and application development. Form-based editing for web development is still valid,
although XPages provides a more user-friendly method that is standardized and familiar to web
developers while adhering to the Domino developer philosophy: creating an enterprise-fit appli-
cation with minimum fuss.

XPages is on its fourth release, as a runtime feature on the Domino server in R8.5, and as a
tooling feature on the Domino Designer, which runs on the Eclipse platform. The XPages devel-
opment experience features what Domino developers have been calling out for years: drag and
drop, source editors, property sheets, resource bundling, and so on. An XPage is the main design
element, and along with Custom Controls, it appears in the navigator with instances of controls
that can be built in an intuitive what-you-see-is-what-you-get (WYSIWYG) way. Developers can
then immediately deploy these XPages to a Domino server. Building web applications should be
easy; it is with XPages.

In the beginning, XPages provided a set number of controls, which meant having less to
learn but dealing with more restrictions. Soon developers found themselves using similar tech-
niques repeatedly. Custom Controls were developed to prevent this duplication throughout the
application. A Custom Control is similar to an XPage. The beauty of Custom Controls is that they
are reusable in the application. They also appear in their own palette once they are created, wait-
ing to be of service to developers on the application. Custom Controls can easily be selected and
dropped to the design pane of the XPage, much like Subforms are to Notes Forms. All this is fine
as long as development is taking place within the same application. But using the same Custom
Control on another application means copying the instance to the other application for use there.
The procedure works but is not always elegant.

Then Came Domino R.8.5.2, and the Extensibility Door Opened
XPages Extensibility offers a way to break free. Rather than being constricted by building con-
trols based on standard XPages components, Extensibility provides a method for developers to
extend the XPages runtime framework.

It allows them to build their own XPages artifacts and user interface controls from the
ground up, featuring their own behaviors and functionality that they and others can then consume
within any XPages applications and potentially on any XPages server. The developers now have
the power in a sense. They no longer need to ask IBM to enhance their software tools hoping that
someday IBM will address it. If developers have the ability and the knowledge, they can enhance
the tools themselves now. They can create their own controls to solve their business needs. With
XPages Extensibility, what was thought impossible has become probable.

4 Chapter 1 The Next Generation of XPages Controls

ptg7987094

OpenNTF and the Controls Too Good Not to Release
The XPages Extension Library is currently the best example available of the power of XPages
Extensibility. It contains more than 150 controls and complex properties built from scratch and
covers a wide range of use cases. The list of controls is growing, allowing Domino to break new
ground in areas where it traditionally feared to tread: working with relational data, developing
mobile applications, provisioning REST services, and making social connections for business,
among others. And all this is available free from OpenNTF.org (http://extlib.openntf.org).

OpenNTF is an organization, founded in 2002, that is devoted to enabling groups or indi-
viduals all over the world to collaborate on IBM Lotus Notes/Domino applications and release
them as open source. The OpenNTF Alliance, formed in 2009, also provides a framework for the
community so that open source applications may be freely distributed, using widely accepted
licensing terms. The mission of the OpenNTF Alliance is to increase the quality and quantity of
templates, applications, and samples that are shared by the community so the community can
grow and be successful.

IBM decided to share the XPages Extension Library with this community because it felt
that these controls were too good not to release; IBM didn’t want to wait any longer to get feed-
back from the community. This feedback is being used for the betterment of the product, which is
evident from the number of changes and updates since the XPages Extension Library’s release in
September 2010. It can only get better.

To Extensibility and Beyond
Extensibility is one of the main tracks for future XPages core development. The next set of
enhancements is being built upon it. Depending on the enterprise needs, because of all the advan-
tages extensibility brings, all future developments of XPages will be done through the XPages
Extension Library. Does there need to be a way to interface with relational databases? Do you
need to handle REST services better? Do you want to build a UI that is smartphone friendly? Do
you have a goal of breaking down the barriers to social business? Or do you just want to build
XPages applications easier, faster, and better? All this is possible with extensibility and in the
next generation of XPages controls that are part of the Extension Library.

What Makes an XPages Control Next Generation?
It’s said that every generation throws a hero up the pop charts. This is certainly true with software
development continually responding to the world’s technology needs. Software is always evolv-
ing; sometimes it succeeds, and other times it fails. Technology without evolution becomes
tomorrow’s trash; technology is constantly looking for the next generation.

Saying that something is the next generation doesn’t always mean that it is so. In the dot-
com bubble burst, many things that were touted as being the next generation turned out not to be
for reasons like revenue generation. Commentators need to be mindful of this when saying some-
thing is next generation.

Then Came Domino R.8.5.2, and the Extensibility Door Opened 5

http://extlib.openntf.org

ptg7987094

So for XPages, let’s start at what might be called the first generation. In the first couple of
releases of IBM Lotus Notes Domino 8.5x, the set of controls that came with XPages and what is
represented on the Designer palette could have been called next generation at the time. XPages
certainly revolutionized the way web applications were created in Domino. This was next gener-
ation stuff. The tag next generation has a certain life span, however. With success, the next gener-
ation becomes the norm; it becomes everyday stuff that is indispensible.

XPages is now the norm; it’s the recommended way to build Domino web applications and
web-based solutions. But it isn’t standing still, resting on its laurels; it’s evolving. And with the
Extension Library, a clearer picture is emerging of what the next generation of the XPages con-
trols might look like.

Certain themes are popping up of what the next generation of XPages controls might
involve:

• Make application development faster.

• Provide the tools that developers need to take the drudgery out of application develop-
ment and allow them to put in more creativity.

• Make applications perform better, scale better, and provide best practices out of the box.

• Give developers shortcuts to learning.

• Give developers the tools that will enable them to create applications that will harness
the new technologies to respond to the business needs of tomorrow.

• Give developers the power to compete and to succeed.

The next generation of XPages controls may help application developers do these things.
They are here in the form of the XPages Extension Library.

What Is the XPages Extension Library?
Let’s start with the standard definition of the XPages Extension Library. It’s a library that pro-
vides a set of new XPages artifacts that are ready to use. It’s provided as an open source project
(http://extlib.openntf.org) on OpenNTF, which is an organization devoted to getting groups of
individuals together to collaborate on Lotus Notes/Domino applications and tools, and release
them as open source to the general public to be downloaded from the OpenNTF website.

The entire source code is available from plugins when the Extension Library is installed,
either through OpenNTF or the Upgrade Pack, in Designer. IBM contributed it to support the
enhancement of Notes/Domino application development. The code contains a set of new XPages
controls that supplement the existing ones by providing new capability. It is built atop IBM Lotus
Notes Domino R8.5.2, using the XPages Extension API provided with that release, and is carried
through to subsequent releases. As such, it is also a nice example of how to use this API. The
XPages Extension Library saves application developers from writing their own user interface
controls for most use cases. For all other use cases, developers require some Java programming
skills to take full advantage of the XPages extensibility.

6 Chapter 1 The Next Generation of XPages Controls

http://extlib.openntf.org

ptg7987094

An alternative or additional definition could be that the XPages Extension Library repre-
sents a way in which IBM software is released more frequently. Instead of having to wait years,
releases of XPages features and bug fixes can occur monthly. Releasing software in smaller
chunks makes it more agile, which benefits IBM, its business partners, and customers who are
developing applications. Decreasing development time and time to market makes the release
cycle more attractive and more flexible, lowers costs, and increases user satisfaction. Releasing
the Extension Library becomes a no-brainer from a software development point of view.

Most of the controls in the XPages Extension Library started life as Custom Controls.
Developers can reuse these controls in an elegant and effective way by making them part of the
XPages runtime framework. This is done with extensibility. Chapter 12 of the Mastering XPages
book published by IBM Press takes developers through this process step by step. The XPages
Extension Library could be defined as a collection of glorified Custom Controls for everyone to
use and share.

Today the XPages Extension Library is the most popular project (more than 1,300 down-
loads per month) on OpenNTF. Its long-term plan is to incorporate some of these projects into
core IBM product, providing a certain criteria is met. The first step along this path is the Upgrade
Pack release of the XPages Extension Library into Notes Domino R8.5.3. Because of the easier
deployment with the release of Domino 8.5.3, users will be able to build XPages applications
with the Extension Library out of the box.

The way the XPages Extension Library has evolved on OpenNTF from a technical point of
view projects how the library will develop in the future. The XPages Extension Library started
life on OpenNTF as a series of plugins: the com.ibm.xsp.extlib library. In October 2011, a second
library of plugins was delivered to OpenNTF: the com.ibm.xsp.extlibx library. Now the XPages
Extension Library contains two libraries with distinct sets of plugins. The original library,
ExtLib, contains all the controls and features that have been consumed back into the IBM soft-
ware product range. The first release of this library is in the first Upgrade Pack to IBM Lotus
Notes/Domino R8.5.3.

The second and latest plugin to the XPages Extension Library is ExtLibx. It contains all
new controls and features and is an incubation phase for the latest library developments. The fea-
tures from the ExtLibx may at some point become part of the core product like ExtLib. This
important incubation phase allows IBM to quickly deliver to its business partners and customers
the innovation, ideas, and technology drivers that will keep XPages at the cutting edge. Examples
of these would be the relational data management system feature for XPages and the new tools
for social business. Hatching from incubation with maturity, stability, and a sound business use
case and these features, ExtLibx may become part of the core product, ExtLib.

With IBM now supporting the XPages Extension Library through the Upgrade Packs,
we’re at a point where full adoption of the XPages Extension Library has been made easy. It is
time to come to grips with this next generation technology.

Then Came Domino R.8.5.2, and the Extensibility Door Opened 7

ptg7987094

Making Domino Application Development Easier, Faster, and Better
One of the main goals of the Extension Library is to make the Domino web application develop-
ment easier, faster, and better. It’s about taking common design patterns, building these into
reusable controls, and then incorporating them into libraries for deployment.

This, in the long run, lowers the cost of application development. Take, for example, the
Application Layout control from the library. It will enable developers in minutes to create a lay-
out for an application that might have previously taken hours or perhaps days to do with conven-
tional XPages controls. This frees up time, allowing developers to concentrate on the trickier
aspects on the development of the application. This in turn saves on cost while making the appli-
cation better at the same time.

Another goal is to provide developers with some handy controls that can make their appli-
cations easier to use. Take the KeepSessionAlive control, for example. Simply dropping this
to an XPage transforms the way this page behaves on the browser, enabling the user to create and
edit documents without necessarily submitting data over a long period. The data that the user has
worked upon in that session will still be there until the user is ready to commit the data to storage.

By upgrading to Notes Domino 8.5.2 and 8.5.3, businesses automatically gain performance
and scalability enhancements. On performance, developers or administrators only get so much
from the server’s configuration; the rest has to come from the configuration of the application.
Chapter 16 of Mastering XPages can help developers bring their application up to scratch, teach-
ing them the techniques they need to know to make the application perform better. One example
of this involves changing the way a certain control or action is used or executed. Let’s take the
Open Page simple action as an example. Using it without a Server-Side JavaScript (SSJS) request
effectively wastes server processing in that the POST-based request (a request issued by the
browser when the contents of the web page are submitted to the server) is sent to the server,
which then returns a Client-Side redirect response to the browser. Then the browser executes the
Client-Side redirect to send back to the server a GET-based request (a request sent from a browser
when a user enters a new URL address or navigates to another web page typically) for the target
of the Open Page simple action. This same action can be accomplished without the server pro-
cessing expense by using the parameters complex property and eliminating four server lifecycle
phases, a double request scenario, and a reduction in server CPU usage.

This performance technique is built into some XPages Extension Library controls. The
Data View control contains navigation links that use the GET-based request. The Change
Dynamic Content action uses this technique, too, where applying the same parameters produces
the same result: performing best practices out of the box.

What Are the Most Important Controls and Why?
Learning 150 controls at once can be daunting. It might be more advantageous to learn just a few
important controls that will give an application that extra punch without too much effort.

8 Chapter 1 The Next Generation of XPages Controls

ptg7987094

Picking the top five controls is open to opinion, but the following are what we consider the
five most important controls:

• Application Layout

• Page Navigator

• Dynamic Content

• Dynamic View

• Data View

These controls will be explained in full later in this book, but it’s worth focusing on them a
little here.

Two of these controls—the Application Layout and the Dynamic View—can modernize
most Domino applications to XPages without too much effort or time. Developers can configure
the Application Layout control to present the application’s look and feel. Developers can config-
ure the Dynamic View control to display all the Notes views in the database. After that, develop-
ers can use a couple of other Extension Library controls, such as Form controls, to read and use
document content. Using these controls can take the pain out of XPages development.

Rather than create numerous XPages to perform various functions like creating documents
and displaying collections in views, developers can use a Dynamic Content control to display
everything on one XPage. A Dynamic Content control is a panel that displays a section or facet of
a page or dynamic page part. It creates its children from a facet definition, based on the facet
name. It can also save developers needless server transitions by using a Change Dynamic Simple
Action or changing the show parameter in an action. A good example of using the Dynamic Con-
tent control is in the TeamRoom template that has been extended with the XPages Extension
Library. In the allDocuments XPage, a switch control drives the views displayed by the Dynamic
Content control. It displays the contents of the All Documents view by default, with options to
display All by date, All by author, All by team views, or even filter the selected view. It’s flexible,
and it’s contained in one XPage.

Finally, another useful control to learn is the Data View. A more advanced way to view a
data collection, Data View is a control based upon the conventional View Panel control. Data
View is flexible, although complex. Once the richness of the Data View is mastered, this control
will be a friend to developers. Again, the TeamRoom contains many fine examples, and the Data
View is used throughout that template more than any other control to display view collection data
from a Notes view.

XPages Learning Shortcuts
Application development should aim to be easy so that almost everyone can do it. It should be
like driving a car from point A to point B without needing to know exactly how the internal com-
bustion engine works. It shouldn’t be a requirement that the developer knows everything,
although it does help to know something.

XPages Learning Shortcuts 9

ptg7987094

By setting a number of options on the Application Layout control, developers can create
the backbone of the application with little effort. All they need to know and understand is what
these options are, what they do, and what effect they have. Building a layout for an application
from scratch, without the shortcuts from the Extension Library, can be challenging, especially if
the design specification isn’t complicated. Being an expert in the Cascading Style Sheets (CSS)
language will certainly help developers here, but creating a custom look and feel for an applica-
tion is time consuming. Before the Extension Library, certain shortcuts were available in XPages,
such as the OneUI theme and the application layout framework projects. (Go to OpenNTF and
search for the XPages Framework project.) These projects, which are Custom Controls that
developers add to their application, are reference themes and styling already present on the Notes
Domino installation. This, in one step, simplifies what the developer needs to know. The Applica-
tion Layout control from the Extension Library does this and more.

The Application Layout control is but one example from the Extension Library that helps
developers take shortcuts without compromising quality. By the very nature of the Extension
Library, just about each control gives developers the shortcuts they need to work on the main fea-
tures and purpose of a project.

Bells and Whistles: Welcome to the Future
The XPages Extension Library isn’t just about the controls; it also has its eye on the challenges
facing application development. Technology provides new ways for societies and communities to
collaborate. This is a world that is becoming more mobile; people expect wireless and don’t want
to be tied to a desk. Technology serves up data, regardless of its source, in a consumable and more
usable way. Bringing this world into the application gives it a new dimension and enables it to
become an application of the future.

Get Social
Social business is the industry buzzword of the year, or at least the most commonly used word to
describe enterprise-level collaboration. It’s a new way of doing business and the greatest leap for-
ward of our age. Isn’t it?

Social business is not new. It’s been around for years—since mankind started to trade
goods and services, and since neighbors traded surplus goods with each other and got something
bartered in return. They found out what they needed and what was needed in exchange by being
social, communicating infinite needs and wants to neighbors and friends.

The way we socialize and the way we do business has changed throughout the millennia.
Early trading centered on forest clearings, river junctions, and where paths met. When this activ-
ity increased, permanent settlements were established, and markets formed. Ideas and innova-
tions were exchanged alongside traded goods at a faster rate. Villages became towns, and towns
became cities. All this happened because of social business.

What’s new are the tools used for business. Face-to-face conversations have always
occurred, whether at crossroads, town hall meetings, public houses, or other meeting places

10 Chapter 1 The Next Generation of XPages Controls

ptg7987094

where ideas and knowledge are exchanged. An advancement came when newspapers and printed
media made it possible for information to be broadcast over greater distances. Today, though, in
the electronic and digital age, business is global. The tools used for social business have made
this happen, and they continue to evolve.

Software development is at the forefront of this social business evolution. IBM Software is
in this space and has been for years. Lotus Notes and Domino, the collaboration and business
platform, has been the leader in this field, and it continues to evolve. XPages Extensibility opens
the door for further expansion through social enablers, making it easy for developers to connect
to and incorporate aspects from social networking tools into their applications. Whether display-
ing a user’s information or accessing social data from different systems, the addition of the social
tools in the Extension Library takes collaboration to a new level.

Upwardly Mobile
Mobile is the technology of the age. Owning a mobile device is no longer a luxury but a necessity.
This fact is becoming increasingly important in business as desktops and laptops are being super-
seded by tablets and smartphones. This transition has many challenges, ranging from the user
interface (UI) design to security. XPages and the Extension Library are in place to meet these
mobile challenges by taking existing web applications and rendering a native look-and-feel on
the device. It’s secure; no data is stored on the device. It’s a regular Domino application running
on a mobile device. The Extension Library provides controls that are easy to use, enabling the
developer to build a mobile interface onto existing applications rapidly.

These features have been built into the Discussion and TeamRoom templates that have
been released as part of the IBM-supported version of the Extension Library. Applying these tem-
plates in the IBM Notes Domino R8.5.3 Upgrade Pack, along with the library, makes for a
compelling leap forward. Enterprise applications become usable from mobile devices with more
or less a flick of the switch.

Relational Data
If the enhancements for mobile represent future technologies, then the implementation for sup-
port to access relational databases represents the technologies now. With the release of IBM
Lotus Notes Domino 8.5.3 and the associated XPages Extension Library, the door is open to uti-
lize XPages as the integration point between disparate systems.

With these advancements, relational data can be exercised in the same manner as data from
the Domino database forming data collections and editing data. This enables developers to pro-
vide wide-ranging solutions without having to configure intermediary systems to handle the
exchanges between Domino and other information management systems.

This is an enhancement that was requested for many years. Solutions were tried with vary-
ing degrees of success. The solution provided by the XPages Extension Library is more elegant.
If the relational database has a JDBC driver, it works.

Bells and Whistles: Welcome to the Future 11

ptg7987094

RESTful Web Services
Further data-handling enhancements are now available in the form of REpresentational State
Transfer (REST). REST is a set of principles that define a communication protocol used when
constructing a web application. REST is important to the new Web 2.0 programming model. New
technologies like IBM Connections, OpenSocial, Google Services, Android, and Microsoft® are
embracing REST web services to allow remote clients access to server-side data. REST isn’t tied
to one operating system, machine, or technology. For the Web, it’s design once, run anywhere.
The XPages Extension Library has RESTful web services in place, so a range of exciting data-
handling options is available for the XPages developer. The options come ready to use out of the
box, with extra options in place to allow for more advanced configurations with servlets.

It’s staggering what capabilities the XPages Extension Library can deliver. The original list
of controls and artifacts provided by the initial release, along with newer mobile, relational,
REST, and social capabilities, makes the library the most essential tool for application develop-
ment. Its empowerment is breathtaking.

Doing It Yourself with Java
A book on the XPages Extension Library would not be complete without mentioning Java. It’s
the programming language that is becoming more and more prevalent in Notes Domino. With the
notion of extensibility in XPages and using it directly in applications, Java has become an ele-
ment that people can no longer ignore. For developers who want to be able to use a managed bean
in an XPages application or build their own controls for an Extension Library, knowledge of Java
programming is necessary. It’s not essential that they know everything about this programming
language but enough to allow them to take their first steps.

For typical Domino developers, using Java in applications involves stepping out of their
comfort zone somewhat. Chapter 14, “Java Development in XPages,” will get them comfortable
again. XPages gives extra capacity for the inclusion of Java into Domino applications and makes
these applications even more powerful. Chapter 14 provides a glimpse into some of the many
ways Java can take an application to the next level, as well as a few ways developers can get even
more use out of some of the Extension Library controls.

Conclusion
This chapter introduced the XPages Extension Library and described its components that make it
essential to application development in the future. The next chapters in this Part, “Installation and
Deployment of the XPages Extension Library,” and “TeamRoom Template Tour,” will ease you
gently into using the library before getting deeper into the new controls. The next generation of
XPages controls is here. All that’s needed is to let them out of the box.

12 Chapter 1 The Next Generation of XPages Controls

ptg7987094

13

C H A P T E R 2

Installation and
Deployment of the
XPages Extension
Library

Users wishing to begin utilizing the new controls from the XPages Extension Library (ExtLib) in
an application need to install the library to both the Domino Designer and the Domino server, as
well as consider various deployment strategies for the Notes Client end users. This chapter is
written for the XPages developer and the administrator of the Domino environment. It shows how
to deploy the ExtLib for various scenarios.

Until the release of the IBM Lotus Notes Domino 8.5.3 Upgrade Pack 1 in December 2011, a
common misconception was that the installation, deployment, and maintenance of the ExtLib was
quite an undertaking. However, the ExtLib is constantly evolving to meet the needs of the enter-
prise while delivering expected feature functionality to users. Thus, it became necessary to main-
tain the Extension Library post-initial setup. This chapter illustrates how you can easily deploy
the Extension Library in your IBM Lotus Notes Domino or IBM XWork environment. It takes you
through downloading the latest releases to enabling automated deployment.

The ExtLib from OpenNTF requires IBM Lotus Domino Server version 8.5.2 or higher to work,
whereas the IBM supported version of the ExtLib requires IBM Lotus Domino Server version
8.5.3 to work. The ExtLib does not work on Domino 8.5.1 or lower, because the server does not
include any of the required extension points that ExtLib hooks into to provide the additional con-
trols and artifacts.

Downloading the ExtLib
You can download the ExtLib from two places: the OpenNTF website (http://
extlib.openntf.org) for IBM Lotus Notes Domino 8.5.2 and above or as part of the IBM Lotus
Domino 8.5.3 Upgrade Packs available from Passport Advantage® (http://www.ibm.com/software/
passportadvantage) for IBM Lotus Notes Domino 8.5.3 or above. There are two available places for
download because of license and, more significantly, because the download from Passport Advan-
tage is fully supported by IBM.

http://extlib.openntf.org
http://extlib.openntf.org
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/software/passportadvantage

ptg7987094

Customers and business partners have access to Passport Advantage. Once you’re there, it’s
easy to navigate to the Online section to sign in and download the build. For IBM Lotus Notes
Domino 8.5.3 Upgrade Pack 1, the build part number that locates the downloadable file is
CI5GIEN. There is only one download for the complete Upgrade Pack; the zip file contains all
platform installs for the server, client, and designer client. It isn’t possible to take one part of this
install; you must download all parts under the same part number.

After you’ve downloaded the file, extract the contents of the zip file to a temporary folder.
The extract zip contains three folders: client, designer, and domino, along with a readme.txt
file. The readme is small but contains a link to the Lotus Notes and Domino Application Devel-
opment Wiki (http://www-10.lotus.com/ldd/ddwiki.nsf), which contains the documentation to
accompany the Upgrade Pack. The three folders contain the install executables for each platform
that Lotus Notes Domino 8.5.3 supports.

You can also download the ExtLib from the OpenNTF project under the same name
(http://extlib.openntf.org).

Once you’re at the site, go to the Download/Releases section, as shown in Figure 2.1, and
select the latest release.

14 Chapter 2 Installation and Deployment of the XPages Extension Library

TIP

It is best to use the same release of ExtLib on the servers as what the developers and end
users are using in the organization.

Figure 2.1 ExtLib download and releases.

http://www-10.lotus.com/ldd/ddwiki.nsf
http://extlib.openntf.org

ptg7987094

The downloaded file from the OpenNTF project is in zip format. It contains numerous files;
an example of which from the 8.5.3 release in January 2012 is shown in Listing 2.1.

Listing 2.1 Files Extracted from the ExtLib Download

discussion8xl.ntf

doclib8xl.ntf

DominoDataServiceDoc.zip

Extension Library REST Services.pdf

ExtLib-Notes85.zip

FirebugLiteLicense

LICENSE

NOTICE

readme.pdf

SLF4JLicense

srcOpenNTF-designer.zip

srcOpenNTF.zip

srcOpenNTFSamples.zip

teamrm8xl.ntf

updateSiteOpenNTF-designer.zip

updateSiteOpenNTF.zip

updateSiteOpenNTFSamples.zip

WebSecurityStore.ntf

XPages Extension Library - Slides.pdf

XPages Goes Relational.odp

XPages-Doc.zip

XPagesExt.nsf

XPagesJDBC.nsf

XPagesSBT.nsf

The src*.zip files contains the open source files for the ExtLib. Developers proficient in
Java can use those files to explore the controls and customize them for their own use.

Developers interested in enhancing and exploring the ExtLib through the modification of
the Java source files can reference the Javadoc documentation found in XPages-Doc.zip. Extract
the files to a local directory. Loading index.html in a web browser gives you one-click access to
information on the various ExtLib controls, their properties, and more (see Figure 2.2).

Downloading the ExtLib 15

ptg7987094
Figure 2.2 ExtLib documentation from the download from the OpenNTF website.

The PDF files, XPages Extension Library - Slides.pdf, Extension Library REST
Services.pdf, and readme.pdf, and the XPages Goes Relational.odp file, give developers and
server administrators an introduction to this OpenNTF project. From the high-level architectural
overview to instructions on how to use some controls, developers and administrators have what
they need to go beyond the introductory level.

The ExtLib demonstration application, XPagesExt.nsf, is a powerful education tool in
itself, but it does require a configured instance of the ExtLib to render. (An online demo of this
application is available. Go to http://xpages.info/, select the Demo tab, and then go to the Live
XPages Development Controls from OpenNTF section. Note, however, that the version of the
application being demonstrated won’t likely match the version downloaded.) This application
will show the developer live, working examples of most of the ExtLib controls. By exploring this
application in Domino Designer, developers are given an application they can reverse-engineer.
This allows the discovery of the technological principles behind the XPages contained within the
application and shows how certain controls are used in each of the examples.

Along with the XPagesEXT.nsf, the download contains a number of other demo apps. The
file XPagesJDBC.nsf demonstrates the Relational support from the ExtLib, while
XPagesSBT.nsf is the app that shows off the capabilities of the Social Enabler from the ExtLib.
Both of these applications demonstrate the experimental features in the ExtLib.

16 Chapter 2 Installation and Deployment of the XPages Extension Library

http://xpages.info/

ptg7987094

TIP

It is advised that you put this application on the Domino server so that the user can refer to it
when needed. Many of the examples demonstrated in this application are described in later
chapters.

Installing the ExtLib via the Upgrade Pack 17

The Notes Domino templates, Discussion (discussion8xl.ntf) and TeamRoom
(teamrm8xl.ntf) are also part of the ExtLib download. These are fully functional templates that
are ready to use enterprise environments and are also a showcase for the features of the ExtLib.

The most important files in the archive are the updateSiteOpenNTF*.zips, which contain
the ExtLib Eclipse plugins. These files contain everything that the administrator and developer
need to deploy ExtLib on both servers and end users’ machines.

Installing the ExtLib via the Upgrade Pack
If you’re installing the ExtLib for the first time on a system that has never had it deployed, this
process is relatively straightforward. You must have a licensed version of the product to install
the Upgrade Pack. The install executable locates the installed product on the system and com-
pletes the installation of the Upgrade Pack as long as that product isn’t running. The Upgrade
Pack installer is an addon that installs to an existing install. It doesn’t contain a standalone edition
of the product.

For more information on installing the Upgrade Pack to Lotus Notes Domino 8.5.3 and
beyond, refer to the online documentation available from the Lotus Notes and Domino Applica-
tion Development wiki (http://www-10.lotus.com/ldd/ddwiki.nsf).

Installing the Upgrade Pack on a system that has the OpenNTF version of the Extension
Library installed is likely to cause problems, chief being that the runtime will not function as
expected and possibly not at all. The systems do use the same class files, plugin names, and so
forth, but that is where the similarities end. Mismatches will occur particularly if the release data
stamp of either is out of sequence. Even if they are within sequence, there is no guarantee that
they will work together; in addition, IBM doesn’t support this configuration. So before installing
the Upgrade Pack, manually remove any previous version of the Extension Library from your
designated system that originated from an OpenNTF release.

The Upgrade Pack uses an add-on installer. Future Upgrade Packs should be able to install
over the previous version without breaking the functionality of the server, so removing the previ-
ous version of the Extension Library isn’t a requirement.

http://www-10.lotus.com/ldd/ddwiki.nsf

ptg7987094

Deploying ExtLib to Developers in Designer
Developers need to install the Extension Library to Domino Designer before they can begin using
the various controls in their applications. The great advantage of installing the ExtLib into the
Designer is that developers can begin creating applications with the library and see the result of
their endeavors when they run the XPages application in the Notes Client (XPiNC) locally.
Developers can also preview the application locally in the web browser, but this requires an addi-
tional manual step post-installation of the Extension Library from OpenNTF: copying the run-
time ExtLib files to the same location as the existing XPages runtime files, which is usually the
osgi folder off the Designer root. One of the many advantages of installing the Designer exe-
cutable (853UpgradePack1_20111208-0717.exe) from the Upgrade Pack is that it installs the
Extension Library runtime to the local preview HTTP server as well as to XPiNC with the design
runtime.

If developers want to use the preview server in Windows® Vista or Windows 7, they need to
launch Lotus Notes\Designer via Run as Administrator.

If end users are required to use the ExtLib controls in XPiNC applications, administrators
need to deploy the ExtLib to all who use Notes Client. (The various deployment strategies are
described in “Deploying the Extension Library to End Users,” later in this chapter.) XPages
developers can take advantage of this same end user deployment strategy and skip the following
ExtLib installation instructions.

If, however, developers are planning to create only server-based web applications, they
need to have the ExtLib deployed to their machines, and the administrators need to deploy the
ExtLib to the server machines.

Developers can take care of manual deployment using an update site from OpenNTF or
using the installer executable from the Upgrade Pack. If administrators are using automatic server
deployments, as described later in this chapter under the “Automatic Server Deployment in
Domino for 8.5.3” section, it is recommended that developers use the same update site to ensure
that the developers are running the same version of ExtLib as the servers.

18 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

Figure 2.3 Enable Eclipse Plugin Install in Domino Designer.

Deploying ExtLib to Developers in Designer 19

For OpenNTF release, the first step in a manual deployment is to verify in Domino
Designer that the Preferences option to Enable Eclipse Plug-in Install is selected, as in Figure
2.3. If this menu option is not visible, the Domino administrator may have disabled it via a policy
document and need to re-enable it before continuing.

ptg7987094

Figure 2.4 Begin the installation of the ExtLib on Domino Designer.

20 Chapter 2 Installation and Deployment of the XPages Extension Library

Start the installation process by selecting the File → Application → Install menu options,
as in Figure 2.4.

ptg7987094

Figure 2.5 Select the Search for New Features to Install option.

Deploying ExtLib to Developers in Designer 21

In the next dialog box, select the Search for New Features to Install option, as shown in
Figure 2.5. Then click Next to continue.

ptg7987094

Figure 2.6 Installing from the updateSite.zip file.

22 Chapter 2 Installation and Deployment of the XPages Extension Library

The dialog that follows may appear empty; regardless, you need to add the location of the
new update site. If you’re using the update site downloaded from OpenNTF, select the Add
Zip/Jar Location button and then select the updateSite.zip file, as shown in Figure 2.6.

ptg7987094

If you’re using the update site created for your automatic server deployments, select the
Add Remote Location button and fill in a name and URL for the update site (see Figure 2.7).

Deploying ExtLib to Developers in Designer 23

Figure 2.7 The server deployment database or update site.

ptg7987094

Regardless of which update site you added or which method you used, click the Finish
button. You’re next shown a list of features you can install into the Domino Designer client (see
Figure 2.8).

24 Chapter 2 Installation and Deployment of the XPages Extension Library

Figure 2.8 ExtLib update site version.

ptg7987094

You may select all the available features to install as illustrated, or just select one if desired,
and then click Next and then Accept to accept the Apache license agreement, if you’re using the
OpenNTF version. Click Next and then Finish.

Because the plugins don’t have a digital signature, depending on the client’s security set-
tings, a dialog box may appear asking if the user still wants to perform the install, as in Figure 2.9.
Select the option Install This Plug-in, and then click OK.

Deploying ExtLib to Developers in Designer 25

Figure 2.9 Plugin install confirmation.

After the plugin has been installed, the user must restart the Lotus Notes Client to complete
the install.

Once Designer has restarted, the developer can quickly verify that the installation of the
Extension Library has been successful. Create a new application and then an XPage within this
application. When this XPage launches, the palette on the right side becomes populated with the
newly installed extended controls, as in Figure 2.10.

ptg7987094
Figure 2.10 The new extended controls in Designer post installation.

The palette may seem cluttered with the extra options available from the Extension Library,
but you can remedy this in Designer 8.5.3 by using Palette Profiles. Add these by selecting
File → Preferences from the main menu, and then select Domino Designer and then Palette
from the dialog box. From here, select the New button to create a name for the profile. Then
select the desired palette drawers to appear in this profile. The user can then switch to this palette
profile and tidy up the XPages palette.

Taking this one step further, the XPages developer can run applications that use the
extended controls in the Notes Client locally. The ExtLib Demo application comes with the
OpenNTF download. This application provides examples of most of the extended controls avail-
able on the library. It is a valuable education tool that can help the XPages developer get started
on the extended controls.

26 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

You can also preview this application in the Notes Client, as shown in Figure 2.11. Do this
by selecting Design → Preview in Notes Client.

Deploying ExtLib to Developers in Designer 27

Figure 2.11 Running the ExtLib Demo application in the Notes Client.

Uninstalling the Extension Library from Designer
Uninstalling the Extension Library from Domino Designer is straightforward. The reasons for
uninstalling can vary. One reason might be to install a previous version of the Extension Library
to what is currently installed. Another could be to keep the development environment tidy and not
have multiple versions of the library cluttering the file system.

The way the Extension Library is uninstalled differs depending on the installation type. If
installed through the Upgrade Pack, the ExtLib is uninstalled along with the rest of the Upgrade
Pack through the Program and Features program, as you would do with any other installation
in Windows. Uninstalling the Extension Library that originated from OpenNTF is completely
different.

In Designer, select File → Application → Application Management to launch the Appli-
cation Management dialog. From this dialog, you have several options for the management of
the plugin, namely Disable, Uninstall, and Show Properties, as shown in Figure 2.12.

ptg7987094

Figure 2.12 The Application Management dialog with the Extension Library highlighted.

Select the Uninstall option for the Extension Library feature. A message prompt then
appears to confirm the selection of this option. After you’ve confirmed the option, the user is
prompted to restart Designer; this completes the uninstallation of the Extension Library.

Server Deployment
The way the ExtLib is deployed to Domino or XWork servers depends on the source of the down-
load. If you’re using the Upgrade Pack, an AddOn installer is provided for server installations. If
you’re using releases from OpenNTF, which doesn’t have an installer executable, other methods
are required to deploy the ExtLib.

Automatic Server Deployment in Domino 8.5.3
Domino 8.5.3 (which was released in September 2011) contains a feature that makes it easy for
the administrator to deploy and update an Extension Library from OpenNTF without manually

28 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

copying files to the Domino Server. Using a standard Notes Storage Facility (NSF) based on
updateSite.ntf, the administrator can dynamically deploy OSGi plugins to the server.

This new feature is optional and simple to use. By default, the dynamic contribution is
turned off. To enable it, you must add a variable to the notes.ini that contains the database
paths allowed to contribute dynamic plugins: OSGI_HTTP_DYNAMIC_BUNDLES=
updateSite1.nsf,updateSite2.nsf, for example. For each database specified in OSGI_HTTP_
DYNAMIC_BUNDLES, the server administrator needs to create a database based on the
updateSite.ntf template and then create replicas in all the servers (upon which the above variable
must be set) of the cluster or domain. This enables the deployment of Extension Library almost
seamlessly.

For the server’s administrator, the steps to enable this feature are straightforward, although
they’re configured in a number of places. The first step is to create a database on the server using
the Eclipse update site (updateSite.ntf) template. Select File → Application → New, which
launches the New Application dialog. From here, select a server where the application is to be
created. Then on the same dialog select a server upon which the updateSite.ntf template resides,
as in Figure 2.13.

Server Deployment 29

Figure 2.13 The New Application dialog where the update site application is created.

ptg7987094

Selecting the OK button on this dialog creates the application. Then it is a matter of modi-
fying the application’s Access Control List (ACL) for those who are to be allowed to create docu-
ments, and thus deploy plugins to the server. Modify the ACL of the databases to only allow
trusted users (Author Access at a Minimum). No one else should have access. Also, set the Do
Not Show in Open Application Dialog flag on the database.

The application is now ready to begin deploying the Extension Library. On the view, Main
Features, select the Import Local Update Site action button. This launches a dialog that allows
you to select a site.xml file from an Eclipse plugin project, as in Figure 2.14. For the ExtLib, this
is located in the updateSite.zip file, which when extracted contains the site.xml file and two
folders: Features and Plugins. Select OK on this dialog to begin the import process.

30 Chapter 2 Installation and Deployment of the XPages Extension Library

Figure 2.14 The Import Local Update Site dialog with the site.xml file from the ExtLib
updateSite zip file.

ptg7987094

Figure 2.15 The updated site installation has been completed.

Server Deployment 31

Once the import is complete, the view of the update site database is updated with a docu-
ment representing the import of the plugin, as shown in Figure 2.15.

ptg7987094

Figure 2.16 The update site document.

All that is left to do here is to put the reference to this update site database in the notes.ini,
OSGI_HTTP_DYNAMIC_BUNDLES=updateSite1.nsf, for example. As long as this same
notes.ini variable is set on other Domino servers, this application can be replicated to these
servers; the Extension Library is deployed here as well.

After you change the notes.ini variable, you will need to restart the server’s HTTP task.
This can be done by either restarting the entire Domino server or by issuing the command Restart
Task HTTP on the server console. When the HTTP task starts back up or when the server’s HTTP
Task has been restarted using the Restart Task HTTP command in the server’s console, a high-
lighted message appears on the server console indicating that the NSF-based plugin is being
installed on the server (see Listing 2.2).

32 Chapter 2 Installation and Deployment of the XPages Extension Library

After it’s installed, the default state of the update site is to be enabled. You can disable this
same project document, which means that it will not be picked up by the OSGi runtime when the
server HTTP task has been restarted. The same project document can tell the user a lot of infor-
mation about the update site installed—most importantly, the project version number and the
fragments and plugins bundled with this feature (see Figure 2.16).

ptg7987094

Listing 2.2 Server Console Output of the NSF-Based Plugins Deployment

restart task http

29.11.2011 10:47:04 HTTP Server: Using Web Configuration View

29.11.2011 10:47:15 JVM: Java Virtual Machine initialized.

29.11.2011 10:47:15 HTTP Server: Java Virtual Machine loaded

29.11.2011 10:47:16 HTTP Server: DSAPI Domino Off-Line Services HTTP
extension Loaded successfully

29.11.2011 10:47:18 HTTP JVM: CLFAD0330I: NSF Based plugins are being
installed in the OSGi runtime. For more information please consult the
log

29.11.2011 10:47:29 XSP Command Manager initialized

29.11.2011 10:47:29 HTTP Server: Started

When the server is restarted or the server’s Http task has been restarted, the OSGi launcher
introspects the update site databases, automatically detects the features, and dynamically loads
the associated plugins in the OSGi runtime. Internally, the OSGi launcher references each plugin
using a URL with a proprietary protocol that knows how to access the attachment plugin.

The URL format follows:
osginsf:<dbPath>/<documentUNID>/<pluginJarName>
For example:
osginsf:updateSite.nsf/1234…890/com.ibm.extlib.demo_1.0.0_02102011.jar
Deployed in this way, the plugins are not physically installed on the Domino server. Also,

after the HTTP task is shut down, the plugins are not persisted anywhere on the server. If there is
more than one version of the same feature, the Domino OSGi launcher uses only the latest ver-
sion; any older versions are ignored. The launcher only compares the major, minor, and service
parts of the version. If two features have the same major, minor, and service parts, the Domino
OSGi launcher relies on the last modified date of the feature document.

Deploying the OSGi plugins using this method is easy, but not just anyone can be allowed
to import plugins to the server. Many security safeguards are built in to this feature. As with any
code running from an NSF, be careful about what code you trust and who created it.

The first layer of security is that the server’s administrator can enable/disable NSF-based
plugin contributions. By default, the feature is disabled; to enable it, the administrator uses
the OSGI_HTTP_DYNAMIC_BUNDLES notes.ini variable containing the list of comma-
separated NSF paths that are authorized to contribute dynamic plugins. This notes.ini variable
must be either manually entered into the notes.ini file or automatically added using a server con-
figuration document. The Domino Administrator cannot use the set config method of adding this
notes.ini variable from the Domino console.

Server Deployment 33

ptg7987094

The next layer of security is the ACL of the update site database. The ACL should only
allow the Domino Administrator access to create documents in the database. End users should
only have reader access to this database.

The OSGi runtime also checks document signatures. Documents storing the plugins and
fragments are signed when they’re imported into the database. If they are not signed or the signa-
ture has been tampered with, the OSGi runtime will not load them, and a warning message will be
added to the log.

Additionally, for the plugin/fragment to be loaded, the person who signed the document
must be included in the Sign or Run Unrestricted Methods and Operations field in the Secu-
rity tab of the server document. If that’s not the case, the OSGi runtime adds a warning to the log,
and the plugin is not loaded.

Automatic Server Deployment in Domino 8.5.2
Although the dynamic OSGI deployment feature is not available in Domino 8.5.2, the adminis-
trator can still automatically deploy the Extension Library plugins to the Domino server using an
additional OpenNTF project called Plugins Deployment for Domino.

This project is principally a modified Domino updateSite.ntf template that contains one
additional form, where the administrator can specify the features and plugins to be deployed into
the Domino server, along with a LotusScript class (triggered by various agents) that copies the
plugins and features into the designated locations on the server and issues (if checked) a restart
HTTP command on the console. Because the ability to deploy into the server file system is pow-
erful, the administrator needs to carefully control access to any database created with this tem-
plate. (Read-only is okay.) The database solves for 8.5.2 the problem of deploying extension
libraries. Keeping a replica on each server eases the rollout of updates.

The administrator can download the latest release of the project from OpenNTF by navigat-
ing to http://plugindeploy.openntf.org (see Figure 2.17) and going to the Downloads/Releases
section of the project.

34 Chapter 2 Installation and Deployment of the XPages Extension Library

http://plugindeploy.openntf.org

ptg7987094
Figure 2.17 The home page of the Plugins Deployment for Domino project for pre-R8.5.3
Domino ExtLib installations.

Once you have downloaded the zip file, unpack it and copy the newupdatesite.ntf to the
Domino server’s Data directory.

You then need to sign the template with an ID that is allowed to run unrestricted agents
using the Domino Administrator client.

After you have completed this step, you can create a new database on the server using this
template. Once the database has been created, it automatically launches on the Notes Client.

This database is similar to the current update site application that is distributed with
Domino 8.5.2 with the exception of a couple of new views and agents that do the server
deployment.

The next step is to import the Extension Library update site into this database. Select the
Import Local Update Site action button. In the dialog that appears, click the Browse button and
select the site.xml file from an unpacked updateSite.zip. Then click OK. The site then imports
into the database; the user should see, depending on the release of ExtLib, a number of Features,
Plugins, and Fragments in the update site database, as shown in Figure 2.18.

Server Deployment 35

ptg7987094

Figure 2.18 Features view of the 8.5.2 updated site application with the Extension Library
installed.

Next, click on the Create Server Deployment action button to bring the user into a new
document in the database. Select to which servers to deploy the ExtLib, and then select the fea-
tures and all the plugins/fragments to be deployed. It is recommended that you select the Restart
HTTP After Deployment box so that the Domino server will know to start using ExtLib imme-
diately, as in Figure 2.19.

36 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

Figure 2.19 New server deployment document.

If the Domino server is also running IBM Lotus Traveler, it is recommended that you select
the Server Is Running Lotus Traveler box so that the deployment agent will know that it needs
to shut down and restart Traveler as part of the process. If you don’t do this, the HTTP task can’t
restart correctly.

Before the new server deployment document can start working, you need to perform one
last step: enable the deployment agents. Open the database in the Domino Designer client and
select the Agents section of the design. Select and enable the two agents, DeployOnSchedule
and DeployOnServerStart, as highlighted in Figure 2.20.

Server Deployment 37

ptg7987094

Figure 2.20 The Agent Configuration Setting for pre-8.5.3.

The DeployOnSchedule agent is designed to run every four hours, and the DeployOn-
ServerStart agent runs when your Domino server is restarted.

Once the agents have been enabled, the ExtLib plugins are automatically deployed to the
selected Domino servers. The administrator can verify this by looking in the Activity Log con-
tained within the same application.

Manually Deploying Libraries to a Server
Manually deploying libraries to a server requires the administrator to have access to the server’s
file system so that the required files can be manually copied the required location. This procedure
is the least convenient of the Extension Library deployment scenarios to maintain and is not
really recommended over the automatic server deployment methods mentioned previously. How-
ever, it is included here so that the user can understand how an Extension Library is deployed on
a server in the rare event that the administrator needs to remove it under certain circumstances.

38 Chapter 2 Installation and Deployment of the XPages Extension Library

NOTE

If you are using the 8.5.3 method for automatic server deployment, no physical files are
deployed to the server, so you don’t need to manually remove old versions.

ptg7987094

The file updateSite.zip, which is contained in the download from the ExtLib release down-
loaded from OpenNTF, is copied into a temporary directory or folder in the server machine.

The user should locate and open the Domino server’s Eclipse Workspace directory. This is
normally found in the Domino\Workspace directory under the Domino server’s Data folder.
Inside this folder is the applications\eclipse folder, which contains both a features and a plugins
folder, as shown in Figure 2.21.

Server Deployment 39

Figure 2.21 Default location for a manual installation of the ExtLib on a Domino server.

The files are then unpacked from the updateSite.zip into the relevant folders. You can
delete the file site.xml after it is unpacked. You don’t need that file for manual deployments.

Once the files have been transferred, the administrator needs to restart the HTTP task on the
Domino server by issuing the Restart Task HTTP command on the console. It might be tempt-
ing to use the command Tell HTTP Restart, but that does not restart the JVM that the XPages
runtime uses.

To verify that the ExtLib has been installed on the server, issue the command Tell http osgi
ss com.ibm.xsp.extlib. It reports to the console, as shown in Figure 2.22.

ptg7987094
Figure 2.22 Server console command and output.

The output to the server console is from the version of the Extension Library from the
8.5.2.201102282303 release. It changes depending on the version of the ExtLib deployed. The
Domino server also makes sure that two different versions of ExtLib deployed at any one time
can run at the same time. If you upgrade the ExtLib by copying the files from a newer release to
the directories mentioned earlier and restart the HTTP task, the Domino server activates only the
newer version.

Deploying the Extension Library to End Users
If the developer is planning to create XPiNC applications that use the new ExtLib controls, it’s
necessary to deploy these controls to the end users of Lotus Notes Client. Again, this depends on
the original of the Extension Library. The Upgrade Pack has its own add-on installer for the Notes
Client. This installs the ExtLib runtime to exist alongside XPages runtime in the Notes Client.
Using releases from OpenNTF of the ExtLib requires a completely different deployment method.
This section shows you how to automatically deploy ExtLib to these users.

Automatic end user deployment of ExtLib involves the use of update sites, widget catalogs,
and policies. Although this book covers the basics of how to set up ExtLib for deployment, it is
advised that Domino administrators familiarize themselves with these topics before continuing,
because some of the explanations are beyond the scope of this book.

40 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

Widget Catalog Setup
Most modern servers contain a widget catalog application, which is a vital resource for publish-
ing and provisioning widgets, tools, and services. The catalog increases individual and team pro-
ductivity within an organization.

If the administrator has yet to create a widget catalog for the server, here is an opportunity
to do so. If there isn’t a widget catalog on the server, creating a new database based on the widget
catalog template is relatively easy. As highlighted in Figure 2.23, the toolbox.ntf template is used
to create this application.

Deploying the Extension Library to End Users 41

Figure 2.23 The New Application dialog box for the widget catalog.

If the server already has a widget catalog database, the administrator must ensure that who-
ever has the rights to provision the Extension Library as a widget has the access to do so. The
Admins and WidgetAuthor roles need to be selected for this person in the database’s ACL.

To use this widget catalog on the Notes Client, you need to enable it in the Preferences, as
shown in Figure 2.24. This is a necessary setting for the administrator, but end users could use a
widget category to install.

ptg7987094

Figure 2.24 Enabling the Notes Client to use widgets via the Preferences dialog.

Creating a Widget Configuration
Now that the widget catalog is available, you can create a widget for the Extension Library. First,
however, the Extension Library update site is required, which can come from two sources. One
source can be from unpacking the updateSite.zip file from the Extension Library download. The
other source can be the update site document created for automatic server deployment, as
explained in the earlier section, “Automatic Server Deployment in Domino 8.5.3.” The update
site document on the server’s update site application might be the preferable method to use here
because it leads to a certain amount of control for the server administrator over the version of the
Extension Library used in the organization.

42 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

Figure 2.25 The Features and Plugins radio button selected on the Start Configuring Widgets
dialog.

Deploying the Extension Library to End Users 43

The next step is to return to the server administrator’s Notes Client and navigate to the My
Widgets panel on the right pull-out. Here, if no other widgets are installed on the end user’s
Notes Client, there will be a link to Start Creating Your Own Widgets; otherwise, the adminis-
trator can start creating widgets by selecting from the Get Started drop-down menu. Selecting
this launches the Start Configuring Widgets dialog, as in Figure 2.25. Select the radio button
beside Features and Plugins, and then click Next.

ptg7987094

The next dialog along the wizard allows the user to put in either the location of an update
site site.xml file in the system or a URL to an update site application located on a trusted server,
as in Figure 2.26. Selecting the Load button to the right of the URL displays the available plugins
and features at that location. If loading is successful, the user can select from the list the associ-
ated plugin and features from a particular download of the Extension Library. Selecting Next
moves the wizard onto the next dialog.

44 Chapter 2 Installation and Deployment of the XPages Extension Library

Figure 2.26 Add the URL to the update site database on the server.

ptg7987094

As shown in Figure 2.27, the administrator then gives this widget a unique name and con-
firms the description. Click Next.

Deploying the Extension Library to End Users 45

Figure 2.27 Give the widget a unique name, and then click Next.

ptg7987094

The wizard moves on to a more important window, one that shouldn’t be ignored, in Figure
2.28. It’s an opportunity to modify the install manifest, which becomes the extension.xml when
published to the catalog (see Listing 2.3).

46 Chapter 2 Installation and Deployment of the XPages Extension Library

Figure 2.28 Here the install manifest can be previewed and edited.

It’s worth noting the various properties:

• url=""—This can be either a http/nrpc/file URL that points to updateSite.nsf or a
local site.xml file.

• hideThumbnail="true"—Set this flag to tell the widget to hide in My Widgets sidebar
pane. It will only be shown if the user chooses Show All in the My Widgets sidebar.

• match="perfect"—Guarantees that the provisioning engine will attempt to install the
exact version that has been specified in the install manifest.

ptg7987094

Deploying the Extension Library to End Users 47

• shared="true"—Provided that shared="true" is set in the install manifest snippet,
as below, the plugin is installed to Notes_install_dir\framework\shared\eclipse.
If there is no write access to that directory, the plugin is installed to
Notes_install_dir\data\workspace\applications. This property is also important for
multiuser Notes Clients. If this property is set to “false,” the widget and the Extension
Library are installed only for the one user, as with the example in Listing 2.3. The
example in Figure 2.28 shows this property set to “true,” which means it is installed to
all multiusers.

Listing 2.3 Sample Source of XML with Features Highlighted

<webcontextConfiguration version=”1.1”>

<palleteItem title=”OpenNTF ExtLib”
url=”http://yourserver/admin/update/extlib.nsf/site.xml”
providerId=”com.ibm.rcp.toolbox.prov.provider.ToolboxProvisioning”
imageUrl=”” id=”com.ibm.xsp.extlib”>

<preferences />

<data>

<installManifest>

<![CDATA[<install>

<installfeature description=”OpenNTF ExtLib” id=”com.ibm.xsp.extlib”
name=”OpenNTF ExtLib”>

<requirements>

<feature id=”com.ibm.xsp.extlib.feature” match=”perfect” shared=”false”
action=”install” version=”8.5.2.201102282303NTF”/>

</requirements>

</installfeature>

</install>]]>

</installManifest>

</data>

</palleteItem>

</webcontextConfiguration>

ptg7987094

Figure 2.29 The widget for the ExtLib is complete. Review and click Finish.

Once the Notes Client has restarted, the administrator can publish the newly installed
Extension Library widget to the widget catalog by selecting this option shown in Figure 2.30.

48 Chapter 2 Installation and Deployment of the XPages Extension Library

Selecting Next on the wizard brings the user to the final dialog, shown in Figure 2.29. After
selecting Finish, the user must restart the Notes Client.

ptg7987094Figure 2.30 Right-click on the ExtLib widget in My Widgets and select Publish to Catalog.

This action creates a new document in the widget catalog and imports the extension.xml
file, as shown in Figure 2.31. Here the administrator specifies a category for the widget so the
widget can be deployed to end users when this category is specified. The administrator also spec-
ifies the platform and checks the box for Plugin and Features.

Deploying the Extension Library to End Users 49

ptg7987094

Figure 2.31 Composing the widget document in the widget catalog.

Now the widget containing the ExtLib is ready to be deployed to other Notes Client users.

Provisioning the Extension Library Widget to Other Users
Provisioning the ExtLib widget to end users on the Notes Client can be done in two ways: manu-
ally and automatically with a desktop policy.

Manual Deployment

The administrator can make available the details of the widget catalog application and server to
connect to for the end user. Then end users can enable widgets on the Notes Client by selecting
File → Preferences → Widgets. Figure 2.32 shows the check box selected, the server and the
catalog selected, and, more importantly, the category selected. Selecting Apply installs the
widget and the Extension Library. Restarting Notes makes this feature functional.

Alternatively, an administrator can send the end user an XML definition—install mani-
fest—by email, which can then be dragged to the My Widgets sidebar.

50 Chapter 2 Installation and Deployment of the XPages Extension Library

ptg7987094

Figure 2.32 Manually installing the Extension Library widget on an end user’s Notes Client.

Automatic Deployment with Policies

Desktop policies control a user’s workspace, so the administrator can use them to force the end
user to use the Extension Library and a particular version on the client machine. All the adminis-
trator must do is point the desktop policy to a widget catalog and a certain category contained
within that application. These policies can be used to update the settings of the Notes workspace.

Desktop policies are created through the Domino administrator. On the People & Groups
tab, select Policies and then Add Policy. Enter a name for the policy.

In the row for the Desktop field, click the New button, which creates a new Desktop Set-
tings policy. Enter a name for the Desktop Settings policy, and then switch to the Widgets tab. As
shown in Figure 2.33, the important fields are the Widget Catalog Server, the Widget Catalog
Application Name, and the Widget Catalog Categories. After that, it is up to the server admin-
istrator to decide how to enforce the widget policy for the desktop. For example, by leaving the
default setting for How to Apply This Setting on the widget catalog server and application
of Set Value and Prevent Changes, the end user cannot change the values in the Widgets
preference panel.

Deploying the Extension Library to End Users 51

ptg7987094
Figure 2.33 Creating a desktop policy for the widget catalog category.

Server administrators compose the policies based on the organization’s requirements. They
can set in the outer policy to whom the policy is to be assigned, users, or groups. For more infor-
mation on Domino policies and how they are configured, go to the Lotus Domino Administration
Help. (It is available from the Domino Administrator client by selecting Help → Help Topics.
You can also find the documentation online at http://publib.boulder.ibm.com/infocenter/
domhelp/v8r0/index.jsp; select the Domino 8 Administrator link.)

The next time the user starts Notes, the library is installed automatically.

Conclusion
This chapter explored the various ways to install and deploy the ExtLib. Initially, deployment to
the Domino server was time-consuming and labor intensive, which posed a real barrier to the
adoption of the Extension Library as a platform to base production applications upon. This has
been overcome with the ability to deploy NSF-based plugins to the server.

With the IBM supported version of the XPages Extension Library in the Upgrade Pack,
installation, deployment, and adoption can be accomplished without too much fuss. With no
excuses, it’s time to play with the XPages ExtLib.

52 Chapter 2 Installation and Deployment of the XPages Extension Library

http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp

ptg7987094

53

C H A P T E R 3

TeamRoom Template
Tour

The previous two chapters introduced the XPages Extension Library and the various ways to
install and deploy the library. The next logical step is to view the library in action—to see the
controls used in a tangible way in a live application.

The application of choice will be the TeamRoom template, which has been modernized to use not
only XPages but the Extension Library as well. The TeamRoom is a Lotus Notes application
designed to support processes that help people work together. It is one of the original social and
collaboration tools. It is no wonder that the TeamRoom is one of the most widely used templates
in businesses across the world. Businesses are constantly evolving with varying business needs
that revolve around new technologies as well as a modern look and feel. What better application
to modernize?

Modernizing a Lotus Notes template using XPages is straightforward. Given enough time,
resources, and skill, a team can transform an application to be something special. However, spe-
cialness was not the goal of the team that undertook this task. IBM’s XPages development team
developed the template by transforming the XPages Extension Library and then brought these
developments back into the template. When a feature, a technology, or a control needed in the
template was generic in nature, the team would develop it first in the Extension Library and then
bring it into the template. This basic strategy meant that the template development time would be
longer, but the payback is that these same techniques could be reused by the consumers of the
Extension Library and dramatically reduce the time and effort needed to develop their own
applications.

This chapter will demonstrate this methodology and show these Extension Library controls in
action. It will illustrate how these controls are configured and why. This information will enable
developers to learn about the Extension Library and be enlightened about how empowering
it can be.

ptg7987094

Where to Get the TeamRoom Template and How to Get Started
This template, besides being a fully functional (or full function) team collaboration environment,
is the perfect showcase for the XPages Extension Library. It will enable developers to learn how
some of the controls from the Extension Library can be used in a real-life application and make it
a great learning resource on how to leverage the XPages Extension Library.

There are two versions of the TeamRoom template. The first version comes with the IBM
Lotus Notes Domino Upgrade Pack 1 release for IBM Lotus Notes Domino 8.5.3 and is designed
only for use with the IBM-supported version and the 8.5.3 OpenNTF versions of the XPages
Extension Library.

The second version of the template is available from OpenNTF in the TeamRoom Open-
NTF 8.5.2 project, which will not work with the 8.5.3 XPages Extension Library. The main dif-
ference between the two versions is that the IBM-supported version for Domino 8.5.3 supports
mobile devices (see Chapter 10, “XPages Goes Mobile”), making it easier to access TeamRoom
data via mobile web browsers while on the road. Although the new TeamRoom template has the
same traditional Notes Client features as before, the web experience is completely different.

The TeamRoom template from the Upgrade Pack is signed with the ID “Lotus Notes Tem-
plate Development” just like any other IBM Lotus Notes Domino product template, so applica-
tions created from this template will run on any server. The server’s administrator needs to sign
the TeamRoom obtained from OpenNTF. Once this is done, the XPages TeamRoom is ready to
go. Users can get their first look at the XPages TeamRoom in Figure 3.1.

54 Chapter 3 TeamRoom Template Tour

ptg7987094
Figure 3.1 How the TeamRoom first appears on a browser.

Configuration of the XPages TeamRoom is similar to the original version of the template.
Most, if not all, of the administration of the TeamRoom is done by the end user of the application,
and it is documented within the application itself. Administration of the TeamRoom won’t be
covered here, because that isn’t the objective of this chapter. The aim in this chapter is to explore
the XPages components of the TeamRoom and to learn how to use the Extension Library.

The TeamRoom Template and Why It Was a Good Candidate for
Modernization
The Lotus Notes TeamRoom was introduced as a regular template into Lotus Notes Domino R6
in 2002. In a way, it was one of the first real social collaboration tools supplied out of the box with
IBM Lotus Domino. Wherever you find an IBM Notes Domino server, there will be many appli-
cations deployed that were created from the TeamRoom template, because it’s popular. The
application is designed to support processes that help people work together. The TeamRoom
facilitates the creation and ongoing development of processes and practices common to high-
performance teams.

The TeamRoom Template and Why It Was a Good Candidate for Modernization 55

ptg7987094

TeamRoom is a tool for information sharing and collaboration. By creating a shared con-
text for teamwork, TeamRoom does what many good tools do: It creates leverage, both for the
individuals on the team and for the team as a whole. Because the technology is built on Notes,
this context is richer and the leverage is greater than is typically possible with simple messaging
tools like e-mail and instant messaging.

What the TeamRoom does and what it was initially designed to do seem commonplace
now: raising and discussing issues, creating a collaborative work environment, brainstorming
ideas and problems to bring forward solutions and action, preparing meetings, posting agendas,
and tracking action items. These are all examples of work made easier and more efficient by the
TeamRoom template. The template may seem clunky now, but it still packs a punch. Its work-
flow, business logic, and data are all reasons to keep it and to modernize it.

Go to any organization that has Domino, and you’ll notice that one of the most popular
templates from which applications inherit their design is the TeamRoom. This template, along
with the Discussion and Document Library, accounts for most of the applications in any organi-
zation. These templates have seen continuous improvements since they were introduced. Upgrad-
ing the TeamRoom to use XPages is the next logical step to keep it at the cutting edge.

TeamRoom Redesign Brief and Features
When the template designers at IBM first sat down together to discuss how they should modern-
ize the TeamRoom template, they decided that they needed to update the application to enhance
its usability by using the most up-to-date UI design methodologies and adopting design concepts
from other IBM Software web products.

The designers also examined the current version of the XPages Extension Library at the
time and decided that, where possible, they should build reusable controls that could be delivered
as extended controls as part of a future version of the XPages Extension Library. This would
allow them and customers to build further XPages-based applications using the same design
practices at a much quicker rate. Indeed, it is because of this decision that the XPages Extension
Library contains many of the features described in this chapter.

Application Layout
The update to the look and feel of the TeamRoom application is probably the biggest change that
the end user of the application will see. To ensure that they were following design concepts from
other IBM Software web applications, the template development team decided to move to the
OneUI application layout. Rather than having to rebuild the layout for each page within the appli-
cation, the development team built the Application Layout control for ExtLib, which is described
in Chapter 9, “The Application’s Layout.”

Open the same TeamRoom in Designer, and you can see how this control is configured.
The layout.xsp Custom Control is where the Application Layout control (xe:application-
Layout) is put together (see Listing 3.1). Observe the markup, and notice how few properties are
set. Yet when this Custom Control is added to an XPage, the power of this control is evident. The

56 Chapter 3 TeamRoom Template Tour

ptg7987094

layout control is configured here first to use the OneUI Application Configuration. From this sev-
eral properties are then used to set this control further, like the Banner, Legal Text, Navigation,
Placebar, and Searchbar. Then there is an Editable Area control, xp:callback, to allow devel-
opers to add content when the layout Custom Control is added to an XPage. It’s easy to control
the layout within the TeamRoom template.

Listing 3.1 The Configured Application Layout Control in layout.xsp

<xe:applicationLayout id=”oneUILayout1”>

<xe:this.configuration>

<xe:oneuiApplication legalText=”(c) Copyright IBM Corporation
2011”

navigationPath=”${javascript:compositeData.navigationPath}”

defaultNavigationPath=”/home”

footer=”false”

banner=”true”>

<xe:this.placeBarActions>

<xe:pageTreeNode

page=”setup”> </xe:pageTreeNode>

</xe:this.placeBarActions>

<xe:this.searchBar>

<xe:appSearchBar

pageName=”search.xsp”>

</xe:appSearchBar>

</xe:this.searchBar>

<xe:this.bannerUtilityLinks>

<xe:userTreeNode>

<xe:this.label>

...

</xe:userTreeNode>

<xe:loginTreeNode></xe:loginTreeNode>

</xe:this.bannerUtilityLinks>

<xe:this.placeBarName>

<![CDATA[${javascript:var teamname =
strings.getString(“teamroom.name”);

...

return teamname;}]]>

</xe:this.placeBarName>

</xe:oneuiApplication>

</xe:this.configuration>

<xe:this.facets>

<xp:div

TeamRoom Redesign Brief and Features 57

ptg7987094

Listing 3.1 (Continued)

xp:key=”LeftColumn”>

<xe:navigator

id=”outline”

expandable=”true”>

<xe:this.treeNodes>

<xe:pageTreeNode

page=”home”

selection=”/home” />

...

</xe:this.treeNodes>

</xe:navigator>

<xc:tagCloud

id=”tagCloud”>

</xc:tagCloud>

<xp:callback

id=”left”

facetName=”LeftColumn”>

</xp:callback>

</xp:div>

<xp:callback

id=”right”

xp:key=”RightColumn”

facetName=”RightColumn”> </xp:callback>

</xe:this.facets>

<xp:callback

id=”c”

xp:key=”MiddleColumn”>

</xp:callback>

</xe:applicationLayout>

The layout Custom Control also contains the contents of the left column: navigation and
tag cloud. The navigator (xe:navigator) is a new control that is detailed in Chapter 8, “Out-
lines and Navigation.” In the TeamRoom, the navigator is placed on the layout not only to control
the navigation throughout the application but to provide users with a visual indicator of where
they are in the application as they browse from page to page. The Left Column also contains the
Tag Cloud Custom Control (xc:tagCloud), which contains the control (xe:tagCloud). This
is for easier identification of the most-used categories of documents within the application. The
Tag Cloud control originated in the XPages Discussion template, where it was implemented as a
custom control; however, for the TeamRoom template, the template design team rewrote it and
added it to ExtLib for easier reuse.

58 Chapter 3 TeamRoom Template Tour

ptg7987094

Recent Activities: The Home Page
The application home XPage (home.xsp) shows a Recent Activities stream modeled on more
up-to-date design concepts. The home.xsp XPage pulls in the data from the xvwRecentActivity
view that displays the document activity by modified date descending. This is then represented on
the home page in an extended control called the Data View (xe:dataView). This control is
described in Chapter 7, “Views.” The Data View control is another of the most widely used con-
trols for displaying data collections from the Extension Library. The Data View’s real power lies
in how it can present this data, as in Figure 3.2.

In the right column are two widgets (xe:widgetContainer) that are contained within the
homeTeamRoomPurpose.xsp and homeMembersView.xsp Custom Controls. These widgets
only appear in the home XPage. The homeMembersView.xsp Custom Control is the more inter-
esting of the two. Here the control uses a conventional XPages Repeat control (xp:repeat) but
uses a Java bean to populate the fields within. Coding in Java isn’t directly connected to XPages
Extension Library, but it is important to know when the developer wants to manipulate the
XPages Extensions API and develop with Java in general. Chapter 14, “Java Development in
XPages,” will take developers by the hand and let them work with Java in XPages.

TeamRoom Redesign Brief and Features 59

Figure 3.2 The home page highlighting the Data View control in the right column.

ptg7987094

All Documents
In the All Documents XPage (allDocuments.xsp) of the application, the template development
team improved on the code for the standard XPages View controls and Pager controls. This
allowed them to show abstracts of the main text directly in the view and have the pager
(xe:pagerSaveState) remember what page it was on when the user went into a document and
then back out to the view (see Figure 3.3). An example of this page control can be found in the
allDocsAllTab Custom Control.

60 Chapter 3 TeamRoom Template Tour

Figure 3.3 The All Document XPage with Dynamic Content and Page.

To simplify the UI design and promote reuse where possible, the development team uses
multiple views of the same data on the same page. To manage this and provide a consistent UI for
filtering categorized views to a specific category, the development team implemented the ExtLib
Dynamic Content (xe:dynamicContent), which is described in Chapter 4, “Forms, Dynamic
Content, and More!” This allowed the team to switch between different content at a location in
the page.

ptg7987094

The Dynamic Content is a very powerful control to learn and master. It makes for a slicker
application and reduces the number of XPages needed. The example from Listing 3.2 is taken
from the All Documents XPage. Here the Dynamic Content control displays the default facet:
namely, the allDocsAllTab, or a selected document. Depending on an action that drives a key, this
control displays a different Custom Control with partial refresh.

Listing 3.2 Dynamic Content Control Example

<xe:dynamicContent id=”dynamicView”

defaultFacet=”#{javascript: sessionScope.allDocsSelectedTab ||
‘tabAll’;}”

useHash=”false”

partialEvents=”true”>

<xe:this.facets>

<xc:allDocsAllTab id=”tabAll”

xp:key=”tabAll” />

<xc:allDocsAllByDateTab id=”tabByDate”

xp:key=”tabAllByDate” />

<xc:allDocsAllByAuthorTab id=”tabByAuthor” xp:key=”tabAllByAuthor”
/>

<xc:allDocsAllByTeamTab id=”tabByTeam”

xp:key=”tabAllByTeam” />

<xc:allDocsAllByTagTab id=”tabByTag”

xp:key=”tabAllByTag” />

</xe:this.facets>

</xe:dynamicContent>

The Document Form
The template team also reexamined document creating, reading, and updating and incorporated
those lessons learned into the Extension Library. The results are illustrated in Figure 3.4. The
Custom Control homeMainTopic handles this for the TeamRoom template. A new control Form
Table (xe:formTable) does all the heavy lifting because it provides a quick and easy way to
create a OneUI-based form without having to worry about styling or consistency. This control
and others described in this section are detailed in Chapter 4.

TeamRoom Redesign Brief and Features 61

ptg7987094
Figure 3.4 The new document form.

Inside a document within the application, the team examined how comments on the docu-
ment were shown. They redesigned them to use a OneUI design feature called Comments In A
Forum, which, again, they extracted as a control within ExtLib for easier reuse. You can see how
this is put together in the topicThreadForum Custom Control and in Figure 3.5.

62 Chapter 3 TeamRoom Template Tour

ptg7987094

Figure 3.5 The response form with an abstract from the parent.

As part of the modernization of the application, the team also wanted to include a number
of Web 2.0 style features, which you can see implemented in the application through the use of
in-context editing in the threaded view, including response creation and editing.

The simplification of the New/Edit Main Document UI required that the input of new data
into the application be presented in a standard format, in which required fields and the most com-
monly used fields would be more prominent. To do this, the development team once again turned
to the OneUI layout and implemented a standard form design that was created as a new ExtLib
control for easier reuse.

Calendar
The original TeamRoom template contained a calendar that is still popular in its current imple-
mentations. The development team knew that the calendar for the new template had to be equally
modern to the rest of the design changes that they were making. Rather than design a new calen-
dar, the team looked to the iNotes® team within IBM and decided that it would be best to reuse
the calendar from iNotes. Working with that team, they implemented the iNotes Calendar
(xe:calendarView) as a reusable control in ExtLib, as shown in Figure 3.6. This is a great

TeamRoom Redesign Brief and Features 63

ptg7987094

addition to ExtLib because it makes it much easier for developers to add calendar functionality to
their applications with in-calendar editing and single-click switching to different calendar modes.
The calendar control is described in much more detail in Chapter 7.

64 Chapter 3 TeamRoom Template Tour

Figure 3.6 The calendar view.

The calendarView Custom Control contains the calendar view that is used on the Calendar
XPage (calendar.xsp). It also contains an example of a REST service (xe:restService).
XPages Extension Library includes a new set of RESTful services collectively called Domino
Data Services, which are described further in Chapters 7 and 11, “REST Services.”

Members
The member handling within the application was given a complete overhaul to make it even eas-
ier for the end user. Adding members to the review section of a new document, which uses the
controlSectionCombineNames Custom Control, is done using the Value Picker control
(xe:valuePicker), which the team created for ExtLib and is shown in Figure 3.7. This control
is fully integrated with the Domino Directory or, as in the case of subteams, can be pointed to a
view within the application. This is described in Chapter 6, “Pop-Ups: Tooltips, Dialogs, and
Pickers.”

ptg7987094

Figure 3.7 The Value Picker control on the document form.

The members view within the TeamRoom template uses an attribute that the development
team created for ExtLib. This attribute allows a single column to be displayed as a multiple col-
umn view. The multiColumnCount attribute on the Data View control is set to 2, and the results
of its use are shown in Figure 3.8. The attribute displays the details for each member and their
profile photo in two columns. The member details are composed using a unified User API that the
ExtLib provides. It can show the thumbnail photos for each member in the columns. The photos
are stored within the NSF. These features are described in Chapters 7 and 14.

TeamRoom Redesign Brief and Features 65

ptg7987094

Figure 3.8 The Members XPage.

Mobile
The version of the XPages Extension Library that is compatible with IBM Lotus Notes Domino
8.5.3 includes a new set of mobile controls and capabilities. They make existing XPages applica-
tion display and function in the mobiles’ web browser with the same look and feel as native appli-
cations. Figure 3.9 shows these controls in the newer versions of the TeamRoom. The mobile
features are described further in Chapter 10.

66 Chapter 3 TeamRoom Template Tour

ptg7987094

Figure 3.9 How the TeamRoom looks on a mobile device.

Lessons Learned and Best Practices
The template design team for the TeamRoom template learned a number of things as they built
the redesigned TeamRoom template. The most important of these was that ExtLib allowed them
to modernize the design of the template much faster than if they had decided to build all the con-
trols themselves. The Discussion template, which had already been modernized using XPages in
the Lotus Notes Domino 8.5 release, has been updated again using the ExtLib. The Discussion
XL template, available from the Lotus Notes Domino 8.5.3 Upgrade Pack 1, was quickly brought
up to date by the lessons learned from modernizing the TeamRoom. This is likely to be the trend
for future development and modernization of popular Notes Domino templates like the
Document Library.

The team also learned that source control is essential when numerous people are working
on related areas within a template at the same time. Although source control is not covered in
this book, it is recommended that any team of developers working on a Domino application
investigate it.

Lessons Learned and Best Practices 67

ptg7987094

Conclusion
This chapter examined the TeamRoom template as moderized using XPages that we will be look-
ing at throughout this book and showed where the different aspects of ExtLib have been used
within the application.

It also showed the design process the template development team at IBM took while
redesigning this application. Although there was an overhead associated with extracting many of
the controls that the team designed, the long-term benefits of implementing them as reusable con-
trols in ExtLib far outweigh those costs. Implementing the controls into ExtLib has allowed the
template development team at IBM to reuse the controls in numerous standard templates. More
importantly, it has allowed other Domino developers to use them in their own applications.

68 Chapter 3 TeamRoom Template Tour

ptg7987094

69

PART II

The Basics:
The Application’s
Infrastructure

4 Forms, Dynamic Content, and More!

5 Dojo Made Easy

6 Pop-Ups: Tooltips, Dialogs, and Pickers

7 Views

8 Outlines and Navigation

9 The Application’s Layout

ptg7987094

This page intentionally left blank

ptg7987094

71

C H A P T E R 4

Forms, Dynamic
Content, and More!

One of the major benefits of the Extension Library is the number of prebuilt and preformatted
components that allow the developer to quickly and easily deploy complex layouts and design
patterns. Components such as the Form Layout controls (xe:formTable, xe:formRow, and
xe:formColumn) along with the controls like Forum Post (xe:forumPost) enable developers
to create rich user interfaces without spending time worrying about designing the layout.
Coupled with components that enable the capability to extend AJAX into the application with
dynamic content controls such as the Switch (xe:switchFacet) and the In Place Form
(xe:inPlaceForm), the Extension Library will instill modern design patterns and best practices
into Lotus Domino applications with simple drag-and-drop ease. As the application is extended
with additional controls, such as the Dojo widgets described in Chapter 5, “Dojo Made Easy,”
and the name and value pickers described in Chapter 6, “Pop-Ups: Tooltips, Dialogs, and Pick-
ers,” it’s possible, with little effort, to create a truly rich Internet application with an exceptional
user experience.

Form Layout Components
The Form Layout components provide a quick and easy way to create a OneUI-based form with-
out having to worry about styling or consistency. Each component creates a theme-based control
that allows developers to focus on the content of the control rather than layout. Each component
fits in with the overall OneUI theme, extending a common look and feel to all aspects of the
application.

Form Table (xe:formTable, xe:formRow, xe:formColumn)
The Form Table (xe:formTable), Form Layout Row (xe:formRow), and Form Layout Col-
umn (xe:formColumn) controls provide an easy and efficient way to lay out a OneUI-based

ptg7987094

form without having to worry about formatting the table. The xe:formTable defines the con-
tainer for the layout and provides default settings for the layout, the form title and description, and
more. Within the table, the optional xe:formColumn component is used to split the form into a
multicolumn layout, with xe:formRow components defining each row of the table. Each
xe:formRow component is usually associated with a single field. When using the xe:formCol-
umn components, xe:formRow components are placed within their respective xe:formColumn
components. The xe:formTable has facets for the header and footer to place content above
or below the form body. The header facet is placed below the form title and form description.
Table 4.1 describes each of the xe:formTable properties, and Tables 4.2 and 4.3 describe the
xe:formColumn and xe:formRow properties, respectively.

Table 4.1 xe:formTable Properties

Property Description

legend Specifies the fieldset legend for nested form controls. Equivalent to the
HTML element’s legend attribute on a fieldset tag.

disableErrorSummary Provides a summary of all failed Server-Side field validations at the top
of the form, above the form name and description. To disable this
summary, set this property to true.

disableRowError Displays a message above the field with the validation error message
when a field fails Server-Side validation. To disable this error message,
set this property to true.

errorSummaryText Allows customization of the first line of the error summary’s text, which
defaults to “Please check the following:”.

fieldHelp Specifies whether fields with an identifying helpId property should ren-
der the field help icon. Built-in field help has not been fully implemented
as of the August 22, 2011 release of the Extension Library.

formDescription Specifies the text that describes the form. The description is placed
below the form title at the top of the form.

formTitle Specifies the text of the form title displayed at the top of the form.

labelWidth Sets the default width for the label cell on all form rows. The default can
be overridden on a subsequent formRow component. The overridden
value will apply to all field labels within the same column.

disableRequiredMarks By default displays an asterisk next to all required field labels. Normally
false; when true, the asterisks are not displayed.

labelPosition Sets the default position for the field label on field row components.
Can be above, left, or none. When set to none, a field label (and the con-
taining cell) is not rendered.

72 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

Table 4.2 xe:formColumn Properties

Property Description

colSpan Allows the formColumn to stretch across multiple columns of the
parent formTable. Because of the current rendering of the columns, use
this property with caution, or better yet, just avoid it.

Table 4.3 xe:formRow Properties

Property Description

for An optional identifier to connect the label to a specific field within the
form row. If omitted, the formRow defaults to the first editable field in
the row. If the row contains more than one field, use the for property to
identify which field should be used for the association. The for property
also controls the field that will be used to compute whether the required
field indicator will be displayed.

helpId Identifies the specific field help associated with this row. Built-in field
help as of the August 22, 2011 release is not fully implemented, and this
property currently has no effect (except for making the runtime render a
question mark icon next to the field row that does absolutely nothing).

Label Specifies the label text for the row.

labelWidth Specifies the row-specific label width. Note that all field label widths
within the same column are in the same HTML table and share the width
values in the same manner that cells in the same HTML table share cell
widths.

labelPosition Sets the position for the field label on field row components. Can be
above, left, or none. When set to none, a field label (and the containing
cell) is not rendered.

Listing 4.1 shows a simple sample layout with a single column. The results of the code are
displayed in Figure 4.1.

Listing 4.1 A Simple xe:formTable with a Form Row and a Footer Facet

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:formTable

id=”formTable1”

Form Layout Components 73

ptg7987094

Listing 4.1 (Continued)

formTitle=”Form Title”

formDescription=”Form Description”

labelWidth=”100px”>

<xe:this.facets>

<xp:div

xp:key=”footer”>

<xp:button

value=”Label”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

</xp:eventHandler>

</xp:button>

</xp:div>

</xe:this.facets>

<xe:formRow

id=”formRow1”

label=”Field Label”

labelWidth=”100px”

labelPosition=”left”>

<xp:inputText

id=”sampleInput”>

<xp:this.validators>

<xp:validateRequired

message=”Please provide a field value”>

</xp:validateRequired>

</xp:this.validators>

</xp:inputText>

</xe:formRow>

</xe:formTable>

</xp:view>

74 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

Figure 4.1 The rendered output from Listing 4.1.

Listing 4.2 generates a similar layout to Figure 4.1, except with two columns instead of one
single table column, as shown in Figure 4.2.

Listing 4.2 A Simple xe:formTable with Two Columns

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:formTable

id=”formTable1”

formTitle=”Form Title”

formDescription=”Form Description”

labelWidth=”100px”

disableErrorSummary=”false”

disableRowError=”false”

fieldHelp=”true”

disableRequiredMarks=”false”

labelPosition=”left”>

<xe:this.facets>

<xp:div

xp:key=”footer”>

<xp:button

value=”Label”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

Form Layout Components 75

ptg7987094

Listing 4.2 (Continued)

</xp:eventHandler>

</xp:button>

</xp:div>

</xe:this.facets>

<xe:formColumn>

<xe:formRow

id=”formRow1”

labelWidth=”100px”

labelPosition=”left”

helpId=”#{id:tooltip1}”

label=”label”>

<xp:inputText

id=”sampleInput”>

<xp:this.validators>

<xp:validateRequired

message=”Please provide a field value”>

</xp:validateRequired>

</xp:this.validators>

</xp:inputText>

</xe:formRow>

</xe:formColumn>

<xe:formColumn>

<xe:formRow

id=”formRow3”

labelWidth=”100px”

labelPosition=”left”

helpId=”#{id:tooltip1}”

label=”label”>

<xp:inputText

id=”inputText2”>

<xp:this.validators>

<xp:validateRequired

message=”Please provide a field value”>

</xp:validateRequired>

</xp:this.validators>

</xp:inputText>

76 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

</xe:formRow>

</xe:formColumn>

</xe:formTable>

</xp:view>

Form Layout Components 77

Figure 4.2 The rendered output from Listing 4.2.

The xe:formRow also has two facets that can be used instead of their associated proper-
ties. The label and help facets allow you to place complex objects in place of the rendered
objects to allow full control of those sections. Under the current release, the help facet is the rec-
ommended way to add fieldHelp to an xe:formRow control.

The Team Room template makes extensive use of the form table and related components.
An example of them in action can be seen in the Main Document in Figure 4.3.

Figure 4.3 The Main Document XPage utilizing the xe:formTable components.

ptg7987094

Forum Post (xe:forumPost)
The xe:forumPost control is a simple OneUI-styled control that creates a pre-formatted forum-
post style user interface. The control contains seven callbacks where predefined content can be
placed. The callbacks and their purposes are detailed in Table 4.4.

Table 4.4 Callbacks for the xe:forumPost Component

Callback Description

authorAvatar This callback is used to place the user’s avatar

authorName The author’s name

authorMeta Additional information about the author

postTitle The title for the post if applicable

postMeta Additional information about the post, such as date/time and location

postDetails The body or content of the post

postActions The action bar for the post for actions such as reply to or report

Listing 4.3 shows the XSP code required to generate a simple example of the forum post
user interface.

Listing 4.3 A Simple xe:forumPost

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xp:this.data>

<xp:dominoDocument

var=”post”

formName=”forumPost”

action=”openDocument”>

</xp:dominoDocument>

</xp:this.data>

<xe:forumPost

id=”forumPost1”>

<xp:this.facets>

<xp:span

78 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

xp:key=”postActions”>

<xp:link

escape=”true”

text=”respond”

id=”link1”>

</xp:link>

</xp:span>

<xp:span

xp:key=”postDetails”>

<xp:text

value=”#{post.messageBody}” />

</xp:span>

<xp:span

xp:key=”postMeta”>

<xp:text

value=”#{post.postDate}”>

<xp:this.converter>

<xp:convertDateTime

dateStyle=”long”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:span>

<xp:span

xp:key=”postTitle”>

<xp:text

value=”#{post.subject}” />

</xp:span>

<xp:span

xp:key=”authorMeta”>

<xp:text

value=”#{post.contactInfo}” />

</xp:span>

<xp:span

xp:key=”authorName”>

<xp:text

value=”#{post.authorName}” />

</xp:span>

<xp:span

xp:key=”authorAvatar”>

Form Layout Components 79

ptg7987094

Listing 4.3 (Continued)

<xp:image

id=”image1”

disableTheme=”true”

url=”#{post.authorAvatarURL}”>

</xp:image>

</xp:span>

</xp:this.facets>

</xe:forumPost>

</xp:view>

Figure 4.4 shows two xe:forumPost components, the first with the callbacks identified
by name, and the second with a sample populated forum post.

80 Chapter 4 Forms, Dynamic Content, and More!

Figure 4.4 The xe:forumPost callbacks identified and an implemented xe:forumPost.

Dynamic Content
One of the design patterns that has become commonplace and is often expected in modern appli-
cations is the ability to dynamically switch content without changing the overall context. This
concept is what AJAX technologies are built around. Through the use of partial refreshes, content
can be dynamically inserted, removed, or changed from a read-only to an editable state. Many
components within the Extension Library enable this capability, and this section will review three
of them: the In Place Form, (xe:inPlaceForm), the Dynamic Content control (xe:dynamic-
Content), and the Switch (xe:switch).

In Place Form Control (xe:inPlaceForm)
The xe:inPlaceForm control dynamically shows or hides content on a form for in-context edit-
ing. In-context editing is a design pattern wherein a portion of the read-only contents of a docu-
ment are replaced with an inline editable version of the content, allowing the user to update the
data without leaving the context of the page. The editable, normally hidden content is enclosed
within the component’s <xe:inPlaceForm>…</xe:inPlaceForm> tags. When the content’s

ptg7987094

display state should change, a handle to the In Place Form component is retrieved using the
getComponent() method, and one of the show(), hide(), or toggle() methods are called to
update the displayed state.

When the XPage is created, the xe:inPlaceForm control is created within the JSF com-
ponent tree; however, the descendant controls and data sources are not. When the component’s
show() and toggle() methods are called to display the content, the controls are dynamically
created and added to the tree. When the component’s hide() and toggle() methods are called
to hide the content, they are removed from the tree and discarded. This keeps the impact of the
component on the XPages application to a minimum because the overhead is minimal. The addi-
tional components and data sources needed to display the editable contents of the In Place Form
are only used when needed.

As seen in Figure 4.5, the In Place Form has three properties beyond the standard set that
most components have. The first is the partialEvents property. This property controls whether
partial refresh and partial execute should be automatically applied to any events that originate
from within the In Place Form’s tree. Set to false by default, when this property is true, the com-
ponent prevents a full refresh from being triggered for the entire page by any object within the In
Place Form. Instead, the event will be converted to a partial refresh with partial execution and will
be restricted to the component tree below the In Place Form.

Dynamic Content 81

Figure 4.5 The properties of the <xe:inPlaceForm> component.

The other two properties, beforeContentLoad and afterContentLoad, are Server-Side
JavaScript (SSJS) events that are triggered before and after the content of the In Place Form is
loaded. The events are triggered the first time the XPage is created and then on each call to
show() or toggle() when the content of the In Place Form is displayed.

ptg7987094

Listing 4.4 lists an XPage created with an In Place Form that displays a simple Hello World
statement with the current time. The always-displayed Full Refresh button toggles the display of
the content within the In Place Form. The Restricted Full button inside the In Place Form is set
to perform a full refresh, but when clicked, it is restricted to only partially refreshing the contents
of the In Place Form, because the partialEvents property is set to “true” on the In Place Form
component.

Listing 4.4 An XPage with an In Place Form Component

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:inPlaceForm

id=”inPlaceForm1”

partialEvents=”true”>

<xe:this.afterContentLoad><![CDATA[#{javascript:

print(“afterContentLoad”);

}]]></xe:this.afterContentLoad>

<xe:this.beforeContentLoad><![CDATA[#{javascript:

print(“beforeContentLoad”);

}]]></xe:this.beforeContentLoad>

<xp:button

id=”fullrefreshtest”

value=”Restricted Full”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete” />

</xp:button>

Hello World

<xp:text

value=”#{javascript:return (new Date()).toLocaleString()}” />

</xe:inPlaceForm>

<xp:button value=”Full Refresh” id=”button1”>

82 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

var c = getComponent(“inPlaceForm1”);

c.toggle();

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:text value=”#{javascript:return (new Date()).toLocaleString()}”
/>

</xp:view>

The results of setting the partialEvents property to “true” as done in Listing 4.4 are seen
in Figure 4.6, where the results of the rendered XPage is displayed. The Full Refresh button
was clicked displaying the contents of the In Place Form. Because the Full Refresh button does a
full refresh, the time next to both buttons is the same. However, when the Restricted Full button
is clicked, only the time next to it is updated, even though the button is set to execute a full
refresh.

Dynamic Content 83

Figure 4.6 The XPage output by Listing 4.4 showing a full refresh restricted to a partial refresh.

Dynamic Content (xe:dynamicContent)
The Dynamic Content (xe:dynamicContent) component is similar to the In Place Form com-
ponent (xe:inPlaceForm) in that it is used to dynamically show content; however, it is different
in that it can switch between any number of facets containing different content, rather than just
showing or hiding a single piece. Each piece of dynamic content is placed within a facet of the
component and given a unique name. Table 4.5 lists the properties for the Dynamic Content
component.

ptg7987094

Table 4.5 Properties of the Dynamic Content Component

Property Description

defaultFacet Specifies the facet that will be displayed when no other facet has been
specifically loaded or when the currently selected facet does not exist.
Defaults to the first facet if empty. Set to -empty- to not load a facet by
default.

partialEvents When true, restricts the full refresh events generated by controls within
this component to partial refreshes within the component.

useHash When true, the component appends a hash tag to the end of the URL to
save the state of the dynamic component’s selected facet. Only one
dynamic content control can append the hash to the end of the URL.

afterContentLoad Method binding for an SSJS event that is triggered after the content of
the dynamic content control is loaded. Executes during page load and
on each content change.

beforeContentLoad Method binding for an SSJS event that is triggered before the content of
the dynamic content control is loaded. Executes during page load and on
each content change.

To display a piece of dynamic content, the component is retrieved using the get
Component() method in SSJS. Then the show() method of the component is called, passing the
name of the facet that is to be displayed. When called, the currently displayed facet is removed
from the tree, and the newly selected facet is added and subsequently displayed. To retrieve the
name of the currently selected facet, the getCurrentFacet() method is called. Alternatively,
instead of retrieving a handle to the component and calling the show() method, a new simple
action called changeDynamicContentAction has been added and is selected in the Add Action
button on any event handler, as seen in Figure 4.7. In this figure, the allDocuments XPage from
the TeamRoom template contains a New Document button. This button, when clicked, instructs
the dynamic content component with the id dynamicContent to load the facet with the name
newDocumentContent.

84 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094
Figure 4.7 The allDocuments XPage from the Team Room using the
changeDynamicContentAction.

In Listing 4.5, a dynamic content control is added with three facets. Below the facet, a but-
ton for each facet is added. When clicked, each button acquires the dynamic content component
and calls the show() method to display its appropriate facet. The line below the buttons contains
a combo box with the name of each facet, storing its value in a view scoped variable named
selectedFacet.

Listing 4.5 An XPage with a Dynamic Content Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:dynamicContent

id=”dynamicContent1”

partialEvents=”true”

useHash=”true”>

<xp:this.facets>

<xp:div

xp:key=”facet1”>Facet 1</xp:div>

Dynamic Content 85

ptg7987094

Listing 4.5 (Continued)

<xp:div

xp:key=”facet2”>Facet 2</xp:div>

<xp:div

xp:key=”facet3”>Facet 3</xp:div>

</xp:this.facets>

</xe:dynamicContent>

<xp:button

id=”showFacet1”

value=”Facet 1”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

var c = getComponent(“dynamicContent1”);

c.show(“facet1”);

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:button

id=”button1”

value=”Facet 2”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

var c = getComponent(“dynamicContent1”);

c.show(“facet2”);

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:button

id=”button2”

value=”Facet 3”>

<xp:eventHandler

event=”onclick”

86 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

var c = getComponent(“dynamicContent1”);

c.show(“facet3”);

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:comboBox

id=”comboBox1”

value=”#{viewScope.selectedFacet}”>

<xp:selectItem

itemLabel=”facet1”></xp:selectItem>

<xp:selectItem

itemLabel=”facet2”></xp:selectItem>

<xp:selectItem

itemLabel=”facet3”></xp:selectItem>

</xp:comboBox>

<xp:button

id=”button7”

value=”Show Selected Facet”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xe:changeDynamicContentAction

facetName=”#{javascript:viewScope.selectedFacet}”

for=”dynamicContent1”>

</xe:changeDynamicContentAction>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Dynamic Content 87

ptg7987094

The results of Listing 4.5 are shown in Figure 4.8. When the Show Selected Facet button is
clicked, the changeDynamicContentAction changes the contents of the dynamic content con-
trol. The facetName property of the action is computed using the viewScope.selectedFacet
value to determine which facet to display.

88 Chapter 4 Forms, Dynamic Content, and More!

Figure 4.8 The XPage output by Listing 4.5 showing a Dynamic Content control.

Switch (xe:switchFacet)
The Switch (xe:switchFacet) component works like the Dynamic Content component with a
few exceptions. It is not necessary to change the currently displayed facet programmatically;
instead, the selectedFacet property is used to determine the currently displayed facet. To change
the displayed facet, compute the value and return the name of the facet to be selected. Because the
selection of the displayed facet is automatic, there is no show() method or equivalent to the
simple action changeDynamicContentAction.

Listing 4.6 is an XPage that shows the Switch component in action. The selected facet is
controlled by the value selected in the combo box, which stores its value in the
viewScope.selectedFacet scoped variable. The Switch’s selectedFacet property is then
computed using an Expression Language statement that resolves to viewScope.selected-
Facet. When the Show Selected Facet button is clicked, it simply performs a full refresh,
forcing the switch to recompute and display the selected facet.

Listing 4.6 An XPage with a Switch Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:switchFacet

id=”dynamicContent1”

defaultFacet=”facet3”

selectedFacet=”#{javascript:viewScope.selectedFacet}”>

<xp:this.facets>

<xp:div xp:key=”facet1”>Facet 1</xp:div>

ptg7987094

<xp:div xp:key=”facet2”>Facet 2</xp:div>

<xp:div xp:key=”facet3”>Facet 3</xp:div>

</xp:this.facets>

</xe:switchFacet>

<xp:comboBox

id=”comboBox1”

value=”#{viewScope.selectedFacet}”>

<xp:selectItem

itemLabel=”facet1”></xp:selectItem>

<xp:selectItem

itemLabel=”facet2”></xp:selectItem>

<xp:selectItem

itemLabel=”facet3”></xp:selectItem>

</xp:comboBox>

<xp:button

id=”button7”

value=”Show Selected Facet”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

</xp:eventHandler>

</xp:button>

</xp:view>

Miscellaneous Controls
Among the many controls provided in the Extension Library, several are used to perform func-
tions from data entry to session control and more. Most of these controls are described in other
chapters of the book because they fit into specific categories of controls. A few controls do not fit
into a category. Those components are reviewed in this section.

Multi-Image (xe:multiImage)
The multi-image component adds an image to an XPage. The component contains a named list of
images that can be selected based on a data value or by a computed expression. The control has

Miscellaneous Controls 89

ptg7987094

all the properties required to properly display the image, such as alt, longdesc, and usemap, and
have a full set of user-driven events. The icons are defined by the icons complex property, which
contains several iconEntry subcomponents.

Each iconEntry has its own tag for alt, loaded, style, styleClass, and the URL to the indi-
vidual image. The selected image for display is controlled by either the selected or selectedValue
property of the iconEntry. The selectedValue property is matched against the multi-image com-
ponent’s value property, and if they match, that image is displayed. The value property is a value
binding that can connect to a data source or be computed using SSJS or Expression Language. If
the selectedValue of an iconEntry is not set, the computed expression contained in the selected
property decides if the image is selected for display.

Listing 4.7 displays the code for a sample XPage that contains a combo box bound to the
viewScope variable selectedImage. When the combo box value changes, the page is
refreshed, and the multi-image, which is also bound to the selectedImage viewScope vari-
able, is updated.

Listing 4.7 An XPage with a Multi-Image Component

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xp:comboBox

id=”comboBox1”

value=”#{viewScope.selectedImage}”>

<xp:selectItem itemLabel=”accept”></xp:selectItem>

<xp:selectItem itemLabel=”add”></xp:selectItem>

<xp:selectItem itemLabel=”anchor”></xp:selectItem>

<xp:selectItem itemLabel=”bomb”></xp:selectItem>

<xp:selectItem itemLabel=”help”></xp:selectItem>

<xp:eventHandler

event=”onchange”

submit=”true”

refreshMode=”complete”>

</xp:eventHandler>

</xp:comboBox>

<xe:multiImage

id=”multiImage1”

value=”#{viewScope.selectedImage}”>

<xe:this.icons>

<xe:iconEntry

90 Chapter 4 Forms, Dynamic Content, and More!

ptg7987094

url=”/accept.png”

selectedValue=”accept”>

</xe:iconEntry>

<xe:iconEntry

url=”/add.png”

selectedValue=”add”>

</xe:iconEntry>

<xe:iconEntry

url=”/bomb.png”

selectedValue=”bomb”>

</xe:iconEntry>

<xe:iconEntry

selectedValue=”anchor”

url=”/anchor.png”>

</xe:iconEntry>

<xe:iconEntry

selectedValue=”help”

url=”/help.png”>

</xe:iconEntry>

</xe:this.icons>

</xe:multiImage>

</xp:view>

List Container (xe:list)
The List Container component, <xe:list>, creates an HTML unordered list (…).
The control generates the tag set and then wraps each of its immediate child components in
list item tags (…). The component provides additional functionality to style the list
itself through the style and styleClass properties, the first and last list items with the firstItem-
Style and firstItemStyleClass, and the lastItemStyle and lastItemStyleClass properties. Every
item in the list (including the first and last item) can also be styled using the itemStyle and item-
StyleClass properties. Listing 4.8 shows how the xe:list component creates a list out of five
text components, with the results displayed in Figure 4.9.

Listing 4.8 An XPage with the xe:list Component

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

Miscellaneous Controls 91

ptg7987094

Listing 4.8 (Continued)

<xe:list id=”list1”>

<xp:text

id=”bullet1”

value=”Bullet 1” />

<xp:text

id=”bullet2”

value=”Bullet 2” />

<xp:text

id=”bullet3”

value=”Bullet 3” />

<xp:text

id=”bullet4”

value=”Bullet 4” />

</xe:list>

</xp:view>

92 Chapter 4 Forms, Dynamic Content, and More!

Figure 4.9 The XPage output by Listing 4.8 showing an HTML list.

Keep Session Alive (xe:keepSessionAlive)
The Keep Session Alive component is a handy control that will prevent a user’s session from tim-
ing out. The component continually pings the server from the rendered page, resetting the idle
timeout that would eventually cause the user’s session to time out and the current state of the
application to be discarded. To use the component, just drag and drop the control from the Exten-
sion Library tool palette onto the page and set the delay interval property in seconds. The delay
should be shorter than the shortest timeout specified in your configuration (typically 30 minutes).

The control should be used with reserve, however. The longer a session is open on the
server, the more resources the server consumes, which can limit the scalability and performance
of your applications. The Keep Session Alive component also has a limited effect on servers with
Single Sign On for multiple servers configured for their web environment. Single Sign On for
multiple servers operates by installing a cookie in the browser with a token that indicates the
authenticated zone; when the authentication expires, the user’s session is no longer valid, and the
user must reauthenticate. Although the Keep Session Alive in this case will prevent the user’s

ptg7987094

XPage session from expiring because of time out, if the user’s authentication expires, the new
generated session identification issued when the user re-authenticates will be different from the
previous session, and the old session is effectively terminated. To see an example of the
xe:keepSessionAlive component in use, look at the layout custom control in the OpenNTF
TeamRoom application.

Conclusion
The Extension Library components for form layout and dynamic content enable an XPages appli-
cation developer to easily deploy advanced and modern AJAX applications with ease, instilling
best practices and common UI patterns. When combined with other Extension Library compo-
nents such as the Application Layout and the various view components described in the next few
chapters, XPages application development becomes considerably easier.

Conclusion 93

ptg7987094

This page intentionally left blank

ptg7987094

95

C H A P T E R 5

Dojo Made Easy

Ever since IBM Lotus Domino Release 8.5.0, the Dojo toolkit has been IBM’s JavaScript frame-
work of choice. It comes preinstalled with the Domino server and is intrinsically linked with the
XPages runtime. Much of the standard XPages functionality extends the standard Dojo toolkit.
Developers have been integrating Dojo with XPages since its introduction into Domino, taking
advantage of the prebuilt code libraries to enhance their XPages applications. Subsequent
releases have specifically targeted making it easier to combine XPages and Dojo. To this end, the
Extension Library Dojo controls are designed to make it easier still to implement some of the
more frequently used modules, whether for novice developers or seasoned developers making
extensive use of the Dojo modules and attributes available.

Developers already familiar with Dojo might want to jump to the section “Dojo Modules and
Dojo in the Extension Library.” For those who have never or rarely used Dojo, the following sec-
tions will give some background and walk through a couple of examples of Dojo modules in
XPages.

What Is Dojo?
Dojo is an open source JavaScript framework, a free collection of cross-browser-compatible
functions and widgets, first released in 2006. Each JavaScript file is an object with various attrib-
utes and functions, referred to as a Dojo module. For example, dijit.form.TextBox is a Dojo
module that converts an HTML input tag to a Dojo-styled text box. Modules can also extend
other Dojo modules, so dijit.form.ValidationTextBox and dijit.form.Number-

TextBox both extend dijit.form.TextBox. This allows developers to add functionality by
creating their own extensions without needing to modify the preinstalled files. One of the
strengths of these Dojo modules is that they are specifically designed to support developers in
addressing accessibility requirements.

ptg7987094

All the XPages Client-Side JavaScript functionality can be found in script libraries in the
Dojo root folders; most either extend or mimic standard Dojo modules. For example, any partial
refresh calls dojo.xhrGet() or dojo.xhrPost(), the standard Dojo AJAX requests to the
server. The XPages DateTimeHelper extends a number of Dojo modules, including
dijit.form.Button, dojo.date, and dijit._widget. Client-Side validation also mimics
the format of Dojo functions. Consequently, the core Dojo libraries are loaded in an XPage by
default, so even a blank XPage in which you are not explicitly including Client-Side JavaScript
libraries will include the following Dojo JavaScript libraries, as shown in Figure 5.1:

/xsp/.ibmxspres/dojoroot-1.6.1/dojo/dojo.js
/xsp/.ibmxspres/.mini/dojo/.en-gb/@Iq.js (for English)

96 Chapter 5 Dojo Made Easy

Figure 5.1 Dojo libraries loaded.

Default Dojo Libraries Using Dojo Modules in XPages
Before Domino 8.5.2, incorporating Dojo modules into XPages was challenging because many
controls did not have a dojoType attribute. The only way to implement Dojo on an EditBox, for
example, was to apply it programmatically. So in addition to the core control client side,

ptg7987094

JavaScript was required to trigger on load. Listing 5.1 demonstrates this programmatic imple-
mentation of the dijit.form.ValidationTextBox. Lines 1 to 4 show the core Edit Box con-
trol. Line 6 then begins an Output Script control, triggering XSP.addOnLoad() in line 16. The
addOnLoad() calls a function that generates a new dijit.form.ValidationTextBox on
line 9 adding various attributes. Line 13 adds the parameter to the new function, which applies the
Dojo module to the Edit Box control.

Listing 5.1 Programmatic Implementation of dijit.form.ValidationTextBox

1 <xp:inputText

2 id=”response”

3 value=”#{ansDoc.response}”>

4 </xp:inputText>

5

6 <xp:scriptBlock

7 id=”scriptBlock1”>

8 <xp:this.value><![CDATA[var convertInput = function() {

9 new dijit.form.ValidationTextBox(

10 {name:”#{id:response}”,

11 required: true,

12 promptMessage: “Please complete the field”},

13 XSP.getElementById(“#{id:response}”)

14);

15 };

16 XSP.addOnLoad(convertInput);

17]]></xp:this.value>

18 </xp:scriptBlock>

There is no reason you cannot use programmatic conversion of a core control to a Dojo
module, if applicable. But with Domino 8.5.2, it became possible to declaratively convert the
control thanks to the addition of the dojoType attribute to a variety of core controls. So for the
Edit Box control, for example, in Domino 8.5.2 a Dojo panel was added and dojoType and
dojoAttributes properties appeared on the All Properties panel, as shown in Figure 5.2. Not only
is this easier to implement, but text strings entered as Dojo attribute values are picked up if local-
ization is required and turned on for an application.

Default Dojo Libraries Using Dojo Modules in XPages 97

ptg7987094

Figure 5.2 Dojo panel on Edit Box control.

Before digging into the Extension Library, let’s review several examples of implementing
Dojo in XPages. Any developer who has used Dojo modules in XPages is aware of the steps
required, ingrained quite probably by forgetting one of the steps at one time or another. The first
critical step is to set dojoParseOnLoad and dojoTheme attributes to “true”, as shown in lines
4 and 5 of Listing 5.2. The former tells the browser that after loading it needs to convert all con-
tent with a dojoType property; the latter tells the browser to load the relevant theme for styling all
Dojo widgets (or dijits). The final step is to add as resources on the XPage any Dojo modules ref-
erenced on the page in a dojoType property.

Listing 5.2 dojoParseOnLoad and dojoTheme

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view

3 xmlns:xp=”http://www.ibm.com/xsp/core”

4 dojoParseOnLoad=”true”

5 dojoTheme=”true”>

6

7 </xp:view>

98 Chapter 5 Dojo Made Easy

ptg7987094

Of course, you can perform all this on either an XPage or a Custom Control, but for sim-
plicity, the reference will only be made to XPages. To provide a more appropriate comparison
with the Extension Library controls, the examples in the sections that follow focus on declarative
implementations of Dojo modules.

Simple Dojo Example: dijit.form.ValidationTextBox
The Dojo modules applied to an Edit Box are among the simplest implementations of Dojo. The
dijit.form.ValidationTextBox is a simple extension to the Edit Box, which adds Client-
Side validation with a styling consistent with other dijits to offer immediate validation and a
prompt message. It has a number of Dojo attributes, some of which you can see in Listing 5.3.
Figure 5.3 shows the resulting output. There is a host of printed and online documentation of
Dojo (for examples, see the Dojo Toolkit website http://dojotoolkit.org/reference-
guide/index.html). This book will not seek to exhaustively reproduce a glossary of the Dojo
attributes and what they do.

Listing 5.3 dijit.form.ValidationTextBox

<xp:this.resources>

<xp:dojoModule

name=”dijit.form.ValidationTextBox”>

</xp:dojoModule>

</xp:this.resources>

<xp:inputText

id=”inputText1”

value=”#{viewScope.validationBox}”

dojoType=”dijit.form.ValidationTextBox”>

<xp:this.dojoAttributes>

<xp:dojoAttribute

name=”required”

value=”true”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”promptMessage”

value=”Please complete this field”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

</xp:inputText>

Default Dojo Libraries Using Dojo Modules in XPages 99

http://dojotoolkit.org/referenceguide/index.html
http://dojotoolkit.org/referenceguide/index.html

ptg7987094

Figure 5.3 dijit.form.ValidationTextBox.

Defining Dojo modules and attributes is made a little challenging because there is no type-
ahead or other context-sensitive help to advise on the Dojo modules available for use. There is
also no validation of the correct naming conventions for the modules or validation of additional
resources that need to be included. But this is to provide developers with the flexibility to take
advantage of new releases of Dojo at the earliest opportunity and develop their own Dojo mod-
ules. For developers who are comfortable with the attributes available, this is not a problem; how-
ever, novice developers might find the size of the Dojo toolkit daunting.

Dojo Example for Slider
Some dijits are more involved than just setting a Dojo type and attributes to a Core control.
A good example of this is the slider. There are actually two types of sliders: dijit.form.
HorizontalSlider and dijit.form.VerticalSlider. The implementations are similar,
so we shall just cover the HorizontalSlider.

As with dijit.form.ValidationTextBox, the slider is an input control, so you need to
store the value in an Edit Box control (or, in most implementations, a Hidden Input control).
However, you cannot directly attach the slider to the Edit Box. Instead, you apply the Dojo
styling to a div and add an onchange event to pass the value to the Edit Box. Although the XPages
Div control has dojoType and dojoAttributes properties, it does not have an onchange event, so
it is easier to use an HTML div.

Further code is required to apply labels to the horizontal slider. You must apply an addi-
tional Dojo module to an HTML ordered list, dijit.form.HorizontalRuleLabels. Listing
5.4 shows the combination of XPage and HTML markup used to create a horizontal slider, which
allows the user to select a value (in multiples of 10) within a range of 0 and 100, showing labels at
increments of 20. The code required is rather extensive for a simple slider. Figure 5.4 shows the
resulting output.

100 Chapter 5 Dojo Made Easy

ptg7987094

Listing 5.4 dijit.form.HorizontalSlider

<xp:this.resources>

<xp:dojoModule

name=”dijit.form.HorizontalSlider”>

</xp:dojoModule>

<xp:dojoModule

name=”dijit.form.HorizontalRuleLabels”> </xp:dojoModule>

</xp:this.resources>

<div

id=”horizontalSlider”

dojoType=”dijit.form.HorizontalSlider”

value=”50”

minimum=”0”

maximum=”100”

discreteValues=”11” style=”width:500px”

showButtons=”false”

onChange=”dojo.byId(‘#{id:horizontalHolder}’).value =
dijit.byId(‘horizontalSlider’).value”>

<ol

dojoType=”dijit.form.HorizontalRuleLabels”

container=”bottomDecoration”>

0

20

40

60

80

100

</div>

<xp:inputText

id=”horizontalHolder”

value=”#{viewScope.horizontalSlider}”

defaultValue=”50”>

</xp:inputText>

Default Dojo Libraries Using Dojo Modules in XPages 101

ptg7987094

Figure 5.4 dijit.form.HorizontalSlider.

Dojo Themes
All the dijits are styled according to a theme. The theme is defined on the XPages tab in the
Application Properties, accessed from designer, using the Application Theme dialog list, as in
Figure 5.5. The OneUI and Server Default themes use tundra by default. If the property Use run-
time optimized JavaScript and CSS resources at the bottom of this tab is checked, a single
aggregated stylesheet is delivered to the browser. This includes the following stylesheet:

/xsp/.ibmxspres/dojoroot-1.6.1/dijit/themes/tundra/tundra.css
In addition, the tundra theme is applied to the body tag, so the output HTML is <body

class=”xsp lotusui tundra”>.

102 Chapter 5 Dojo Made Easy

Figure 5.5 XPages tab of Application Properties in Domino Designer.

Dojo provides three other themes: nihilo, soria and, since Dojo 1.5.0, claro. Implementing
these themes is just a matter of including the relevant stylesheets and applying the style to the
body tag. The former is straightforward in XPages, the latter a little more involved. Within an
XPage, you are limited on the attributes you can manipulate. However, via a custom theme, you
can apply the Dojo theme to the body tag and reference the relevant stylesheets. If an application

ptg7987094

is not currently using a theme, just create a new Theme design element, found under the
Resources category in the Application pane.

You can insert the code in Listing 5.5 between the theme tags. Lines 1 through 5 include the
Dojo-themed stylesheet. Lines 8 through 14 apply the Dojo theme to the ViewRoot control,
which becomes the body tag when the web page is loaded. Note in particular the inclusion in
lines 2 and 8 of dojoTheme=”true”. By adding this, the logic checks whether the developer has
set dojoTheme to “true” on the XPage or CustomControl. If the developer has set dojoTheme
to “true”, the stylesheet is loaded and the class is applied. If not, the stylesheet is not loaded and
the class is not applied. To use soria or claro, just replace the three instances of nihilo with the
relevant theme name.

Listing 5.5 Applying a Dojo Theme

1 <!— Include Dojo stylesheet —>

2 <resource dojoTheme=”true”>

3 <content-type>text/css</content-type>

4 <href>/.ibmxspres/dojoroot/dijit/themes/nihilo/nihilo.css</href>

5 </resource>

6

7 <!— Add style to body element —>

8 <control dojoTheme=”true”>

9 <name>ViewRoot</name>

10 <property mode=”concat”>

11 <name>styleClass</name>

12 <value>nihilo</value>

13 </property>

14 </control>

Dojo Modules and Dojo in the Extension Library
As the examples in the preceding sections demonstrate, some Dojo modules are easy to imple-
ment into XPages, but others are more convoluted. Even for a confident developer already accus-
tomed to using dijits in applications, it could get annoying to have to keep adding dojoTypes and
dojoAttributes to all core controls, which was one of the driving forces behind implementing the
Dojo controls in the Extension Library. Using native controls offered several other benefits:

• Easier to implement drag-and-drop functionality

• Promoting some of the more common Dojo modules available for use within XPages

• Validating and manipulating values

• Limiting the number of controls that need to be dropped onto the XPage or Custom
Control

Dojo Modules and Dojo in the Extension Library 103

ptg7987094

That is not to say that the Extension Library precludes the need to implement Dojo manu-
ally within XPages. It does not, nor is it intended to. Some Dojo modules, such as the
dojox.image.Lightbox control, are not available in the Extension Library controls. Equally,
there might be instances in which developers have created their own Dojo extensions that they
still intend to use but do not have the skills or are not ready to componentize.

Benefits and Differences of Dojo Extension Library Components
By componentizing the Dojo modules as extended controls, the Extension Library offers several
benefits. Performance is one aspect. Another is that if a Dojo control from the Extension Library
is used, dojoParseOnLoad or dojoTheme does not need to be set and the relevant Dojo mod-
ule(s) does not need to be added to an XPage. Whether accustomed or not to adding the gamut of
dojo attributes to Dojo controls, the extended controls also avoid the need to remember (and
indeed avoid mistyping!) dojo attributes. This also means that it is quicker to implement the
extended controls than just setting a Dojo type and attributes, whether dragging and dropping and
using the “pretty panels” or typing directly into the Source pane. And for developers who are
integrating with Java beans, controls also allow options for integration with backend Java classes,
whether with valueChangeListeners or for controlling return types of, for example, the Dojo
Number Text Box or Dojo Number Spinner.

However, for dijits to use a Dojo theme other than tundra, the code outlined in Listing 5.5
for a Theme design element is still required to apply the relevant Dojo theme to the body tag.
There is nothing within the Extension Library to short-circuit that requirement.

In the examples that follow, properties of the Extension Library are hard-coded, for ease of
explanation. But remember that, as with any other property in XPages, the value of all the proper-
ties of the Extension Library controls can be programmatically calculated, either using on page
load or dynamically.

Without further ado, let’s start looking at the Dojo form controls from the Extension
Library that add to the form controls we covered in the previous chapter. Other Dojo controls are
covered in subsequent chapters. For example, the Dojo Data Grid control is covered in Chapter 7,
“Views.”

Dojo Extensions to the Edit Box Control
Many controls extend the Edit Box control, whether for storing text values, number values, or
date/time values. These controls are not used in the TeamRoom database, so we will review the
Extension Library demo database, which is available from OpenNTF. Specifically, we will
review the Core_DojoFormControls.xsp XPage.

Dojo Text Box (xe:djTextBox)
The Dojo Text Box control is an excellent example of a control that appears to be simple but can
provide functionality not available in the core Edit Box control. In most implementations, all that
is required is to drag and drop it onto the XPage or custom control.

104 Chapter 5 Dojo Made Easy

ptg7987094

When you look at the properties available and compare them to the core Edit Box control,
some differences become apparent. Table 5.1 describes the main properties that are standard
across the Dojo widgets.

Table 5.1 Dojo Widget Properties

Property Description

alt Holds alternate text if the browser cannot display the control; uncommon
for form controls.

waiRole Defines the WAI-ARIA role for the control. For more information on
WAI-ARIA, see http://www.w3.org/WAI/.

waiState Defines the WAI-ARIA state of the control. For more information on
WAI-ARIA, see http://www.w3.org/WAI/.

trim Removes leading or trailing spaces, but not duplicate spaces within the
field’s value.

dragRestriction If true, prevents the field from being draggable.

intermediateChanges If true, triggers the onChange event for each value change.

tooltip For most controls, such as Dojo Text Box, the title property is used to add
hover text. Some controls, such as the Dojo Tab Pane, use the title property
for the tab label. For those controls, this tooltip property is used instead to
add hover text.

Table 5.2 describes the properties specific for the Dojo Text Box controls. On the All Prop-
erties panel of the Dojo Text Box, the data category contains the same properties as the Edit Box
(xp:inputText) control. But a smaller subset of properties is listed under the basics category.
Some of the options, including autocomplete, password, htmlFilterIn, and htmlFilter—
visible on an Edit Box control—are not available for this control. Note that some properties like
readonly and maxlength are camel case for the Dojo controls and become readOnly and
maxLength on the Dojo Text Box control.

Table 5.2 xe:djTextBox Properties

Property Description

lowercase If true, the field’s value is converted to lowercase when the user exits the field.

propercase If true, the field’s value is converted to propercase when the user exits the field.

uppercase If true, the field’s value is converted to uppercase when the user exits the field.

Dojo Extensions to the Edit Box Control 105

http://www.w3.org/WAI/
http://www.w3.org/WAI/

ptg7987094

The Dojo Text Box also offers some additional properties. Some properties, such as alt,
tabIndex, title, waiRole, and waiState, are standard for the Dojo extended controls, always
appearing under the accessibility category. WAI might be unfamiliar to some Domino developers
who are not used to web development. WAI is an initiative by the World Wide Web Consortium
(W3C) to ensure that websites follow accessibility guidelines. This has been extended for appli-
cations by Web Accessibility Initiative—Accessible Rich Internet Applications (WAI-ARIA),
which differentiates applications from static web pages. It is not yet standard, but it is good prac-
tice. A full taxonomy of roles (http://www.w3.org/WAI/PF/GUI/roleTaxonomy-20060508.html)
and states (http://www.w3.org/WAI/PF/adaptable/StatesAndProperties-20051106.html) is avail-
able on the W3C site. The good news is that even if you do not define the waiRole and waiState
properties on the Dojo extended controls, default roles and states are added. But, if required, the
properties are exposed to allow you to override the defaults.

Other properties are exposed that offer additional functionality over the Edit Box control or
even the standard TextBox control in the Dojo toolkit. In the basics category, the maxLength
property enables developers to ensure that users are restricted to a certain number of characters.
This is triggered on key press, so rather than alerting users after they have left the field, the user
physically cannot type more characters than you allow. However, bear in mind that if the field
should include punctuation, decimal separators, and so on, each counts as one character. You can
use the trim property to remove any leading or trailing spaces. It does not remove duplicate
spaces within the string.

The dojo category is expanded from the Edit Box control with some additional Dojo prop-
erties: dragRestriction, intermediateChanges, and tooltip. These properties are standard for
the Dojo widgets and may not be appropriate for all controls. For example, the tooltip property is
used only for controls such as the Dojo Tab Pane, where the title property has a different function
than applying hover text. The format category provides boolean properties lowercase, upper-
case, and propercase to force case conversion. The formatting takes effect as soon as the user
exits the field.

Some of the differences in the events category between the Edit Box control and the Dojo
Text Box control are just minor. Properties like onfocus, onblur, onchange, and onclick become
onFocus, onBlur, onChange, and onClick. It’s not a major difference, and indeed there is no
difference in implementation. But there are a few additions. The mousing events are supple-
mented by onMouseEnter and onMouseLeave, ostensibly no different from onMouseOver and
onMouseOut. A simple alert statement will show that the onMouseOver event is triggered
before the onMouseEnter event. Likewise, onMouseOut is triggered before onMouseLeave.

Dojo Validation Text Box (xe:djValidationTextBox)
There are no prizes for guessing that the Dojo Validation Text Box control is similar to the Dojo
Text Box control, except that it adds validation. All the properties we outlined on the Dojo Text
Box control are available, including those for dynamically setting the value to lowercase, upper-
case, or propercase and trimming the value.

106 Chapter 5 Dojo Made Easy

http://www.w3.org/WAI/PF/GUI/roleTaxonomy-20060508.html
http://www.w3.org/WAI/PF/adaptable/StatesAndProperties-20051106.html

ptg7987094

However, the Dojo Validation Text Box is not, by default, mandatory. Initially, this sounds
incomprehensible. What’s the point of the Dojo Validation Text Box if it’s not validated? But if
we investigate a little further, we will come across the promptMessage property. This enables
the developer to add a message for the user. At runtime, this is delivered to the user by default as
a tooltip, as in Figure 5.6.

Dojo Extensions to the Edit Box Control 107

Figure 5.6 Dojo Validation Text Box promptMessage.

Basic validation is managed in the same way as for any other input control: by using the
required property. But validation for the traditional Edit Box control is handled on the client or
the server, as determined by the developer in the Application Properties or the administrator in
the Server Settings. In the Dojo Validation Text Box, validation is always handled Client-Side,
even if client validation is switched off in the Application Properties. That is because the
Dojo Validation Text Box is a Dojo control, and Dojo validation runs Client-Side (because Dojo
is a set of Client-Side JavaScript libraries). So as soon as the user tabs out of the field, the
validation is triggered and the field is highlighted, as in Figure 5.7. As with the dijit.
form.ValidationTextBox Dojo module, an error message in the invalidMessage property
has no effect if the control just has the required property set to "true" but no other validation
applied.

ptg7987094
Figure 5.7 Dojo Validation Text Box error message.

But the Dojo Validation Text Box doesn’t just validate that a value has been entered. In the
dojo-widget category, the regExp property takes as its value a regular expression, a standard web
development validation notation that is designed to be agnostic of programming language. The
regExpGen property can generate a regular expression using Client-Side JavaScript. Rather than
researching and typing a regular expression, Dojo provides some prebuilt objects for validating
standard regular expressions, such as dojo.regexp.realNumber and dojo.regexp.ipAddress.
These can be found in files like dojo.number and dojox.validate, all of which extend dojo.regexp,
the object that defines the function to validate against regular expressions. For example, Listing
5.6 takes the ipAddress function in dojox.validate.regexp.js, amending it only to expect no
parameters. As a function in the regExpGen property, this code will validate that the user enters
a valid IP address, without the need to work out or type in the relevant regular expression. As with
traditional XPages validation, there is a default, but developers can also provide their own mes-
sage, using the invalidMessage property.

Listing 5.6 Validating an IP Address

<xe:djValidationTextBox

value=”#{sessionScope.djValidationTextBox1}”

invalidMessage=”Please enter a valid ip address”>

<xe:this.regExpGen><![CDATA[// summary: Builds an RE that matches an
IP address

108 Chapter 5 Dojo Made Easy

ptg7987094

//

// description:

// Supports five formats for IPv4: dotted decimal, dotted hex, dotted
octal, decimal, and hexadecimal.

// Supports two formats for Ipv6.

//

// flags An object. All flags are boolean with default = true.

// flags.allowDottedDecimal Example, 207.142.131.235. No zero
padding.

// flags.allowDottedHex Example, 0x18.0x11.0x9b.0x28. Case
insensitive. Zero padding allowed.

// flags.allowDottedOctal Example, 0030.0021.0233.0050. Zero
padding allowed.

// flags.allowDecimal Example, 3482223595. A decimal number between
0-4294967295.

// flags.allowHex Example, 0xCF8E83EB. Hexadecimal number between
0x0-0xFFFFFFFF.

// Case insensitive. Zero padding allowed.

// flags.allowIPv6 IPv6 address written as eight groups of four
hexadecimal digits.

// FIXME: ipv6 can be written multiple ways IIRC

// flags.allowHybrid IPv6 address written as six groups of four
hexadecimal digits

// followed by the usual four dotted decimal digit notation of
IPv4. x:x:x:x:x:x:d.d.d.d

// assign default values to missing parameters

flags = {};

if(typeof flags.allowDottedDecimal != “boolean”){
flags.allowDottedDecimal = true; }

if(typeof flags.allowDottedHex != “boolean”){ flags.allowDottedHex =
true; }

if(typeof flags.allowDottedOctal != “boolean”){ flags.allowDottedOctal
= true; }

if(typeof flags.allowDecimal != “boolean”){ flags.allowDecimal = true;
}

if(typeof flags.allowHex != “boolean”){ flags.allowHex = true; }

if(typeof flags.allowIPv6 != “boolean”){ flags.allowIPv6 = true; }

if(typeof flags.allowHybrid != “boolean”){ flags.allowHybrid = true; }

// decimal-dotted IP address RE.

var dottedDecimalRE =

// Each number is between 0-255. Zero padding is not allowed.

Dojo Extensions to the Edit Box Control 109

ptg7987094

Listing 5.6 (Continued)

“((\\d|[1-9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])\\.){3}(\\d|[1-
9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])”;

// dotted hex IP address RE. Each number is between 0x0-0xff. Zero
padding is allowed, e.g. 0x00.

var dottedHexRE = “(0[xX]0*[\\da-fA-F]?[\\da-fA-F]\\.){3}0[xX]0*[\\da-
fA-F]?[\\da-fA-F]”;

// dotted octal IP address RE. Each number is between 0000-0377.

// Zero padding is allowed, but each number must have at least four
characters.

var dottedOctalRE = “(0+[0-3][0-7][0-7]\\.){3}0+[0-3][0-7][0-7]”;

// decimal IP address RE. A decimal number between 0-4294967295.

var decimalRE = “(0|[1-9]\\d{0,8}|[1-3]\\d{9}|4[01]\\d{8}|42[0-
8]\\d{7}|429[0-3]\\d{6}|” +

“4294[0-8]\\d{5}|42949[0-5]\\d{4}|429496[0-
6]\\d{3}|4294967[01]\\d{2}|42949672[0-8]\\d|429496729[0-5])”;

// hexadecimal IP address RE.

// A hexadecimal number between 0x0-0xFFFFFFFF. Case insensitive. Zero
padding is allowed.

var hexRE = “0[xX]0*[\\da-fA-F]{1,8}”;

// IPv6 address RE.

// The format is written as eight groups of four hexadecimal digits,
x:x:x:x:x:x:x:x,

// where x is between 0000-ffff. Zero padding is optional. Case
insensitive.

var ipv6RE = “([\\da-fA-F]{1,4}\\:){7}[\\da-fA-F]{1,4}”;

// IPv6/IPv4 Hybrid address RE.

// The format is written as six groups of four hexadecimal digits,

// followed by the 4 dotted decimal IPv4 format. x:x:x:x:x:x:d.d.d.d

var hybridRE = “([\\da-fA-F]{1,4}\\:){6}” +

“((\\d|[1-9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])\\.){3}(\\d|[1-
9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])”;

// Build IP Address RE

var a = [];

if(flags.allowDottedDecimal){ a.push(dottedDecimalRE); }

110 Chapter 5 Dojo Made Easy

ptg7987094

if(flags.allowDottedHex){ a.push(dottedHexRE); }

if(flags.allowDottedOctal){ a.push(dottedOctalRE); }

if(flags.allowDecimal){ a.push(decimalRE); }

if(flags.allowHex){ a.push(hexRE); }

if(flags.allowIPv6){ a.push(ipv6RE); }

if(flags.allowHybrid){ a.push(hybridRE); }

var ipAddressRE = “”;

if(a.length > 0){

ipAddressRE = “(“ + a.join(“|”) + “)”;

}

return ipAddressRE; // String]]></xe:this.regExpGen>

</xe:djValidationTextBox>

Alternatively, if developers already have a prexisting Client-Side JavaScript function to
validate the value entered, the validatorExt property in the dojo-widget category provides an
extension point to call the function. The beauty of this is that developers only need to enter a
Client-Side JavaScript object that is a function; the XPage runs the validation in all the events that
are appropriate. This speeds up development and minimizes the effort of refactoring.

By default, your validation triggers only when the user has finished editing the field. To
trigger validation or other events with each key press, you can set intermediateChanges to true.
(By default, it is false.)

On top of all this, the validator and validators properties still exist for core XPages valida-
tion. Overall, the Dojo Validation Text Box provides an extremely flexible mechanism for vali-
dating the control while maintaining the Dojo look and feel.

Two additional formatting properties are available: displayMessageExt and tooltipPosition.
The tooltipPosition property defines the position relative to the field in which any tooltip mes-
sages will appear. With the displayMessageExt property, a developer can write a Client-Side
JavaScript function to override the appearance of the prompts and validation error messages.

Dojo Extensions to the Edit Box Control 111

ptg7987094

WHAT ARE REGULAR EXPRESSIONS?
For those who are not familiar with the notation, there are websites that can provide stan-
dard regular expressions and help you build and test your own. A good starting point is
http://www.regular-expressions.info. The zipcode field is a good example of a regular
expression in action. \d{5} means the field must consist of five characters, all of which are
digits. Regular expressions can be simple, as in this example, or extremely complex.The UK
postcode is a good example of a particularly complex regular expression, where specific
combinations of letters and numbers are allowed:

(GIR 0AA)|(((A[BL]|B[ABDHLNRSTX]?|C[ABFHMORTVW]|D[ADEGHLNTY]
|E[HNX]?|F[KY]|G[LUY]?|H[ADGPRSUX]|I[GMPV]|JE|K[ATWY]
|L[ADELNSU]?|M[EKL]?|N[EGNPRW]?|O[LX]|P[AEHLOR]|R[GHM]|S[AEGKL
MNOPRSTY]?|T[ADFNQRSW]|UB|W[ADFNRSV]|YO|ZE)[1-
9]?[0-9]|((E|N|NW|SE|SW|W)1|EC[1-4]|WC[12])[A-HJKMNPR-
Y]|(SW|W)([2-9]|[1-9][0-9])|EC[1-9][0-9]) [0-9][ABD-
HJLNP-UW-Z]{2})

If you have a specific format of entry, there’s usually a regular expression to validate it.

Table 5.3 summarizes the additional properties of the Dojo Validation Text Box, extending
those already covered under the Dojo Text Box.

Table 5.3 xe:djValidationTextBox Properties

Property Description

promptMessage Enables developers to add a field hint to users when they enter the field.

invalidMessage Enables a developer to add an error message if any field validation fails. The
message will not appear if the only validation applied is required=“true”.

validatorExt Holds a Client-Side JavaScript function to extend validation.

regExp Holds a regular expression with which to validate the value the user entered.

regExpGen Holds Client-Side JavaScript, which returns a regular expression with which
to validate the value the user entered.

displayMessageExt Holds Client-Side JavaScript to customize the display of Dojo prompt or
validation messages.

tooltipPosition The position relative to the field with which to display any prompt or
validation messages.

112 Chapter 5 Dojo Made Easy

http://www.regular-expressions.info

ptg7987094

Dojo Number Text Box, Dojo Currency Text Box (xe:djNumberTextBox and
xe:djCurrencyTextBox)
The Dojo Number Text Box and Dojo Currency Text Box controls extend the Dojo Validation
Text Box still further in relation to validating numeric values. All the validation methods we have
covered are already available, although the required property is virtually redundant, because a
blank value is translated to 0 on save. But the power of the Dojo Number Text Box lies in the
xe:djNumberConstraints extension. It is a complex property comprising a variety of child
properties, as can be seen in Figure 5.8. The significant property, as shown, is type. This deter-
mines the output format from the control, but because of an issue with Dojo, scientific is not yet
supported. Similarly, the value currency and the related properties currency and symbol are
only applicable for the Dojo Currency Text Box.

Dojo Extensions to the Edit Box Control 113

Figure 5.8 xe:djNumberConstraints.

The main strength of the xe:djNumberConstraints extension, whose properties are
shown in Table 5.4, is enforcing appropriate data entry by the user. Percentages can be messy to
enforce, handling the percentage sign if users do or do not enter it, manipulating the value for
subsequent calculations, and so on. Setting type to percent gets around this by ensuring the user

ptg7987094

enters a number followed by the percentage sign, such as “50%”, which the control then converts
to the decimal value “0.5”. Likewise, specifying a pattern or places can translate the value entered
by the user into an expected format, such as with a certain number of leading zeros or decimal
places. With use of min and max, the entered value can be validated against a range, with an
appropriate message defined in the rangeMessage property, specific for these controls. See
Figure 5.9.

Table 5.4 xe:djNumberConstraints Properties

Property Description

currency Defines the relevant currency symbol to be applied to the field. The value should be a
three-character ISO 4217 currency code, such as GBP. This property relates only to the
Dojo Currency Text Box.

fractional Defines whether to include the fractional portion, for Dojo Currency Text Box only.

locale The locale to be applied to determine formatting rules for the field’s value, one of the
extraLocale values loaded in the Dojo config.

max Defines the maximum value allowed for the field.

min Defines the minimum value allowed for the field.

pattern Defines the formatting rule for the field’s value, to override any locale-specific formatting.

places The number of digits to force entry of after the decimal place.

strict Defines the degree of tolerance allowed to user input; it is false by default. This is more
applicable to date/time constraints.

symbol Defines the currency symbol to be applied to the field, overriding the default currency
symbol for the ISO 4217 currency code defined in the currency property. This property
relates only to the Dojo Currency Text Box.

type Defines the type applied to the field: decimal, scientific (not supported), percent, currency
(Dojo Currency Text Box only).

114 Chapter 5 Dojo Made Easy

ptg7987094

Dojo Extensions to the Edit Box Control 115

Figure 5.9 Dojo Number Text Box, Dojo Number Spinner, and Dojo Currency Text Box.

The Dojo Number Text Box has one further property that is of particular benefit if the
entered value is passed to a managed bean or another Java object. This is the javaType property.
Anyone who has worked with managed beans will be aware that the value is sometimes handled
as a java.util.Long, sometimes as a java.util.Double, but never consistently. It all depends on the
value the user enters, which can be annoying. The javaType property enables developers to over-
ride the type of the value passed to your underlying Java object and ensure it is always an int,
always a double, always a float, and so on. Table 5.5 summarizes these additional properties
available for the Dojo Number Text Box and Dojo Currency Text Box.

Table 5.5 xe:djNumberTextBox and xe:djCurrencyTextBox Properties

Property Description

javaType Defines the Java number type of the Server-Side value; by default, it is double.

rangeMessage Defines the validation message to show if the value entered is outside the minimum
and maximum bounds.

Dojo Number Spinner (xe:djNumberSpinner)
The Dojo Number Spinner allows the user to either type in a number or scroll up and down
through the range with the keyboard or the buttons provided on the right edge of the control. This
control is an implementation of dijit.form.NumberSpinner and an extension of the Dojo
Number Text Box with all the properties applicable to that control (so currency-related properties
of the xe:djNumberConstraints extension are not applicable). The control provides two
properties for managing the incremental steps of the spinner: smallDelta and largeDelta. By
default, the implicit increments are 1 and 10 respectively, but this can be overridden as required.
The smallDelta increment is used when the user clicks the buttons provided or uses the cursor up

ptg7987094

and down keys. To take advantage of the largeDelta increment, users need to click the Page Up
or Page Down keys.

If you hold down one of the buttons or keys, the increments are repeated after half a second
and subsequently applied quicker and quicker. The defaultTimeout property, expecting an inte-
ger in milliseconds, determines how long the user needs to hold down the key before the incre-
ment is repeated; by default, it is 500 milliseconds. You configure the degree to which the
increments are sped up using the timeoutChangeRate property. Because this is 0.9, the incre-
ments are applied progressively quicker the longer the key or button is held down, until the maxi-
mum speed is reached. If you set it at 1.0, the increments are always applied at the same time
interval, never increasing. A value of greater than 1.0 has no effect.

Table 5.6 summarizes the properties of the Dojo Number Spinner control.

Table 5.6 xe:djNumberSpinner Properties

Property Description

defaultTimeout Allows the developer to control the number of milliseconds the user needs
to hold down the key before it becomes typematic, or auto-incrementing.

timeoutChangeRate Defines how much quicker each typematic event occurs.

largeDelta Defines the increment when the Page Up and Page Down buttons are pressed.

smallDelta Defines the increment when the cursor Up and Down buttons are pressed.

Dojo Date Text Box and Dojo Time Text Box (xe:djDateTextBox and
xe:djTimeTextBox)
The Dojo Date Text Box and Dojo Time Text Box controls extend the Dojo Validation Text Box
control. However, like the Dojo Number Text Box, Dojo Currency Text Box, and Dojo Number
Spinner, they have their own constraints complex property. For the Dojo Date Text Box
and Dojo Time Text Box, the constraints complex property implements the xe:djDateTime-
Constraints extension, as detailed in Table 5.7 and illustrated in Figure 5.10.

116 Chapter 5 Dojo Made Easy

ptg7987094

Table 5.7 xe:djDateTimeConstraints Properties

Property Description

am Allows the developer to override the “am” abbreviation for A.M. times. This is
only applicable to the Dojo Time Text Box and only where timePattern is spec-
ified and uses the AM/PM portion (for example, timePattern is “h:mm a”).

clickableIncrement Defines the clickable increment of the Time Picker and is applicable only to the
Dojo Time Text Box. The value is entered in the format Thh:mm:ss.

datePattern Defines the date pattern and overrides any setting in the formatLength
property. Date patterns are in accordance with Unicode Technical Standard 35
Date Format Patterns, such as dd-MM-yy.

formatLength Defines the date or time format. Available options are long, short, medium,
and full.

locale The locale to be applied to determine formatting rules for the field’s value, one
of the extraLocale values loaded in the Dojo config.

pm Allows the developer to override the “pm” abbreviation for P.M. times. This is
only applicable to the Dojo Time Text Box and only where timePattern is spec-
ified and uses the AM/PM portion (for example, timePattern is “h:mm a”).

selector Defines the selector, either date or time.

strict Defines the degree of tolerance allowed to user input; it is false by default.

timePattern Defines the time pattern and overrides any setting in the formatLength prop-
erty. Time patterns are in accordance with Unicode Technical Standard 35 Date
Format Patterns, such as hh:mm a.

visibleIncrement Defines the visible increment of the Time Picker and is applicable only to the
Dojo Time Text Box. The value is entered in format Thh:mm:ss.

visibleRange Defines the visible range of the Time Picker and is applicable only to the Dojo
Time Text Box. The value is entered in the format Thh:mm:ss.

The main one for the Dojo Date Text Box is the datePattern property, which allows devel-
opers to define the format of the date presented to the user in the Dojo Date Text Box. For
example, dd-MM-yyyy overrides the locale format to show 16th June 2011 as 16-06-2011, and dd
MMM yyyy shows as 16 Jun 2011. Alternatively, the formatLength property can be used to
choose one of four predefined date or time formats. If both are used, the datePattern property
takes precedence.

Dojo Extensions to the Edit Box Control 117

ptg7987094

Figure 5.10 xe:djDateTimeConstraints.

The Dojo Time Text Box control also uses the xe:djDateTimeConstraints property. But
unlike the Dojo Date Text Box, properties are surfaced to allow the developer to manage the dis-
play of the control. To control how many hours are shown, you can define the visibleRange prop-
erty. The visibleIncrement property defines the labels presented to the user, and the
clickableIncrement property defines the increment for each value the user can select. You define
each property using the format THH:mm:ss, so a visibleIncrement of 30 minutes is T00:30:00,
as in Figure 5.11. With datePattern for the Dojo Date Text Box, the timePattern property
defines the format for the times displayed to the user and presented in the field. Therefore, a for-
mat of h:mm presents, for example, 9:00, 9:30, and so on.

118 Chapter 5 Dojo Made Easy

ptg7987094
Figure 5.11 Time Picker.

Dojo Extensions to the Multiline Edit Box Control
There are two Dojo controls in the Extension Library that extend the Multiline Edit Box: the Dojo
Text Area (xe:djTextarea) and the Dojo Simple Text Area (xe:djSimpleTextarea). One
of the advantages of these controls is that they also have some of the string manipulation proper-
ties familiar from the Dojo extensions that are based on the Edit Box controls. So trim, proper-
case, lowercase, and uppercase are implemented, which makes it easy to manipulate the content
as soon as the user leaves the field. There is no built-in Dojo functionality to validate the Dojo
Text Area control, but you can utilize all the core XPages validation techniques.

One of the strengths of XPages is that you can present and edit a collection of documents in
the same web page. However, the challenge for a developer is that, unless the user is editing a
small document such as a Comments document, the editable form can take up a large amount of
real estate. If that includes the Multiline Edit Box as well, it takes up even more real estate when
rows and cols properties are defined. But the beauty of the Dojo Text Area control is that it is
auto-expanding. This means it takes up less screen real estate while still expanding as much as is
required to show the user all the content. The Dojo Simple Text Area control, however, is fixed
size. Of course, size attributes can be computed using Server-Side JavaScript, just as they can for
any other XPages properties.

Dojo Extensions to the Multiline Edit Box Control 119

ptg7987094

As with the Multiline Edit Box, you can define the width of the field using the rows prop-
erty or using CSS to specify the width. Of course, because the Dojo Text Area is auto-expanding,
the rows property has no effect for that control, only for the Dojo Simple Text Area control.

Table 5.8 details two additional properties of the Dojo Text Area and Dojo Simple
Text Area.

Table 5.8 xe:djTextArea and xe:djSimpleTextArea Properties

Property Description

rows Defines the number of rows the text area will show. This property is applicable only to the
Dojo Simple Text Area control.

cols Defines the number of columns the text area will show.

Dojo Extensions to the Select Control
As with the other input controls, the Dojo modules for selecting values have been included in the
Extension Library. Besides the Dojo Radio Button (xe:djRadioButton) and Dojo Check Box
(xe:djCheckBox) controls, there are two Dojo versions of the core Combo Box control: the
Dojo Combo Box (xe:djComboBox) and Dojo Filtering Select (xe:djFilteringSelect).

The core Combo Box control is good for ensuring that users select from a restricted list of
options, but it does not allow type-ahead. The Edit Box control offers this kind of type-ahead
functionality, but it does not force the user to select one of the options provided. The benefit of the
Dojo Combo Box and Dojo Filtering Select controls in the Extension Library is that they com-
bine the type-ahead and restrict the user to just the options available. The sole difference between
the two is that the Dojo Combo Box control holds a list only of values, whereas the Dojo Filtering
Select control holds a list of label/value pairs.

Dojo Combo Box and Dojo Filtering Select (xe:djComboBox and
xe:djFilteringSelect)
Developers who are more familior with dojo.data stores such as the ItemFileReadStore can take
advantage of the store property and reference a JavaScript store. This is just a JSON object
returning a collection of items that could be returned by an XAgent or some other API to return a
JSON object. However, if the source data has been provided by a third party, it might not return a
name attribute for the Dojo Combo Box to search. In this situation, the searchAttr property can
be used to specify a different attribute in the JSON object on which to search. By default, any
search, whether against defined items or against a dojo.data store, is case insensitive, but you can
enforce case sensitivity by setting the ignoreCase property to true.

By default, whether querying a coded list of options or a dojo.data store, a starts with
query will be performed. That is, the only results returned will be those that start with the letter or
letters. Sometimes developers might prefer to query the store differently; Dojo provides this
functionality. There are three expressions to be used for starts with searches, contains searches,

120 Chapter 5 Dojo Made Easy

ptg7987094

and exact match searches. However, the expressions use the phrase “${”, which has a specific
meaning to the XSP Command Manager, so the easiest method of entering the expressions is
using Server-Side JavaScript. The three variants are included in Listing 5.7, Listing 5.8, and
Listing 5.9.

Listing 5.7 Contains Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox” pageSize=”2”>

<xe:this.queryExpr><![CDATA[${javascript:”*$\{0}*”}]]></xe:this.queryEx
pr>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

Listing 5.8 Exact Match Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox”

pageSize=”2”>

Dojo Extensions to the Select Control 121

ptg7987094

Listing 5.8 (Continued)

<xe:this.queryExpr><![CDATA[${javascript:”$\{0}”}]]></xe:this.queryExpr
>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

Listing 5.9 Starts with Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox” pageSize=”2”>

<xe:this.queryExpr><![CDATA[${javascript:”*$\{0}”}]]></xe:this.queryExp
r>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

122 Chapter 5 Dojo Made Easy

ptg7987094

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

To ease selection, a number of properties are available. The pageSize property allows you
to define some entries that the drop-down box should show. If the query returns more entries, a
link is added to allow the user to page down and page up through the available options, as shown
in Figure 5.12 and Figure 5.13. This property doesn’t enhance performance by minimizing the
number of options delivered to the browser, but you can use it to enhance presentation. As with
the Dojo Number Spinner control, it is also possible to manage the response to the selection. In
this case, the searchDelay property allows you to set the number of milliseconds delay before
matching results are returned.

Dojo Extensions to the Select Control 123

Figure 5.12 More choices on Dojo Combo Box.

ptg7987094

Figure 5.13 Previous choices on Dojo Combo Box.

Because the Dojo Filtering Select uses label/value pairs and the Dojo Combo Box uses just
a list of values, Dojo Filtering Select takes advantage of two additional properties and an event to
handle the labels displayed. The first is labelType. By default, the labels are treated as plain text,
but by setting this property to html, the labels are treated as HTML. The second is labelAttr,
applicable for developers using a datastore. As with the searchAttr property, you can use this
with a Dojo datastore to tell the Dojo Filtering Select to display labels from the store based on an
attribute other than name. This does not affect the attribute from the store that is used to search on
as the user types. To do that, you need to define the searchAttr property as well. An additional
event is available on the Dojo Filtering Select called labelFunc. This triggers on selection of a
valid entry and can trigger either Client-Side or Server-Side JavaScript.

Chapter 11, “REST Services,” covers REST services and other data integration, so at this
point only a brief example of this functionality is shown in Listing 5.10. Lines 1 to 22 cover the
REST service. Note that the jsId defined for the service in line 3 is allocated to the djFiltering-
Select in line 26. In line 27, the FilteringSelect shows a list of U.S. states using the labelAttr
property, but searches on the two-character abbreviation using the searchAttr property. The
results are limited to 10 per page using the pageSize property in line 29.

Listing 5.10 Dojo Filtering Select Using DataStore

1 <xe:restService

2 id=”restService1”

3 jsId=”stateStore”>

4 <xe:this.service>

5 <xe:viewItemFileService

6 viewName=”AllStates”

7 defaultColumns=”true”

8 dojoType=”dojo.data.ItemFileReadStore”

9 count=”400”>

10 <xe:this.columns>

11 <xe:restViewColumn

12 columnName=”Name”

13 name=”Name”>

14 </xe:restViewColumn>

15 <xe:restViewColumn

124 Chapter 5 Dojo Made Easy

ptg7987094

16 columnName=”Key”

17 name=”Key”>

18 </xe:restViewColumn>

19 </xe:this.columns>

20 </xe:viewItemFileService>

21 </xe:this.service>

22 </xe:restService>

23 <xe:djFilteringSelect

24 id=”djComboBox3”

25 value=”#{sessionScope.djComboBox2}”

26 store=”stateStore”

27 labelAttr=”Name”

28 searchAttr=”Key”

29 pageSize=”10”>

30 </xe:djFilteringSelect>

Table 5.9 details the noteworthy properties of the Dojo Combo Box and Dojo Filtering
Select.

Table 5.9 xe:djComboBox and xe:djFilteringSelect Properties

Property Description

hasArrow Defines whether a drop-down arrow appears beside the field, to show selections.

ignoreCase Defines whether the search of the store is case-sensitive.

queryExpr Defines a query for the way the store is searched, as a “starts with”, “contains”, or
“exact match”. For terminology, see Listing 5.7, Listing 5.8, and Listing 5.9.

searchAttr Defines the attribute in the Dojo datastore to search on; by default, it is name.

searchDelay Defines the number of milliseconds to delay before beginning the search.

pageSize Allows the developer to specify the number of entries to show on each page of the
search results.

store Allows the developer to define a Dojo datastore from which to take the options for
the Dojo Combo Box or Dojo Filtering Select.

labelAttr Defines the attribute in the Dojo datastore from which to retrieve the label. If no
property is defined, the attribute in the searchAttr property is used. This property is
available only for the Dojo Filtering Select.

labelFunc Defines an event handler to be called when the label changes, returning the label to be
displayed. This property is available only for the Dojo Filtering Select.

labelType Defines whether the label is plain text or HTML. This property is available only for
the Dojo Filtering Select.

Dojo Extensions to the Select Control 125

ptg7987094

Dojo Check Box and Dojo Radio Button
The primary intention of the Dojo Check Box and Dojo Radio Button controls is to style the con-
trols appropriate for other Dojo controls. Both controls support the same functionality as the core
control versions, so you can assign them to a group with custom values defined. The main differ-
ence with the Radio Button Group or Check Box Group is that the core controls for groups dis-
play their options in a table within a fieldset. The Dojo Check Box and Dojo Radio Button
controls display options inline. In addition to this standard functionality and similarity to the
other Dojo controls, the Dojo Check Box and Dojo Radio Button are enabled for accessibility.
So the title property and the WAI-related properties can be defined, as can any of the other Dojo
controls.

Dojo Extensions to Buttons
There are two Dojo Extensions to Buttons: the Dojo Button control and the Dojo Toggle Button
control. Like the Dojo Check Box and Dojo Radio Button controls, the Dojo Button is not appre-
ciably different from the core control version. Again, the main differences are the Dojo styling
and the inclusion of properties for accessibility, the same ones covered earlier. Just like the core
Button control, the Dojo Button control can have a label, show an icon, or both. The label prop-
erty allows the developer to control the text to show, but the showLabel property can suppress the
label from appearing. However, showing an icon is not merely a case of selecting an image. CSS
handles the icon, with the relevant class defined as a string in the iconClass property. Dojo has
some built-in icons for various editing functions, defined in the <dojoroot>\dijit\themes folder
and shown in Listing 5.11. Line 4 shows the Dojo theme classes dijitEditorIcon and
dijitEditorIconCut applied to the button. The former loads a sprite (a collection of images,
held in a single file to minimize calls to the server), and the latter positions the sprite to show a
specific image—in this case, the Cut icon. Line 15 applies an icon to a second button, this time
using a CSS class. Listing 5.12 shows the stylesheet that loads an image from the icons folder on
the server. Note that because this is a stylesheet, it is loaded using the HTTP server, not the XSP
Command Manager, so standard Domino web URL syntax applies rather than /.ibmxspres/….
You can see the buttons produced in Figure 5.14. If multiple images from the icons folder are to
be included in the application, using a sprite would be the recommended approach.

Listing 5.11 Dojo Button Icons

1 <xe:djButton

2 id=”djButton2”

3 label=”Execute Client Code”

4 iconClass=”dijitEditorIcon dijitEditorIconCut”>

126 Chapter 5 Dojo Made Easy

ptg7987094

5 <xp:eventHandler

6 event=”onClick”

7 submit=”false”>

8 <xp:this.script><![CDATA[alert(“You clicked me,
#{javascript:@UserName()}!”)]]></xp:this.script>

9 </xp:eventHandler>

10 </xe:djButton>

11 <xe:djButton

12 id=”djButton3”

13 showLabel=”false”

14 label=”Increase Value on Server”

15 iconClass=”testIcon”>

16 <xp:eventHandler

17 event=”onClick”

18 submit=”true”

19 refreshMode=”partial”

20 refreshId=”computedField19”>

21 <xp:this.action><![CDATA[#{javascript:if
(sessionScope.djButton4) {

22 sessionScope.djButton4+=1

23 } else {

24 sessionScope.djButton4 = 1

25 }}]]></xp:this.action>

26 </xp:eventHandler>

27 </xe:djButton>

Listing 5.12 testIcon Class

.testIcon {

background-image: url(/icons/actn010.gif); /* editor icons sprite
image */

background-repeat: no-repeat;

width: 18px;

height: 18px;

text-align: center;

}

Dojo Extensions to Buttons 127

ptg7987094

Figure 5.14 Dojo buttons.

Dojo Toggle Button Control
The Dojo Toggle Button is a control that is new to developers who are not familiar with Dojo.
The control is similar to the Dojo Check Box control but is styled like the Button control. Like the
Dojo Check Box, it can be bound to a datasource, with a value set when the button is unclicked
and a different value set when the button is clicked. From inspecting the source HTML produced
for the Dojo Toggle Button control, it becomes apparent that the Dojo Toggle Button consists of a
button with a dojoType and a hidden input field, as shown in Figure 5.15—a similar technique to
the way developers have built the kind of functionality the Dojo Toggle Button provides. Not sur-
prisingly, when the user clicks the Dojo Toggle Button, a value is set into the hidden field. The
toggle effect runs Client-Side, although Server-Side events can also be triggered. The hidden
field has the same ID as the button, except that it is suffixed with _field. The value of the hidden
field is not the checkedValue or uncheckedValue properties, but an empty string if unchecked or
on if checked.

128 Chapter 5 Dojo Made Easy

ptg7987094

Figure 5.15 Dojo Button HTML.

By default, as with the Dojo Check Box, the values are false when unclicked and true when
clicked. But you can override these values by defining the checkedValue and uncheckedValue
properties, the property names highlighting that this is an extension of the Dojo Check Box con-
trol. The only downside is that the styling of the toggle button does not change depending on
whether the button is clicked or unclicked. But with the understanding of the HTML produced
by the control, it is a simple matter to add that functionality as in Listing 5.13. Lines 8 to 20
add an onChange xp:eventHandler to the control. Note that this has to be defined as an
xp:eventHandler rather than the default xe:eventHandler, which does not exist. Line 11
loads the Client-Side ID of the button into a variable. Line 12 gets the button itself using
dojo.byId() because of the classneeds setting, not a dojoAttribute. Lines 13 and 14 get the
field and test whether the value is on. Lines 15 and 17 then set the class of the button.

Listing 5.13 Styling the ToggleButton Control

1 <xe:djToggleButton

2 id=”djToggleButton1”

3 title=”Toggle Button”

4 value=”#{sessionScope.djButton3}”

Dojo Extensions to Buttons 129

ptg7987094

Listing 5.13 (Continued)

5 label=”Toggle Button”

6 checkedValue=”Checked...”

7 uncheckedValue=”Not Checked...”>

8 <xp:eventHandler

9 event=”onChange”

10 submit=”false”>

11 <xe:this.script><![CDATA[var id=”#{id:djToggleButton1}”;

12 var btn=dojo.byId(id);

13 var field = dojo.byId(id+”_field”);

14 if (field.value == “on”) {

15 btn.setAttribute(“class”,”btnRed”);

16 } else {

17 btn.setAttribute(“class”,”btnGreen”);

18 }

19]]></xe:this.script>

20 </xp:eventHandler>

21 </xe:djToggleButton>

Listing 5.14 shows the CSS for the classes.

Listing 5.14 btnRed and btnGreen Classes

.btnRed {

color: rgb(255,0,0);

}

.btnGreen {

color: rgb(0,255,0);

}

Composite Dojo Extensions
Some extension controls are available under the Dojo category that do not fit into the previous
categories. Rather than extending core controls available, these controls add new functionality
not previously available as controls in XPages.

As Listing 5.3 shows, the dijit.form.HorizontalSlider requires multiple HTML
elements. In the same way, some of the Dojo controls are more complex. Sliders comprise mul-
tiple components for their implementation, whereas the Dojo Link Select and Dojo Image Select
controls have complex properties to define the values.

130 Chapter 5 Dojo Made Easy

ptg7987094

Sliders
The beginning of this chapter covered adding a slider with traditional Dojo. The code was cov-
ered in Listing 5.4, where the slider comprised a div with an ordered list of labels and an
onchange event passing the value to a hidden field via Client-Side JavaScript. The sliders in the
Extension Library remove the necessity to use a div with an onChange event to store the value.
Rather, the sliders themselves are bound directly to the field.

There are two types of sliders, the Dojo Horizontal Slider (xe:djHorizontalSlider)
and the Dojo Vertical Slider (xe:djVerticalSlider), as Figure 5.16 shows. Although the
properties for both are identical and shown in Table 5.10, you need to choose the relevant slider at
development time.

Table 5.10 xe:djHorizontalSlider and xe:djVerticalSlider Properties

Property Description

clickSelect Defines whether the user can change the value by clicking on a position on the bar
in addition to dragging the slider.

discreteValues Defines the number of discrete values between the minimum and maximum values.

maximum Defines the maximum value for the slider.

minimum Defines the minimum value for the slider.

pageIncrement Defines the number of increments applied to the slider when the user clicks the
Page Up or Page Down button.

showButtons Defines whether buttons are shown to move the slider.

slideDuration Defines the number of milliseconds it takes to move the slider from 0% to 100%; it
is 1000 milliseconds by default.

The values of the slider are controlled by four properties: defaultValue defines the initial
starting value (if the field the control is bound to does not already have a value), whereas mini-
mum and maximum define the bounds of the slider, and discreteValues defines the number of
steps between the minimum and maximum. By default, whenever the user clicks on a part of the
slider, that value is selected, and this is controlled by the clickSelect property. If set to false,
this functionality is suppressed. Also, by default, there are buttons on either end of the slider for
moving the current position. Again, these can be suppressed by setting the showButtons property
to false.

Composite Dojo Extensions 131

ptg7987094

Figure 5.16 Sliders.

Besides clicking on a position of the slider or using the buttons, you can use keyboard
shortcuts to control the movement, like you did for the spinner controls. All four cursor keys can
be used for both sliders: left (←) and down (↓) moving in one direction, right (→) and up (↑)
moving in the other direction. Although the cursor keys can be used to increment in small
amounts, Page Up and Page Down increment in larger amounts. The smaller increment is always
one step on the slider, but the developer can override the larger increment—by default 2 steps—
using the pageIncrement property. Furthermore, because the speed of increment could be con-
trolled for the spinners, it can also be controlled for the sliders, by means of the slideDuration
property. This is a value in milliseconds that the slider will take to move from one end of the
slider to the other; by default, it is one second.

As with the traditional Dojo implementation, you can add labels. This comprises two fur-
ther controls: the Dojo Slider Rule (xe:djSliderRule) for the markers and the Dojo Slider
Rule Labels (xe:djSliderRuleLabels) for the actual labels. For both controls, two proper-
ties determine how many and where the rules appear: count and container. The container pro-
vides a ComboBox list of options, with all four options available regardless: topDecoration,
leftDecoration, bottomDecoration, and rightDecoration. Obviously, you must
choose the relevant container for the relevant slider; rightDecoration and leftDecoration
are not applicable for the Dojo Horizontal Slider.

132 Chapter 5 Dojo Made Easy

ptg7987094

You can map styling to CSS classes for both controls. You can style the markers by using
the ruleStyle property on the Dojo Slider Rule, whereas you can style the labels by using the
labelStyle property on the Dojo Slider Rule Labels.

You can set a number of additional properties for the Dojo Slider Rule Labels. The mini-
mum and maximum properties set the top and bottom level for the labels, and numericMargin
can define how many labels to omit at either end of the label list. So setting the value to 1 omits
0% and 100% from a default Dojo Slider Rule Labels control. As this suggests, the default labels
are percentages, running from 0% to 100%. But you can override this in two ways. You can pass
an array of labels into the labels property or use the labelList property, as shown in Listing 5.15.
This method is recommended over tags because it supports localization.

Listing 5.15 Dojo Horizontal Slider

<xe:djHorizontalSlider

id=”djHorizontalSlider2”

value=”#{sessionScope.djSlider1}”

maximum=”100”

minimum=”0”

style=”margin: 5px;width:200px; height: 20px;”

discreteValues=”10”

pageIncrement=”3”>

<xp:this.converter>

<xp:convertNumber

integerOnly=”true”>

</xp:convertNumber>

</xp:this.converter>

<xe:djSliderRuleLabels

id=”djSliderRuleLabels2”

container=”topDecoration”

style=”height:10px;font-size:75%;color:gray;”

count=”6”

numericMargin=”1”>

</xe:djSliderRuleLabels>

<xe:djSliderRule

id=”djSliderRule5”

container=”topDecoration”

style=”height:5px;” count=”6”>

</xe:djSliderRule>

<xe:djSliderRule

id=”djSliderRule6”

style=”height:5px;”

count=”5”

container=”bottomDecoration”>

Composite Dojo Extensions 133

ptg7987094

Listing 5.15 (Continued)

</xe:djSliderRule>

<xe:djSliderRuleLabels

id=”djSliderRuleLabels5”

container=”bottomDecoration”

style=”height:10px;font-size:75%;color:gray;”>
<xe:this.labelsList>

<xe:djSliderRuleLabel

label=”green tea”>

</xe:djSliderRuleLabel>

<xe:djSliderRuleLabel

label=”coffee”>

</xe:djSliderRuleLabel>

<xe:djSliderRuleLabel

label=”red bull”>

</xe:djSliderRuleLabel>

</xe:this.labelsList> </xe:djSliderRuleLabels>

</xe:djHorizontalSlider>

Table 5.11 shows the properties for the Dojo Slider Rule and Dojo Slider Rule Labels.

Table 5.11 xe:djSliderRule and xe:djSliderRuleLabels Properties

Property Description

count Defines how many markers or labels should appear.

labels Allows the developer to write a Client-Side JavaScript expression to define the
labels. This property is available only for the Dojo Slider Rule Labels.

labelsList Allows the developer to define a localizable set of labels. This property is avail-
able only for the Dojo Slider Rule Labels.

maximum Defines the maximum position for the labels. This property is available only for
the Dojo Slider Rule Labels.

minimum Defines the minimum position for the labels. This property is available only for
the Dojo Slider Rule Labels.

numericMargin Defines the number of labels to omit from either end of the label list. This
property is available only for the Dojo Slider Rule Labels.

container Defines where in relation to the slider line the markers or labels should appear.

ruleStyle Defines the styling for the markers.

labelStyle Defines the styling for the labels and is available only for Dojo Slider Rule
Labels.

134 Chapter 5 Dojo Made Easy

ptg7987094

Dojo Link Select (xe:djLinkSelect)
The Dojo Link Select control allows developers to group link options so that when one link is
selected, the others are deselected. You can see this in action with the filter area of the All Docu-
ments page on the TeamRoom database. Here, for example, selecting All by Date not only selects
that entry but deselects the default All link. Unlike the traditional link functionality, you can bind
the Link Select to a field or scoped variable. In addition, you can trigger a wealth of events from
the Link Select.

Despite having properties multipleTrim and multipleSeparator, the control allows only
one value to be selected at any one time. You can define the available options in a number of
ways. The All Documents page (allDocumentsFilter.xsp custom control) uses selectItem con-
trols, but you can also use a selectItems control. As with the ComboBox and FilteringSelect con-
trols covered earlier, there is currently no mechanism to add an xp:selectItem or
xp:selectItems control from the palette. So you can use the core ComboBox or ListBox con-
trol to define the values; then you can cut and paste the code across from the core control to the
Dojo control.

Alternatively, there are three dataProviders available. Those who are comfortable with Java
may choose to use the beanValuePicker. The other options are the simpleValuePicker and the
dominoViewValuePicker. The simpleValuePicker allows a developer to define a list of options as
a string of label value pairs. The label values themselves are defined in the valueList property.
You can define the separator between the label and the value using the labelSeparator property,
and you can define the separator between values using the valueListSeparator property. The
dominoViewValuePicker allows you to select the options from a view, by defining the database-
Name and viewName properties. The labelColumn property defines the column from which the
values will be picked. The value set when the label is clicked is pulled from the first column in the
view. So Listing 5.16 shows a Dojo Link Select where the options are pulled from the AllStates
view, showing the Names column. Figure 5.17 shows the resulting output. As you can see, the
onChange event refreshes the computed field with the value whenever you select a new link.

Listing 5.16 Link Select Control with dominoViewValuePicker

<xe:djextLinkSelect

id=”djextLinkSelect2”

defaultValue=”MA”

value=”#{viewScope.link3}”>

<xe:this.dataProvider>

<xe:dominoViewValuePicker

viewName=”AllStates”

labelColumn=”Name”>

</xe:dominoViewValuePicker>

</xe:this.dataProvider>

<xp:eventHandler

Composite Dojo Extensions 135

ptg7987094

Listing 5.16 (Continued)

event=”onChange”

submit=”true”

refreshMode=”partial”

refreshId=”computedField3”>

</xp:eventHandler>

</xe:djextLinkSelect>

136 Chapter 5 Dojo Made Easy

Figure 5.17 Link Select with dominoViewValuePicker.

Table 5.12 shows the pertinent properties for the Dojo Link Select control.

ptg7987094

Table 5.12 xe:djLinkSelect Properties

Property Description

dataProvider Provides the options for the Dojo Link Select as an xe:simpleValue-
Picker, xe:dominoViewValuePicker, or xe:beanValuePicker.

firstItemStyle Defines styling for the first link.

firstItemStyleClass Defines the class to be applied to the first link.

itemStyle Defines styling for the intermediate links.

itemStyleClass Defines the class to be applied to the intermediate links.

lastItemStyle Defines styling for the last link.

lastItemStyleClass Defines the class to be applied to the last link.

Dojo Image Select
The Dojo Image Select control is similar to the Link Select in that it provides a group of links, or
in this case images, only one of which can be selected. Again, it is bound to a field or scoped vari-
able, with a default value that can be set. The images are defined using selectImage child controls
of the imageValues property. Each selectImage has image and selectedImage properties, to
define the images that appear when the link is deselected or selected. The selectedValue property
defines the value that will be set when the image is clicked. In addition, properties are available
for styling each image, both in its deselected state and its selected state. The example on the
Core_FormControl.xsp XPage in the Extension Library Demo database, reproduced in Listing
5.17 and shown in Figure 5.18, shows buttons appropriate for a Calendar View control, although,
as will be shown in Chapter 7, a slightly different method is used for the calendar view in the
TeamRoom database.

Listing 5.17 Dojo Image Select for Calendar Picker

<xe:djextImageSelect

id=”djextImageSelect1”

title=”Select a value default is two days”

value=”#{viewScope.image1}”

defaultValue=”T”>

<xe:this.imageValues>

<xe:selectImage

selectedValue=”D”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Day_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Day_deselected_24.gif”

Composite Dojo Extensions 137

ptg7987094

Listing 5.17 (Continued)

imageAlt=”One Day”>

</xe:selectImage>

<xe:selectImage

selectedValue=”T”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/2_Days_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/2_Days_deselected_24.gif”

imageAlt=”Two Days”>

</xe:selectImage>

<xe:selectImage

selectedValue=”F”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Work_Week_selected_
24.gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Work_Week_deselected_24.gif”

imageAlt=”One Work Week”>

</xe:selectImage>

<xe:selectImage

selectedValue=”W”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Week_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Week_deselected_24.gif”

imageAlt=”One Week”>

</xe:selectImage>

<xe:selectImage

selectedValue=”2”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/2_Weeks_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/2_Weeks_deselected_24.gif”

imageAlt=”Two Weeks”>

</xe:selectImage>

<xe:selectImage

selectedValue=”M”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/Month_selected_24.
gif”

138 Chapter 5 Dojo Made Easy

ptg7987094

image=”/.ibmxspres/.extlib/icons/calendar/Month_deselected_24.gif”

imageAlt=”One Month”>

</xe:selectImage>

<xe:selectImage

selectedValue=”Y”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/All_Entries_selected_
24.gif”

image=”/.ibmxspres/.extlib/icons/calendar/All_Entries_deselected_24.gif
”

imageAlt=”All Entries”>

</xe:selectImage>

</xe:this.imageValues>

<xp:eventHandler

event=”onClick”

submit=”true”

refreshMode=”partial”

refreshId=”computedField3”>

</xp:eventHandler>

</xe:djextImageSelect>

Composite Dojo Extensions 139

Figure 5.18 Dojo Link Select for Calendar Picker.

ptg7987094

Table 5.13 details the additional properties available for the Dojo Image Select control.

Table 5.13 xe:djImageSelect Properties

Property Description

image Defines the image shown when this image is not selected.

imageAlt Defines the alt text to appear when the user hovers over the image.

selectedImage Defines the image shown when this image is selected.

selectedStyle Defines styling to be applied when this image is selected.

selectedStyleClass Defines the class to be applied when this image is selected.

selectedValue Defines the value to pass when this image is selected.

style Defines styling to be applied when this image is not selected.

styleClass Defines the class to be applied when this image is not selected.

Dojo Effects Simple Actions
The inclusion of Dojo within the Extension Library extends beyond controls for storing user-
entered content. Some commonly used Dojo effects have also been added, implemented as
Simple Actions. So you can easily add them to buttons, links, or anything else that has an event.
These simple actions add animations to a form, to enhance the user experience.

So, for example, you can use a Dojo effect to fade in or wipe in helper text beside a field
when the user clicks into it, and fade out or wipe out when the user exits the field. And because all
the Dojo effects run Client-Side, there is no performance hit of round-tripping to the server.

Dojo Fade and Wipe Effects
The fade or wipe effects—either in or out—have additional properties that can be set. The node
property is the component to be faded/wiped, a Server-Side component ID, as can be seen from
Figure 5.19. The var property, as elsewhere, is a variable name the function uses to play the Dojo
effect. You cannot reference it elsewhere on the XPage via Client-Side JavaScript, because it is
scoped only to the eventHandler.

140 Chapter 5 Dojo Made Easy

ptg7987094

Figure 5.19 Dojo Fade In Effect.

The duration property defines how long in milliseconds the effect takes to run, whereas
the easing property takes a function that will handle how the effect runs, such as accelerating the
rate with which the node fades in. You can write this function from scratch, as on the Core_
DojoEffects.xsp XPages Extension Library Demo database, or as a predefined function, such as
those in the dojo.fx.easing object (see Listing 5.18).

Listing 5.18 Dojo Fade Out with dojo.fx.easing

<xp:this.resources>

<xp:dojoModule

name=”dojo.fx.easing”>

</xp:dojoModule>

</xp:this.resources>

<xp:button

value=”Fade Out - Duration 2s”

id=”button3”>

<xp:eventHandler

event=”onclick”

submit=”false”>

Dojo Effects Simple Actions 141

ptg7987094

Listing 5.18 (Continued)

<xp:this.script>

<xe:dojoFadeOut

node=”effect1”

duration=”200”

easing=”dojo.fx.easing.expoInOut”>

</xe:dojoFadeOut>

</xp:this.script>

</xp:eventHandler>

Table 5.14 shows the main properties for the Dojo Fade and Wipe simple actions.

Table 5.14 xe:dojoFadeIn, xe:dojoFadeOut, xe:dojofxWipeIn, and
xe:dojofxWipeOut Properties

Property Description

duration Defines the duration the animation should take.

easing Requires a Client-Side JavaScript function to define the rate of acceleration of the
animation.

node Defines the node to which the animation should be applied.

var Defines a variable name under which the animation runs.

Dojo Slide To Effect
The slide effect has all the properties of the fade and wipe effects but also two additional proper-
ties, top and left, for defining how far relative to the top and left of the screen the relevant node
should be slid. You can set all the properties available with a specific value or calculate them via
Server-Side JavaScript. The slide effect in Listing 5.19 shows how or why to use the attributes
property: namely, to enable the developer to set any of the effects via Client-Side JavaScript.
Why not just type dojo.coords(_id).t directly into the top property? First, because _id has
a specific meaning to the XSP Command Manager, so it throws an error. Second, because the top
property must be a number, not a string. So you must use the attributes property to pass the func-
tion, which sets top to the node’s current top property, to the browser. This function also shows
how to retrieve a node’s current position to slide a node relative to that current position.

142 Chapter 5 Dojo Made Easy

ptg7987094

Listing 5.19 Slide Effect with attributes Property

<xp:button

value=”Slide left”

id=”button8”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>

<xe:dojofxSlideTo

node=”effect1”

left=”0”>

<xp:this.attributes>

<xp:parameter

name=”top”

value=”dojo.coords(_id).t”>

</xp:parameter>

</xp:this.attributes>

</xe:dojofxSlideTo>

</xp:this.script>

</xp:eventHandler>

</xp:button>

Table 5.15 shows the significant properties of the Dojo Slide To Effect.

Table 5.15 xe:dojofxSlideTo Properties

Property Description

left Defines how far relative to the left of the screen the node should be slid.

top Defines how far relative to the top of the screen the node should be slid.

Dojo Animation
The Dojo animation effect implements the dojo.animateProperty object within a simple action.
The effect has all the properties already covered in the other Dojo effect simple actions. In addi-
tion, there are some specific properties. You can use the delay property to add a delay in millisec-
onds before the effect should start. You can use the rate property to change the number of frames
per second at which the animation runs; by default, it is 100 frames per second, which is rather
quick. The value of the rate property is a number in milliseconds, so to change it to 5 frames per

Dojo Effects Simple Actions 143

ptg7987094

second, the value would be 200 (200 × 5 = 1000 milliseconds = 1 second). You can use the
repeat property to repeat the animation a certain number of times. But the most important prop-
erty is the properties property, allowing one or more xe:dojoAnimationProps objects to be
added. These handle what animation runs and its varying settings.

Table 5.16 shows the main properties for the Dojo animation effect.

Table 5.16 xe:dojoDojoAnimateProperty Properties

Property Description

delay Defines the delay before the animation begins.

duration Defines the duration of the animation.

easing Requires a Client-Side JavaScript function to define the rate of acceleration of the
animation.

node Defines the node to which the animation should be applied.

properties Defines the animation properties.

rate Defines the rate per second, taking a value in milliseconds.

repeat Defines the number of times the animation should repeat.

var Defines a variable name under which the animation runs.

In addition to the loaded property, the xe:dojoAnimationProps object has four proper-
ties shown in Table 5.17. The Extension Library demo database has an example of this on the
Core_DojoEffects.xsp XPage, for increasing the size of a box, shown in Listing 5.20. Line 9 sets
the animation to run on the bluebox component. Lines 14 and 15 define the starting and ending
width and height of the box.

Table 5.17 xe:dojoDojoAnimationProps Properties

Property Description

end Defines the ending value of the attribute this animation applies to.

name Defines the attribute this animation applies to, such as “width” or “height”.

start Defines the starting value for the attribute this animation applies to.

unit Defines the unit for the values in start and end.

144 Chapter 5 Dojo Made Easy

ptg7987094

Listing 5.20 Core_DojoEffect.xsp Dojo Animation Simple Action

1 <xp:button

2 value=”Grow the box”

3 id=”button5”>

4 <xp:eventHandler

5 event=”onclick”

6 submit=”false”>

7 <xp:this.script>

8 <xe:dojoAnimateProperty

9 node=”bluebox”

10 duration=”3000”>

11 <xp:this.properties>

12 <xe:dojoAnimationProps

13 name=”width”

14 start=”200”

15 end=”400”>

16 </xe:dojoAnimationProps>

17 <xe:dojoAnimationProps

18 name=”height”

19 start=”200”

20 end=”400”>

21 </xe:dojoAnimationProps>

22 </xp:this.properties>

23 </xe:dojoAnimateProperty>

24 </xp:this.script>

25 </xp:eventHandler>

26 </xp:button>

Earlier in this chapter, code was provided to style the ToggleButton control. At this point, it
is appropriate to revisit that code, shown in Listing 5.13. Listing 5.21 shows alternate code for the
ToggleButton using a Dojo animation simple action, with the output shown in Figure 5.20. To
revisit the functionality, the animation should change the font color of the ToggleButton, alternat-
ing between red and green. However, the properties of the xe:dojoAnimationProps object
can only accept literal values or Server-Side JavaScript returning a literal value. It is not possible
to add Client-Side JavaScript code to ensure the end color alternates. As a result, you must use the
attributes property to compute the properties object in Client-Side JavaScript, in lines 16 to 29.
Line 18 creates the color object (the name property of an xe:dojoAnimationProps object).
Line 19 sets the start attribute of the color object, although _id.style.color is not set when
the page is loaded. Lines 20 to 26 set the end attribute to a function that sets the color to red if it is
initially green, otherwise red.

Dojo Effects Simple Actions 145

ptg7987094

Listing 5.21 Using Dojo Animation Simple Action to Style the ToggleButton

1 <xe:djToggleButton

2 id=”djToggleButton2”

3 value=”#{sessionScope.djButton3}”

4 label=”Toggle Button”

5 checkedValue=”Checked...”

6 uncheckedValue=”Not Checked...”

7 style=”color:rgb(255,0,0)”>

8 <xp:eventHandler

9 event=”onclick”

10 submit=”false”>

11 <xp:this.script>

12 <xe:dojoAnimateProperty

13 node=”djToggleButton2”

14 duration=”500”>

15 <xe:this.attributes>

16 <xp:parameter

17 name=”properties”>

18 <xp:this.value><![CDATA[{“color”:

19 {“start”:_id.style.color,

20 “end”:function() {

21 if (_id.style.color==”rgb(0, 255, 0)”) {

22 return “rgb(255,0,0)”;

23 } else {

24 return “rgb(0,255,0)”;

25 }

26 }

27}

28}]]></xp:this.value>

29 </xp:parameter>

30 </xe:this.attributes>

31 </xe:dojoAnimateProperty>

32 </xp:this.script>

33 </xp:eventHandler>

34 </xe:djToggleButton>

146 Chapter 5 Dojo Made Easy

ptg7987094
Figure 5.20 Dojo Fade In Effect.

Conclusion
This chapter covered many of the Dojo controls provided by the Extension Library to add to the
content controls covered in the previous chapter. These Dojo controls offer little additional func-
tionality to the traditional Dojo controls, but they do make it easier to implement the controls and
minimize the risk of mistyping or misremembering Dojo attributes.

Conclusion 147

ptg7987094

This page intentionally left blank

ptg7987094

149

C H A P T E R 6

Pop-Ups: Tooltips,
Dialogs, and Pickers

The previous two chapters have covered the controls in the Extension Library for managing and
presenting content for users and handling events. For many input forms, that will suffice. But as
part of the Web 2.0 experience that AJAX provides to users, dynamic management of larger areas
of content, whether via dialogs, tooltips, or pickers, is a key component. This is where the Exten-
sion Library offers a variety of options with pop-ups.

These pop-ups are part of the current web page, so they are not intercepted by pop-up blockers,
providing a much more user-friendly experience. The Extension Library contributes tooltips for
displaying additional content, dialogs for displaying or managing content, and pickers for facili-
tating selection of values. The Extension Library again makes this easier for developers by over-
coming some of the challenges of integrating Dojo and XPages.

Tooltip (xe:tooltip)
The Tooltip is a useful control for maximizing screen real estate and unobtrusively providing
additional information for users. As with many of the other Dojo controls, the Tooltip control—
an implementation of the dijit.Tooltip widget—has been added to the Extension Library to make
it quicker and easier to implement. You can see the properties in Table 6.1.

ptg7987094

Table 6.1 xe:tooltip Properties

Property Description

dynamicContent Determines whether the content should be loaded dynamically via an AJAX
request or retrieved at page load. This is required if the content to be dis-
played is not within the label property.

for Defines the control ID that triggers the tooltip.

label Can hold textual content for the tooltip. Alternatively, you can add controls
within the tooltip.

showDelay Determines the number of milliseconds before the tooltip is displayed; by
default, it is 400 milliseconds.

afterContentLoad Can be used to trigger Server-Side JavaScript (SSJS) before the tooltip is
displayed. This code runs only if dynamicContent is true.

beforeContentLoad Can be used to trigger SSJS after the tooltip is displayed. This code runs
only if dynamicContent is true.

position Defines where the tooltip is displayed in relation to the control the tooltip
is for.

The main property for the Tooltip control is for. Like the for property of the Label control,
this is the ID of the component the tooltip relates to. The position property allows the developer
to define where the tooltip should appear in relation to the component the tooltip is attached to.
The options are above, below, before, and after. However, use caution when changing the
default; if there is not enough screen real estate available for the tooltip to appear, it doesn’t show.

You can manage the content in one of two ways. First, you can use the label property to dis-
play simple textual content, whether a string or a computed value. See Listing 6.1 and Figure 6.1.

Listing 6.1 Basic Tooltip

<xe:tooltip

id=”tooltip1”

for=”computedField1”

label=”#{row.City}”>

</xe:tooltip>

150 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

ptg7987094Figure 6.1 Basic Tooltip.

Second, you can place other controls between the xe:tooltip tags to build up the con-
tent. This can be just individual controls but can also include data components, as in Listing 6.2,
which shows part of the code for a Tooltip control from the Core_Tooltip.xsp XPage in the
Extension Library Demo database, shown in Figure 6.2. Note particularly the inclusion of the
dynamicContent property. This is required if the you are not using the label property for the
content of the tooltip. Don’t confuse this with the Dynamic Content control in the Extension
Library. Instead, it means that the data content within the tooltip should be calculated dynami-
cally when the tooltip is shown triggering an AJAX GET request made to the server. Because the
tooltip is within a repeat control and the documentId is based on the current row of the repeat,
dynamicContent is set to “true” to ensure the documentId property is recalculated at runtime
and the correct dominoDocument datasource is returned.

Listing 6.2 Complex Tooltip

<xe:tooltip

id=”tooltip2”

for=”computedField2”

dynamicContent=”true”

showDelay=”1000”>

<xe:this.beforeContentLoad>
<![CDATA[#{javascript:print(“DynamicTooltip: Before Content

Tooltip (xe:tooltip) 151

ptg7987094

Listing 6.2 (Continued)

Load”)}]]></xe:this.beforeContentLoad>

<xe:this.afterContentLoad>
<![CDATA[#{javascript:print(“DynamicTooltip: After Content
Load”)}]]></xe:this.afterContentLoad>

<xp:panel>

<xp:this.data>

<xp:dominoDocument

var=”document1”

formName=”Contact”

action=”editDocument”

documentId=”#{javascript:row.getNoteID()}”

ignoreRequestParams=”true”>

</xp:dominoDocument>

</xp:this.data>

Business card

152 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

Figure 6.2 Complex Tooltip.

This raises a particular performance issue with the Tooltip control. Because an AJAX
request is being made whenever the user mouses over the component that the tooltip is attached
to, it can impact the user experience. There will be a short delay of 400 milliseconds before the

ptg7987094

tooltip is shown, but the showDelay property can add a more specific delay, in milliseconds,
before the request is made and the content is retrieved. Listing 6.2 shows the code for the
showDelay property. If the user accidentally hovers on a control that has a tooltip applied to it,
the tooltip does not interfere with the user experience. The showDelay property is more impor-
tant if dynamicContent is set to “true”, because it also delays the AJAX call to the server,
thereby reducing unnecessary accidental calls to the server. However, the larger the showDelay
value is, the longer the user has to wait before the AJAX call is made and the content is retrieved.

The beforeContentLoad and afterContentLoad events can trigger SSJS, but only if the
dynamicContent property is set to “true”. That is because there needs to be a call to the server
to trigger the SSJS, which only happens for dynamic content calls. If dynamicContent is
“false”, the content has already been passed to the browser, so no call is made to the server. The
examples in Listing 6.2 merely print to the server console, but you can use more complex code.
However, you can only modify controls inside the xe:tooltip tags, because that context is
being partially refreshed.

Dialogs
The Extension Library contributes two dialog controls: one modal and the other nonmodal. This
means that one locks the rest of the screen to prevent further editing, whereas the other closes the
dialog if the user clicks outside it. It is associated with a particular component.

Both dialog controls are based on Dojo modules. The Dialog control is modal and is based
on the dijit.Dialog Dojo module. The Tooltip Dialog control is nonmodal and is based on the
dijit.TooltipDialog module. The Extension Library controls make it easier for developers to
implement them within XPages, both by means of avoiding workarounds and providing appropri-
ate properties to remove the need to know the Dojo attributes. Moreover, as part of the implemen-
tation, additional functionality is provided.

Dialog (xe:dialog)
Among the core XPages controls, there was no control to allow developers to launch a modal dia-
log to users. Dojo provided a widget—dijit.Dialog—but implementation was not simple because
of a conflict in functionality between XPages and Dojo. XPages, and JSF on which XPages is
based, creates a Server-Side map in memory of the XPage components, all collated under a Form
tag. When content is posted back from the browser via a partial or full refresh, the content within
the Form tag posted back to the browser is evaluated, the Server-Side map is updated, and any
changes relevant to the browser are passed back.

However, when the Dojo parser converts an HTML div to a dijit.Dialog, it moves the entire
content outside the Form tag. This means the modal dialog content is not passed back from the
browser to the server, so no Server-Side updates are made and no Server-Side script is triggered.
There are resources available on the Web to work around this limitation, the most effective of
which moves the content back inside the Form tag. However, this requires additional code to be
stored either on the server (and any clients using XPiNC) or within each NSF. It also requires

Dialogs 153

ptg7987094

adding the module and a div with the relevant dojoType to each XPage. The Extension Library
provides the Dialog control not only to avoid the need for this workaround but to enhance the
functionality of the dialog.

The Setup area of the TeamRoom database, setup.xsp, gives a good demonstration of the
modal dialogs. First of reference is the second tab Tags (Categories), specifically the Map Cate-
gories functionality, shown in Figure 6.3. Developers who have used the Dojo dialog in the past
will know that it is opened via Client-Side JavaScript using the show() function and closed using
the hide() function. The Map Categories functionality shows that the Extension Library Dialog
control can be launched via Client-Side JavaScript. But this doesn’t happen by using the tradi-
tional functions for the Dojo dialog. Instead, the control extends the XSP object used for other
Client-Side JavaScript in XPages, adding an openDialog() function, as shown in Listing 6.3,
from the setupTags.xsp Custom Control. The parameter passed to this function is the Client-Side
ID of the dialog to open, the dialog that is held in the setupMapTags.xsp Custom Control.

Listing 6.3 Opening a Dialog (Client-Side JavaScript)

<xp:button

id=”mapCategoriesButton”

themeId=”Button.Cancel”>

<xp:this.value><![CDATA[#{javascript:return
I18n.format(strings.getString(“setup.tags.mapcategories”));}]]>
</xp:this.value>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>
<![CDATA[XSP.openDialog(“#{id:dialogMapTags}”);]]></xp:this.script>

</xp:eventHandler>

</xp:button>

154 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

ptg7987094

Figure 6.3 Map Categories dialog.

Similarly, you can close the dialog via Client-Side JavaScript, intuitively using the
XSP.closeDialog() function. Listing 6.4 shows an implementation. The function again takes
as its parameter the Client-Side ID of the dialog to close. But the XSP.closeDialog() function
also has an optional second parameter, not shown in Listing 6.3. This is the Client-Side ID of a
component to be partially refreshed after you close the dialog.

Listing 6.4 Closing a Dialog (Client-Side JavaScript)

<xp:link

escape=”true”

id=”link1”>

<xp:this.text><![CDATA[#{javascript:return
I18n.format(strings.getString(“setup.tags.dialog.button2”));}]]>
</xp:this.text>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>
<![CDATA[XSP.closeDialog(‘#{id:dialogMapTags}’)]]></xp:this.script>

</xp:eventHandler>

</xp:link>

Dialogs 155

ptg7987094

Unlike the Dojo dialog, however, the Extension Library control can be launched with SSJS.
This can be seen by the Send Reminders Now functionality on the Basics tab of the Setup area,
in Domino Designer the setupBasics.xsp Custom Control. Listing 6.5 shows a button that runs
SSJS to trigger an agent to run on the server. If the agent runs successfully, line 16 creates a vari-
able that accesses the dialogSendReminders component, a Dialog control. Note that this is
using the Server-Side ID, not the Client-Side ID, because the code is accessing the Server-Side
component, not the Client-Side HTML element. This component has a show() method exposed
to SSJS, which opens the dialog, in line 22. This allows the Dialog control to be opened directly
from SSJS, something you cannot do with the Dojo dialog. Traditionally, this kind of functional-
ity would have required the SSJS setting the value of a component that is partially refreshed, so
the value becomes available in the HTML. The onComplete event of the eventHandler would
then have used Client-Side JavaScript to check that component’s HTML to see whether the dia-
log should be shown. If it should, the traditional Dojo show() method would have been used.

Listing 6.5 Opening a Dialog (SSJS)

1 <xp:button

2 id=”sendRemindersNow”

3 themeId=”Button.Cancel”>

4 <xp:this.value><![CDATA[#{javascript:return
I18n.format(strings.getString(“setup.basics.sendremindersnow”));}]]></x
p:this.value>

5 <xp:eventHandler

6 event=”onclick”

7 submit=”true”

8 refreshMode=”partial”

9 refreshId=”dialogSendReminders”>

10 <xp:this.action><![CDATA[#{javascript:var
thisDatabase:NotesDatabase = session.getCurrentDatabase();

11 var thisAgent:NotesAgent = thisDatabase.getAgent(“SendReminder”);

12 if (thisAgent!=null)

13 {

14 var doc:NotesDocument =
database.getProfileDocument(“TempVars”,””);

15 doc.replaceItemValue(‘useXPageUrl’, ‘true’);

16 var result = thisAgent.runOnServer();

17 doc.replaceItemValue(‘useXPageUrl’, ‘’);

18

19 if (result==0)

20 {

21 var dialog = getComponent(“dialogSendReminders”);

156 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

ptg7987094

22 dialog.show();

23 }

24 }}]]></xp:this.action>

25 </xp:eventHandler>

26 </xp:button>

Closing the dialog from SSJS can be done the same way as closing a Dojo dialog from
SSJS. A refresh of the page closes the dialog. But just as the Dialog control exposes a show()
method to SSJS, it exposes a hide() method to SSJS. Compare Listing 6.4 to Listing 6.6. List-
ing 6.4 is the code from the TeamRoom database in the setupMapTags.xsp Custom Control.
Listing 6.6 shows that same link rewritten to close the dialog in SSJS. Also, like its Client-Side
counterpart, the SSJS hide() method can take a parameter of the component to partially refresh.
Note that unlike its Client-Side counterpart, the hide() method takes the component’s Server-
Side ID, not the Client-Side ID rendered to the browser, because it is being triggered from SSJS.
For the Done link on the Map Tags dialog in the TeamRoom, Client-Side JavaScript is more
appropriate for performance and ease of coding. But the code in Listing 6.6 is a useful addition
for scenarios in which SSJS needs to be triggered and, based on its success, the dialog closes
or not.

Listing 6.6 Closing a Dialog (SSJS)

<xp:link

escape=”true”

id=”link1”>

<xp:this.text><![CDATA[#{javascript:return
I18n.format(strings.getString(“setup.tags.dialog.button2”));}]]>
</xp:this.text>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshId=”mapTags”

refreshMode=”partial”>

<xp:this.action><![CDATA[#{javascript:var dialog =
getComponent(“dialogMapTags”);

dialog.hide();}]]></xp:this.action>

</xp:eventHandler>

</xp:link>

The setupSendReminders.xsp and setupMapTags.xsp Custom Controls contain the
modal dialogs for these two tabs. As you can see, the content can be very basic or quite complex.
But from a development point of view, the control is not particularly dissimilar to a Panel or Div

Dialogs 157

ptg7987094

from the core controls. The whole process is designed to be intuitive and build on the skills
already developed from XPages development. Other controls are just placed between the
xe:dialog tags to build up the look and feel and functionality of the modal dialog. Business
logic is triggered from Link or Button controls (whether the buttons are core or extended ver-
sions). An additional control is available for highlighting the button area, the Dialog Button Bar.
This adds a styling to that specific area, as you can see in Figure 6.4 from the dialogs page of the
Extension Library Demo database.

158 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

Figure 6.4 Dialog Button Bar.

Moreover, other modal dialogs can trigger modal dialogs, as in Figure 6.5, as can value
pickers and name pickers. This provides a wealth of flexibility for the content of modal dialogs.

Figure 6.5 Embedded dialogs.

ptg7987094

Dialogs 159

The modal dialogs in the TeamRoom do not take advantage of many of the available
properties. Only those in the announcementConfirmDelete.xsp and controlSelectionSelect-
Tags.xsp Custom Controls use the title property, a property that has become familiar from the
other Dojo-related controls. No other properties are used. Some of the properties are designed for
performance, such as parseOnLoad and preload. You can use the preload property to ensure
the dialog’s content is loaded with the web page instead of when the request is made to show the
dialog. This ensures better performance on presenting the dialog, but it affects the performance of
the initial load time. By default, the contents are then cached, and the cached dialog is shown
each time. The preventCache property can prevent this. The refreshOnShow parameter ensures
that the contents are reloaded every time the dialog is shown.

Besides comprising controls, the dialog can show external content by using the href prop-
erty. In this case, the content might take time to load, if indeed the target URL is available. To
enhance the user experience, you can define the loadingMessage property to alert the user, and
you can define the errorMessage property to provide a meaningful message if the URL cannot
be loaded. The onContentError event allows Client-Side JavaScript to be computed to return a
string in place of errorMessage.

The control also provides events that are specific for dialogs. The beforeContentLoad and
afterContentLoad events allow SSJS to be triggered before or after the dialog is shown to the
user. The onShow and onHide events trigger Client-Side JavaScript before the dialog is shown or
before the dialog is closed. The onDownloadStart, onDownloadEnd, and onDownloadError
events are specifically used if the href property has been defined, allowing Client-Side JavaScript
to be triggered before and after the source is loaded and if there’s an error loading the relevant
page.

Table 6.2 outlines the main properties for the Dialog and Tooltip Dialog controls.

Table 6.2 xe:dialog and xe:tooltipDialog Properties

Property Description

title Defines the label to display as the title of the dialog.

errorMessage Defines the error message if the content of the dialog cannot be loaded,
primarily of use if the content is loaded from the href property.

extractContent Is relevant if href property is defined. Instead of including the full response of
the AJAX call, only the content between the <BODY> tags will be used; the
<HTML> and <HEAD> tags will be stripped off.

href Defines a URL from which to load the content for the dialog.

keepComponents Determines whether the components should be retained in the Server-Side tree
of the page after the dialog is closed.

loadingMessage Defines the loading message while the content of the dialog is being loaded,
primarily of use if the content is loaded from the href property.

ptg7987094

160 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

Table 6.2 Continued

Property Description

preload Defines whether the content of the dialog should be preloaded before the user
launches the dialog.

preventCache Defines whether the dialog content should be cached. The property adds an
additional parameter to the AJAX call to ensure that the URL is always unique.
This property is relevant if href is defined.

refreshOnShow Defines whether the dialog content should be refreshed every time the dialog is
launched.

parseOnLoad Defines whether Dojo controls are automatically displayed.

afterContentLoad Can be used to trigger SSJS before the dialog’s contents are loaded.

beforeContentLoad Can be used to trigger SSJS after the dialog’s contents are loaded.

onContentError Can be used to run Client-Side JavaScript when an error occurs in the content
of the dialog.

onDownloadEnd Can be used to run Client-Side JavaScript after the URL in the href property
has been loaded.

onDownloadError Can be used to run Client-Side JavaScript if the URL in the href property
cannot be loaded.

onDownloadStart Can be used to run Client-Side JavaScript before the URL in the href property
is loaded.

onHide Can be used to run Client-Side JavaScript each time the dialog is closed.

onShow Can be used to run Client-Side JavaScript each time the dialog is displayed.

Tooltip Dialog (xe:tooltipDialog)
The Tooltip Dialog control, as its name suggests, is a combination of the Tooltip and the Dialog
controls. It is not found in the TeamRoom database, but you can see it in action in the Extension
Library Demo database, on Core_Tooltip.xsp. An investigation of the underlying implemented
Java class shows that it extends the Dialog’s Java class, UIDialog. No additional properties are
surfaced through the All Properties panel, so Table 6.2 is relevant for this control. It presents a
dialog with all the same functionality as the Dialog control, except that it is not modal and
directly attached to another component, as seen in Figure 6.6, like the tooltip. This means you
cannot drag the ToolTip Dialog control around the screen; it is fixed relative to the component it
is attached to. Therefore, much of the functionality between the Tooltip Dialog and the Dialog
controls is identical.

ptg7987094

Figure 6.6 Tooltip dialog.

No for property is exposed in the All Properties panel. Instead, you need to set it when the
dialog is opened. For the Client-Side JavaScript function to open the Tooltip Dialog, XSP.open-
TooltipDialog() consequently takes two parameters. As with the openDialog() function,
the first parameter is the Client-Side ID of the tooltip dialog to be opened. The second parameter
is completely understandable—namely, the Client-Side ID of the component to which the tooltip
is attached. For SSJS, the component exposes another method, setFor(), taking as its parame-
ter the Server-Side ID of the component to which the tooltip dialog should be attached. After you
have set this, you can use the show() method to launch the dialog.

Closing the Tooltip Dialog follows the same premise as closing the modal dialog. The
Client-Side JavaScript code XSP.closeTooltipDialog(‘#{id:tooltipDialog1}’)

closes the dialog opened in Listing 6.7.

Listing 6.7 Opening the Tooltip Dialog (Client-Side JavaScript)

<xp:link

escape=”true”

id=”link2”

text=”Edit - Tooltip”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>
<![CDATA[XSP.openTooltipDialog(‘#{id:tooltipDialog1}’,
’#{id:computedField2}’)]]></xp:this.script>

</xp:eventHandler>

</xp:link>

If SSJS is the preference, the code in Listing 6.8—in syntax identical to that of the modal
dialog—closes the same Tooltip Dialog.

Dialogs 161

ptg7987094

Listing 6.8 Closing the Tooltip Dialog (SSJS)

<xp:button

value=”Cancel”

id=”button4”>

<xp:eventHandler

event=”onclick”

submit=”true”

immediate=”true”>

<xp:this.action>

<xp:actionGroup>

<xp:executeScript>

<xp:this.script> <![CDATA[#{javascript:var c
= getComponent(“tooltipDialog1”)

c.hide()}]]></xp:this.script>

</xp:executeScript>

</xp:actionGroup>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Value Picker (xe:valuePicker)
So far, this chapter has covered two dialogs whose content the developer defines. The Value
Picker and Name Value Picker are controls that open a dialog whereby the content is an automat-
ically formatted list of values to select from. This is similar functionality to the Dialog List or an
Address Book Dialog in the Notes Client. You can store the selected value in a field or, in the
Extension Library Demo database and the Create SubTeam area of the TeamRoom database, in a
List TextBox or Name List TextBox.

The dataProvider for the Value Picker control is one of three options, the same providers
described in Chapter 5, “Dojo Made Easy,” when covering the Link Select control: simpleValue-
Picker, dominoViewValuePicker, and beanValuePicker. You can see a simpleValuePicker in
the Main Topic in the homeMainTopic.xsp Custom Control for selecting tags. Look at the code
in Listing 6.9 and the picker in Figure 6.7. The tagOptions scoped variable is just a
@DbLookup to the MissionLookup view, which returns just a comma-separated list of values,
without a separate label. Consequently, the labelSeparator and valueListSeparator properties
are both a comma. That is why a simpleValuePicker was used instead of a dominoViewValue-
Picker; the dominoViewValuePicker maps to a column of labels while pulling the value from
the first column in the relevant view.

162 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

ptg7987094

Listing 6.9 Tags Value Picker

<xe:valuePicker

id=”tagsPicker”

pickerText=”Select”

for=”tagsField”

listWidth=”300”>

<xe:this.dataProvider>

<xe:simpleValuePicker

caseInsensitive=”true”

labelSeparator=”,”

valueListSeparator=”,”

valueList=”#{javascript: requestScope.tagOptions }”>

</xe:simpleValuePicker>

</xe:this.dataProvider>

</xe:valuePicker>

Value Picker (xe:valuePicker) 163

Figure 6.7 Tags Select on homeMainTopic.xsp.

The styling of the link and dialog are handled using properties of the Value Picker control.
By default, a magnifying glass icon serves as the link to open the Picker dialog, but you can over-
ride this with a different image using the pickerIcon property or replace it with text, as in Listing
6.9, using the pickerText property. To override the default title of the picker dialog, shown in
Figure 6.7, set the dialogTitle property, and manage the size of the picker dialog using the
listHeight and listWidth properties. These two properties expect a value in the same format as a

ptg7987094

164 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

CSS height or width attribute, (1.5em, 50px, and so on). The picker itself is bound to a field by
using the for property, like a Label control.

By default, the Value Picker provides just a list of values. There are two additional Exten-
sion Library styles you can use in the dojoType property to alter this. extlib.dijit.PickerCheck-
box adds a CheckBox beside each value, making it easier to select multiple values while ensuring
that only one value is selected, if the control for the picker does not accept multiple values.
extlib.dijit.PickerListSearch adds a search box, but bear in mind that this searches against the
values, not the labels shown in the Value Picker dialog.

Table 6.3 details the key properties for the Value Picker control.

Table 6.3 xe:valuePicker Properties

Property Description

dataProvider Provides the values for the Picker. The options are

• xe:simpleValuePicker to define a set of options hard-coded or computed
with SSJS

• xe:dominoViewValuePicker to pull options from a view

• xe:beanValuePicker to pull options from a bean

dialogTitle Defines the title for the Picker dialog.

for Defines the control to which the value picked should be passed.

listHeight Defines the height of the pane holding the list values.

listWidth Defines the width of the pane holding the list values.

pickerIcon Overrides the icon the user clicks on to launch the Picker.

pickerText Defines the text the user clicks on to launch the Picker.

Dojo Name Text Box and Dojo List Text Box (xe:djextNameTextBox
and xe:djextListTextBox)
The values selected in the picker on the homeMainTopic.xsp Custom Control, shown in Figure
6.8, are displayed using the Dojo Name Text Box. The Dojo Name Text Box and Dojo List Text
Box controls are similar, both extending the same underlying Java class, Abstract
DojoExtListTextBox. This Value Picker allows multiple values, defined not on the picker but
on the Dojo Name Text Box. Because that control has the multipleSeparator property set, it
allows multiple values; therefore, the Value Picker automatically allows multiple values to be
selected.

ptg7987094
Figure 6.8 Dojo Name Text Box.

These two controls provide a visual representation of the values selected and remove the
need for validation on the control that’s bound to the underlying data element. Users cannot type
a value in, and they can’t accidentally delete part of a value. Instead, users see each value shown
separately with a cross by the side to remove the whole value with a single click.

The Dojo Name Text Box has no specific additional properties other than the accessibility
and dojo categories of properties encountered for the Dojo controls in Chapter 5. The main rea-
son for using the Dojo List Text Box instead of its sibling is its ability to display the label instead
of the value stored in the field the control is bound to by setting the displayLabel property.

Name Picker (xe:namePicker)
The Name Picker control is a Value Picker that allows the user to select from address books. The
Name Picker has all the same properties already covered for the Value Picker. Apart from the
default image for the picker, the difference is with the available dataProviders. The implementa-
tion in the TeamRoom database is on the Add Member page: addMember.xsp Custom Control.
It uses a dominoNABNameProvider. By default, this is already set up to point to the server’s
Domino Directory, which means that no additional properties need to be added to allow the user
to pick from the Domino Directory, as in Listing 6.10. If multiple address books are required, you
can use the addressBookSel property to define which address book or books should be shown.
Alternatively, you can define the location of a specific address book in the addressBookDb

Name Picker (xe:namePicker) 165

ptg7987094

property, with addressBookSel set to db-name. You can set two other properties—groups and
people—to define which users within the address book(s) should be shown for selection.

Listing 6.10 Name Picker with dominoNABNameProvider

<xe:namePicker

id=”namePicker”

for=”fldWho”

pickerText=”#{javascript: strings.picker_valueEmpty_select }”>

<xe:this.dataProvider>

<xe:dominoNABNamePicker></xe:dominoNABNamePicker>

</xe:this.dataProvider>

</xe:namePicker>

You can show multiple address books by using the namePickerAggregator dataProvider,
which is simply a mechanism that enables the developer to add multiple dataProviders. When a
dominoNABNamePicker is added to a namePickerAggregator, it provides a comboBox for
the user to pick from any address books in Directory Assistance to be selected, along with any
other dataProviders defined, as in Figure 6.9.

166 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

Figure 6.9 namePickerAggregator dialog.

ptg7987094

Those who are comfortable with Java may choose to use the beanNamePicker. The cur-
rently selected address book in Figure 6.9 shows the final dataProvider available: the domi-
noViewNamePicker. This is analogous to the dominoViewValuePicker dataProvider that is
available for the Value Picker. Again, there are three key properties: databaseName, viewName,
and labelColumn. In addition, a label property defines the title that will appear in the comboBox
of address books.

As Figure 6.9 shows, the dialog allows you to search a view in the current database. You
can move values from one field to the other by double-clicking. You can add a single name by
using the Add button. If the Name Value Picker is mapped to a control that does not allow mul-
tiple values, the Add button replaces any previously selected name with the newly selected name.
The Remove button is no longer provided because only one value can be selected at any one time.
Regardless of whether the Name Value Picker control is mapped to allow multiple values, all val-
ues are removed by using the Remove All button.

Validating a Picker
In the pickers in the TeamRoom database, the selected value is not put into an editable control
where the user could type a value. But if it were, it would be important to validate that the value
the user typed was also available from the picker. Historically, this would be done with SSJS in
the Submit button or a validator that reproduced the lookup performed by the Value Picker. The
pickerValidator is a new Extension Library validator that allows a control to be validated against
the Value Picker provided for the user. It is not utilized in the TeamRoom database, but you can
see it in action in the Extension Library Demo database.

The first part of any validation is to add typeahead. As with the validation, historically this
occurs by making another lookup to the underlying database or calling on a dataContext and per-
forming validation via SSJS. The Value Picker and Name Value Picker components have a new
method exposed to SSJS that makes this easier. Line 19 of Listing 6.11 shows the method, get-
TypeAheadValue(). One key property in the typeahead here is valueMarkup. When set to
true, as here, the value is prefixed with the label in the typeahead store. If valueMarkup was not
set to true, users would need to type an e-mail address to find a match instead of a name. How-
ever, it is the value that is put in the field when the user selects a value from the typeahead, not the
full label/value pair.

Validation is done using the pickerValidator on lines 4 through 12. The message property
on the validator, as with other validators, defines the error message to be presented to the user.
There are two ways of performing the validation. The first is to set the for property and map it
back to the Value Picker or Name Value Picker for the current control. The other is to add a
dataProvider, as used in Listing 6.11 on lines 6 through 11.

Name Picker (xe:namePicker) 167

ptg7987094

Listing 6.11 Picker Validation

1 <xp:inputText

2 id=”inputText3”>

3 <xp:this.validators>

4 <xe:pickerValidator

5 message=”The value is invalid”>

6 <xe:this.dataProvider>

7 <xe:dominoViewValuePicker

8 viewName=”AllEMails”

9 labelColumn=”Name”>

10 </xe:dominoViewValuePicker>

11 </xe:this.dataProvider>

12 </xe:pickerValidator>

13 </xp:this.validators>

14 <xp:typeAhead

15 mode=”full”

16 minChars=”1”

17 preventFiltering=”true”

18 valueMarkup=”true”>

19 <xp:this.valueList>

20 <![CDATA[#{javascript:
getComponent(“valuePicker1”).getTypeAheadValue(this)}]]>

21 </xp:this.valueList>

22 </xp:typeAhead>

23 </xp:inputText>

But just as there is a method of the component exposed to SSJS for enabling the typeahead,
there is a method exposed for validation. Line 6 of Listing 6.12 shows the method, isValid-
Value(). Here the code verifies whether the current value is valid, checking against the picker. If
it’s not, an error message is presented, including the invalid value, as shown in Figure 6.10.

Listing 6.12 Custom Validator for Picker Validation

1 <xp:inputText

2 id=”inputText21”>

3 <xp:this.validators>

4 <xp:customValidator>

5 <xp:this.validate><![CDATA[#{javascript:var picker =
getComponent(‘namePicker11’)

6 if(!picker.isValidValue(value)) {

168 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

ptg7987094

7 return “Invalid value: “+value

8 }}]]></xp:this.validate>

9 </xp:customValidator>

10 </xp:this.validators>

11 <xp:typeAhead

12 mode=”full”

13 minChars=”1”

14 preventFiltering=”true”>

15 <xp:this.valueList>

16 <![CDATA[#{javascript:
getComponent(“namePicker11”).getTypeAheadValue(this)}]]>

17 </xp:this.valueList>

18 </xp:typeAhead>

19 </xp:inputText>

Name Picker (xe:namePicker) 169

Figure 6.10 Name Picker validation.

ptg7987094

170 Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers

Table 6.4 defines the main properties for the Name Picker control.

Table 6.4 xe:namePicker Properties

Property Description

dataProvider Provides the values for the picker. The options are

• xe:dominoNABNamePicker to pull options from a Domino Directory
database.

• xe:dominoViewNamePicker to pull options from a View.

• xe:namePickerAggregator to add multiple dataProviders. One or more
of these four dataProviders can be added as child controls.

• xe:beanValuePicker to pull options from a bean.

dialogTitle Defines the title for the picker dialog.

for Defines the control to which the value picked should be passed.

listHeight Defines the height of the pane holding the list values.

listWidth Defines the width of the pane holding the list values.

pickerIcon Overrides the icon the user clicks on to launch the picker.

pickerText Defines the text the user clicks on to launch the picker.

Conclusion
This chapter covered the various dialog, tooltip, and picker controls that can enhance an applica-
tion. Tooltips allow the developer to provide additional information while maximizing screen real
estate. Whether the developer builds dialogs from scratch using the Dialog control or Tooltip Dia-
log control or uses prebuilt dialog controls like the Value Picker and Name Value Picker, the
Extension Library provides functionality allowing more flexible entry or selection of values.

ptg7987094

171

C H A P T E R 7

Views

The previous three chapters have covered the various controls in the Extension Library designed
for creating and editing content. The next step is to present documents in a view. Before the
Extension Library, three core container controls were available for displaying a collection of
documents: the View Panel, the Data Table, and the Repeat. The Extension Library provides sev-
eral new controls, ranging from those designed to reproduce Notes Client views, those designed
to maximize data sources, and those to view layout controls. Also included are new pager con-
trols for enhancing navigation.

Dynamic View Panel (xe:dynamicViewPanel)
Just as the View Panel was the simplest core container control for displaying a Domino View or
Folder, the Dynamic View Panel is the simplest Extension Library control for displaying a
Domino View or Folder. As the name suggests, the Dynamic View Panel generates the same kind
of tabular display that the View Panel provides. However, it is more tightly bound to the Domi-
noView datasource, the underlying View design element. Whereas the View Panel allows the
developer to select a subset of the columns from the dominoView datasource as well as add con-
tent, the Dynamic View Panel simply renders the underlying View design element in an XPage.

To see this in action, take the core TeamRoom database design and apply the Dynamic
View Panel. For developers who are familiar with the database, this example will showcase the
strengths of the Dynamic View Panel.

First, create an XPage called TeamroomViews.xsp. Listing 7.1 shows the code to add to
the XPage. Lines 2 through 22 add a ComboBox control bound to a viewScope variable called
viewName. The options for the ComboBox control are all the views in the database. Lines 25
through 54 add a second ComboBox bound to the same viewScope variable. But this one

ptg7987094

accesses the “OtherVOutline” NotesOutline on line 32. Lines 36 through 45 loop through the
entries in the NotesOutline and, if the outline points to a Named Element that is a View design
element, it builds an array where the label is the entry’s label and the alias is the view name.
Finally, lines 56 through 67 add a Dynamic View Panel to the page. This is the target for a partial
refresh when the value of the ComboBox is changed. Because the Dynamic View Panel renders
all the columns that are in the underlying View design element, you can add a DominoView data-
source whose viewName variable is #{javascript:viewScope.get(“viewName”)}.

Listing 7.1 TeamroomViews.xsp

1 All Views

2 <xp:comboBox

3 id=”comboBox1”

4 value=”#{viewScope.viewName}”>

5 <xp:selectItem

6 itemLabel=”—Select—”

7 itemValue=””></xp:selectItem>

8 <xp:selectItems>

9 <xp:this.value><![CDATA[#{javascript:var v =
database.getViews();

10 var a = []

11 for(var i=0; i<v.size(); i++) {

12 a[i] = v[i].getName()

13 }

14 return a}]]></xp:this.value>

15 </xp:selectItems>

16 <xp:eventHandler

17 event=”onchange”

18 submit=”true”

19 refreshMode=”partial”

20 refreshId=”dynamicViewPanel1”>

21 </xp:eventHandler>

22 </xp:comboBox>

23 <xp:br></xp:br>

24 Main Outline Views

25 <xp:comboBox

26 id=”comboBox2”

27 value=”#{viewScope.viewName}”>

28 <xp:selectItem

29 itemLabel=”—Select—”

30 itemValue=””></xp:selectItem>

172 Chapter 7 Views

ptg7987094

31 <xp:selectItems>

32 <xp:this.value><![CDATA[#{javascript:var
outline:NotesOutline=database.getOutline(“OtherVOutline”);

33 var entry:NotesOutlineEntry=outline.getFirst();

34 var i=0;

35 var a=[];

36 while (entry != null) {

37 // If it’s a named element pointing to a view

38 if (entry.getEntryClass() == 2191 && entry.getType() == 2187) {

39 a[i]=entry.getLabel() + “|” + entry.getNamedElement();

40 i = i+1;

41 }

42 var tmpEntry:NotesOutlineEntry=outline.getNext(entry);

43 entry.recycle();

44 entry=tmpEntry;

45 }

46 return a;}]]></xp:this.value>

47 </xp:selectItems>

48 <xp:eventHandler

49 event=”onchange”

50 submit=”true”

51 refreshMode=”partial”

52 refreshId=”dynamicViewPanel1”>

53 </xp:eventHandler>

54 </xp:comboBox>

55 <xp:br></xp:br>

56 <xe:dynamicViewPanel

57 rows=”30”

58 id=”dynamicViewPanel1”

59 showCheckbox=”true”

60 showHeaderCheckbox=”true”>

61 <xe:this.data>

62 <xp:dominoView

63 var=”viewEnt”>

64 <xp:this.viewName><![CDATA[#{javascript:
viewScope.get(“viewName”)}]]></xp:this.viewName>

65 </xp:dominoView>

66 </xe:this.data>

67 </xe:dynamicViewPanel>

Dynamic View Panel (xe:dynamicViewPanel) 173

ptg7987094

When this XPage is previewed, which should look like Figure 7.1, the output is extremely
powerful. Not only does it allow access to any of the views in the database and display the docu-
ments from the view, it reproduces functionality that will be familiar to Domino developers who
have developed applications for the Notes Client. If a column in the corresponding View design
element is set to display view icons, the icons are faithfully reproduced. If columns are sortable in
the corresponding View design element, they are sortable in the Dynamic View Panel using the
same functionality familiar to developers who have used the View Panel control. The only aspect
of the View design element that the Dynamic View Panel does not reproduce is the Calendar
display style.

174 Chapter 7 Views

Figure 7.1 Dynamic View Panel.

As with the View Panel, you can allow the user to select entries from the view via the show-
Checkbox and showHeaderCheckbox properties. See Listing 7.1. Although they are not visibly
exposed, you can add header and footer facets to the Dynamic View Panel, as you can for the core
View Controls. The queryOpenView and postOpenView events are available, as they are for other
DominoView datasources. You can also add events when a column is clicked via the
onColumnClick event; because you are not adding columns directly to the Dynamic View Panel
control, unlike the core View Controls, there is a single event for the whole control.

Like the View Panel, the Dynamic View Panel allows developers to quickly and easily
reproduce the View design element. However, the only way to customize the presentation of the
underlying View design element is via the customizerBean property, which allows column val-
ues to be modified via Java. But if the View design element contains all the functionality you
need, the Dynamic View Panel is a good option to reproduce it in an XPage.

Table 7.1 outlines the main properties for the Dynamic View Panel control.

ptg7987094

Data Grid 175

Table 7.1 xe:dynamicViewPanel Properties

Property Description

caption Defines a caption to be displayed above the View Panel

summary Defines a description of the view to be displayed to users as part of
accessibility

attrs Can provide extra attributes for the View Panel

customizerBean Defines the managed bean or class name to be used to convert the output
of columns in the view

rowAttrs Can provide extra attributes for each row of the View Panel

pageName Defines the XPage to open when users open a document

onColumnClick Can trigger Client-Side JavaScript when the user clicks on a column

showCheckbox Defines whether a check box should be added to each row to allow the user
to select documents

showColumnHeader Defines whether column headers should be shown

showHeaderCheckbox Defines whether a check box should be added to the header row to allow
the user to select all documents in the view

showUnreadMarks Defines whether unread marks should be shown

Data Grid
The Dojo DataGrid is a view control with a fully functioning scrollbar that offers a rich user
experience similar to that of the Notes Client, as Figure 7.2 shows. Like the View Panel in the
core controls, the Dojo DataGrid is presented as a flat table of columns, usually with just one row
per document, although content other than just the columns in the underlying View design ele-
ment can be shown.

A rich set of functionality is implemented. Columns can be re-sorted or reordered, and con-
tents can be edited in place. Entries in the view can also be selected for bulk processing. There is
no pager, but instead a scrollbar. As the user scrolls through the view, additional contents are
retrieved from the server via AJAX calls and presented to the user. Using AJAX calls optimizes
initial page load and performance.

ptg7987094

Figure 7.2 Dojo DataGrid.

REST Service
The Dynamic View control, as with the View Panel core control, uses a dominoView datasource.
But XPages is about separating the presentation layer from the data layer. So the Extension
Library controls covered in the rest of this chapter use data stores. This might be a new concept to
XPages developers coming from a Notes Client development background, but not to developers
from a web development background. Effectively, data stores allow uniform methods of access to
the data layer. This chapter does not go into more detail than is necessary about the various data
stores, concentrating on the presentation layer. Chapter 11, “REST Services,” and Chapter 12,
“XPages Gets Relational,” cover the data stores in more detail, whether they are REST services
or RDBMS data stores, retrieving information from Domino or non-Domino databases.

Listing 7.2 generates a viewJsonService REST service. You will investigate the code later,
but the output is effectively a collection of objects, each of which contains items composed of
name-value pairs, as shown in Figure 7.3.

Listing 7.2 viewJsonService REST Service Control

1 <xe:restService

2 id=”restService1”>

3 <xe:this.service>

4 <xe:viewJsonService

5 viewName=”AllContacts”

6 var=”entry”

7 formName=”Contact”>

176 Chapter 7 Views

ptg7987094

8 defaultColumns=”true”

9 contentType=”application/json”

10 <xe:this.columns>

11 <xe:restViewColumn

12 name=”ShortName”>

13 <xp:this.value><![CDATA[#{javascript:var e =
entry.getColumnValue(“EMail”)

14 if(e) {

15 var p = @UpperCase(@Left(e,”@”))

16 return p

17 }

18 return “”}]]></xp:this.value>

19 </xe:restViewColumn>

20 </xe:this.columns>

21 </xe:viewJsonService>

22 </xe:this.service>

23 </xe:restService>

Data Grid 177

Figure 7.3 JSON REST output.

ptg7987094

The REST Service control displayed here is also the most familiar type available: the
viewJsonService. It is similar to the ?ReadViewEntries URL command. For this type of
REST service, each object relates to a View Entry in an underlying View design element. The
REST Service is similar to the viewItemFileService, except that the viewItemFileService is
read-write, whereas the viewJsonService is read only. Unless editability (including deletion of
the underlying documents) is required, the viewJsonService is recommended as a more robust
implementation.

Some of the items are specific to the View Entries, such as @entryid, @unid, and
@noteid. These items are automatically generated and the naming convention is consistent for
any REST service based on a View. Others are columns from the View, such as Id, Firstname,
and Created. The naming convention for these items is generated from the programmatic name
of the column. Of particular note is the ShortName item, whose value is AARON_BEACH. This
will not be found in the underlying View design element, but it has been defined programmati-
cally on the REST service. This is one of the benefits of the REST service.

Understanding the output makes it easier to deconstruct the REST service to create it.
Returning to Listing 7.2, the properties viewName, formName, and var will be familiar from
any other dominoView datasource. The unfamiliar properties are on lines 8 and 9. The default-
Columns property ensures that all the columns in the underlying View design elements are trans-
ferred to the REST service. Although it is a viewJsonService, contentType still needs to be set
to application/json. The column’s complex property beginning on line 6 is where any items
not in the relevant View Entries are defined. Lines 11 through 19 create a column called Short-
Name. Lines 13 through 18 retrieve the EMail column from the relevant View Entry and return
capitalized the portion to the left of the @ symbol. As can be seen in Figure 7.3, this adds an item
named ShortName with the relevant value. This functionality allows developers to easily extend
an existing view with content from the View Entry, the underlying document, or even content
from a related document or database. Although this influences performance because only a cer-
tain number of rows are returned for each call to the REST service, the performance impact is
mitigated.

The REST service is disconnected from the underlying View design element, so no
changes, whether as updates or deletes, are reflected in the underlying documents until the
changes are committed back to the server. For more information on editability of REST services,
see Chapters 11 and 12.

Table 7.2 outlines the significant additional properties for the viewJsonService
RESTService control.

178 Chapter 7 Views

ptg7987094

Table 7.2 xe:viewJsonService Properties (Omitting Properties Generic for
Datasources)

Property Description

columns Allows the developer to create additional columns on the fly

compact Defines whether the JSON stream should be compacted

contentType Defines the content type of the AJAX response

count Defines the number of view entries to be returned by the service

defaultColumns Defines whether the columns in the underlying View design element
should be passed in the REST service

expandLevel Defines whether responses should be expanded or collapsed

globalValues Defines what generic values should be passed for the view

systemColumns Defines which generic attributes should be passed for each view entry

Dojo Data Grid Control (xe:djxDataGrid)
The main container component is the Dojo Data Grid control, shown in Listing 7.3. The Dojo
Data Grid is bound to a REST service by the storeComponentId property, the ID of the REST
Service control on the XPage. Alternatively, if the store is created in Client-Side JavaScript, you
can use the store property, the value being the JavaScript variable name. If the store needs to be
accessed from Client-Side JavaScript, for example in the Client-Side JavaScript events covered
later in this section, you must also set the jsId property. Three properties of the Dojo Data Grid
control are relevant to the REST service. Two relate to messages presented to the user:
loadingMessage, which defines the message presented to users as the data is being retrieved
from the store, and errorMessage, which defines the message presented to users if an error
occurs while retrieving the data. The third is updateDelay, which defines the number of millisec-
onds before loading more content to the Dojo Data Grid.

By default, the size of the Dojo Data Grid is six rows high and 100% width, but you can
modify this easily by using Cascading Style Sheets (CSS) height and width on the Dojo Data
Grid control. However, these settings are overridden by using properties of the Dojo Data Grid
control. You can set the height by using the autoHeight property, set to the number of rows to
show. The width is slightly harder to change. You can set it in the initialWidth property, but this
takes effect only if autoWidth is set to true. However, this Dojo attribute is not exposed in the All
Properties panel, so you need to set it using the dojoAttributes property, in the same way you
set Dojo attributes on core controls. So in Listing 7.3, although a height and width are defined
using CSS in line 7, the number of rows in the autoHeight property in line 4 and the width in the
initialWidth property in line 8 are used when the Dojo Data Grid is drawn.

Data Grid 179

ptg7987094

Listing 7.3 Dojo Data Grid Part One: Dojo Data Grid Control

1 <xe:djxDataGrid

2 id=”djxDataGrid1”

3 storeComponentId=”restService1”

4 autoHeight=”10”

5 jsId=”restService1”

6 rowSelector=”2em”

7 style=”width:85em; height: 25em;”

8 initialWidth=”500px”

9 selectionMode=”multiple”>

10 <xe:this.dojoAttributes>

11 <xp:dojoAttribute

12 name=”updateDelay”

13 value=”0”>

14 </xp:dojoAttribute>

15 <xp:dojoAttribute

16 name=”autoWidth”

17 value=”true”>

18 </xp:dojoAttribute>

19 </xe:this.dojoAttributes>

Listing 7.3 and Figure 7.4 also demonstrate an implementation of the rowSelector
property in line 6. This adds an additional column whose width is the value of the rowSelector
property, inserted to the left of the Dojo Data Grid. This is not required to enable row selection,
but it does provide a column with no other single-click event designed to make selection easier.
However, this will have no effect if the selectionMode property is set to none. The default setting
for selectionMode is extended, which allows multiple rows to be selected but also allows a
range of rows to be selected by holding down the Shift key. The multiple option allows rows to
be toggled as selected or deselected, but it does not allow the use of the Shift key to select a range
of rows. The final option, single, allows only one row to be selected; as soon as another row is
selected, the previously selected row is deselected.

180 Chapter 7 Views

ptg7987094

Figure 7.4 Dojo Data Grid rowSelector.

Two other properties are worthy of comment. The first property, selectable, allows text
within each cell to be selected and the text to be copied and pasted. The second property is
escapeHTMLInData. By default, any HTML in any content in the cells is escaped, but if set to
false, the columns show HTML. However, because this can be used to run malicious code, it is
recommended that you only change the default setting with caution.

Table 7.3 outlines the main properties for the Dojo Data Grid control.

Table 7.3 xe:djxDataGrid Properties

Property Description

autoHeight Defines the number of rows to show in the Dojo Data Grid and overrides any
CSS settings

errorMessage Defines an error message to display if the view contents could not be loaded

escapeHTMLInData Defines whether HTML in the column data should be escaped when the cell
contents are displayed

headerMenu Defines a headerMenu to be used by the Dojo Data Grid

loadingMessage Defines a message to display while the contents of the view are being loaded

rowsPerPage Defines the number of rows to be retrieved in each AJAX query

selectable Defines whether text is selectable within the Dojo Data Grid

selectionMode Defines settings for how the user can select rows of the Dojo Data Grid

singleClickEdit Allows cells to be edited by single-clicking rather than double-clicking

Data Grid 181

ptg7987094

Table 7.3 Continued

Property Description

store Defines the Client-Side JavaScript variable name that holds the data for
the Dojo Data Grid

storeComponentId Defines the ID of the REST service that holds the data for the Dojo Data
Grid

updateDelay Defines the number of milliseconds to delay before updating the control
after receiving updates from the store

onRowClick Can trigger Client-Side JavaScript when the user clicks on a row

onRowContextMenu Can trigger Client-Side JavaScript when the user accesses a row’s context
menu

onRowDblClick Can trigger Client-Side JavaScript when the user double-clicks on a row

onStyleRow Can style the row in response to mouse events on the row or row index
properties

initialWidth Defines the width of the Dojo Data Grid and overrides any CSS settings

rowSelector Defines the width of the row selector column, which appears to the left of
the view

Dojo Data Grid Contents
The Dojo Data Grid is effectively a table, so the content is added by means of Dojo Data Grid
Row controls and Dojo Data Grid Column controls. Listing 7.4 continues the Dojo Data Grid
from line 18 of Listing 7.3. However, unlike a normal table, there is no requirement to explicitly
add a Dojo Data Grid Row control if the columns will be in the same row. There are no properties
of note for the Dojo Data Grid Row control.

The Dojo Data Grid Column control has three important properties. The field property
defines which item’s value from the REST service should be displayed and holds the item’s
name. The label property can override the column header, which, by default, will be the item
name. The width property specifies the width of the column and can be a specific width or Auto.
In most cases, the Dojo Data Grid Column is shown, but if the column should be accessible to
Client-Side JavaScript but not shown to the user, you can set the hidden property to false.

Sometimes the REST service provided cannot be modified or has been provided via a
JavaScript function. However, you still might need to modify the output. The formatter property
allows you to do this by specifying the name of a Client-Side JavaScript function that takes the
value and returns a modified output. This can be seen in line 45 and lines 52 through 55 in Listing
7.4, where the formatEmail() function reproduces the ShortName item from the REST
service.

182 Chapter 7 Views

ptg7987094

In addition, the get property enables the developer to call a function instead of using the
field property. The function takes two parameters—colIndex and item—both populated auto-
matically by the Dojo Data Grid. The getShortName function called in line 38 and shown in
lines 56 through 58 in Listing 7.4 simulated the previous column that uses field="ShortName"
to get the same content.

Listing 7.4 Dojo Data Grid Part Two: Dojo Data Grid Columns and Formatter

1 <xe:djxDataGridColumn

2 id=”djxDataGridColumn6”

3 field=”FirstName”

4 width=”auto”

5 editable=”true”>

6 </xe:djxDataGridColumn>

7 <xe:djxDataGridColumn

8 id=”djxDataGridColumn7”

9 field=”LastName”

10 width=”auto”

11 editable=”true”>

12 </xe:djxDataGridColumn>

13 <xe:djxDataGridColumn

14 id=”djxDataGridColumn8”

15 field=”City”

16 width=”auto”>

17 </xe:djxDataGridColumn>

18 <xe:djxDataGridColumn

19 id=”djxDataGridColumn2”

20 field=”State”

21 width=”auto”

22 editable=”true”

23 cellType=”dojox.grid.cells.Select”>

24 <xe:this.options><![CDATA[#{javascript:
@DbColumn(@DbName(),”AllStates”,1)}]]></xe:this.options>

25 </xe:djxDataGridColumn>

26 <xe:djxDataGridColumn

27 id=”djxDataGridColumn9”

28 field=”EMail”

29 width=”auto”>

30 </xe:djxDataGridColumn>

31 <xe:djxDataGridColumn

32 id=”djxDataGridColumn10”

Data Grid 183

ptg7987094

33 field=”ShortName”

34 width=”auto”>

35 </xe:djxDataGridColumn>

36 <xe:djxDataGridColumn

37 id=”djxDataGridColumn1”

38 get=”getShortName”

39 label=”Get Short Name”

40 width=”auto”>

41 </xe:djxDataGridColumn>

42 <xe:djxDataGridColumn

43 id=”djxDataGridColumn11”

44 field=”EMail”

45 formatter=”formatEmail”

46 label=”ShortName”

47 width=”auto”>

48 </xe:djxDataGridColumn>

49 </xe:djxDataGrid>

50 <xp:scriptBlock

51 id=”scriptBlock1”>

52 <xp:this.value><![CDATA[function formatEmail(value) {

53 var val=value.substr(0,value.indexOf(“@”));

54 return val.toUpperCase();

55 }

56 function getShortName(colIndex,item) {

57 if (item) return item.ShortName;

58 }]]></xp:this.value>

59 </xp:scriptBlock>

InViewEditing
Editability is provided by setting the editable property on a Dojo Data Grid Column control to
true. On double-clicking a cell in that column (or single-clicking it if the Dojo Data Grid con-
trol’s singleClickEdit property is set to true), it becomes editable to free-type a new textual
value. But by changing the cellType property on the Dojo Data Grid Column control, different
editors can be provided. The other settings are dojox.grid.cells.Bool, which provides a
check box, and dojox.grid.cells.Select, which provides a drop-down list of options. For
dojox.grid.cells.Select, the options property allows the developer to define the values
the user can select from as a comma-separated list or array. Listing 7.4 shows an example of this
for the Dojo Data Grid Column control on lines 23 and 24.

184 Chapter 7 Views

Listing 7.4 (Continued)

ptg7987094

Data Grid 185

Table 7.4 shows the key properties available for the Dojo Data Grid Column control.

Table 7.4 xe:djxDataGridColumn Properties

Property Description

cellType Defines the editor to be used when editing the column property

editable Defines whether the column is editable

label Defines the column header label

field Defines the name of the field from the data store to be displayed

formatter Defines a Client-Side JavaScript function or function name to be used to
format the content

get Defines a Client-Side JavaScript function or function name to be used to
generate the content

width Defines the width of the column

Although this will enable editability of a column, Client-Side JavaScript needs to be run to
pass the changes back to the REST service. This is shown in Listing 7.5. Line 10 saves the Dojo
store, whereas line 21 cancels any changes.

Listing 7.5 Saving Dojo Data Grid Edits

1 <xp:button

2 value=”Save Changes”

3 id=”button1”>

4 <xp:eventHandler

5 event=”onclick”

6 submit=”false”>

7 <xp:this.script><![CDATA[var args = {

8 onError: function() { alert(‘Update error’); }

9 }

10 restService1.save(args)

11]]></xp:this.script>

12 </xp:eventHandler>

13 </xp:button>

14 <xp:button

15 value=”Revert Changes”

16 id=”button2”>

17 <xp:eventHandler

18 event=”onclick”

ptg7987094

19 submit=”false”>

20 <xp:this.script><![CDATA[var ds = eval(‘restService1’)

21 ds.revert()

22]]></xp:this.script>

23 </xp:eventHandler>

24 </xp:button>

View Events
There are additional events available for the Dojo Data Grid control, such as onRowClick and
onRowDblClick, detailed in Table 7.3. These are Client-Side JavaScript events, but the event has
arguments including grid, rowIndex, rowNode, cell, cellIndex, and cellNode. Listing 7.6 shows
code for the onRowClick event, which triggers an alert. Line 1 creates a CDATA block because
quotes are used, but because this is Client-Side JavaScript, the content is a literal string. Line 1
gets the rowIndex attribute of the arguments. Line 2 uses that index to retrieve the relevant row
from the REST service and pull the @unid attribute.

Listing 7.6 onRowClick Event

1 <xe:this.onRowClick><![CDATA[var idx=arguments[0].rowIndex;

2 var unid=restService1._items[idx].attributes[“@unid”];

3 alert(“Row is “ + idx + \n + “UNID is “ + unid);]]>

4 </xe:this.onRowClick>

Line 3 issues an alert with both pieces of information, as in Figure 7.5. Note that this is ref-
erencing the jsId property of the service, because it is accessing the REST service via Client-Side
JavaScript. The onRowContextMenu allows Client-Side JavaScript to be triggered when right-
clicking on a row.

186 Chapter 7 Views

Listing 7.5 (Continued)

ptg7987094

Figure 7.5 Dojo Data Grid Events.

There is an onStyleRow event that triggers when the Dojo Data Grid is drawn and as the
cursor moves over each row. You can use this to manipulate the styling of the content within the
cell based on the arguments that are passed in, which include index, selected, odd, over,
customClasses, and customStyles. Whether changing the style of a row using customStyles or a
CSS class in customClasses, this allows you to set a variety of styling depending on row position
or user activity. For example, you can use Listing 7.7 to add a yellow background based on the
over argument (that is, if the mouse hovers over the row, as seen in Figure 7.5).

Listing 7.7 onStyleRow Event

<xe:this.onStyleRow><![CDATA[var arg=arguments[0];

if (arg.over) arg.customStyles+=”background-color:#FFFF00”;]]>

</xe:this.onStyleRow>

iNotes ListView (xe:listView)
The iNotes ListView control is a rich view component based on the view widgets in the iNotes
Mail template. In styling, it looks similar to the Dojo Data Grid control, but there is different and
additional functionality available, such as showing icons, image resizing, and a variety of events.

The iNotes ListView also uses a REST service. For a Notes View, you can use a viewJson-
Service REST service for the Data Grid control, employing the default columns from the view or
adding columns.

iNotes ListView (xe:listView) 187

ptg7987094

Dynamic ListView
Unlike the Dojo Data Grid, you can implement the iNotes ListView control without including
any columns. If no ListView Column controls are added to the iNotes ListView control, it works
similarly to the Dynamic View Panel control, as can be seen in Figure 7.6. Namely, it creates a
view with all the columns from the underlying View design element. Moreover, columns set to
display icons will be reproduced, showing the icons instead of the numbers that are the actual val-
ues in the view. Any columns enabled for sorting in the underlying View design element also
allow sorting on the XPage. By default, any hidden columns are still shown, unless the
hideColumns property on the iNotes ListView is set to true. Then hidden columns are also sup-
pressed from the XPage. The alternateRows property enables the developer to have alternate
rows styled differently to help readability of a large view. The showColumnName4EmptyTitle
property can ensure that if there is no column title in the underlying View design element, the
item name from the REST service is used as the column title. This can ensure that column titles
always appear, but it should be used only if the item name will be meaningful to users.

188 Chapter 7 Views

Figure 7.6 iNotes ListView.

To compare the output of the iNotes ListView with the Dynamic View Panel, create an
XPage called TeamroomiNotesListView.xsp in the core TeamRoom database used for the
Dynamic View Panel. Insert the code in Listing 7.8. Much of the code will look similar to
the TeamroomViews.xsp XPage. But instead of the Dynamic View Panel, there is a viewJson-
Service REST Service control and an iNotes ListView control.

ptg7987094

Listing 7.8 TeamroomiNotesListView.xsp

1 All Views

2 <xp:this.resources>

3 <xp:script

4 src=”/OpenLogXPages.jss”

5 clientSide=”false”>

6 </xp:script>

7 </xp:this.resources>

8 <xp:comboBox

9 id=”comboBox1”

10 value=”#{viewScope.viewName}”>

11 <xp:selectItem

12 itemLabel=”—Select—”

13 itemValue=””>

14 </xp:selectItem>

15 <xp:selectItems>

16 <xp:this.value><![CDATA[#{javascript:var v =
database.getViews();

17 var a = []

18 for(var i=0; i<v.size(); i++) {

19 a[i] = v[i].getName()

20 }

21 return a}]]></xp:this.value>

22 </xp:selectItems>

23 <xp:eventHandler

24 event=”onchange”

25 submit=”true”

26 refreshMode=”partial”

27 refreshId=”listView1”>

28 </xp:eventHandler>

29 </xp:comboBox>

30 <xp:br></xp:br>

31 Main Outline Views

32 <xp:comboBox

33 id=”comboBox2”

34 value=”#{viewScope.viewName}”>

35 <xp:selectItem

36 itemLabel=”—Select—”

37 itemValue=””>

38 </xp:selectItem>

39 <xp:selectItems>

iNotes ListView (xe:listView) 189

ptg7987094

40 <xp:this.value><![CDATA[#{javascript:var
outline:NotesOutline=database.getOutline(“OtherVOutline”);

41 var entry:NotesOutlineEntry=outline.getFirst();

42 var i=0;

43 var a=[];

44 while (entry != null) {

45 // If it’s a named element pointing to a view

46 if (entry.getEntryClass() == 2191 && entry.getType() == 2187) {

47 a[i]=entry.getLabel() + “|” + entry.getNamedElement();

48 i = i+1;

49 }

50 var tmpEntry:NotesOutlineEntry=outline.getNext(entry);

51 entry.recycle();

52 entry=tmpEntry;

53 }

54 return a;}]]></xp:this.value>

55 </xp:selectItems>

56 <xp:eventHandler

57 event=”onchange”

58 submit=”true”

59 refreshMode=”partial”

60 refreshId=”listView1”>

61 </xp:eventHandler>

62 </xp:comboBox>

63 <xp:br></xp:br>

64 <xe:restService id=”restService1”>

65 <xe:this.service>

66 <xe:viewJsonService

67 defaultColumns=”true”

68 viewName=”#{viewScope.viewName}”>

69 </xe:viewJsonService>

70 </xe:this.service>

71 </xe:restService>

72 <xe:listView

73 id=”listView1”

74 style=”height:250.0px;width:800.0px”

75 storeComponentId=”restService1”

76 alternateRows=”true”

77 showColumnName4EmptyTitle=”true”

78 autoResize=”true”>

79 </xe:listView>

190 Chapter 7 Views

Listing 7.8 (Continued)

ptg7987094

The iNotes ListView has numerous events, all of which support only Client-Side
JavaScript. This is because the control and its functionality are an extension of what is available
in iNotes, which, because it is not built on XPages, does not have access to Server-Side JavaScript
(SSJS). The events onCellClick and onCellDblClick, not surprisingly, reproduce the
onRowClick and onRowDblClick events of the Data Grid. However, the underlying content is
accessed differently. For both events, there is an object available, ext, that gives access to all the
necessary elements. The ext.tumbler attribute gives access to the row number, but note that
this starts with the first row as 1, not 0. For greater ease than the onRowClick and
onRowDblClick events, there is actually an ext.item object that gives direct access to the item
from the store with all the properties from the underlying View design element, as well as the
other automatically generated attributes from the store. The ext object also gives access to the
row and cell that were clicked.

Some of the other events, such as onContextMenu, onDeleteEntry, onNewEntry,
onOpenEntry, and onSelectEntry, are covered in the “iNotes Calendar” section. The events
work identically for both, with the same arguments available. One additional event available for
iNotes ListView is onSortChanged. This event is triggered when a sortable column is clicked.
No arguments are available for this event.

Table 7.5 defines the main properties for the iNotes ListView control.

Table 7.5 xe:listView Properties

Property Description

jsId Defines the Client-Side JavaScript ID for the view.

storeComponentId Defines the ID of the REST service that holds the data for the Data Grid.

structureComponentId Defines the ID of a Design Store to define the structure of the REST service.

onCellClick Can trigger Client-Side JavaScript when the user clicks on a cell.

onCellDblClick Can trigger Client-Side JavaScript when the user double-clicks on a column.

onContextMenu Can trigger Client-Side JavaScript when the user accesses a row’s context
menu.

onDeleteEntry Can trigger Client-Side JavaScript when the user deletes an entry.

onNewEntry Can trigger Client-Side JavaScript when the user creates an entry.

onOpenEntry Can trigger Client-Side JavaScript when the user opens an entry.

onSelectEntry Can trigger Client-Side JavaScript when the user selects an entry.

onSortChanged Can trigger Client-Side JavaScript when the sort order of the view is
changed.

alternateRows Defines the styling for alternate rows.

iNotes ListView (xe:listView) 191

ptg7987094

Table 7.5 Continued

Property Description

canBeNarrowMode Defines whether the view can be viewed in Narrow Mode. Only applicable
if ListView Columns are defined.

hideColumns Defines whether columns hidden in the underlying View design element
should also be hidden from the iNotes ListView. Only applicable if no
ListView Columns are defined.

showColumnName Defines whether the column name should be displayed if the
ForEmptyTitle underlying View design element does not have a column title.

ListView Column
When ListView Column controls are added to the iNotes ListView, the process is more analogous
to the Dojo Data Grid control. The output is specifically the columns chosen—nothing more,
nothing less. Consequently, the hideColumn property is ignored. The assumption is that if you
choose to add the column to the iNotes ListView, you want it to show.

The two properties under the dojo-widget category—columnName and title—define the
content of the column. The columnName property defines the item’s attribute name to be shown,
and the title property defines the column header title to appear for the user. Note that if the con-
tent for the column is an array, it does not currently show. The gradient property can add a gradi-
ent for the whole column. Bear in mind that if gradient is set, alternate row colors have no effect
for this column.

Reviewing the properties of the ListView Column, it is evident it will support all the Notes
Client functionality available in view columns. If the column should show an icon, you should set
the icon property. If response documents should show, you can define the response property. If
the column is categorized, you can use the twistie property to ensure that a twistie appears. If the
column should extend to take up the remaining width of the view, you can set the extendable
property; otherwise, the final column spans the remaining view width defined on the iNotes
ListView control. The fixedWidth property allows you to fix the column to a specific width. The
sort property allows you to define a sort order: 1 for descending, or 2 for ascending.

Because the hideColumn property is applicable only if no ListView Columns are defined,
the canBeNarrowMode property is only applicable if ListView Columns are defined. This
becomes apparent when ListView Columns are added and the properties for them are inspected.
However, this does not need to be set to true to take advantage of the narrow mode functionality.
But what is this narrow mode functionality? It occurs when the iNotes ListView goes far beyond
the Dynamic View Panel or Dojo DataGrid controls. The narrow mode functionality enables a
multirow layout, with contents for a single entry spanning multiple rows, as in Figure 7.7.

192 Chapter 7 Views

ptg7987094

Figure 7.7 Narrow Mode.

In Narrow Mode, the columnTitle property of the ListView Column has no effect. The col-
umn headings are not displayed, because the header does not support multiple rows. But as is
apparent, the alternate row colors affect each item in the store. Narrow Mode supports three addi-
tional properties. The first property is narrowDisplay, which determines how the column dis-
plays (or not). The available options for narrowDisplay are top (appearing on the first row),
wrap (appearing on the second row) or hide. The second property is beginWrapUnder, which
determines which column the wrapping starts under; it does not necessarily have to start under
the first column. The final property is sequenceNumber, which determines the column order and
provides a rich view layout.

Table 7.6 summarizes the properties for the ListView Column control.

Table 7.6 xe:listViewColumn Properties

Property Description

columnName Defines the name of the attribute from each JSON object for which to display a
value. This corresponds to a column in the underlying View design element.

columnTitle Defines the title to appear above the column.

beginWrapUnder Defines under which column wrapping should start in narrow mode.

narrowDisplay Determines how the column should show in narrow mode, whether it should
appear on the first row, appear on the second wrapped row, or be hidden.

sequenceNumber Defines the column order.

extendable Determines whether the column should extend to take up remaining space for
the view’s panel.

fixedWidth Defines whether the column width is fixed to a size defined by the developer.

iNotes ListView (xe:listView) 193

ptg7987094

Table 7.6 Continued

Property Description

icon Defines whether the column should display as a property, the same as the
setting on the properties of the View design element for the Notes Client. The
number corresponds to a view icon in the icons folder on the server.

response Determines whether the column should show response documents.

showGradient Determines whether the column color should display as a gradient.

sort Determines whether the column can be sorted. The column in the underlying
View design element must also be marked as sortable.

twistie Defines whether the column should display a twistie.

width Defines a width for the column.

iNotes Calendar (xe:calendarView)
One of the common requests of developers using XPages was for a Calendar view control.
Although jQuery provided a plugin and some developers used Repeat Controls to generate a
calendar-style layout and display content, there were still calls for a standard XPages control for
displaying content in a calendar layout.

Considerable effort had already been spent in developing a fully functioning web-based
calendar layout control for iNotes, so the approach taken was to package the iNotes functionality
within an XPages control in the Extension Library. This approach provides a wealth of function-
ality but does mean some peculiarities in event handling.

Calendar Views in the Notes Client
For XPages developers who have never developed for the Notes Client, it will be useful to outline
the process of creating a Calendar View for display in the Notes Client. This is because many of
the columns required by a Notes Calendar View are also required by the iNotes Calendar Control.

The most important step when creating a Calendar View for the Notes Client is to set the
Style property on the first tab of the View’s properties panel to Calendar instead of the default
Standard Outline setting, as shown in Figure 7.8. This is the ($Calendar) view in a database
based on the Mail template that comes with the Lotus Notes install.

194 Chapter 7 Views

ptg7987094

Figure 7.8 Notes Calendar View in Domino Designer.

The first column of the Calendar View must be a Notes Date/Time. This is the output of the
formula shown in Figure 7.8. There are some additional settings to be defined in the first Col-
umn’s Properties box. The column needs to be sorted on the second tab of the Column’s proper-
ties panel in ascending order. On the fourth tab of the Column’s properties, the column must be
set to display a Date/Time with both Display Date and Display Time checked. The second col-
umn must be the duration in minutes of the event. There are a variety of other settings you can
apply to the View’s properties panel for display purposes, but the refinements available are
unnecessary for the purposes of comparison with the iNotes Calendar View control. If further
information is required, it is best to consult the Domino Designer Help database page titled
“Creating a Calendar View.”

In Figure 7.8, a number of additional columns are shown that bear further comment. There
is an icon used to determine the calendar entry type. The Time and End columns hold the start
and end time for the calendar entry. The Subject column holds the title for the calendar entry, and
the Chair column holds the chair of the meeting or person who originated the calendar entry.

iNotes Calendar (xe:calendarView) 195

ptg7987094

REST Service: calendarJsonLegacyService
The previous view controls that use REST services allow the developer to define which columns
should be presented to the user. The iNotes Calendar control, however, expects certain predefined
columns, like the Notes Client Calendar view, so the REST service needs to present specific
information in a specific format. The calendarJsonLegacyService is specifically designed to
enable developers to map from a Notes View and ensures the data is output with the appropriate
labels, as used in the calendarView.xsp Custom Control in the TeamRoom. The code for that
REST service is in Listing 7.9. Note the pathInfo property in line 3. Previously, the REST ser-
vice was referenced from other components by its ID. But the iNotes Calendar control references
its content via a URL, the URL set for the store in the pathInfo property.

Listing 7.9 calendarJsonLegacyService

1 <xe:restService

2 id=”restService2”

3 pathInfo=”/inoteslegacyjson”

4 preventDojoStore=”false”>

5 <xe:this.service>

6 <xe:calendarJsonLegacyService

7 viewName=”calendarOutline”

8 var=”entry”

9 contentType=”text/plain”

10 colCalendarDate=”CalDateTime”

11 colEntryIcon=”Icon”

12 colStartTime=”StartDateTime”

13 colEndTime=”EndDateTime”

14 colSubject=”For”

15 colChair=”Chair”>

16 <xe:this.compact><![CDATA[#{javascript:
sessionScope.CompactJson2==”true”}]]></xe:this.compact>

17 </xe:calendarJsonLegacyService>

18 </xe:this.service>

19 </xe:restService>

The other significant difference with the previous REST services is the value of the con-
tentType property on the service. Previously, the JSON was output with the setting application/
json, meaning that each column was output as another item within the entry object. For the
iNotes Calendar control, the property’s value must be text/plain. The difference in the output can
be seen by comparing Figure 7.3 and Figure 7.9. The latter shows a single viewentry, with all the
usual system columns such as @unid and @noteid. However, there is one item called entrydata

196 Chapter 7 Views

ptg7987094

for all the other mapped rows. This contains an object with other objects within it, one for each of
the relevant columns. Note also that instead of the property names defined in the REST service,
programmatic names like $134 are output. This is another of the benefits of the calendarJson
LegacyService: that those programmatic names are automatically generated, with the mapping
done against human-readable property names.

iNotes Calendar (xe:calendarView) 197

Figure 7.9 calendarJsonLegacyService REST output.

The compact property of the calendarJsonLegacyService enables the JSON data to be
compacted when it’s pushed out to the browser. This is managed in the TeamRoom database with
a sessionScope variable.

REST Service: Notes Calendar Store
The other option for utilizing a Notes Calendar view is to use the Notes Calendar Store control.
This takes a REST service with appropriately named columns and converts it into a store that the
iNotes Calendar Control can understand.

The first step is to set up a REST service. Note that the REST service needs to provide
columns with the specific names seen in Figure 7.9. This can be seen in Listing 7.10, which
shows the CalendarStoreCustomRestService.xsp in the XPages Extension Library Demo data-
base. The default columns existing in the underlying View design element are suppressed by set-
ting the defaultColumns property to "false" in line 8. Then the specific columns required from
lines 11 through 65, each with programmatic names mapping to the relevant columns in the
($Calendar) view of the Notes Mail Template, are added to the columns property. In this sce-
nario, all the required columns exist in the underlying View design element because the REST
service is actually pointing to the ($Calendar) view in a Notes Mail Template, so default-
Columns could be set to "true", and the columns property could be omitted. But it is a useful
example to show the columns required for the REST service and the specific names the columns
must have.

ptg7987094

The pathInfo, contentType, and compact properties have the same values for the
viewJsonLegacyService as the calendarJsonLegacyService.

Listing 7.10 viewJsonLegacyService

1 <xe:restService

2 id=”restService2”

3 pathInfo=”inoteslegacyjson”>

4 <xe:this.service>

5 <xe:viewJsonLegacyService

6 databaseName=”${compositeData.databaseName}”

7 viewName=”${compositeData.viewName}”

8 defaultColumns=”false”

9 var=”entry”

10 contentType=”text/plain”>

11 <xp:this.columns>

12 <!— Cal Date —>

13 <xe:restViewColumn

14 name=”$134” columnName=”$134”>

15 </xe:restViewColumn>

16 <!— Icon —>

17 <xe:restViewColumn

18 name=”$149”

19 columnName=”$149”>

20 </xe:restViewColumn>

21 <!— Start Date —>

22 <xe:restViewColumn

23 name=”$144”

24 columnName=”$144”>

25 </xe:restViewColumn>

26 <!— End Date —>

27 <xe:restViewColumn

28 name=”$146”

29 columnName=”$146”>

30 </xe:restViewColumn>

31 <!— Description —>

32 <xe:restViewColumn

33 name=”$147”

34 columnName=”$147”>

35 </xe:restViewColumn>

36 <!— Alt Description —>

198 Chapter 7 Views

ptg7987094

37 <xe:restViewColumn

38 name=”$151”

39 columnName=”$151”>

40 </xe:restViewColumn>

41 <!— Type —>

42 <xe:restViewColumn

43 name=”$152”

44 columnName=”$152”>

45 </xe:restViewColumn>

46 <!— Chair —>

47 <xe:restViewColumn

48 name=”$153”

49 columnName=”$153”>

50 </xe:restViewColumn>

51 <!— Confidential —>

52 <xe:restViewColumn

53 name=”$154”

54 columnName=”$154”>

55 </xe:restViewColumn>

56 <!— Status —>

57 <xe:restViewColumn

58 name=”$160”

59 columnName=”$160”>

60 </xe:restViewColumn>

61 <xe:restViewColumn

62 name=”$UserData”

63 columnName=”$UserData”>

64 </xe:restViewColumn>

65 </xp:this.columns>

66 <xe:this.compact>

67
<![CDATA[#{javascript:sessionScope.CompactJson2==”true”}]]>

68 </xe:this.compact>

69 </xe:viewJsonLegacyService>

70 </xe:this.service>

71</xe:restService>

Once the REST service has been provided, the final step is to add a Notes Calendar Store
control to the XPage, as in Listing 7.11. Note the setting of the dojoType and the dojoAttribute
properties. The xpagesext.CalendarStore Dojo type will not be found among the other

iNotes Calendar (xe:calendarView) 199

ptg7987094

Dojo files on the Domino server or Notes Client. The control takes advantage of Dojo-style
properties to add a pathInfo attribute that maps to the same pathInfo property set on the REST
service.

Listing 7.11 Notes Calendar Store

<xe:notesCalendarStore

id=”${compositeData.storeComponentId}”

jsId=”nstore1”

dojoType=”xpagesext.CalendarStore”>

<xe:this.dojoAttributes>

<xp:dojoAttribute

name=”pathInfo”

value=”/inoteslegacyjson”>

</xp:dojoAttribute>

</xe:this.dojoAttributes>

</xe:notesCalendarStore>

Notes Calendar Control
Once the REST service has been set up and, if necessary, a Notes Calendar Store control or iCal
Store control added, the final step is to add an iNotes Calendar control. This is the control that
actually adds the calendar to the XPage, providing the same functionality available in the Notes
Client or on iNotes. Listing 7.12 shows the Notes Calendar control settings from the
calendarView.xsp Custom Control in the TeamRoom database. Because this is mapping directly
to a calendarJsonLegacyStore REST service, the storeComponentId property is set to that
REST service’s ID, restService2. If a Notes Calendar Store or iCal Store is used, the
storeComponentId will be the ID of the relevant intermediary store rather than the REST ser-
vice that actually provides the data.

Listing 7.12 Notes Calendar Control

<xe:calendarView

id=”calendarView1”

jsId=”cview1”

type=”#{javascript:sessionScope.dateRangeActions_selectedValue}”

storeComponentId=”restService2”

style=”width:100%”>

<xe:this.summarize>

<![CDATA[#{javascript:summarize =
sessionScope.calendarFormatActions_selectedValue == “true”;}]]>

</xe:this.summarize>

</xe:calendarView>

200 Chapter 7 Views

ptg7987094

The summarize property is a boolean. If false, the full range of date or time slots is
shown regardless of whether there is a calendar slot for that date or time, as in Figure 7.10. If
true, a list of calendar entries grouped under the date or time slots used is shown instead, as in
Figure 7.11.

iNotes Calendar (xe:calendarView) 201

Figure 7.10 Calendar—summarize="false".

Figure 7.11 Calendar—summarize="true".

The type property determines the range for the calendar. In the TeamRoom, it maps to an
instance of the actionManager.xsp Custom Control shown in Listing 7.13, although an Image
Select control, covered in Chapter 5, “Dojo Made Easy,” could have been used instead. This Cus-
tom Control allows a set of action buttons to be added to the XPage to provide a single-select
style group of buttons. As one button is selected, the others are deselected, and the group’s value

ptg7987094

is set from the selectedValue of the currently selected button. This shows that the
defaultSelectedValue for the groups of actions is M, but the available options that can be pro-
vided are as follows:

One day: D

Two days: T

Work week: F

Seven-Day Week: W

Two Weeks: 2

Month: M

Year: Y

Not all options must be provided to set the range for the calendar, but this shows all options
available.

Listing 7.13 dateRangeActions

<xc:actionManager

refreshId=”mainPanel”

actionGroupName=”dateRangeActions”

padActions=”true”

defaultSelectedValue=”M”>

<xc:this.actions>

<xc:actions

deselectedImage=”/1_Day_deselected_24.gif”

selectedImage=”/1_Day_selected_24.gif”

imageAlt=””

selectedValue=”D”>

</xc:actions>

<xc:actions

deselectedImage=”/2_Days_deselected_24.gif”

selectedImage=”/2_Days_selected_24.gif”

imageAlt=””

selectedValue=”T”>

</xc:actions>

<xc:actions

deselectedImage=”/1_Work_Week_deselected_24.gif”

selectedImage=”/1_Work_Week_selected_24.gif”

imageAlt=””

selectedValue=”F”>

202 Chapter 7 Views

ptg7987094

</xc:actions>

<xc:actions

deselectedImage=”/1_Week_deselected_24.gif”

selectedImage=”/1_Week_selected_24.gif”

imageAlt=””

selectedValue=”W”>

</xc:actions>

<xc:actions

deselectedImage=”/2_Weeks_deselected_24.gif”

selectedImage=”/2_Weeks_selected_24.gif”

imageAlt=””

selectedValue=”2”>

</xc:actions>

<xc:actions

deselectedImage=”/Month_deselected_24.gif”

selectedImage=”/Month_selected_24.gif”

imageAlt=””

selectedValue=”M”>

</xc:actions>

<xc:actions

deselectedImage=”/All_Entries_deselected_24.gif”

selectedImage=”/All_Entries_selected_24.gif”

imageAlt=””

selectedValue=”Y”>

</xc:actions>

</xc:this.actions>

</xc:actionManager>

View Events
The Notes Calendar control also supports some events specifically for calendars. As with the
iNotes ListView and for the same reason, all these events support only Client-Side JavaScript.

The onNewEntry events allow the developer to intercept a click and capture the relevant
date or time slot clicked. Listing 7.14 shows the onNewEntry event in the TeamRoom calendar.
Line 2 verifies that the user has access to create documents. Because the event supports only
Client-Side JavaScript, the code is wrapped in the #{javascript:} syntax to run SSJS through
the XSP Command Manager when the XPage is parsed. It also verifies that the user can write the
result to the Client-Side JavaScript function printed on the rendered web page. Line 4 uses the
getDate() function of the calendar object to access the JavaScript date for the clicked slot.
The calendar object is passed as an argument into the function. If there’s any doubt, a review of

iNotes Calendar (xe:calendarView) 203

ptg7987094

the HTML generated by the event will show those arguments, as demonstrated in the HTML
that’s produced: <script language=”JavaScript” event=”newEntryAction”

type=”dojo/connect” args=”calendar”>. The date is manipulated into yyyymmdd format
in lines 6 through 13 and in line 25 is appended as a query string parameter to the URL to which
the user will be redirected. The final parameter added in lines 28 and 29 is a calendar type of
Meeting, held in a properties file. The browser is then redirected to the complete URL, and the
calendarEntry.xsp XPage populates the relevant fields from the query string parameters.

Listing 7.14 onNewEntry Event

1 <xe:this.onNewEntry><![CDATA[

2 if(#{javascript:(userBean.accessLevel >=
lotus.domino.ACL.LEVEL_AUTHOR) && userBean.canCreateDocs}){

3 var yyyymmdd = null;

4 var calDate = calendar.getDate();

5 // if we have a calendar date, format it as a yyyymmdd string

6 if (calDate != null) {

7 var yyyy = new String(calDate.getFullYear());

8 var month = calDate.getMonth() + 1;

9 var mm = month < 10 ? new String(‘0’ + month) : month;

10 var day = calDate.getDate();

11 var dd = day < 10 ? new String(‘0’ + day) : day;

12 yyyymmdd = yyyy + mm + dd;

13 }

14

15 var path = “”;

16 if(dojo.isMozilla || dojo.isWebKit){

17 path = #{javascript:”\”” + @FullUrl(‘/’) + “\””};

18 }

19

20 // append the XPage to create a calendar entry

21 path += “calendarEntry.xsp”;

22

23 // add a parameter value for the selected date if available

24 if (yyyymmdd != null) {

25 path += “?date=” + yyyymmdd;

26 }

27 // Add a docType=Meeting parameter so meetings are selected by
default;

28 var sDocTypeParam =
(“#{javascript:strings.getString(‘defaultdoctype3’)}”);

204 Chapter 7 Views

ptg7987094

29 path += “&docType=” + sDocTypeParam;

30

31 //change the current URL

32 document.location.href = path;

33 }]]>

34 </xe:this.onNewEntry>

The onRescheduleEntry event receives the calendar argument in addition to an item argu-
ment. This is the calendar entry that’s being rescheduled, enabling the developer to access the
Notes Universal ID of the calendar entry by using item.unid. The onOpenEntry and onDele-
teEntry events receive only a single argument—items—an array of the calendar entry or entries
selected. There are also events for onSelectEntry, onChangeView (for when the view type is
being changed), and onContextMenu.

Table 7.7 summarizes the main properties for the iNotes Calendar control.

Table 7.7 xe:calendarView Properties

Property Description

jsId Defines Client-Side JavaScript ID for the view.

storeComponentId Defines the ID of the REST service that holds the data for the Data Grid.

summarize Defines the format in which entries are displayed. If true, the entries are
summarized, showing only the dates for which there are entries. If false,
a full calendar is shown with boxes for the display period.

type Defines the number of days displayed at a time.

onChangeView Can trigger Client-Side JavaScript when the user changes the display type
of the view.

onContextMenu Can trigger Client-Side JavaScript when the user accesses a row’s context
menu.

onDeleteEntry Can trigger Client-Side JavaScript when the user deletes an entry.

onNewEntry Can trigger Client-Side JavaScript when the user creates an entry.

onOpenEntry Can trigger Client-Side JavaScript when the user opens an entry.

onRescheduleEntry Can trigger Client-Side JavaScript when the user reschedules the date of an
entry by dragging it to a different cell in the calendar.

onSelectEntry Can trigger Client-Side JavaScript when the user selects an entry.

iNotes Calendar (xe:calendarView) 205

ptg7987094

Data View (xe:dataView)
The Data View is the main view component used in the TeamRoom database. It is a rich view
component with several similarities to the core view controls but greater flexibility in layout.
Indeed, the repeatControls and removeRepeat properties show the control’s relationship to the
Repeat control. Similarly, alternate row coloring has to be done in the same way it would be done
for Repeat Controls, because just a single rowClass property is applied to all rows rather than a
rowClasses property found on the View Panel or Data Table. But beyond the core controls, the
Data View allows properties and facets for categorization, expandable sections, sorting, multiple
column layouts, images, and navigation, either by means of pagers or an AJAX request to the
server to add more rows—a means of navigation becoming more and more prevalent on the web
but until now not easily implemented in XPages.

The data properties for the Data View will be familiar. It has the traditional properties of
var, indexVar, rows, first, and openDocAsReadonly. When it comes to the source for the data,
there are similarities but even greater flexibility. You can set the data property to any of the three
datasources now available to XPages: the core dominoView datasource, available for a View
Panel or Data Table; and the core dominoDocument or the new Extension Library objectData
datasource, both available for the Data Table control. But the Data View provides even greater
flexibility, because the value property can be used instead and set to any type of collection, just as
developers have always done for Repeat controls. This provides total flexibility in defining the
data.

Like the View Panel, the Data View control is built to manage document selection via the
showCheckbox and showHeaderCheckbox. Indeed, the control uses the same SSJS method to
access the documents: getSelectedIds().

Table 7.8 outlines the main properties for the Data View control.

Table 7.8 xe:dataView Properties

Property Description

detailsOnClient Defines whether expand and collapse actions should be processed on the
browser/Notes client. If false, expand and collapse actions make a call to
the server.

expandedDetail Defines whether the Detail area should be expanded by default. If false,
this property can still be overridden by using the disableHideRows property.

pageName Defines the XPage to open when users open a document.

categoryColumn Defines columns for the Category area of the Data View. See the properties
of xe:viewCategoryColumn in Table 7.14 for more details. You can also
develop the Category area using the facet names categoryRow, category-
Row1, categoryRow2, and so on.

collapsibleCategory Defines whether the Category area is collapsible.

206 Chapter 7 Views

ptg7987094

Property Description

collapsibleDetail Defines whether the Detail area is collapsible.

collapsibleRows Defines whether rows for response documents are collapsible.

disableHideRow Defines whether the Detail area is expanded and not collapsible.

extraColumns Defines columns for the Extra Columns area of the Data View. See the
properties of the xe:viewExtraColumn in Table 7.14 for more details.
The Extra Columns area can also be developed using the facet names
extra0, extra1, extra2, and so on.

iconColumn Defines a column for the Icon area of the Data View. See the properties of
the xe:viewIconColumn in Table 7.15 for more details. You can also
develop the Icon area using the facet name icon.

multiColumnCount Defines how many documents should be displayed on each row.

showCheckbox Defines whether a check box should be added to each row to allow the user
to select documents.

showHeaderCheckbox Defines whether a check box should be added to the header row to allow the
user to select all documents in the Data View.

showItemsFlat Defines whether response documents should be shown in a hierarchy. It is
the opposite of the Show Response Documents in a Hierarchy setting on
a View design element.

summaryColumn Defines a column for the Summary area of the Data View. See the
properties of the xe:viewSummaryColumn in Table 7.14 for more details.
The Summary area can also be developed using the facet name summary.

rowStyle Defines styles for displaying the rows.

rowStyleClass Defines classes for displaying the rows.

Pagers
The Data View control itself is a framework providing a layout with facets, or customizable areas
of the control. Like the core view controls—the Data Table, the View Panel, and the Repeat con-
trol—the Data View control has a header and a footer area, each divided into three areas: one left-
aligned, one center-aligned, and one right-aligned. These are nominally called pagerTopLeft,
pagerTop, and pagerTopRight for the header and pagerBottomLeft, pagerBottom, and
pagerBottomRight for the footer.

You’ll see new areas for adding functionality. That’s deliberate. The Extension Library also
adds new pager controls to the core Pager control, which allows the user to move from one page
to the next. These pager controls allow developers to quickly and easily implement view manipu-
lation functionality that developers have until now had to code manually. Because the additional

Data View (xe:dataView) 207

ptg7987094

content is not initially passed to the browser, the new pager controls do a round-trip to the server
for all events.

The Pager Expand/Collapse control (xe:pagerExpand) is appropriate for categorized
content, providing the facility to expand and collapse the categories. This can be found on many
of the views in the TeamRoom database, most notably the All Documents page in Figure 7.12,
shown working when showing by date, by author, or by team. As with the core Pager control, for
this and the other Pager controls added by the Extension Library, there are properties to deter-
mine partial refresh and the component to attach the Pager Expand/Collapse to, unless it is
already within a View control. The default textual labels are “Expand All” and “Collapse All”,
but you can override these with the expandText and collapseText properties.

208 Chapter 7 Views

Figure 7.12 Pager controls 1.

Table 7.9 defines the main properties for the Pager Expand/Collapse control.

Table 7.9 xe:pagerExpand Properties

Property Description

collapseText Defines the label for collapsing all entries—by default, Collapse All

expandText Defines the label for expanding all entries—by default, Expand All

for Defines to which control the pager applies

Figure 7.13 shows the Pager Show/Hide Details (xe:pagerDetail) control in action on
the Events page (the eventView.xsp Custom Control). If the Data View has a details row, this
pager allows all details to be shown or hidden at a single click. For this control, the text, default-
ing to Show Details and Hide Details, is managed by the showText and hideText properties.

Table 7.10 defines the main properties for the Pager Show/Hide Details control.

ptg7987094

Table 7.10 xe:pagerDetail Properties

Property Description

for Defines to which control the pager applies

hideText Defines the label for hiding entries—by default, Hide Details

showText Defines the label for showing entries—by default, Show Details

The Pager Sizes (xe:pagerSizes) control allows the user to determine how many docu-
ments show per page, although the initial value is still controlled by the developer on the relevant
view control. The sizes property allows the developer to define the options to allow the user to
select from. A comboBox provides some options to select from. Any values can be entered, but
non-numeric options are ignored. The text property enables the developer to define the text to
appear. As with the Group Pager Child control, using {0} inserts the first parameter of the
pager—in this case, the sizes property. So, the code in Listing 7.15 produces a pager saying
Please select from 10 | 20 | 50. The Pager Sizes control is visible on most pages in the
TeamRoom database, as Figure 7.13 shows.

Listing 7.15 Pager Sizes Control Code

<xe:pagerSizes

id=”pagerSizes1”

sizes=”10|20|50”

text=”Please select from {0}”>

</xe:pagerSizes>

Data View (xe:dataView) 209

Figure 7.13 Pager controls 2.

ptg7987094

Table 7.11 outlines the key properties for the Pager Sizes control.

Table 7.11 xe:pagerSizes Properties

Property Description

for Defines to which control the pager applies.

sizes Defines the number of entries per page the user can show, delimited by |. Entries
should be numbers or all.

text Defines the label for the pager, including {0}, where the sizes property should be
added.

Figure 7.14 shows the final pager control, the Pager Add Rows control (xe:pager-
AddRows). This control can be found on the Home page of the TeamRoom application. Although
the core Pager control replaces the current content with the next page of content, this control still
shows the current page content while appending additional content. This control would usually
be used instead of the core Pager. That control adds the same number of rows as currently dis-
played to the user, and the Pager Add Rows control adds the number of rows defined by the row-
Count property of the Pager Add Rows control. As with the other pager controls, the developer
can override the default text, this time using the text property. An additional property, the store
property, is available for this control. It enables the developer to define whether the view’s state in
terms of the additional rows should be stored on the server. If the property is set to false, when
the user returns to the view, it shows only the number of rows defined in the Data View control,
not any additional rows the user has added.

210 Chapter 7 Views

ptg7987094

Figure 7.14 Pager controls 3.

Table 7.12 summarizes the main properties of the Pager Add Rows control.

Table 7.12 xe:pagerAddRows Properties

Property Description

for Defines to which control the pager applies.

refreshPage Defines whether a partial/full refresh should be triggered when the user clicks
on the link. If false, an AJAX request populates the rows.

rowCount Defines the number of rows to be added each time the user clicks on the link.

state Defines whether the state should be updated on the server to store the updated
total number of rows displayed. If false, whenever the user returns to this
page, the default number of rows is shown.

text Defines the label for the pager.

disabledFormat Defines how the pager should appear when the display contains all documents
in the view.

Data View (xe:dataView) 211

ptg7987094

PagerSaveState (xe:pagerSaveState) /View State Beans
One new Pager control has not yet been covered: the Pager Save State. For developers whose
experience has been predominantly with the Notes Client, certain user experiences and their
implementation are taken for granted. Because the Notes Client opens documents in a separate
tab, when the document is closed, the view’s original state is retained. Also, when switching
between views, each view is positioned to the last selected document in that view, although there
is no retention of the view’s state—which categories were opened/closed to which depth.
Because the web is stateless, by default a view is always positioned to the first document in that
view. To position the view differently, the usual method of development has been to add more
coding to store and retrieve cookies within the user’s browser on the local PC.

With the introduction of XPages, because of its basis on JSF, a server-side model of the
page is kept and sessionScope variables can be stored, removing the need to store cookies on a
user’s PC. But in its initial implementation, there was no native functionality to take advantage of
this and make it easier to reproduce the functionality that users expect if they have come from a
Notes Client background. So coding still needed to be added to datasources to set the startKey
property to reposition the view to the relevant document.

In this respect, the Extension Library again provides functionality to easily enhance the
developer and user experience, by means of the Pager Save State control and the viewStateBean.
In addition to automatically capturing which page the user was on, which developers can repro-
duce programmatically, the viewStateBean captures which categories were expanded or col-
lapsed, so the user can be returned to the view in that state.

Table 7.13 defines the properties for the Pager Save State control.

Table 7.13 xe:pagerSaveState Properties

Property Description

for Defines to which control the pager applies

globalRows Defines whether the number of rows stored for the user should be all views or just the
current view

The functionality is implemented in the TeamRoom database, as evidenced on the All Doc-
uments page. It comprises two parts: a Pager Save State control to manage storing the state of the
view, and an additional SSJS call to tell the server to restore the view’s state.

As Listing 7.16 shows, the first part is done on the XPage or Custom Control, which holds
the viewpart of the code for the allDocsAllTab.xsp Custom Control in the TeamRoom. A Pager
Save State control is added to the XPage or Custom Control in lines 1 through 5. The for property
is set in line 2 to ID of the Data View or other repeating control for which the view’s state should
be saved. The globalRows property is used in line 3 to store the state globally across all views of
the application. Otherwise, the view state is stored specifically for the view provided for the user.

212 Chapter 7 Views

ptg7987094

The Data View or other repeating control also needs to be bound to the viewStateBean’s data
Iterator, as shown in line 10. Other than these additions, the Data View is created as normal.

Listing 7.16 Pager Save State and viewStateBean Binding

1 <xe:pagerSaveState

2 for=”allDocumentsDataView”

3 globalRows=”true”

4 id=”pagerSaveState1”>

5 </xe:pagerSaveState>

6 <xe:dataView

7 xp:key=”tabAll”

8 id=”allDocumentsDataView”

9 var=”viewEntry”

10 binding=”#{viewStateBean.dataIterator}”

11 collapsibleRows=”true”

12 pageName=”/topicThread.xsp”

13 collapsibleDetail=”true”

14 columnTitles=”true”

15 rowStyleClass=”xspHtmlTrView”

16 rows=”25”

17 detailsOnClient=”true”>

18 <xe:this.data>

19 <xp:dominoView var=”view1” viewName=”xvwDocsByActiveDate”

20 ...

The second part is done on the document when closing and returning to the relevant view.
The restoreState property of the viewStateBean is set to true using SSJS, as shown in line 10 of
Listing 7.17. Then when the view is opened, its state is restored, with the view positioned at the
relevant row and any expanded or collapsed categories also restored.

Listing 7.17 Restoring the viewStateBean

1 <xp:link

2 id=”backLink”>

3 <xp:eventHandler

4 event=”onclick”

5 submit=”true”

6 refreshMode=”complete”

7 immediate=”false”

8 save=”false”>

Data View (xe:dataView) 213

ptg7987094

9 <xp:this.action><![CDATA[#{javascript://

10 viewStateBean.restoreState = true;

11 return sessionScope.topicThreadPreviousXPage;

12 }]]></xp:this.action>

13 </xp:eventHandler>

14 </xp:link>

Columns
The pagers are added to the Data View control via the specific facets. You can add the columns in
two ways. There are properties on the Data View control for categoryColumn, extraColumns,
iconColumn, and summaryColumn, where you can enter various column properties. But you
can manage the data for those areas via optional facets whose names are displayed in the visual
representation of the Data View control, Figure 7.15. The categoryColumn and extraColumns
areas can hold multiple facets, as previously detailed in Table 7.6. This is part of the flexibility of
the Data View control: that it is effectively a rich content layout control that allows data or a data-
source to be bound to it.

214 Chapter 7 Views

Figure 7.15 Data View control.

Listing 7.17 (Continued)

ptg7987094

Adding content to a facet might be a process that XPages developers will be very familiar
with. The various column components that can be added will be more unfamiliar. The following
sections run through both methods of defining the column content.

Category Column (xe:viewCategoryColumn)

The outermost area of the data within the Data View is the Category area. Because the Data View
control is basically just a layout control, so is the category row. This can be either values from a
column in the underlying view or content placed into the categoryRow facet, as in the home.xsp
XPage. For the Home page of the TeamRoom database, it is the date(s) of the view entries, as in
Listing 7.18. You can see the output in Figure 7.16. Here the value shown is the date of the entry
and, if it is today or yesterday, it is prefixed with the relevant string. Because this is using view-
Entry, even though the content of the categoryRow facet is more than just a column from the view,
the Data View will respect the categorization and put entries under the relevant category heading.

Listing 7.18 categoryRow Facet on home.xsp

<xp:span

style=”font-weight:bold”>

<xp:text

disableTheme=”true”>

<xp:this.value><![CDATA[#{javascript:var date =
@Date(viewEntry.getColumnValue(“ActivityDate”));

if(@Today().equals(date)){

return strings.getString(“today”) + “ “;

}

if(@Yesterday().equals(date)){

return strings.getString(“yesterday”) + “ “;

}

return “”;}]]></xp:this.value>

</xp:text>

<xp:text

value=”#{javascript:viewEntry.getColumnValue(‘ActivityDate’)}”

disableTheme=”true”

id=”dateCategoryField”

escape=”true”>

<xp:this.converter>

<xp:convertDateTime

pattern=”MMMM d, yyyy”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:span>

Data View (xe:dataView) 215

ptg7987094

Figure 7.16 home.xsp category row.

There is nothing stopping the facet from having content that bears no relationship to the
data held by the Data View, in which case it appears just as a heading above the data.

The other method of applying content to the categoryRow facet is to use the
categoryColumn property on the Data View to add a viewCategoryColumn component. Figure
7.17 shows all the properties available for the viewCategoryColumn component. Only one view-
CategoryColumn can be added to the categoryColumn property, so it is not possible with the
Data View to have multilevel categorization. The viewCategoryColumn, viewSummaryColumn,
and viewExtraColumn components have the same properties. The most important category is
the columnName property, which maps the column to a column in the underlying datasource. If
the column value should be a link, the href property can determine the URL to redirect to. There
are some properties for managing styling, the contentType can be set as HTML, and a converter can
be applied to the result. The columnTitle property is not applicable to a viewCategoryColumn
component.

216 Chapter 7 Views

ptg7987094

Figure 7.17 viewCategoryColumn properties.

The whole row (or rows if the category provides multiple values relating to the data in the
Data View) can be made collapsible by setting the collapsibleCategory property on the Data
View.

Table 7.14 summarizes the key properties for the viewCategoryColumn, viewSummary-
Column, and viewExtraColumn controls.

Table 7.14 xe:viewCategoryColumn, xe:viewSummaryColumn, xe:viewExtraColumn
Properties

Property Description

columnName Defines the column from which to retrieve a value

columnTitle Defines a title to display at the top of the column

contentType Defines whether the column values should be treated as plain text or HTML

converter Defines a converter to be used to convert the underlying data type to a String

Data View (xe:dataView) 217

ptg7987094

Table 7.14 Continued

Property Description

headerStyle Defines styles for the column header

headerStyleClass Defines classes for the column header

href Defines a URL to be used as a link when the user clicks on the column value

Icon Column (xe:viewIconColumn)

The icon area appears as the first column for each entry. As with the other areas, you can set it by
adding content to the icon facet or adding a viewIconColumn to the iconColumn property of the
Data View. As with the categoryColumn property, you can add just one column to the property.

The viewIconColumn is similar to the Multi-image control, which was covered in Chap-
ter 4, “Forms, Dynamic Content, and More!,” in that it maps a value to the selectedValue prop-
erty of an iconEntry component. Indeed, the icon for the home.xsp XPage is set by adding a
Custom Control using a Multi-Image control to the icon facet. That value can come from a col-
umn using the columnName property or can be set using the value property.

Table 7.15 shows the additional properties relevant for the viewIconColumn control.

Table 7.15 xe:viewIconColumn Properties

Property Description

columnName Defines the column from which to retrieve a value. This column does not have
to contain an icon.

icons Defines a list of icons that might appear, depending on the column value.

Summary Column and Extra Columns (xe:viewSummaryColumn and
xe:viewExtraColumn)

The next column shown, in a more prominent format than the other columns, is set by adding a
viewSummaryColumn to the summaryColumn property or adding content to the summary
facet on the Data View. Again, only one viewSummaryColumn can be added. Therefore, if addi-
tional content is required, the summary facet might be preferable, as on the home.xsp XPage. All
the properties for the viewSummaryColumn are the same as for the viewCategoryColumn.

You cannot define the subsequent columns using a facet. You must use the extraColumns
property on the Data View. This can take one or more viewExtraColumn components, which
again have the same properties as the viewCategoryColumn.

218 Chapter 7 Views

ptg7987094

Column titles for the summary column and extra columns show only if the columnTitles
property is true. If column titles show, any columns in the underlying View design element that
are sortable are also sortable in the Data View without additional properties being set.

Detail

So far, the Data View shows only a single row per entry. But the Data View provides functionality
to add additional detail, appearing below the summary column. You cannot manage the content
for the detail using columns; only the detail facet allows you to manage the content. This allows
great flexibility in building the look and feel of the detail area.

Some additional properties on the Data View affect how the detail shows. The
collapsibleDetail property handles whether the detail can be expanded or collapsed. The
expandedDetail determines whether the detail row is expanded by default. You can ensure that
detail shows by setting collapsibleDetail to false and setting expandedDetail to true, but it’s
easier to set disableHideRow to true. Setting disableHideRow forces the detail to show and
prevents the detail from being hidden. As with almost any other property of an XPage, the setting
can be computed as well as hard-coded to true or false.

One more property is applicable only for the Notes Client. For the browser, the detail con-
tent is only passed to the browser if it should be visible, to maximize performance of initial page
load. You can set the detailsOnClient property to ensure detail is passed to the XULRunner
within the Notes Client when the page is first loaded to prevent an additional call to the server
when showing and hiding detail. This is because server connection speeds are predominantly bet-
ter for XPiNC, whereas calls to the server currently take longer than they do from a browser.

Multiple Columns
As if the flexibility so far seen for the Data View control was not enough, there is more, as shown
in the Members area in the membersMembersTileView.xsp Custom Control, shown in Figure
7.18. On initial viewing, this looks quite different from the Data View. But this has the show-
Checkbox property set to true and has a summary column—details that always show.

The only real difference in implementation is that the multiColumnCount property of the
Data View control is set to 2. This means that the whole Data View is shown tiled with two entries
per row. If the content will not take up much space in the width of the screen, such as in a business
card format, developers can maximize the screen real estate available with greater ease of
development.

Data View (xe:dataView) 219

ptg7987094

Figure 7.18 Members Tile View.

Forum View
The Forum View is similar to the Data View, but the Forum View does not include the category-
Row, icon, and extraColumn areas. Instead, the Data area includes just the Summary and
Detail areas. Other than this, all the properties and implementation are the same as the Data View
control.

The Forum View control is found in the TeamRoom database on the topicThread.xsp
XPage in the topicThreadForum.xsp Custom Control. Figure 7.19 is a screenshot of that
XPage, demonstrating how it can show threads and allow the user to expand and collapse the con-
tent as required. This again showcases the flexibility of the Data View and Forum View controls,
in that the Custom Control displayed in the Forum View—topicPost.xsp—is the same one used
to show the main topic above the Forum View.

220 Chapter 7 Views

ptg7987094

Figure 7.19 Forum View in topic thread.

Conclusion
The preceding chapters have covered displaying content for editing and viewing an individual
document. The Extension Library provides a wealth of new view components from controls that
reproduce Notes Client styling, enable developers to easily take advantage of the Dojo Data Grid,
reproduce iNotes functionality, and add flexible layouts.

Conclusion 221

ptg7987094

This page intentionally left blank

ptg7987094

223

C H A P T E R 8

Outlines and
Navigation

Chapter 7, “Views,” covered how to display the data in your applications using one of the new
view controls in the XPages Extension Library. For the end user to be able to switch between the
different views in the application, the developer needs to create an application layout and navi-
gation. This chapter covers both the Dojo layout controls and the navigation controls that have
been added to the XPages Extension Library.

The Dojo Layout Controls
As covered in Chapter 3, “TeamRoom Template Tour,” the XPages-based TeamRoom application
uses a special control in the XPages Extension Library for its application layout. This control is
described in full detail in Chapter 9, “The Application’s Layout.” Developers, however, do not
have to use this control in their XPages design, especially if they won’t be using the OneUI look
and feel for their application. To allow developers full control over their application layout, the
XPages Extension Library provides several Dojo layout controls that can be used instead.

Neither the XPages TeamRoom application nor the XPages Extension Library Demonstra-
tion application uses these Dojo layout controls; however, another Open Source application on
OpenNTF called XPages Help Application does. You can download the application from
http://xhelp.openntf.org. It makes a great learning resource for developers who want to use the
Dojo layout controls in their own applications.

The Content Pane
The basis of any Dojo layout is the Dojo Content Pane (xe:djContentPane). Although there
are specific controls—the Border Pane control (xe:djBorderPane) for the Border Container
control (xe:djBorderContainer), the Tab Pane control (xe:djTabPane) for the Tab Con-
tainer control (xe:djTabContainer), the Stack Pane for the Stack Container (xe:djStack-
Pane), and the Accordion Pane (xe:djAccordionPane) for the Accordion Container

http://xhelp.openntf.org

ptg7987094

(xe:djAccordionContainer)—all of these are analogous to the Content Pane control. In fact,
another implementation of the Content Pane control was already covered in Chapter 6, “Pop-Ups:
Tooltips, Dialogs, and Pickers.” There are additional properties for some of the other pane con-
trols, but they are only extensions to the Content Pane.

The Content Pane, as its name suggests, is just an area to contain content, similar to a div or
a panel. The benefit is that there are performance-related properties to allow flexible loading of
data. Figure 8.1 shows content panes loaded through partial refresh. Whereas the rest of the con-
tent on the page is loaded along with the XPage, the two content panes with the partialRefresh
property set to true are loaded via AJAX calls. This means the content is loaded after the rest of
the page and, potentially in the scenario of a Tab Pane or Accordion Pane, only as and when the
user can see the pane. This can be useful with complex pages across a connection suffering from
latency issues.

224 Chapter 8 Outlines and Navigation

Figure 8.1 Content Pane from XPages Extension Library Demo database, loaded via partial
refresh.

The other performance-related properties—parseOnLoad, preload, preventCache, and
refreshOnShow—also start to become more appropriate and more powerful. Table 8.1 lists the
notable properties for the Content Pane control.

ptg7987094

Table 8.1 xe:djContentPane Properties

Property Description

errorMessage Defines an error message to display if the contents of the pane cannot be loaded

extractContent Defines whether the pane should only display whatever is between the BODY
tags if the contents are loaded using the href property

href Can define a URL from which to load the contents of the pane

loadingMessage Defines a message to display to the user while the contents of the pane are being
loaded

partialRefresh Defines whether the contents of the pane are loaded inline with the rest of the
page or separately via an AJAX call

preload Defines whether the contents of the pane are loaded even if it is not visible

preventCache Can ensure that AJAX calls to load the contents are not cached

refreshOnShow Defines whether the contents should be reloaded each time the pane goes from
a hidden to a visible state

onContentError Can run Client-Side JavaScript when an error occurs in the content of the
dialog

onDownloadEnd Can run Client-Side JavaScript after the URL in the href property has been
loaded

onDownloadError Can run Client-Side JavaScript if the URL in the href property cannot
be loaded

onDownloadStart Can run Client-Side JavaScript before the URL in the href property is loaded

onHide Can run Client-Side JavaScript each time the pane is closed

onShow Can run Client-Side JavaScript each time the pane is displayed

The Border Container and Border Pane
The Border Container (xe:djBorderContainer) provides a clean, simple, but flexible layout
for the whole application, as shown in Figure 8.2. The layout comprises panes for content within
specific regions of the page. As with many of the other Dojo controls, the Border Container sup-
ports keyboard events. The Tab key cycles through the splitters. You can change the size of the
pane by using the cursor keys: left / right for a vertical pane, and up / down for a horizontal pane.

The main control is the Border Container control. The key setting for the Border Container
is to set a height via Cascading Style Sheets (CSS) in either the style or styleClass properties.
The width setting is optional. But if no height is set, the Border Container is not displayed.

The Dojo Layout Controls 225

ptg7987094
Figure 8.2 Border Container in the XPages Help Application from OpenNTF.

The Border Container can comprise up to five Border Pane controls. The order in which
the panes appear in the source is irrelevant. It is the region property on each Border Pane that
defines where in the Border Container each pane appears. The five options are displayed in Fig-
ure 8.3, although not all five have to be used (see Figure 8.2). In combination with the panes, the
Design property on the Border Container handles how the panes are laid out. Figure 8.2 uses
the default design option, headline, where the top and bottom panes extend the whole width
of the Border Container. The other option is sidebar, where the right and left panes extend the
whole height of the Border Container.

226 Chapter 8 Outlines and Navigation

ptg7987094

Figure 8.3 Border Pane region property.

The other piece of functionality relating to the panes is splitters. Panes are, by default, fixed
to a specific height or width, either handled automatically by the Border Container or overridden
by CSS. However, when you define splitters, users are permitted to change the height or width of
the panes, as shown in Figure 8.4.

The Dojo Layout Controls 227

ptg7987094
Figure 8.4 Border Container with splitters, including content loaded from href.

The availability of a splitter is defined on each specific Border Pane, so splitters do not nec-
essarily need to be applied to all panes in the Border Container. In addition, there are two proper-
ties on the Border Container to control the behavior of the splitters. The liveSplitters property
controls whether the panes are dynamically resized as the user drags the splitter or on the
onmouseup event. The other property is persist. By default, this property is set to false; when
the page is refreshed, the panes revert to their default height and width. If set to true, the resized
height and width are stored in cookies in the user’s browser, so a page refresh renders the Border
Container with the preferred height and width of each pane, as changed by the user. These and
other prominent properties are detailed in Table 8.2.

Table 8.2 xe:djBorderContainer Properties

Property Description

design Defines the layout of the Border Container. If headline, the top and bottom
panes span the full width of the container. If sidebar, the left and right panes
span the full height of the container.

gutters Defines whether the panes should have a border and margin.

liveSplitters Specifies whether panes resize as the splitter is dragged or only when dropped.

persist Defines whether pane sizes are stored in cookies.

height Must be specified via CSS, or the Border Container does not show.

228 Chapter 8 Outlines and Navigation

ptg7987094

Even with splitters enabled, the developer can maintain some control of the content display
by setting the minSize and maxSize properties of a specific Border Pane. These properties take a
numeric value controlling the height for top or bottom panes and controlling the width for others.
However, the minSize and maxSize properties only take effect when the user tries to resize the
pane, so the height or width of the pane should always be set by default as well.

The content of the Border Pane does not necessarily have to be coded on the XPage. With
the Border Pane, unlike the normal Content Pane, you can load the content from an external URL
in the same trusted domain, using the href property. This can be useful, for example, with a
header stored centrally or for content from an existing web application. Figure 8.4 shows
soon.xsp loaded into the central pane of the Border Container. However, if you’re loading an
XPage using the href property, you should set the extractContent property to true to avoid
issues caused by the HTML headers from both pages.

When you load external content into a Border Pane control, additional properties are rele-
vant. You can use the loadingMessage and errorMessage properties to customize the messages
displayed to the user. Three additional Client-Side JavaScript events are available: onDownload-
Start, onDownloadEnd, and onDownloadError. These are triggered before the relevant URL
is loaded, after it’s loaded, and if there’s an error.

Table 8.3 details more properties of the Border Pane that help with the appearance and siz-
ing of the pane. These properties extend those of the Content Pane; see Table 8.1.

Table 8.3 xe:djBorderPane Properties

Property Description

maxSize Defines the maximum size for the pane, in pixels

minSize Defines the minimum size for the pane, in pixels

splitter Defines whether splitters appear on the edge of the pane, to allow users to resize
the pane

layoutPriority Defines how close to the center the pane should appear

region Defines where the pane should appear in relation to the Border Container

Accordion Container and Accordion Pane
The Border Container gives a framework for laying out content. Within that framework, naviga-
tion can be managed by using the Accordion Container. The Accordion Container is a vertical
container of content panes, one of which shows at any one time, as in Figure 8.5. Clicking on the
title for a pane expands that pane. You can also use keyboard shortcuts. The cursor keys navigate
through the panes. Right (→) or down (↓) navigates one way, and left (←) or up (↑) navigates the
other. The Tab key then navigates into the content.

The Dojo Layout Controls 229

ptg7987094Figure 8.5 Accordion Container.

As with the Border Container, the Accordion Container needs to have a height specified, or
it will not show. There are only two additional properties for the Accordion Container. The
selectedTab property defines which pane is expanded. The value is the ID of the Accordion Pane
control that should be expanded. The other property of note is duration, which defines the num-
ber of milliseconds for the transition between one pane and the other. Other properties used for
the Accordion Container are detailed in Table 8.4.

Table 8.4 xe:djAccordionContainer Properties

Property Description

duration Defines the number of milliseconds for transitioning between panes

selectedTab Defines the ID of the pane that has focus

height Height must be specified via CSS, or the Accordion Container does not show

230 Chapter 8 Outlines and Navigation

ptg7987094

The Accordion Container comprises multiple Accordion Pane controls—multiple,
because what would be the point in having just one pane? There are no additional properties pro-
vided over the Content Pane, but the title property defines the label for the pane. As with the Con-
tent Pane, the Accordion Pane can be built up from any other controls, or it can use the href
property to load its content from an external source from the same trusted domain. You can use
this to load an XPage containing navigation from another application.

The Tab Container and the Tab Pane
The Tab Container is the Dojo equivalent of the core Tabbed Panel that has been familiar to
XPages developers since Release 8.5.0. However, there is one significant difference: Only the
first tab is loaded initially. Clicking on the second tab makes an AJAX call to load the additional
content, as Figure 8.6 shows. Similar to the other Dojo controls, the Tab Container supports key-
board shortcuts at the basic level using cursor keys to move between tabs. Tab Containers can be
nested within one another, giving a flexibility of layout. Also, similar to the other Dojo container
controls, the height must be specified for the Tab Container to display as expected.

The Dojo Layout Controls 231

Figure 8.6 AJAX call for Tab Pane content.

ptg7987094

The Tab Container has numerous properties for managing its look and feel and behavior.
The doLayout property overrides the default height set for the Tab Container, expanding and col-
lapsing the height of the Tab Container depending on the contents of the selected tab. You can
position tabs on any side of the container by using the tabPosition property. The default setting is
top, but Figure 8.7 shows the other options. You can use the tabStrip property, false by
default, to add a background behind the tabs.

232 Chapter 8 Outlines and Navigation

Figure 8.7 Tab Container tabPosition, tabStrip property, and other properties.

ptg7987094

Figure 8.8 tabStrip property as true.

If there are too many tabs to fit into the space, you can add slider buttons at either end of the
Tab Container to scroll through the tabs, and add a menu to select tabs, as Figure 8.9 shows. The
useSlider and useMenu options, defaulting to true, control these settings. Just like the Tabbed
Panel, the selectedTab property enables you to define the initial tab by referencing the ID of the
relevant tab, such as djTabPane1. However, unlike the Tabbed Panel, the persist property
allows the currently selected tab to be stored in a cookie so it can persist across sessions.

The Dojo Layout Controls 233

As Figure 8.8 shows, tabStrip=“true” adds a class to the main div called
dijitTabContainerTopStrip, which you can use to manipulate the styling.

ptg7987094
Figure 8.9 useSlider and useMenu.

The Tab Pane has two additional properties over the Content Panes covered so far. The
tabUniqueKey property allows a unique key to be assigned to each tab, used when programmat-
ically selecting the tab. The closable property, defaulting to false, determines whether you can
delete the tab (see Figure 8.10).

You can also use the Tab Container to create dynamic tabs by taking advantage of its meth-
ods. As with many of the other methods of the Dojo Extension Library controls, you can do this
via Client-Side JavaScript or Server-Side JavaScript (SSJS). Line 3 of Listing 8.1 shows the
Client-Side JavaScript method createTab(). In SSJS, the same method exists, but there is an
additional method, createTab(Map<String,String>), to create a tab passing parameters,
such as the tabUniqueKey and title properties of the Tab Pane, as shown on line 8 of Listing 8.1.

Listing 8.1 createTab Methods

1 <xp:button

2 value=”New Contact - Client Side”

3 id=”button4”>

4 <xp:eventHandler event=”onclick” submit=”false”>

5 <xp:this.script>
<![CDATA[dijit.byId(‘#{id:djTabContainer1}’).createTab()]]>
</xp:this.script>

6 </xp:eventHandler>

234 Chapter 8 Outlines and Navigation

ptg7987094

7 </xp:button>

8 <xp:button

9 value=”New Contact - Server Side”

10 id=”button6”>

11 <xp:eventHandler

12 event=”onclick”

13 submit=”true”

14 refreshMode=”partial”

15 refreshId=”tabs”>

16 <xp:this.action><![CDATA[#{javascript:
getComponent(“djTabContainer1”).createTab({tabUniqueKey:@Unique(),
tabTitle:”New Tab”})}]]></xp:this.action>

17 </xp:eventHandler>

18 </xp:button>

Figure 8.10 shows the output when the Server-Side and Client-Side buttons are clicked.
Note specifically the tab titles.

The Dojo Layout Controls 235

Figure 8.10 New tabs.

ptg7987094

Buttons are available to create the tabs. The content of the tabs is handled through the default-
TabContent property of the Tab Container, which contains a variable name relating to a facet key
(see Listing 8.2). Line 5 shows the defaultTabContent property set to doc. Line 6 creates a
facet, and Lines 7 onward show the start of the code for the TabPane template that should be used
to create the new tab. Note that some default property settings are defined, such as closable
and title, but you can override these either in a postOpenDocument setting or in the SSJS
createTab(Map<String,String>) method. The tab created with Client-Side JavaScript in
Figure 8.10 has the default title “New Document,” whereas the tab created in SSJS has the “New
Tab” title passed through the method.

Listing 8.2 defaultTabContent

1 <xe:djTabContainer

2 id=”djTabContainer1”

3 tabPosition=”top”

4 style=”width:500px; height:300px; margin:5px;”

5 defaultTabContent=”doc”>

6 <xp:this.facets>

7 <xe:djTabPane

8 xp:key=”doc”

9 id=”djTabPane2”

10 title=”New Document”

11 closable=”true”

12 partialEvents=”true”>

13 <xp:panel>

14 <xp:this.data>

15 <xp:dominoDocument

16 var=”document1”

17 formName=”Contact”>

18 <xp:this.postOpenDocument> <![CDATA[#{javascript:var
fn = document1.getItemValueString(“FirstName”)

19 var ln = document1.getItemValueString(“LastName”)

20 var title = fn + “ “ + ln

21 var pane = getComponent(“djTabPane2”)

22 pane.setTitle(title)

23 pane.setTabUniqueKey(document1.getNoteID())

24 }]]></xp:this.postOpenDocument>

25 </xp:dominoDocument>

26 </xp:this.data>

27 <xp:table>

28 <xp:tr>

236 Chapter 8 Outlines and Navigation

ptg7987094

29 <xp:td>

30 <xp:label

31 value=”First name:”

32 id=”firstName_Label1”

33 for=”firstName1”>

34 </xp:label>

35 </xp:td>

36 <xp:td>

37 <xp:inputText

38 value=”#{document1.FirstName}”
id=”firstName1”

39 required=”true”>

40 </xp:inputText>

41 </xp:td>

Two other methods are worthy of mention. Just like the Dojo method for creating a tab in
Client-Side JavaScript, there is another method for switching to a tab, namely selectChild(),
taking the Client-Side ID of the tab to open. SSJS provides a similar method, setSelected-
Tab(), taking the ID of the tab to open.

Table 8.5 details more properties of the Dojo Tab Container.

Table 8.5 xe:djTabContainer Properties

Property Description

defaultTabContent Defines a facet ID that contains default content to display when creating a
new tab.

doLayout Defines whether the size of the currently displayed tab should be changed to
match the size of the Tab Container.

persist Defines whether the selected tab is stored in a cookie.

selectedTab Defines the ID of the pane that has focus.

tabPosition Defines where the tabs appear in relation to the tab panes.

tabStrip Defines whether a tab strip should appear behind the tabs.

useMenu Defines whether menus should be available to allow tab selection. The menu
is shown only if the tabs exceed the width of the Tab Container.

useSlider Defines whether buttons should be available to move to adjacent tabs. The
buttons are shown only if the tabs exceed the width of the Tab Container.

height Must be specified via CSS, or the Accordion Container does not show.

The Dojo Layout Controls 237

ptg7987094

The Stack Container and the Stack Pane
The Stack Container is similar to the Tab Container, except that only one Content Pane is shown
at any one time. There are no new properties over the Tab Container, so all the properties in Table
8.5 are relevant for the Stack Container. Indeed, the Tab Container Java class,
UIDojoTabContainer, actually extends the Stack Container Java class, UIDojoStack-
Container. Like the Tab Container, the selectedTab and persist properties can be defined to
handle Stack Pane behavior. However, unlike the other containers, it’s not necessary to define a
height on the Stack Container. If it is defined, that height is used across all Stack Panes.

The Stack Pane control works the same as the basic Content Pane, and indeed it adds no
additional properties to the Content Pane class. As a summary, Figure 8.11 shows the hierarchy
of the various Layout Containers, and Figure 8.12 shows the hierarchy of the various Content
Panes, including their Java classes.

238 Chapter 8 Outlines and Navigation

UIDojoLayout

Stack Container
UIDojoStackContainer

Accordion Container
UIDojoAccordionContainer

Border Container
UIDojoBorderContainer

Tab Container
UIDojoTabContainer

Figure 8.11 Layout Container hierarchy.

UIDojoLayout

Tab Pane
UIDojoTabPane

Border Pane
UIDojoBorderPane

Dialog
UIDialog

Stack Pane
UIDojoStackPane

Accordion Pane
UIDojoAccordionPane

Tooltip Dialog
UITooltipDialog

Content Pane
UIDojoContentPane

Figure 8.12 Content Pane hierarchy.

ptg7987094

Understanding the Tree Node Concept
Also included in the XPages Extension Library are controls that give the developer further navi-
gation techniques. Most of these controls are designed for use within the Application Layout con-
trol described in the next chapter, but they can also be used within an application to provide
navigation for the end user. These controls allow the developer to provide breadcrumbs, pop-up
menus, toolbars, generic outlines, lists of links, and tag clouds. Apart from the tag cloud, each of
these controls uses a concept of tree nodes to define contents of the control. Listing 8.3 shows a
basic navigator control with three basicLeafNode children.

Listing 8.3 Basic Navigator Control with Nodes

<xe:navigator

id=”navigator1”>

<xe:this.treeNodes>

<xe:basicLeafNode

onClick=”option1”

label=”This is option 1” />

<xe:basicLeafNode

onClick=”option2”

label=”This is option 2” />

<xe:basicLeafNode

onClick=”option3”

label=”This is option 3” />

</xe:this.treeNodes>

</xe:navigator>

Before developers can implement any of the navigation controls in the XPages Extension
Library, they should understand the different tree nodes they can use within the controls. There
are basic node types in which the developer can define the functionality of the node, and there are
advanced node types in which the data for the node can come from Domino view resources and
Java Beans.

Standard Node Types

The basicLeafNode (xe:basicLeafNode)

The basicLeafNode, as shown in Listing 8.4, is the standard node that all other tree nodes are
modeled upon. With the exception of the separatorTreeNode, described later in this chapter, all
the other tree nodes, both basic and advanced, contain the same general properties as the
basicLeafNode.

Understanding the Tree Node Concept 239

ptg7987094

Listing 8.4 Simple basicLeafNode Examples

<xe:basicLeafNode

label=”Home”

selected=”true”

href=”/”>

</xe:basicLeafNode>

...

<xe:basicLeafNode

style=”color:rgb(128,128,128)”>

<xe:this.label><![CDATA[#{javascript:var v =
com.ibm.xsp.extlib.util.ExtLibUtil.getExtLibVersion();

return “XPages ExtLib version: “+v}]]></xe:this.label>

</xe:basicLeafNode>

...

<xe:basicLeafNode

label=”Go to Mobile App”

href=”http://myServer/home.nsf/mobileApp.xsp”>

</xe:basicLeafNode>

As with most of the standard XPages controls, the basicLeafNode contains both loaded
and rendered properties. The developer can compute these properties to determine if the node
should be loaded or shown to the end user.

To manage the look and feel of the node, the developer can set the CSS or style class of the
node using the style and styleClass properties. The text that is rendered to the web browser is set
with the label property, and the developer can specify an image using the image, imageAlt,
imageHeight, and imageWidth properties if required. The selected property is a Boolean value.
If it is set or computed to true, an additional CSS style class of lotusSelected is added to the
node when it is rendered to the web browser.

The developer has different options to determine what happens when a node is clicked in
the web browser. The href property renders the node as a standard link to the specified URL. This
could be a URL within the application or a link to a different application or website. The onClick
property allows the developer to execute a piece of Client-Side JavaScript code, and the submit-
Value property allows the developer to specify a value that is passed back to the server. This
value is accessed from the onItemClick event of the control that contains the tree nodes and is
described in more detail later in this chapter.

The basicContainerNode (xe:basicContainerNode)

As its name suggests, the basicContainerNode, as demonstrated in Listing 8.5, is a container; as
such, it can have its own subset of child nodes. It’s like a branch on a tree that can contain its own
leaves and branches. In addition to all the properties that can be found on the basicLeafNode,
the basicContainerNode has two more properties called children and transparent.

240 Chapter 8 Outlines and Navigation

ptg7987094

Listing 8.5 A basicContainerNode Example

<xe:basicContainerNode

label=”More Actions”>

<xe:this.children>

<xe:pageTreeNode

page=”Core_Home”

label=”Goto Home”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”Domino_Home”

label=”Goto Domino”>

</xe:pageTreeNode>

<xe:separatorTreeNode></xe:separatorTreeNode>

<xe:basicContainerNode

label=”Server side redirect”>

<xe:this.children>

<xe:basicLeafNode

label=”Goto Home”

submitValue=”home”>

</xe:basicLeafNode>

<xe:basicLeafNode

label=”Goto Domino”

submitValue=”domino”>

</xe:basicLeafNode>

</xe:this.children>

</xe:basicContainerNode>

</xe:this.children>

</xe:basicContainerNode>

The children property is where developers can add in any number of other nodes in the
same way that they would add nodes directly to the treeNode root. Any of the treeNode types can
be added to the children node of a basicContainerNode, and multiple levels can be achieved by
adding basicContainerNode entries that can in turn contain other nodes and container nodes.

The transparent property is a Boolean value that defaults to false. When it is set or com-
puted to true, the container node is not rendered as part of the tree; however, the child nodes still
render. One suggested use for this is allowing the developer to create a single tree that contains
two sets of nodes and then using the loaded or rendered properties to display only one set of
child nodes to the end user rather than have to use the loaded or rendered properties on each of
the leaf nodes.

Understanding the Tree Node Concept 241

ptg7987094

The separatorTreeNode (xe:separatorTreeNode)

The separatorTreeNode is used when it’s necessary to add a visual separator to the tree. This is
the most basic of all the tree node types and only contains, in addition to the standard styling
properties, a loaded and rendered property that allows the developer to define if and when to dis-
play this node.

The loginTreeNode (xe:loginTreeNode)

The loginTreeNode in its most basic form when there are no properties set automatically pro-
duces a tree node that contains a link to log the user into the database using the standard ?open-
database&login URL format.

If the Domino server is configured for session-based login, this control will not be rendered
if the user is already authenticated. It has been discovered that this functionality does not work so
these lines should be removed to avoid confusion.

The userTreeNode (xe:userTreeNode)

Normally used in conjunction with the loginTreeNode, the userTreeNode simplifies the display
of the currently logged in user. In its simplest form, when added to the page with no properties
set, it either displays Anonymous if there is no logged in user, or displays the user’s common
name if the user is authenticated with the server. If the label property is set or to be used, the
developer needs to compute what is displayed in both cases.

You can use the userField property here to display the user data. This property is usu-
ally left blank, so by default it displays the displayName value from the data provider. For
Domino, the user’s abbreviatedName, commonName, canonicalName, and so on can be used, as
shown in Listing 8.6.

Listing 8.6 A userTreeNode Example

<xe:userTreeNode

userField=”abbreviatedName”

style=”font-weight:bold”>

</xe:userTreeNode>

The Advanced Node Types

The pageTreeNode (xe:pageTreeNode)

The pageTreeNode gives the developer an easy way to link to another page within the applica-
tion. In addition to the properties found on the basicLeafNode, the pageTreeNode provides three
extra properties.

242 Chapter 8 Outlines and Navigation

ptg7987094

The page property is a drop-down list of all the XPages within the application. The devel-
oper can select a page from the list or compute the page if desired. This property replaces the href
property in the basicLeafNode. In addition to the page property, there is a queryString property.
When a developer uses this property, the text specified here is added to the page selected in the
page property.

The last of the additional properties in the pageTreeNode is the selection property, as demon-
strated in Listing 8.7. It is used in conjunction with the navigationPath property in the application-
Layout control described in the next chapter. If the selection property matches the navigationPath
property, the lotusSelected CSS class is automatically added to the node when it is rendered to
the web browser. The XPages Extension Library Demo Application uses this control extensively,
and the markup in Listing 8.7 is from this application. Figure 8.13 displays this example, rendered
as tabs above the placebar for Core, Domino, iNotes, Mobile, and REST.

Listing 8.7 A pageTreeNode Example with the Selection Property

<xe:this.titleBarTabs>

<xe:pageTreeNode

page=”Core_Home”

selection=”/Core/.*”

label=”Core”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”Domino_Home”

selection=”/Domino/.*”

label=”Domino”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”DWA_Home”

selection=”/DWA/.*”

label=”iNotes”>

</xe:pageTreeNode>

<xe:pageTreeNode

loaded=”false”

page=”iWidget_Home”

selection=”/iWidget/.*”

label=”iWidget”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”Mobile_Home”

selection=”/Mobile/.*”

label=”Mobile”>

Understanding the Tree Node Concept 243

ptg7987094

</xe:pageTreeNode>

<xe:pageTreeNode

page=”OneUI_Home”

selection=”/OneUI/.*”

label=”OneUI”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”REST_Home”

selection=”/REST/.*”

label=”REST”>

</xe:pageTreeNode>

</xe:this.titleBarTabs>

244 Chapter 8 Outlines and Navigation

Listing 8.7 (Continued)

Figure 8.13 The selection property in action on the Demo application.

If you are not using the selection property but the current page matches the page listed in
the page property, the lotusSelected CSS class is added to the node when it is rendered in the
web browser. In this particular case, the queryString property is not considered. This may mean
that if you have multiple pageTreeNode entries that point to the same page but have different
queryString values, all the entries may show as being selected.

ptg7987094

This control is used extensively throughout the Xpages Extension Library Demo applica-
tion to manage and control the application’s navigation.

The repeatTreeNode (xe:repeatTreeNode)

The repeatTreeNode is a cross between a core XPages repeat control and a basicContainerNode.
Just like a standard repeat control, you set up a value for it to repeat in the value property. This
could be a datasource attached to the XPage or just a simple JavaScript array. The values of the
repeat are accessed using the variable name supplied in the var property. The current repeat index
value is accessed in the variable name supplied in the indexVar property.

The items that are repeated are specified in the children property. Just like the basic-
ContainerNode, this property can contain one or more tree nodes and can even contain other
basicContainerNode or repeatTreeNode entries, as shown in Listing 8.8.

Unlike the basicContainerNode, however, the repeatTreeNode does not render its own
entry in the tree, and the children are rendered at the same level as the repeatTreeNode.

Listing 8.8 A repeatTreeNode Example

<xe:repeatTreeNode

var=”val”>

<xe:this.children>

<xe:basicLeafNode>

<xe:this.submitValue><![CDATA[#{javascript:return
val[1]}]]></xe:this.submitValue>

<xe:this.label><![CDATA[#{javascript:return
val[0]}]]></xe:this.label>

</xe:basicLeafNode>

</xe:this.children>

<xe:this.value><![CDATA[#{javascript:return [

[“Home”,”home”],

[“Domino”,”domino”],

[“OneUI”,”oneui”]

];}]]>

</xe:this.value>

</xe:repeatTreeNode>

The beanTreeNode (xe:beanTreeNode)

The beanTreeNode contains only two properties: a loaded property that can specify whether the
beanTreeNode should be loaded, and a nodeBean property that specifies which bean you should
use to provide the tree items.

Understanding the Tree Node Concept 245

ptg7987094

A nodeBean is a Java class bean that implements components of the ITreeNode interface.
Listing 8.9 shows a basic nodeBean from the XPages Extension Library demo application. This
bean creates three basicLeafNode entries. You can find more information on creating beans in
Java in Chapter 14, “Java Development in XPages.”

Listing 8.9 Sample nodeBean

package extlib.tree;

import com.ibm.xsp.extlib.tree.impl.BasicLeafTreeNode;

import com.ibm.xsp.extlib.tree.impl.BasicNodeList;

public class SimpleTreeNode extends BasicNodeList {

private static final long serialVersionUID = 1L;

public SimpleTreeNode() {

addLeaf(“Node 1”);

addLeaf(“Node 2”);

addLeaf(“Node 3”);

}

private void addLeaf(String label) {

BasicLeafTreeNode node = new

BasicLeafTreeNode();

node.setLabel(label);

addChild(node);

}

}

The dominoViewListTreeNode (xe:dominoViewListTreeNode)

The dominoViewListTreeNode creates a list of nodes based on the views and folders within an
application. Additional properties are available for this node type, the first being the database-
Name property. When it is blank, the database this node type uses is the current database; other-
wise, it uses the database that you have specified. If you do specify an external database, the end
user must have access to it via the Access Control List (ACL). Without access, an error occurs.

Similar to the repeatTreeNode is a var property that accesses the current entry in the list.
You can then use this variable as part of the onClick or submitValue properties to pass the
selected node back to the server.

The dominoViewListTreeNode also contains both views and folders properties, which
allow the developer to decide if just the views or the folder or both should be displayed as node
entries.

246 Chapter 8 Outlines and Navigation

ptg7987094

The dominoViewEntriesTreeNode (xe:dominoViewEntriesTreeNode)

The dominoViewEntriesTreeNode is a specialized version of the repeatTreeNode in that the
developer can specify a Domino View datasource directly in the node’s properties. As in the
dominoViewListTreeNode, a databaseName property specifies which database to use. Also, a
viewName property allows the developer to specify which view to use within that database.

Developers can pass in a key or array of keys similar to the Domino getAllDocuments-
ByKey method using the keys property. In addition, they can specify that an exact match is made
using the keysExactMatch property.

To set the label for each node that is rendered, developers can use the variable name set in
the var property to access the returned document to extract a value or, if there is a column in the
view they are accessing, they can use the labelColumn property to specify which column to use
as the label.

Finally, like the dominoViewListTreeNode, the onClick and submitValue properties can
detect which node the end user has clicked in the web browser, as shown in Listing 8.10.

Listing 8.10 Sample of the dominoViewEntriesTreeNode

<xe:dominoViewEntriesTreeNode

var=”viewEntry”

viewName=”AllStates”

labelColumn=”Name”>

<xe:this.submitValue><![CDATA[#{javascript:var v =
viewEntry.getColumnValues(); return v[0]}]]></xe:this.submitValue>

</xe:dominoViewEntriesTreeNode>

Using the Navigator Controls
Now that the concept of the TreeNode has been explained, it is time to put it to use in the different
navigation controls supplied by the XPages Extension Library. You can use each of these naviga-
tion controls within an XPages application to allow the user to move between different parts of
the application.

The Navigator Control
The most standard control used in applications is the side menu. You normally use it to move
between different sections of the application. For example, in the TeamRoom application, this
control allows the user to move from the All Documents section to the Calendar section. Figure
8.14 shows the standard navigator menu from the TeamRoom application.

Using the Navigator Controls 247

ptg7987094

Figure 8.14 Standard TeamRoom navigator.

The xe:navigator control allows the developer to set up both flat and multi-level naviga-
tion menus depending on how the TreeNode has been set up. Also, three special properties define
how the navigator handles multi-level menus. The expandable property, when set to true, ren-
ders a twisty arrow on all the basicContainerNode entries within the TreeNode. When rendered to
the web browser, the end user can click on the twisty arrow to show or hide that level in the menu.

When the expandable property is set to true, the developer can also set the expandEffect
property and the expandLevel property. The expandEffect property allows the developer to add
a CSS-based user interface (UI) effect that shows to end users when they click the twisty arrow;
currently, only a wipe effect is available. The expandLevel property allows the developer to
decide which levels of the menu are automatically expanded when the menu is rendered to the
web browser. Setting this to 0 makes the Navigator control show only the parent levels; setting it
to 1 shows all the parents and expands them out one level.

As mentioned earlier, all the TreeNodes contain a property called submitValue. The coun-
terpart to this property is onItemClick, which allows the developer to write a block of Client-
Side JavaScript that can act upon the submitted value. On the Events tab of the property is an
onItemClick event, which allows the developer to write Client-Side JavaScript or SSJS.

It is recommended that the onItemClick event be used to provide greater flexibility to the
developer. Listing 8.11 shows a sample Navigator control with three basicLeafNodes that contain
a submitValue property. The onItemClick event has been used to set a viewScope variable and
then perform a partial refresh to display the selected value to the end user.

248 Chapter 8 Outlines and Navigation

ptg7987094

Listing 8.11 Navigator Control Using the onItemClick Event

<xe:navigator

id=”navigator1”>

<xe:this.treeNodes>

<xe:basicLeafNode

label=”Option 1”

submitValue=”Option 1” />

<xe:basicLeafNode

label=”Option 2”

submitValue=”Option 2” />

<xe:basicLeafNode

label=”Option 3”

submitValue=”Option 3” />

</xe:this.treeNodes>

<xp:eventHandler

event=”onItemClick”

submit=”true”

refreshMode=”partial”

refreshId=”computedField1”>

<xp:this.action><![CDATA[#{javascript:viewScope.menuChoice =
context.getSubmittedValue()}]]></xp:this.action>

</xp:eventHandler>

</xe:navigator>

<xp:br />

Selected Value :

<xp:text

escape=”true”

id=”computedField1”

value=”#{javascript:viewScope.menuChoice}” />

The Bread Crumbs Control (xe:breadCrumbs)
When it comes to application design, the term breadcrumbs does not reflect the original meaning
of the term, which is to lay a trail of breadcrumbs that allows users to retrace their steps. Modern
UI design patterns define breadcrumbs as a way to show users where they are in relation to the
application’s hierarchy.

In the XPages Extension Library, the xe:breadCrumbs control, as shown in Listing 8.12,
renders its list of TreeNodes as a single inline list with a > separating each entry. The label prop-
erty allows the developer to define a label that appears before the first entry in the breadcrumb
list. As with the Navigator control, the onItemClick property and the onItemClick events exist
for this control and can be used in the same way.

Using the Navigator Controls 249

ptg7987094

Listing 8.12 Breadcrumbs Control Sample from the Demo App

<xe:breadCrumbs

id=”outline”

label=”You are in: “>

<xe:this.treeNodes>

<xe:pageTreeNode

page=”Domino_Home”

label=”Home”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”Domino_UserBean”

label=”User Bean”>

</xe:pageTreeNode>

<xe:pageTreeNode

page=”Domino_ViewState”

label=”View State”>

</xe:pageTreeNode>

</xe:this.treeNodes>

</xe:breadCrumbs>

The List of Links Control (xe:linkList)
The xe:linksList control renders its TreeNodes as an unordered list using standard HTML.
By default, the OneUI class of lotusInlineList is added to the rendered list. If you are using
OneUI, the list renders as a single line with a separator between each item. Again, you can use the
onItemClick property or event to determine what happens when the end user clicks one of the
TreeNode entries in the list, as shown in Listing 8.13.

Listing 8.13 List of Links Sample from the ExtLib Demo App

<xe:linksList

id=”linksList1”>

<xe:this.treeNodes>

<xe:basicLeafNode

label=”Hide”

href=”#list1”></xe:basicLeafNode>

<xe:basicLeafNode

label=”Reply”

href=”#list2”></xe:basicLeafNode>

<xe:basicLeafNode

250 Chapter 8 Outlines and Navigation

ptg7987094

label=”Edit”

href=”#list3”></xe:basicLeafNode>

</xe:this.treeNodes>

</xe:linksList>

The Sort Links Control (xe:sortLinks)
The xe:sortLinks control is the same as the xe:listLinks control except that it adds an
additional CSS class of lotusSort to its container. If you are using OneUI, it changes the look
of the list of links, making them slightly smaller.

The Link Container Controls
In addition to the xe:linksList and xe:sortLinks controls, the XPages Extension Library
provides three controls that the developer can use to create and maintain lists. Unlike some of the
other navigation type controls, the xe:list and xe:listInline controls do not use the
TreeNode concept. Instead, they render any child controls as the list items. Listing 8.14 shows an
example of both of these controls with a number of children that will be rendered as list entries.

Listing 8.14 Example of the xe:list and xe:listInline Controls

<xe:listInline

id=”listInline1”>

<xp:link

escape=”true”

text=”Link 1”

id=”link1” />

<xp:link

escape=”true”

text=”Link 2”

id=”link2” />

<xp:link

escape=”true”

text=”Link 3”

id=”link3” />

</xe:listInline>

<xe:list

id=”list1”>

<xp:link

escape=”true”

Using the Navigator Controls 251

ptg7987094

text=”Link 1”

id=”link4” />

<xp:link

escape=”true”

text=”Link 2”

id=”link5” />

<xp:link

escape=”true”

text=”Link 3”

id=”link6” />

</xe:list>

The Pop-up Menu Control (xe:popupMenu)
The xe:popupMenu control creates a list of menu options that can be hidden until you need
them. You need to use this control in conjunction with any other control that can trigger an event
to display the menu. Normally, this is either an xp:link control or an xp:button control, and
the event is triggered on the Client-Side onClick event. Listing 8.15 shows a sample popupMenu
control being triggered by a standard button control. It uses a Client-Side function called
XSP.openMenu that is part of the XPages Extension Library.

Listing 8.15 popupMenu Control Bound to a Button

<xp:button

value=”Display Popup Menu”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>

<![CDATA

[XSP.openMenu(thisEvent,
#{javascript:getComponent(‘popupMenu1’).getMenuCtor()})

]]>

</xp:this.script>

</xp:eventHandler>

</xp:button>

<xe:popupMenu

252 Chapter 8 Outlines and Navigation

Listing 8.14 (Continued)

ptg7987094

id=”popupMenu1”>

<xe:this.treeNodes>

...

<xe:basicContainerNode

label=”Hierarchical Choice 3”>

<xe:this.children>

<xe:basicContainerNode

label=”SubChoice 1”>

<xe:this.children>

<xe:basicLeafNode

label=”Menu 3-1-1”

submitValue=”Menu 311”>

</xe:basicLeafNode>

<xe:basicLeafNode

label=”Menu 3-1-2”

submitValue=”Menu 312”>

</xe:basicLeafNode>

<xe:basicLeafNode

label=”Menu 3-3-3”

submitValue=”Menu 313”>

</xe:basicLeafNode>

</xe:this.children>

</xe:basicContainerNode>

...

</xe:this.treeNodes>

<xp:eventHandler

event=”onItemClick”

submit=”true”

refreshMode=”partial”

refreshId=”computedField4”>

<xp:this.action><![CDATA[#{javascript:viewScope.ppChoice=context.
getSubmittedValue()

}]]></xp:this.action>

</xp:eventHandler>

</xe:popupMenu>

Using the Navigator Controls 253

ptg7987094

Figure 8.15 The Pop-Up Menu example.

Like the previous navigational controls that use the TreeNode concept, this control also
contains both the onItemClick property and the onItemClick event that the developer can use to
determine what happens when the end user clicks on one of the menu’s entries.

The Toolbar Control (xe:toolbar)
Another common navigation design pattern is the toolbar, which has been implemented in the
XPages Extension Library using the xe:toolbar control. The toolbar is normally displayed at
the top of a document and gives the end users different actions they can perform on the document.

Similar to the other navigation controls, the toolbar uses the TreeNode concept to define the
options that appear in the toolbar and fully supports the basicContainerNode to allow for
dynamic drop-down menus in the toolbar. It also uses the same onItemClick events to define what
happens when a menu option is selected. For the developer, there is also a showButtonLabels
property that defaults to true. When this property is set to true, the labels defined in the Tree-
Node objects are shown when the toolbar is rendered. When it’s set to false, the labels are not
shown, so each TreeNode object must have its image property defined for the node to appear, as
shown in Listing 8.16.

254 Chapter 8 Outlines and Navigation

Figure 8.15 illustrates how the pop-up menu example from Listing 8.15 appears in the
XPages Extension Library Demo Application.

ptg7987094

Listing 8.16 Sample Toolbar Control

<xe:toolbar

id=”toolbar1”>

<xe:this.treeNodes>

<xe:basicLeafNode

label=”Accept”

image=”/accept.png” />

<xe:basicContainerNode

image=”/email.png”

label=”Email”>

<xe:this.children>

<xe:basicLeafNode

label=”Email To Author” />

<xe:basicLeafNode

label=”Email To Reviewers” />

</xe:this.children>

</xe:basicContainerNode>

<xe:basicLeafNode

label=”Lock”

image=”/lock.png” />

</xe:this.treeNodes>

</xe:toolbar>

The Outline Control (xe:outline)
The xe:outline control, as shown in Figure 8.16, is again similar to the other navigation con-
trols insofar as it renders the TreeNodes as an unordered list. However, developers have access to
an additional property called TreeRenderer, which allows them to select a custom rendering
style to render the different nodes.

Using the Navigator Controls 255

ptg7987094

Figure 8.16 The Outline control sample on the Demo app.

By default the outline is rendered using the xe:htmlDivSpanRenderer using preset
styles from the oneUI theme. However, if you explicitly set this as the TreeRenderer, you can
optionally set your own css classes and styles for the container and for items in the outline.

You can also optionally select the TreeRenderer of xe:htmlListRender to produce a
container with an HTML list of items; when developing for mobile devices, you can select the
xe:mobileAccordionMenu renderer, which is covered in more detail in Chapter 10
“XPages Goes Mobile.”

The Accordion Control (xe:accordion)
Earlier in this chapter, you learned how the developer can create an Accordion Container and
Accordion Panes using the Dojo layout controls. The xe:accordion control produces the same
code for rendering to the web browser but instead uses the TreeNodes to define the content of the
Accordion Panes.

For the best results, the main TreeNodes should be based on the basicContainerNode node
types. The label for the basicContainerNode will be used as the title for the Accordion Pane, and
the child nodes will be rendered as an unordered list within the Accordion Pane, as shown in
Figure 8.17.

256 Chapter 8 Outlines and Navigation

ptg7987094

Figure 8.17 Accordion sample from the Extension Library Demo App.

Again, like the other controls that use the TreeNode concept, this control has an onItem-
Click property and event that the developer can use to determine what happens when the end user
selects one of the options within the Accordion Pane.

The Tag Cloud Control (xe:tagCloud)
Another common design pattern for web-based applications is the tag cloud. This normally
shows the different tags that documents are listed under and uses a method of varying sizes and
color shades to indicate which tags are more popular than others. In the XPages Extension
Library, this design pattern has been implemented using the xe:tagCloud control.

In its simplest form, the tag cloud can be composed from any categorized Notes view. The
control computes the number of documents per category, rendered as links, with links in a larger
font size for the more numerous records in a certain category. This displays perfectly and per-
forms functionally as expected, although the developer may want to do more to enable the links
to navigate to another XPage or set a view filtering variable to only display documents by that
selected category. For this case, further configuration of the view datasource and the control on
XPage is recommended.

Using the Navigator Controls 257

ptg7987094

In the TeamRoom template, which has been enhanced using the XPages Extension Library,
the tag cloud is configured using a Notes view, which is a single categorized column that displays
the categories as separate entries for counting. This view, “xpByCategory”, is the view data-
source used by the tag cloud, as in Listing 8.17. Here, too, the property linkTargetPage is set
to another XPage, which instructs the link where to navigate. The request parameter property,
linkRequestParam, is also set here so that the query string for “categoryFilter” equals
that of the selected link.

Listing 8.17 The TeamRoom Tag Cloud

<xe:tagCloud

alternateText=”{0} documents”

id=”tagCloud1”

sliderVisible=”true”>

<xe:this.cloudData>

<xe:dominoViewCloudData

cacheMode=”auto”

viewName=”xpByCategory”

cacheRefreshInterval=”120”

maxTagLimit=”30”

linkTargetPage=”/allDocumentsByTag.xsp”

linkRequestParam=”categoryFilter”

sortTags=”alphabet”>

</xe:dominoViewCloudData>

</xe:this.cloudData>

</xe:tagCloud>

A basic configuration of the tag cloud needs only a few properties to be filled out. You can
set other properties to enhance how the control functions in the application. Most of these are pro-
vided by the xe:dominoViewCloudData complex type control from the cloudData property.

The categoryColumn property, which is set to zero by default, is optional. If the catego-
rized view column isn’t the first column in that view, the developer must enter the number of the
desired categorized column for the tag cloud to use.

The sortTags property is optional. By default, the tag cloud displays the tags alphabeti-
cally. But the developer can use weight for sorting by the occurrence count of that category.

The maxTagLimit property is useful for limiting the number of tags to be displayed in the
cloud; otherwise, all the tags are displayed in the categorized view. You might consider this if
there are concerns about the performance of this control.

258 Chapter 8 Outlines and Navigation

ptg7987094

The properties cacheMode and cacheRefreshInterval are linked. When the cacheMode
property is set to auto (automatic), the cache refresh interval is dynamically computed based on
the number of entries in the view. When it’s set to Manual, the developer can specify the cache
refresh interval in the cacheRefreshInterval property, which is set as a number in seconds. Valid
values are Auto, Manual, and Off. Value defaults to Auto. It is not recommended that you apply
the Off setting, thus disabling caching, except for debug purposes.

The linkMetaSeparator property is an optional character that acts as a delimiter between
tag data and metadata, to be used in conjunction with the linkRequestParam value. Using a
linkMetaSeparator character requires the backend categorized view column to output the data
in the format xxx | yyy, where xxx is the tag name, | is the linkMetaSeparator character, and yyy
is the metadata used as the request parameter. If no linkMetaSeparator is specified, the actual
tag value is used for the request parameter value. Listing 8.18 shows an example of its use from
the XPages Extension Library Demo App, and Figure 8.18 shows how this tag cloud renders in
the browser.

Listing 8.18 Tag Cloud Sample from the Demo App

<xe:tagCloud

alternateText=”{0} Entries”

sliderVisible=”true”>

<xe:this.cloudData>

<xe:dominoViewCloudData

cacheMode=”auto”

cacheRefreshInterval=”120”

viewName=”AuthorCloud”

maxTagLimit=”25”

linkMetaSeparator=”~”

linkTargetPage=”/Domino_ViewUserProfile.xsp”

linkRequestParam=”name”

minEntryCount=”3”>

</xe:dominoViewCloudData>

</xe:this.cloudData>

</xe:tagCloud>

Using the Navigator Controls 259

ptg7987094

Figure 8.18 The Demo App Tag Cloud control.

The Widget Container Control (xe:widgetContainer)
The widget container is a simple container that displays content in a set box, as shown in Figure
8.19, with a few notable properties.

You can use the titleBarText and the titleBarHref together. The Title Bar text appears in
the title bar at the top of the widget. When it’s absent, no text is displayed. The titleBarHref turns
this title into a link.

The dropDownRendered property defines the drop-down menu to be displayed on the title
bar. It defaults to true, so the drop-down is displayed if any drop-down nodes are present. Then
the complex type control xe:dropDownNodes displays a menu containing these actions. It can
contain all the nodes that help developers build navigation into their applications.

260 Chapter 8 Outlines and Navigation

ptg7987094
Figure 8.19 Widget Container samples.

Conclusion
The controls described in this chapter can help developers build complex navigation patterns into
their applications without much effort. This chapter covered some basics of layout and placement
of this navigation. It serves as grounding for the next chapter on the Application Layout control to
complete a more rounded knowledge of the next generation of XPages controls.

Conclusion 261

ptg7987094

This page intentionally left blank

ptg7987094

263

C H A P T E R 9

The Application’s
Layout

For many developers, one of the most challenging aspects of creating an application is designing
the user interface. Not only must an effective application interface be aesthetically pleasing, but
its layout must be intuitive and consistent, allowing users to predict what behaviors will produce
the desired effect. Ideally, this consistency extends beyond each application to the overall soft-
ware environment within which the user base operates.

When developing web applications, it is more difficult to design such interfaces than it is to
design desktop applications because the developer lacks control over the execution environment.
Each browser is unique in the way it renders the same markup. In some cases, a browser might
render the same markup differently when accessing it from different operating systems. Addition-
ally, a developer must often support multiple versions of each supported browser. The application
must be, at a minimum, functional within each permutation of these factors. Ideally, it will be
elegant, too.

In this chapter, you will learn how use of the Application Layout control can facilitate meeting
this goal despite the difficulties presented when developing applications with the browser as your
target platform.

History of OneUI
As the art of web development has matured in recent years, numerous web development frame-
works have emerged. These frameworks attempt to ease the burden of developing rich web appli-
cations by solving common problems once so that developers need not repeat that effort each
time they develop a new application. These frameworks are focused primarily on JavaScript.
They compensate for differences in implementations of the language across different browsers—
and different browser versions—and provide reusable widgets to both supplement and standard-
ize the user interface (UI) features of a given web application, much like the Extension Library

ptg7987094

controls supplement the core controls of the XPages runtime. Dojo is one of many such
JavaScript frameworks.

Unlike this category of framework, however, which typically only includes Cascading
Style Sheets (CSS) and images directly related to providing reusable widgets, some web develop-
ment frameworks are focused entirely upon CSS. IBM has created one such CSS framework,
known as OneUI.

Many of the products in the IBM Collaboration Services platform are now able to integrate
in various ways: IBM Connections, for example, provides an application programming interface
(API) allowing data to be easily consumed from within a Domino application. In Chapter 13,
“Get Social,” the developer learns how the Extension Library makes such integration even easier.
IBM Lotus Quickr has long allowed extensive integration with Domino. Until recently, however,
providing a common look and feel across implementations of these products within the same
organization was difficult at best. OneUI was developed to minimize this difficulty.

Aside from the core content of any given web page, the elements of the interface that sur-
round that content are fairly predictable: site navigation, application or organization logo, copy-
right statement, and so on. The visual style of each of these elements, and even their location, is
far less predictable. Often, even when navigating between applications developed by the same
individual or team, the user must adjust to a different layout to learn—or remember—where to
look to find the element they need to interact with.

IBM identified a core set of layout elements it considers to be universal. It chose a standard
location for each and established base rules for how these elements look. Finally, it created a set
of images to support construction of a layout that uses these standard elements, and it defined
CSS rules that allow web content to define which layout role is provided by a given HTML ele-
ment. Jointly, these images and CSS rules comprise the CSS framework known as OneUI.

This framework is included by default on every Domino server as of version 8.5.0. Because
IBM Connections also uses the framework, any Domino application that leverages OneUI to
define its layout will be visually compatible with any standard Connections implementation.
Even if Domino is the only Lotus product in use at an organization, however, the OneUI frame-
work can be used to provide visual standardization across all Domino applications within that
organization. Such standardization often improves user productivity and satisfaction, besides
lowering both time and cost for end user training.

Easy OneUI Development with the Application Layout Control
There’s a downside to the extent to which OneUI standardizes application layout: the framework
is rather complex. To specify positioning that all browsers will support, for example, some
HTML elements must not only be assigned the correct CSS class, but be nested within a precise
hierarchy of spans and divs that have been assigned a specific class. This complexity can create
the illusion that adhering to the OneUI specification is more trouble than it is worth.

264 Chapter 9 The Application’s Layout

ptg7987094

The Application Layout control in the Extension Library reduces this complexity by defin-
ing each portion of the OneUI related to layout as a property of the control. The XPages Team-
Room application is an excellent example of how rapidly this control allows an entire
application’s layout to be designed.

First, let’s look at the finished result, shown in Figure 9.1.

Easy OneUI Development with the Application Layout Control 265

Figure 9.1 The OneUI Layout in the XPages TeamRoom template.

The TeamRoom template uses a single Custom Control called layout to define the layout
for the entire application. This Custom Control contains an instance of the Application Layout
control (xe:applicationLayout). This chapter first looks at the structure of its configuration
property. Then it looks at the definition of its facets.

Unlike most controls in XPages, which support many properties for defining the nature and
behavior of each instance of the control, the Application Layout control bundles nearly all its per-
tinent information about each instance into a single property, called configuration. The value of
this property is known as a complex type, which means that the specified value can, in turn, sup-
port multiple properties. In the case of the configuration object of the Application Layout control,
these values represent a hierarchy of properties that define the entire layout for an application.

The configuration property supports, as of the time of this writing, two possible layout
configurations:

ptg7987094

• xe:applicationConfiguration

• xe:oneuiApplication

The TeamRoom application uses the latter of these two types. The entirety of its definition
is demonstrated in Listing 9.1.

Listing 9.1 The oneuiApplication Markup in the Layout Custom Control

<xe:applicationLayout

id=”applicationLayout1”>

<xe:this.configuration>

<xe:oneuiApplication

legalText=”‎ (c) Copyright IBM Corporation 2012 ‬”

navigationPath=”${javascript:compositeData.navigationPath}”

defaultNavigationPath=”/home”

footer=”false”

banner=”true”

mastHeader=”true”>

<xe:this.placeBarActions>

<xe:pageTreeNode

label=”Teamroom Setup”

page=”setup”>

<xe:this.loaded><![CDATA[${javascript:userBean.accessLevel
> lotus.domino.ACL.LEVEL_AUTHOR}]]></xe:this.loaded>

</xe:pageTreeNode>

</xe:this.placeBarActions>

<xe:this.searchBar>

<xe:appSearchBar

pageName=”search.xsp”

inactiveText=”Search...”

optionsParam=”search”

queryParam=”search”

loaded=”${javascript:database.isFTIndexed()}”

inputTitle=”Enter a search value”>

</xe:appSearchBar>

</xe:this.searchBar>

<xe:this.bannerUtilityLinks>

<xe:userTreeNode>

266 Chapter 9 The Application’s Layout

ptg7987094

<xe:this.label><![CDATA[#{javascript:I18n.format(strings.getString
(“welcome.x”), userBean.displayName)}]]></xe:this.label>

</xe:userTreeNode>

<xe:loginTreeNode></xe:loginTreeNode>

</xe:this.bannerUtilityLinks>

<xe:this.placeBarName><![CDATA[${javascript:var teamname =
strings.getString(“teamroom.name”);

var vw:NotesView = database.getView(“MissionLookup”);

var vc:NotesViewEntryCollection = vw.getAllEntries();

var ve:NotesViewEntry = vc.getFirstEntry();

if(null != ve){

var v:java.util.Vector = ve.getColumnValues();

if(!v.isEmpty()){

// get the teamroom name

teamname = v.get(1);

}

}

return teamname;}]]></xe:this.placeBarName>

</xe:oneuiApplication>

</xe:this.configuration>

</xe:applicationLayout>

Legal
The legal property determines whether the legal bar will display. By default, this property has a
value of true. The legal bar displays the value specified in the legalText property. Any value
entered in this property appears at the bottom of the application’s layout, as shown in closer detail
in Figure 9.2.

Easy OneUI Development with the Application Layout Control 267

ptg7987094

Figure 9.2 Legal text on the Layout control.

A logo for the legal bar can be set by way of an image specified in the legalLogo property.
This image can have its styling altered using legalLogoHeight, legalLogoWidth, legal-
LogoStyle, or even LegalLogoClass.

Navigation Path
The next two properties are directly related. The navigationPath property allows any page in the
application to specify a contextual location representing where in the application the user cur-
rently is in the larger context of the entire application. This is most commonly expressed as a
slash-delimited path, similar to a Linux filesystem path; an example might be /teams/teamname.
Other portions of the layout configuration can reference this property value to determine whether
they should be currently considered to be selected. The defaultNavigationPath property indi-
cates what the value of the navigationPath property should be if none is provided.

In the case of the TeamRoom application, the layout Custom Control defines a custom
property called navigationPath; any value passed to this property of the Custom Control is, in
turn, passed to the Application Layout control’s navigationPath property. Its defaultNaviga-
tionPath property has a value of /home, so if no navigationPath is specified, the current path is
“/home”.

268 Chapter 9 The Application’s Layout

ptg7987094

The Footer
The footer bar is enabled by default by way of the footer property. Setting it to false, as with the
TeamRoom, means it won’t render. By default, a portion of the screen is reserved at the bottom of
the layout for displaying useful links, specified via a separate footerLinks property. You can
entirely suppress most portions of the layout by setting a corresponding property value to false;
the TeamRoom application suppresses the footer section of the layout.

Figure 9.3 shows the footer being used in the XPages Extension Library Demo App
(XPages.Ext.nsf). A portion of this footer is shown in Listing 9.2.

Easy OneUI Development with the Application Layout Control 269

Figure 9.3 Footer links.

Listing 9.2 Footer Links in the ExtLib Demo App

<xe:this.footerLinks>

<xe:basicContainerNode

label=”XPages Extension Library Demo”>

<xe:this.children>

<xe:basicLeafNode

onClick=”;”

label=”Home”

href=”/”>

</xe:basicLeafNode>

...

...

...

<xe:basicLeafNode

href=”/Admin_Home.xsp”

label=”Database Setup”>

</xe:basicLeafNode>

</xe:this.children>

</xe:basicContainerNode>

<xe:basicLeafNode

label=”PlanetLotus”>

<xe:this.href><![CDATA[http://planetlotus.org/search.php?search=xpages&
sort=1]]></xe:this.href>

ptg7987094

</xe:basicLeafNode>

<xe:basicLeafNode

href=”http://xpagesblog.com/”

label=”XPages Blog”>

</xe:basicLeafNode>

</xe:this.children>

</xe:basicContainerNode>

</xe:this.footerLinks>

The Placebar
To fully understand the next property, let’s briefly revisit a concept introduced in Chapter 8, “Out-
lines and Navigation.” Many properties of an Application Layout instance are specified as a hier-
archy of tree nodes, which are another complex type. The purpose each hierarchy serves differs
based on which property it defines, but the use of tree nodes to specify each provides a flexible
and standardized way to define the properties.

One of these properties is called placeBarActions. Any leaf nodes added to this property
display as buttons in the upper-right portion of the layout—to be precise, in a horizontal section
known as the placebar, which, like the footer, is one of the layout sections that can be suppressed
by setting a corresponding property value to false. Any container nodes display as a drop-down
menu; leaf nodes specified as children of such a container node provide the menu items for that
drop-down menu. This use of a tree node hierarchy allows complex menu structures to be defined
rapidly.

The TeamRoom application, however, specifies only a single leaf node in the form of a
pageTreeNode. Because its title property has a value of “TeamRoom Setup”, the application
displays a button with this value as its label, as shown in Figure 9.4.

270 Chapter 9 The Application’s Layout

Listing 9.2 (Continued)

Figure 9.4 The TeamRoom Setup button on the placebar.

This pageTreeNode specifies a value of “setup” for its page property. As a result, when
the node-generated button is clicked, the user is redirected to “/setup.xsp”, relative to the
path of the application. Because an expression is specified for its loaded property—
userBean.accessLevel > lotus.domino.ACL.LEVEL_AUTHOR—however, this button
displays only if the current user’s access level in the application is Editor or above. This

ptg7987094

expression refers to a concept known as the userBean, which is explained in detail in Chapter 14,
“Java Development in XPages.”

Another property used in this area of the TeamRoom application is placeBarName. Any
value specified for this property displays in the left portion of the placebar, the same layout sec-
tion that displays any placeBarActions. In the TeamRoom application, this property is an
expression that attempts to retrieve the TeamRoom name from a setup document; if this value
cannot be retrieved, it loads a default value from a file resource design element.

Search Bar
One particularly useful feature of the Application Layout control is the ease with which you can
add a generic search bar to an application’s layout. Because the TeamRoom application includes
a value for the searchBar property, a fully functional search bar displays in the upper-right por-
tion of the layout, as shown in Figure 9.5. This bar loads on the page only if the application is
fully indexed for Full Text Search, as shown in the loaded property in Listing 9.3.

Easy OneUI Development with the Application Layout Control 271

Figure 9.5 Search bar loaded on fully indexed app.

Listing 9.3 SearchBar Markup from the TeamRoom Layout

<xe:this.searchBar>

<xe:appSearchBar

pageName=”search.xsp”

inactiveText=”Search...”

optionsParam=”search”

queryParam=”search”

loaded=”${javascript:database.isFTIndexed()}”

inputTitle=”Enter a search value”>

</xe:appSearchBar>

</xe:this.searchBar>

The TeamRoom application specifies a pageName of “search.xsp”, so when users sub-
mit a search (either by clicking the displayed icon or pressing the Enter key), they are redirected
to that page within the application. The inactiveText property is set to “Search...”, so when-
ever no value is entered in the search field, that value is displayed as a low-opacity placeholder.

The next two properties also have a direct relationship. The optionsParam specifies the
uniform resource locator (URL) parameter that should be included in the redirection if a search

ptg7987094

filter option is selected. The search bar supports a property called options, which can be specified
as a list of leaf nodes; if specified, these display as a drop-down to the left of the search bar.

If, for example, the user selects Blogs from the Options drop-down and the optionsParam
property has a value of “category”, the URL the user will be redirected to upon submitting the
search will include a query string argument: “category=Blogs”. This allows the target search
page to filter any relevant results to the specified subset. Because no options are specified in the
TeamRoom layout, however, the optionsParam property is simply ignored.

The queryParam property is similar. Because this property has a value of “search”, if
users search for “XPages”, the URL they are redirected to includes a query string argument of
“search=XPages”. If, instead, the property had a value of “q”, the argument would be
“q=XPages”.

The loaded property for the search bar has been set to an expression that prevents the entire
search bar from displaying if the current application instance has not been full-text indexed.

The Banner
The next configuration property, bannerUtilityLinks, is another example in which the value is
specified as a hierarchy of tree nodes. All nodes listed for this property display in the top-right
portion of the layout. The TeamRoom application includes two types of leaf nodes that have spe-
cific intelligence built in to their behavior: xe:userTreeNode and xe:loginTreeNode.

If the user has access to the application without authenticating and has not yet authenti-
cated, the userTreeNode indicates that the user is anonymous, and the loginTreeNode displays a
link to allow the user to authenticate, as shown in Figure 9.6.

272 Chapter 9 The Application’s Layout

Figure 9.6 The banner links display for an anonymous user.

If the user has authenticated, the userTreeNode displays the current user’s name in
common name format prefixed with Welcome, and the loginTreeNode is hidden, as shown in
Figure 9.7.

Figure 9.7 The banner links display for an authenticated user.

NOTE

For the TeamRoom template, the string “Welcome”, as used in previous example, can be
changed by editing the value for “welcome.x” in the ‘strings.properties’ file.

Setting the banner property to false causes the banner bar not to render.

ptg7987094

The Title Bar
The title bar is used in the TeamRoom to display the search bar. Setting the titleBar property to
”false” causes this part of the layout not to render; this property is set to ”true” by default.
Other than that, the title bar can display text with the titleBarName property or display tabs with
the complex property titleBarTabs. When both of these properties are set, the name is displayed
before the tabs from left to right.

The XPages Extension Library Demo App contains a good example of the use of the title-
BarTabs property. There it uses page tree nodes (xe:pageTreeNode) to populate the tabs and
provide navigation to other XPages.

Product Logo
You can add a product or corporate logo to the layout by using the productLogo property. And,
like the legal logo, this image styling can be controlled by the productLogoWidth, product-
LogoHeight, productLogoStyle, and productLogoClass.

Mast Header and Footer
Setting either of the properties mastHeader or mastFooter does nothing to the appearance in
most cases. These are reserved facets for the Application Layout control, as shown in Listing 9.4
through xp:key.

Listing 9.4 Use of the mastHeader and mastFooter

<xe:applicationLayout

id=”applicationLayout1”>

<xp:this.facets>

<xp:panel

xp:key=”MastFooter”>

<xp:label

value=”Overall Corporate Header: “

id=”label1”></xp:label>

<xp:image

url=”/xpagesui-logo.jpg”

id=”image1”></xp:image>

</xp:panel>

<xp:panel

xp:key=”MastHeader”>

<xp:section

id=”section2”

header=”This is a section in the mastFooter”></xp:section>

</xp:panel>

</xp:this.facets>

Easy OneUI Development with the Application Layout Control 273

ptg7987094

Adding content to the MastFooter and MastHeader facets adds an extra footer and header
to the layout. It is usually done to enclose the application in an overall corporate look and feel of
which multiple applications might share.

The Layout Control Tooling in Designer
In 8.5.3 versions of the XPages Extension Library, extra plugins are available that provide tooling
for a number of these new controls in Domino Designer. One of these is for the Layout control.
This extra tooling helps the developer create layout even more quickly.

Upon selecting the Application Layout control from the palette in Designer and dropping it
to the Design Pane on an XPage, developers see a message box informing them that it is best to
add this control to a Custom Control for better reuse (see Figure 9.8).

274 Chapter 9 The Application’s Layout

Figure 9.8 Reminder to use layout controls in Custom Controls.

ptg7987094

Figure 9.9 Application Layout Configuration dialog.

The application layout control markup is generated on the XPage when you select OK on
the Configuration dialog, as shown in Figure 9.9. You can then carry out further configuration
using the “pretty” panels, as with all other XPages controls in Designer, as shown on Figure 9.10.

The Layout Control Tooling in Designer 275

Selecting to continue here brings the developer to a dialog to allow for the configuration of
the layout control, as shown in Figure 9.9. Here the developer can quickly select the wanted
items. These options were previously described in this chapter.

ptg7987094

Figure 9.10 Basic configuration of the Layout Control on the Design Pane.

Using the Application Layout Within a Custom Control
In any XPage application, the primary resource for structural reusability is the Custom Control
design element. By adding one or more individual controls to a Custom Control—and binding
these control characteristics and behaviors to custom properties passed to their container—com-
plex features can be implemented in numerous portions of an application with maximum flexibil-
ity and ease of maintenance. This holds particularly true in the case of the Application Layout
control due to its use of facets.

Facets are a portion of the Java Server Faces specification that allows a component to easily
locate specific contents by name. Any component in an XPage may contain zero or more chil-
dren, but—with the exception of event handlers—rarely does a child component have discernible
meaning to its container; each component serves an isolated purpose within the overall compo-
nent tree. In contrast, a component that defines facets can easily determine whether a given facet
has content, and, if it does, make specific use of that content based on which facet contains it.

You can observe the most frequently encountered use of facets when adding a standard
View Panel to an XPage. In addition to inserting a viewColumn child component corresponding
to each column selected from the source View, a Pager is automatically added to the View Panel’s
list of facets.

276 Chapter 9 The Application’s Layout

ptg7987094

The Pager that is inserted in this scenario is given an attribute of xp:key with a value of
“headerPager”. If the option to Show Pager in Footer is selected on the Display tab of the
component properties for the View Panel, a new Pager instance is added to the View Panel’s
facets; this Pager’s xp:key attribute is assigned a value of “footerPager”.

At runtime, this allows the View Panel to treat each Pager differently based on which facet
has been specified. To be precise, the facet key determines where each Pager will be rendered.

The Application Layout control also defines several facets, and, like the facets used by
Pager controls within a View Panel, each of these facets determines where the content is
displayed:

• MastHeader—Content that displays at the top of the page

• MastFooter—Content that displays at the bottom of the page

• SearchBar—Content that displays to the left of the application’s search bar, if speci-
fied; otherwise, it displays in place of it

• LeftColumn—Content that displays directly to the left of the main content area

• RightColumn—Content that displays directly to the right of the main content area

As with the View Panel Pager example, each of these facets is optional, but providing con-
tent for any causes that content to be rendered in the corresponding location on the page.

Although any of these facets may be contributed directly to a given instance of the Applica-
tion Layout control, often the most effective approach is to define an Editable Area for each por-
tion of the layout that you anticipate populating. An Editable Area is, itself, simply a way to
define a facet for a Custom Control: When a Custom Control that defines an Editable Area is
placed on an XPage, and content is added to its Editable Area, the Source XML indicates that the
content of that area contributes to the Custom Control’s facets. The TeamRoom application pro-
vides a demonstration of this relationship, as shown in Listing 9.5.

Listing 9.5 Application Layout Facets

<xp:this.facets>

<xp:div

xp:key=”LeftColumn”>

<xe:navigator

id=”outline”

expandable=”true”>

<xe:this.treeNodes>

<xe:pageTreeNode

page=”home”

label=”Home”

selection=”/home” />

<xe:pageTreeNode

page=”allDocuments”

Using the Application Layout Within a Custom Control 277

ptg7987094

label=”All Documents”

selection=”/allDocuments” />

<xe:pageTreeNode

page=”announcements”

label=”Announcements”

selection=”/announcements” />

<xe:pageTreeNode

page=”events”

label=”Events”

selection=”/events” />

<xe:pageTreeNode

page=”statusReports”

label=”Status Reports”

selection=”/statusReports” />

<xe:pageTreeNode

page=”calendar”

label=”Calendar”

selection=”/calendar” />

<xe:pageTreeNode

page=”members”

label=”Members and Subteams”

selection=”/members” />

<xe:pageTreeNode

page=”inactiveDocuments”

label=”Inactive Documents”

selection=”/inactiveDocuments” />

</xe:this.treeNodes>

</xe:navigator>

<xc:tagCloud

id=”tagCloud” />

<xp:callback

id=”left”

facetName=”LeftColumn” />

</xp:div>

<xp:callback

id=”right”

xp:key=”RightColumn”

facetName=”RightColumn” />

</xp:div>

</xp:this.facets>

278 Chapter 9 The Application’s Layout

Listing 9.5 (Continued)

ptg7987094

In the preceding XML, two approaches to specifying facet content for an Application Lay-
out are shown. First, a div contributes to the “LeftColumn” facet of the control. As previously
indicated, this ensures that the contents of the div display in the left column of the application’s
layout. In this case, a standard navigator is included, as well as a tag cloud. After these controls,
however, a callback is provided, which specifies a facetName of “LeftColumn”. The
xp:callback tag defines an Editable Area for this Custom Control.

Because the div that contributes to the “LeftColumn” facet of the Application Layout
contains its own content—the navigator and tag cloud—and also includes a callback, each XPage
that consumes this Custom Control automatically includes the content of the div but may also
contribute its own content to that portion of the layout.

The other facet specified in the preceding example is “RightColumn”. Unlike the other
facet, however, the only content of this facet is an Editable Area that specifies, again, the same
facetName. As a result, this portion of the layout is always empty unless the XPage that con-
sumes this Custom Control contributes to the facet. The example shown in Listing 9.6, excerpted
from the home.xsp XPage from the TeamRoom application, demonstrates this in action.

Listing 9.6 Using Facets in the Layout Custom Control

<xc:layout

navigationPath=”/home”>

<xp:this.facets>

<xp:panel

xp:key=”RightColumn”>

<xc:homeTeamRoomPurpose

id=”wgtTeamRoomPurpose”></xc:homeTeamRoomPurpose>

<xc:homeMembersView

id=”members”></xc:homeMembersView>

</xp:panel>

</xp:this.facets>

The Panel defined in Listing 9.6 contributes to the Custom Control’s “RightColumn”
facet, which, in turn, causes its content to be contributed to the “RightColumn” facet of the
Application Layout. Both of the Custom Controls defined inside the Panel display within the
right column of the page—but only on this specific page. This use of chained facets allows each
page in the application to define portions of the layout that are unique to that page.

The most important content of each page, of course, is what displays within the middle col-
umn. Because of the nature of the Application Layout control, this content need not specify a
facet key. When this control is used within a Custom Control, and that Custom Control is added
to an XPage, any content defined within that Custom Control displays within the middle column.
The example in Listing 9.7, excerpted from the events.xsp XPage in the TeamRoom application,
demonstrates this principle.

Using the Application Layout Within a Custom Control 279

ptg7987094

Listing 9.7 Main or MiddleColumn Facet in Action in the TeamRoom

<xc:layout

navigationPath=”/events”>

<xe:dynamicContent

id=”dynamicContent”

useHash=”false”>

<xe:this.defaultFacet>

<![CDATA[#{javascript:if (param.documentId || param.action){

return “eventFormContent”;

}

return “eventViewContent”;}]]>

</xe:this.defaultFacet>

<xp:this.facets>

<xc:eventForm

id=”eventFormContent”

xp:key=”eventFormContent”></xc:eventForm>

<xc:eventView

id=”eventViewContent”

xp:key=”eventViewContent”></xc:eventView>

</xp:this.facets>

</xe:dynamicContent>

</xc:layout>

Because the dynamicContent control is defined as a child of the layout Custom Control, in
the case of the TeamRoom, all of its own content displays within the middle column of the layout.
Although the dynamicContent defines its own facets to allow for other complex behaviors, it need
not indicate that it contributes to a specific facet of the layout Custom Control; its location in the
component tree is sufficient to indicate that it serves as the content for the middle column.

Conclusion
The Application Layout control is both complex and powerful, but its design facilitates easy,
intuitive, and rapid standardization of layout content for an entire application. By populating each
applicable property for a given instance of this control, an application’s layout can typically be
defined in a matter of minutes. This allows the developer to rapidly move beyond the tedious
business of designing the peripheral portions of the user interface and focus, instead, on ensuring
the application’s functionality will meet the needs of its users, confident that its overall layout
will be aesthetically pleasing, intuitive, and consistent, no matter what browser or operating sys-
tem a given end user chooses to use.

280 Chapter 9 The Application’s Layout

ptg7987094

281

PART III

Bell and
Whistles: Mobile,
REST, RDBMS,
and Social

10 XPages Goes Mobile

11 REST Services

12 XPages Gets Relational

13 Get Social

ptg7987094

This page intentionally left blank

ptg7987094

283

C H A P T E R 1 0

XPages Goes Mobile

Mobile is the technology of the age, and owning a mobile device is no longer a luxury but a neces-
sity. This fact is becoming increasingly important in business as desktops and laptops are being
superseded by tablets and smartphones. This transition has many challenges ranging from the
user interface (UI) design to security. XPages and the Extension Library are in place to meet
these mobile challenges. This chapter will show how to meet and overcome these obstacles.

In the Beginning…
Mobile or cellular phones are essentially two-way radios; they allow you to send and receive
messages wirelessly. These kinds of devices have been around since the early 1920s. Early two-
way radio communication was capable of only one station transmitting while the other was
receiving because they were using the same frequency. This limitation was solved to allow simul-
taneous transmitting and receiving by tuning them into different frequencies, allowing people to
talk and listen at the same time. Of course, it was many years before electronics, circuitry, and
battery power caught up before the first truly publicly available mobile telephone was introduced.
Early models required users to hold the phone with both hands because they were so big and
heavy. The brick became smaller and cheaper, and 15 years after the first mobile phone came into
being, nearly everyone in the world has one.

The mobile phone feature set evolution is interesting because it draws parallels with soft-
ware: voice communication, followed by text messaging, embedded camera, the leap to smart-
phones, mobile apps, and finally in management of a user’s social network. Communication
software has had a similar progression: e-mail messaging with ccMail, Lotus Notes databases
and applications, and now team collaboration and social software. Now mobile phone and com-
munication software are merging; soon it will be hard to tell the difference and remember what it
used to be like.

ptg7987094

Trends are now moving toward businesses using smartphones, which is changing the way
people communicate and collaborate. That notion presents interesting challenges to application
design. For the Domino application, not only do developers have to contend with implementing a
desktop and web design, but the mobile element is becoming more prevalent. Use of mobile
devices in business tends to follow the features that are available. The availability of affordable
mobile or cell phones has transformed the way business is conducted. Everyone from plumbers to
company CEOs has been affected. There’s greater flexibility and faster response times because
people no longer need to be tied to one desk or location. Early smartphones included e-mail,
which meant office workers could break free from their desks to engage with customers more
closely. The smartphones of today are part of a technology that is expanding and advancing rap-
idly and may be on their way to replacing laptops and desktops. The future is mobile.

The XPages Mobile Controls in the Extension Library
The mobile space is one of the most rapidly developing areas of computing. The XPages Exten-
sion Library (ExtLib) provides several new controls and themes to make creating a mobile web
experience for your Domino application as quick and easy as possible. These controls leverage
the power of the Dojo Mobile framework to provide the interface metaphors and transitions
familiar to users of native applications in a web setting.

Because these applications are provided over the web, an enterprise can quickly and
securely roll out changes and updates to the mobile workforce while keeping tight control on
sensitive data.

With Lotus Notes Domino 8.5.3 and the ExtLib, a whole avenue of application develop-
ment opens. You can easily build these ancillary features onto existing XPages applications.

The Basics of the XPages Mobile Controls
An XPages mobile application is built in a way similar to any other XPages application in that
both are web applications. One difference in the way an XPages mobile app is structured may be
unfamiliar, however. To allow for the transition animations between the different pages, mobile
apps are usually structured using a single XPage containing all the required mobile pages and
controls. These may be loaded lazily on an as-needed basis to reduce bandwidth usage or loaded
up front to improve performance.

Figure 10.1 shows what the XPages mobile application is composed of. It is made up
of a Single Page Application control (xe:singlePageApp) containing one or more Mobile
Pages controls (xe:appPage). The mobile page typically has a Page Heading control
(xe:djxmHeading).

284 Chapter 10 XPages Goes Mobile

ptg7987094

Figure 10.1 The mobile app in Designer.

You can add the other controls required for the functionality of the page to the mobile page.
These may be other XPages mobile controls or even a limited number of existing XPages con-
trols that can become valid mobile controls. All this is possible with a little bit of styling magic
provided by the XPages mobile theme.

Once the new 8.5.3 ExtLib has been installed in Designer, XPages developers are presented
with the mobile controls placed in their own palette, as shown in Figure 10.2. These controls are
used to develop XPage mobile applications.

The XPages Mobile Controls in the Extension Library 285

ptg7987094

Figure 10.2 Mobile control palette.

The mobile controls provide specific functionality or a specific user experience that is
designed to match native smartphone and tablet applications. They aren’t the only controls you
can use in mobile applications. Other controls can take on the mobile theme’s look and feel.
The controls in the Mobile palette are designed just for mobile and don’t have an application
elsewhere. The following sections review these controls and their use in mobilizing XPage
applications.

The Single Page Application Control (xe:singlePageApp)
Essentially, the Single Page Application control is the container for the XPages mobile applica-
tion. All components involving the mobile application, mobile pages, navigation, data reading,
data input, styling, and so forth are enclosed within the Single Page Application control. In the
markup, everything is contained within this control’s tag, xe:singlePageApp, as shown in
Listing 10.1.

286 Chapter 10 XPages Goes Mobile

Mobile Control Palette

ptg7987094

Listing 10.1 The Single Page Application Control Contained Within the View Tag

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:singlePageApp

id=”singlePageApp1”

selectedPageName=”mobilePage1”>

<xe:appPage

id=”appPage1”

pageName=”mobilePage1”>

<xe:djxmHeading

id=”djxmHeading1”></xe:djxmHeading>

<xe:djxmLineItem

id=”djxmLineItem1”

label=”Click to go to Mobile Page 2”

moveTo=”mobilePage2”>

</xe:djxmLineItem>

</xe:appPage>

<xe:appPage

id=”appPage2”

pageName=”mobilePage2”>

<xe:djxmHeading

id=”djxmHeading2”

back=”Back”

moveTo=”mobilePage1”>

</xe:djxmHeading>

<xe:djxmLineItem

id=”djxmLineItem2”

label=”This is Mobile Page 2”>

</xe:djxmLineItem>

</xe:appPage>

</xe:singlePageApp></xp:view>

The Single Page Application has few attributes, only one of which is needed for mobile
applications. That attribute is the selectedPageName property, which must be set to the name of
a mobile page name that exists with this container control. In the listing, the selectedPageName
property is set to “mobilePage1”. Therefore, the Mobile Page (xe:appPage) named
“mobilePage1” becomes the default page that the Single Page Application displays. The Single
Page Application displays only one Mobile Page at a time; in Listing 10.1, this alternates
between “mobilePage1” and “mobilePage2”.

The XPages Mobile Controls in the Extension Library 287

ptg7987094

The Mobile Page Control (xe:appPage)
Each page on a mobile application must be a mobile page. Multiple pages can be defined in two
ways:

Each page is a new XPage (including an <xe:singlePageApp> in each).

Each page is defined inside one XPage with multiple <xe:appPage> tags.

Using the second method, each appPage is given an appPageId that can be used to switch
pages, rather than a given URL. To move to a new <xe:appPage>, type the URL (the XPage
filename followed by a hash [#]) and then the appPageId. An example would be
mobileHome.xsp#document.

The Mobile Page control is the web page fragment used in a mobile application. Only one
of these mobile pages is displayed at a time. Several notable properties affect the behavior of this
control.

The pageName property is the mobile page name and the property used for navigation
between the mobile pages. The singlePageApp control uses pageName to decide what page to
show initially. You use the resetContent property to indicate whether the page contents should
be re-created each time the page is displayed. Another property affecting performance is pre-
load, which you can use to force the Mobile Page to be loaded when the whole XPage is loaded.

The Page Heading Control (xe:djxmHeading)
Mobile applications should have a heading. On a mobile screen, a heading is typically a bar at the
top of the screen specifying the title of the page. It has various options to perform on the page,
such as going backward. The Back button is defined in the heading tag.

<xe:djxmHeading id=”djxmHeading1” label=”Topic” back=”Home”
moveTo=”home”></xe:djxmHeading>

The back property is the label for the Back button. The moveTo property should contain
the pageName of the Mobile Page destination.

The Heading control can also act as a container for other controls such as buttons and the
mobile application’s Tab Bar.

The Heading control also contains a callback or editable area for actions called action-
Facet, which is typically a plus (+) button to create a new document. Listing 10.2 includes an
example from the TeamRoom XL template. Buttons placed inside this facet take on the styling of
the create buttons that are common to native buttons on that platform.

288 Chapter 10 XPages Goes Mobile

ptg7987094

Listing 10.2 The Action Facet for a Heading Control

<xp:this.facets>

<xp:panel

xp:key=”actionFacet”>

<xp:this.rendered>

<![CDATA[#{javascript:userBean.canCreateDocs}]]>

</xp:this.rendered>

<xp:button

value=”+”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xe:moveTo

direction=”Left to Right”

forceFullRefresh=”true”

targetPage=”newDiscussion”

transitionType=”slide”>

</xe:moveTo>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:panel>

</xp:this.facets>

Rounded List (xe:djxmRoundRectList)
As the name suggests, this is a component that displays a rectangle with rounded corners. It is
mainly used as a styling container when documents are displayed and edited (see Listing 10.3
and Figure 10.3).

Listing 10.3 Rounded List Container for Data Input

<xe:djxmRoundRectList

id=”djxmRoundRectList1”>

<xp:label

value=”Subject: “

id=”labelSubject2”></xp:label>

The XPages Mobile Controls in the Extension Library 289

ptg7987094

Listing 10.3 (Continued)

<xp:inputText

id=”inputTextSubject2”

value=”#{document1.Subject}”>

</xp:inputText>

<xp:br />

<xp:label

value=”Category: “

id=”labelCategory2”></xp:label>

<xp:inputText

id=”inputTextCategory2”

value=”#{document1.NewCats}”>

</xp:inputText>

<xp:br />

<xp:inputTextarea

id=”inputTextareaBody”

value=”#{document1.Body}”

cols=”40”

rows=”10”>

</xp:inputTextarea>

</xe:djxmRoundRectList>

290 Chapter 10 XPages Goes Mobile

Figure 10.3 Rounded list container for a document.

ptg7987094

Static Line Item (xe:djxmLineItem)
The Static Line Item control is a Dojo control mainly used to link to other mobile pages. This
control can perform a number of functions. Listing 10.4 shows an example of its use as a link to a
mobile page; this example would render as in Figure 10.4.

The moveTo property points to another mobile page contained within the same Single Page
Application. For this, a hash (#) prefix may be used to enable the link to navigate to a location
within the existing XPage; however, for most cases this isn’t necessary because the runtime
assumes that the value of the moveTo property is a location within the current page. You can use
the transition property with the moveTo property to control how the mobile page appears to
move with pages. By default, the transition is slide, although fade and flip are options here if
desired.

Listing 10.4 Static Line Item Example

<xe:appPage

id=”appPage1”

pageName=”homePage”>

<xe:djxmHeading

id=”homePageHeading”

label=”Home”></xe:djxmHeading>

<xe:djxmLineItem

id=”djxmLineItem1”

moveTo=”#viewPage”

label=”All Documents”>

</xe:djxmLineItem>

</xe:appPage>

<xe:appPage

id=”appPage2”

pageName=”viewPage”

resetContent=”false”>

<xe:djxmHeading

id=”djxmHeading1”

label=”Hello LS12”></xe:djxmHeading>

<xe:dataView

id=”dataView1”

pageName=”documentPage”

openDocAsReadonly=”true”>

<xe:this.data>

<xp:dominoView

var=”view1”

viewName=”xpAllDocuments”></xp:dominoView>

The XPages Mobile Controls in the Extension Library 291

ptg7987094

Listing 10.4 (Continued)

</xe:this.data>

<xe:this.summaryColumn>

<xe:viewSummaryColumn

columnName=”Topic”></xe:viewSummaryColumn>

</xe:this.summaryColumn>

</xe:dataView>

</xe:appPage>

292 Chapter 10 XPages Goes Mobile

Figure 10.4 Static Line Item control example.

You can also add images to the Static Line Item control using the icon property. You set the
value of the property in the same way that other XPages control reference images usually reside
in the same Domino application.

The rightText property allows an additional label to be set on this control.

Mobile Switch (xe:djxmSwitch)
The Mobile Switch control (xe:djxmSwitch) is probably best described as an on/off switch that
behaves like a check box. It’s not to be confused with a Switch facet control (xe:switchFacet),
which allows the developer to dynamically change content that depends on a certain value.

The Mobile Switch control is used mainly in mobile applications for configuration,
enabling an option as shown in Listing 10.5 and illustrated in Figure 10.5.

ptg7987094

Listing 10.5 Enabling an Option with a Mobile Switch Control

<xe:singlePageApp

id=”singlePageApp1”

selectedPageName=”mobilePage1”>

<xe:appPage

id=”appPage1”

pageName=”mobilePage1”>

<xe:djxmHeading

id=”djxmHeading1”

label=”Mobile Switch Control”>

</xe:djxmHeading>

<xe:djxmRoundRectList

id=”djxmRoundRectList1”>

<xp:table>

<xp:tr>

<xp:td>

<xp:label

value=”Configuration Setting: “

id=”label1”></xp:label>

</xp:td>

<xp:td>

<xe:djxmSwitch

leftLabel=”ON”

rightLabel=”OFF”

id=”djxmSwitch4”

value=”#{javascript:viewScope.vs01}”>

<xp:eventHandler

event=”onStateChanged”

submit=”true”

refreshMode=”complete”>

<xe:this.action><![CDATA[#{javascript:var v1 =
viewScope.vs01;

if (v1!==”off”){viewScope.put(“vs01”,”off”)

}

else{viewScope.put(“vs01”,”on”)

}}]]></xe:this.action>

</xp:eventHandler>

</xe:djxmSwitch>

</xp:td>

<xp:td>

The XPages Mobile Controls in the Extension Library 293

ptg7987094

Listing 10.5 (Continued)

<xp:text

escape=”true”

id=”computedField1”

value=”#{viewScope.vs01}”>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xe:djxmRoundRectList>

</xe:appPage>

</xe:singlePageApp>

294 Chapter 10 XPages Goes Mobile

Figure 10.5 Mobile Switch control example.

There are four events attached to the Mobile Switch control; onTouchStart, onTouchEnd,
onTouchMove, and onStateChanged. Each of these events is designed to be triggered condition-
ally. All the onTouch controls have been specifically designed to be triggered by the movement of
the finger on the touch screen of a mobile device. Their behaviors are similar to the mouse events

ptg7987094

that are developed for desktop applications. In the same vein, the onStateChanged event is like an
onChange event. It is triggered when the mobile switch is changed from on to off and vice versa.
An example is shown in Listing 10.5.

Tab Bar (xe:tabBar)
The Tab Bar is mainly used as a container control for the Tab Bar Button. By default, the Tab
Bar displays like a banner across the mobile page. In this scenario, it is usually used as an action
bar at the bottom of the mobile device’s screen, where black buttons will appear on a black back-
ground regardless of platform. These buttons are usually accompanied by an image on the button,
as shown in Listing 10.6 and Figure 10.6.

Listing 10.6 Default Tab Bar with Buttons

<xe:tabBar

id=”tabBar1”>

<xe:tabBarButton

id=”tabBarButton1”

label=”Button 1”

icon1=”/act_saveandclose.gif”>

</xe:tabBarButton>

<xe:tabBarButton

id=”tabBarButton2”

label=”Button 2”

icon1=”/authprof.gif”>

</xe:tabBarButton>

<xe:tabBarButton

id=”tabBarButton3”

label=”Button 3”

icon1=”/intprof.gif”>

</xe:tabBarButton>

</xe:tabBar>

The XPages Mobile Controls in the Extension Library 295

ptg7987094Figure 10.6 Tab Bar at the bottom of a mobile page with images.

When the barType property is set to “segmentedControl”, the Tab Bar buttons display
together as one, although they’re separated into their individual buttons by a vertical separator
line, as shown in Listing 10.7 and Figure 10.7.

Listing 10.7 The Tab Bar as a Segmented Control

<xe:tabBar

id=”tabBar2”

barType=”segmentedControl”>

<xe:tabBarButton

id=”tabBarButton4”

label=”Button 1”>

</xe:tabBarButton>

<xe:tabBarButton

id=”tabBarButton5”

label=”Button 2”>

</xe:tabBarButton>

<xe:tabBarButton

id=”tabBarButton6”

label=”Button 3”>

</xe:tabBarButton>

</xe:tabBar>

296 Chapter 10 XPages Goes Mobile

ptg7987094Figure 10.7 Tab Bar as a segmentedControl.

In this fashion, the segmentedControl is used for the Tab Bar in a header or on its own on
the mobile page. When placed in the header, the Tab Bar’s contents are merged into that of the
heading, as shown in Figure 10.8.

The XPages Mobile Controls in the Extension Library 297

Figure 10.8 The Tab Bar in a header.

ptg7987094

Tab Bar Button (xe:tabBarButton)
The Tab Bar button is similar to the conventional XPages button (xp:button) but with different
styling for XPages Mobile applications. This button will not display as expected if it is not
contained within the Tab Bar. When the barType property is set to “segmentedControl” on
the Tab Bar, the multiple Tab Bar buttons on the bar appear together, as shown previously in
Figure 10.7.

This control has several properties worth noting that make it applicable to mobile applica-
tions. You can add images to the button with the icon1 and icon2 properties. These display
images depending on whether you select the button, as shown in Listing 10.8. The position of
each of the images can change from the default if you use the iconPos1 and iconPos2 properties.
This use of images is common when the Tab Bar is using its default barType setting.

Listing 10.8 Button Icon and Icon Position Properties

<xe:tabBarButton

id=”tabBarButton6”

label=”Button 3”

icon1=”/act_saveandclose.gif”

icon2=”/authprof.gif”

iconPos1=”top”

iconPos2=”bottom”>

</xe:tabBarButton>

NOTE

When the barType is set to segmentedControl, images don’t display on Apple’s iOS
platforms. There are already set styling conventions for this platform that excludes icon
images.

The XPages Mobile Theme
XPages mobile applications are not native mobile applications but web browser applications that
run on a mobile device and appear to be native. A special theme has been created to provide the
native application look and feel for XPages mobile applications. This theme provides all the
mobile styling for all the XPages mobile controls in the palette plus a few other controls like the
Data View (xe:dataView), Outline (xe:outline), and Form Table (xe:formTable). Without
this theme, XPages applications would look like regular websites on the mobile device’s web
browser.

298 Chapter 10 XPages Goes Mobile

ptg7987094

This theme isn’t activated or set in the same way that regular XPages themes are. It’s
activated per XPages that must have a prefix corresponding to a setting in the application’s
properties—xsp.theme.mobile.pagePrefix. So, for example, if xsp.theme.mobile.
pagePrefix=mobile and the XPages are to inherit the mobile theme’s look and feel, they must
start with a prefix like mobileApp.xsp. When XPages is launched in the web browser, it will
ignore all other themes and use the mobile theme.

Select a prefix that won’t conflict with other XPages within the application. Avoid actual
prefixes that are whole words or tend to form whole words in themselves. Don’t use prefixes like
the preceding example: mobile. Choose a pattern that makes more sense, such as “m_”.

The mobile theme provides styling for many XPages controls; the Mobile controls are cov-
ered, of course, but so are the Data View (xe:dataView) and Accordion (xe:accordion). All
other core, custom, and extension library controls will render in the mobile application using
their existing web styling. In these cases, developers need to be selective of which controls they
use and then apply their own custom styling. A case in point is using buttons (xp:button), as
shown in Listing 10.9, from the TeamRoom XL template. Here the developer has created two
new style classes: one for Android, “mblSaveButton_android”, and another for other plat-
forms, “mblSaveButton”. These style classes are not stored in the mobile theme but in a CSS
file added to the application: .mobile.css.

Listing 10.9 Custom Button Styling for Mobile Applications

<xp:button

value=”Save”

id=”button1”>

<xp:this.styleClass>

<![CDATA[#{javascript:

if(isAndroidCheck())

{return “mblSaveButton_android”;

}

else {

return “mblSaveButton”;}

}]]>

</xp:this.styleClass>

<xp:this.style><![CDATA[#{javascript:

if(!isAndroidCheck())

{

return “margin-top:6px;”;}

}]]></xp:this.style>

...

</xp:button>

The XPages Mobile Theme 299

ptg7987094

Listing 10.9 is an example from the TeamRoom XL template of how to style items that are
outside the mobile theme. There, specific styling has been created for these elements—in this
case, inline buttons. This look and feel is available as style classes stored in a custom-built CSS
file from the TeamRoom application. These style classes are then applied dynamically when the
application in this case is opened on an iOS platform or an Android platform. This is something
the developer needs to keep in mind when styling an XPages mobile application.

Currently, the mobile theme provides styling for two main platforms: Apple’s iOS and
Android. The mobile theme should cover the most popular design styling cases for developers, but
they may find that a control they are using doesn’t have the correct or desired styling. In these cases,
developers must custom-style the component and may have to do two of these styles for Apple iOS
and Android. When the application runs, developers have to know which platform the application is
running on and what style to apply. The XPages runtime helps with the global variable
context.getUserAgent().getUserAgent(). It returns the name of the platform, which
could be Android, iPad, or iPhone. From here, developers can decide which styling to use. XPages
Mobile caches the detected browser’s User-Agent string on the first request. Developers can over-
ride this by specifying a platform in the query string, such as ?platform=iphone or
?platform=android:http://myserver/myapp.nsf/mobileApp.xsp?platform=
iphone.

Hello Mobile World Tutorial
In this tutorial, developers are shown how to build a simple XPages mobile application
on an existing Domino database, which gives them the first steps to creating a mobile web
experience.

This tutorial builds a mobile app from scratch, displays the contents of a view from another
application, opens a document from that view, and edits and saves a document. A more detailed
tutorial is available on the Lotus Notes and Domino Development wiki at http://www-
10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Mobile_Controls_Tutorial_.

1. Enable the App for the Extension Library and Mobile
Take any existing application and launch it in Designer. Go to the Application Properties and
check the box for com.ibm.xsp.extlib.library in the XPages Libraries section on the
Advanced tab. This enables the application to use the ExtLib if it hasn’t been done already. Save
and close the Application Properties.

Next, open the Application Properties, xsp.properties, in source mode from the Package
Explorer. The Package Explorer isn’t visible by default in the Domino Designer perspective. To
get it to display here, select Window → Show Eclipse Views → Package Explorer. Once this
has been launched, go to the WebContent\WEB-INF folder and launch the xsp.properties file.
Then select the Source tab and add the prefix for the XPages to use the mobile theme. Choose
any desired prefix, such as m_: in xsp.theme.mobile.pagePrefix=m_.

300 Chapter 10 XPages Goes Mobile

http://myserver/myapp.nsf/mobileApp.xsp?platform=iphone
http://www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Mobile_Controls_Tutorial_
http://www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Mobile_Controls_Tutorial_
http://myserver/myapp.nsf/mobileApp.xsp?platform=iphone

ptg7987094

2. Create a New XPage and Mobile Application
Create a new XPage called m_helloworld. Note the use of the prefix here: m_.

On the blank XPage, add a Mobile Application control (xe:singlePageApp). Then add a
Mobile Page control (xe:appPage) between the tags of the Mobile Application. Finally, add a
Page Heading control (xe:djxmHeading) between the Mobile Page tags, and give the heading a
label of “Hello XPages Mobile World”.

Provide a name to the Mobile Page control—pageName=”viewPage”—and then set the
selectedPageName property to that page name.

This should generate the markup shown in Listing 10.10, which is enough to render a first
look at the new XPages mobile application (see Figure 10.9) when launched in a mobile device’s
web browser.

Listing 10.10 XPages Markup of a Heading Tag Inside a Mobile Application Tag

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”>

<xe:singlePageApp

id=”singlePageApp1”

selectedPageName=”viewPage”>

<xe:appPage

id=”appPage1”

pageName=”viewPage”>

<xe:djxmHeading

id=”djxmHeading1”

label=”Hello XPages Mobile World”>

</xe:djxmHeading>

</xe:appPage>

</xe:singlePageApp>

</xp:view

Hello Mobile World Tutorial 301

ptg7987094Figure 10.9 Hello XPages Mobile World example.

3. Add a View Document Collection to the Mobile Page
The next step is to create a content Mobile Application that is contained within Mobile Pages
controls (xe:appPage).

The purpose of the mobile page viewPage is to display a list of documents, a view collec-
tion of records. The datasource for this will come from another application on the server: the
ExtLib Demo App (XPagesExt.nsf). To display this data collection, you use a Data View
(xe:dataView) control to connect and retrieve the data and present it in a list form.

On the source pane in Designer, drag and drop a Data View control inside the Mobile Page
control. This prompts the developer to select a view datasource from the current database. How-
ever, for this simple tutorial, a view collection from another database, the XPagesExt.nsf, is
selected. This view name is to be AllContacts.

Clicking OK on this dialog generates the markup for the XPage. From here, some minor
configuration is done to the Data View to display text to represent the records per row. The
summaryColumn property, which is also a complex property for xe:viewSummaryColumn, is
used for this purpose. To use a Data View inside a mobile application, select a column from the
original view. In this case, it will be a column named Name, so columnName=”Name”.

302 Chapter 10 XPages Goes Mobile

ptg7987094

We have selected a column named Name. The naming will work in this case, but in general
it isn’t best practice because the column title could be changed when localized, and the mobile
application would likely break. It is more correct to use the programmatic name of a view column
to ensure that the use case will work.

The Data View displays the view collection with the name of the contact representing the
row record. At this stage, it is recommended that you restrict the number of rows to 10 so the view
fits inside the small screen of the mobile device.

The markup should now look something like what is shown in Listing 10.11 and display on
the mobile device like that in Figure 10.10.

An additional property is set here, too. The property resetContent is set to “false”. It
will be the default page of the mobile application because we do not want the page to be
re-created every time the page is displayed.

Listing 10.11 XPages Markup of a Heading Tag Inside a Mobile Application Tag

<xe:appPage

id=”appPage2”

pageName=”viewPage”

resetContent=”false”>

<xe:djxmHeading

id=”djxmHeading2”

label=”Hello XPages Mobile World”>

</xe:djxmHeading>

<xe:dataView

id=”dataView1”

rows=”10”>

<xe:this.data>

<xp:dominoView

var=”view1”

databaseName=”XPagesExt.nsf”

viewName=”AllContacts”></xp:dominoView>

</xe:this.data>

<xe:this.summaryColumn>

<xe:viewSummaryColumn

columnName=”Name”></xe:viewSummaryColumn>

</xe:this.summaryColumn>

</xe:dataView>

</xe:appPage>

Hello Mobile World Tutorial 303

ptg7987094Figure 10.10 The view collection on an XPages Mobile Page.

4. Display More Rows
Typically, when a user is presented with a limited list of records from a view collection, a button
is provided to allow the user to add a few more rows. This can be done in the XPages mobile
applications, too; the Extension Library has a control that can provide this feature.

The Add Rows (xe:addRows) control is attached to any event and added through the
simple Actions dialog. But first, there is an editable area on the Data View control called
“pagerBottom” and to this add a link (xp:link) control. This link becomes a facet of the Data
View container. A simple Add Rows to the Data Iterator action is added to the onClick event of
the link, with the rowCount property set to “5” and the for property set to the ID of the Data
View: “dataView1”, as shown in Listing 10.12.

Listing 10.12 Data View with Add Rows Simple Action

<xe:dataView

id=”dataView1”

rows=”7”>

<xp:this.facets>

<xp:link

escape=”true”

text=”Load 5 more rows”

304 Chapter 10 XPages Goes Mobile

ptg7987094

id=”link1”

xp:key=”pagerBottom”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>

<xe:addRows

for=”dataView1”

rowCount=”5”></xe:addRows>

</xp:this.script>

</xp:eventHandler>

</xp:link>

</xp:this.facets>

<xe:this.data>

<xp:dominoView

var=”view1”

databaseName=”XPagesExt.nsf”

viewName=”AllContacts”>

</xp:dominoView>

</xe:this.data>

<xe:this.summaryColumn>

<xe:viewSummaryColumn

columnName=”Name”></xe:viewSummaryColumn>

</xe:this.summaryColumn>

</xe:dataView

Figure 10.11 shows the Add Rows action: the Load 5 More Rows link on the mobile page.
When this is selected, five rows are added to the list. Note here that the link now looks like a but-
ton. This is all part of the mobile theme, which uses buttons instead of links on mobile devices
because they’re easier to click.

Hello Mobile World Tutorial 305

ptg7987094Figure 10.11 The Add Rows action.

5. Opening a Document from the Data View
The next step is to open a document from the Data View in another mobile page. For this action,
another Mobile Page control is added to the Single Page Application. This is given an easily
recognizable ID or pageName, documentPage. This ID is needed to configure the Data View
pageName property, which should be prefixed with a hash tag, such as pageName=
”#documentPage”.

The hash tag is important here. If it’s not used, the Data View attempts to open the docu-
ment selected in that row in an XPage in the pageName property. With the hash tag, the naviga-
tion stays within the current XPage, as demonstrated in the following segment of a URL:

/m_helloworld.xsp#documentPage?documentId=D2EB6…E1DFC&action=openDocument

A Heading control is added to the Mobile page, which includes navigation to the view
mobile page. The back property is the label of the Back button, and the moveTo property is set to
“viewPage”.

What’s added next to the mobile page is a rounded rectangle list (xe:djxmRound
RectList). It will be the container for the document data and provide the styling surrounding
the document when it displays in the device.

306 Chapter 10 XPages Goes Mobile

ptg7987094

After this, the mobile page is developed much like a conventional XPage. A Panel control
is added to the mobile page. Then a Domino document datasource is configured to this Panel con-
trol. Labels and input controls, bound to datasources, are added to the Panel next.

Finally, the openDocAsReadonly property is set to “true” on the Data View, as shown in
Listing 10.13. The document now opens in the second mobile page in read mode.

To ensure that the document selected in the data view is opened in the documentPage every
time, the property resetContent is set to “true” here. Without doing that, the first document
opened would remain in memory.

Listing 10.13 Opening Documents from a Data View in Another Mobile Page

<xe:appPage

id=”appPage2”

pageName=”documentPage”

resetContent=”true”>

<xe:djxmHeading

id=”djxmHeading2”

label=”Document Page”

back=”Back”

moveTo=”viewPage”>

</xe:djxmHeading>

<xe:djxmRoundRectList

id=”djxmRoundRectList1”>

<xp:panel>

<xp:this.data>

<xp:dominoDocument

var=”document1”

databaseName=”XPagesExt.nsf”

formName=”Contact”></xp:dominoDocument>

</xp:this.data>

<xp:table>

<xp:tr>

<xp:td>

<xp:label

value=”First name:”

id=”firstName_Label1”

for=”firstName1”></xp:label>

</xp:td>

<xp:td>

<xp:inputText

value=”#{document1.FirstName}”

Hello Mobile World Tutorial 307

ptg7987094

Listing 10.13 (Continued)

id=”firstName1”>

</xp:inputText>

</xp:td>

</xp:tr>

...

...

</xp:table>

</xp:panel>

</xe:djxmRoundRectList>

</xe:appPage>

Figure 10.12 shows the changes to the viewPage, particularly the chevrons that now appear
on the Data Table rows to indicate that an action applies to these rows.

308 Chapter 10 XPages Goes Mobile

Figure 10.12 Changes to the Data View.

Figure 10.13 shows what should happen when a row is selected on the Data View. It should
navigate to the documentPage and open the selected document there.

ptg7987094Figure 10.13 The document is opened in Read Mode.

Data View and Other View Containers in Mobile Apps

The Data View control is an enhancement of the XPages View Panel (xp:viewPanel) control.
The way documents can be selected from rows that are opened in an XPage is built into this con-
trol. The developer doesn’t need to configure further here. As demonstrated, all the developer
needs to do is set the pageName property, and at runtime the control processes the document and
opens it in the desired page. If that page has a corresponding document datasource that matches
the document selected, it will be read in that page. All this is done automatically for the most part.

Extra configuration is needed if the developer chooses an alternative to the Data View, like
the View Entries Tree node (xe:dominoViewEntriesTreeNode). In these cases, the developer
needs to get the universal ID of the document in the selected row (the view datasource var plus
getUniversalID()) and add a parameter on what to do with that document. Usually this
involves the openDocument action. All this is computed inside the href property, as shown in
Listing 10.14.

Listing 10.14 Computing the href Action to Open a Document from a View Row

<xe:outline

id=”outlineXPage”>

<xe:this.treeNodes>

<xe:dominoViewEntriesTreeNode

Hello Mobile World Tutorial 309

ptg7987094

Listing 10.14 (Continued)

viewName=”AllStates”

labelColumn=”Key”

var=”o1”>

<xe:this.href><![CDATA[#{javascript:var id =
o1.getUniversalID();

var str = “/p02.xsp?documentId=”+id+”&action=openDocument”;

return str}]]></xe:this.href>

/xe:dominoViewEntriesTreeNode>

</xe:this.treeNodes>

</xe:outline

In Listing 10.14, the URL is composed to open a document in another XPage. For mobile
applications, the document needs to be opened in the same XPage—another mobile page con-
tained within the same single page application. Listing 10.15 shows how to do this—selecting a
document in one mobile page and opening it in another. At first glance, there doesn’t seem to be a
difference. A closer look reveals one crucial difference in the page name part used to compute the
URL. Instead of using a relative path to the XPage, ‘/p02.xsp’ as in Listing 10.14, just the mobile
page name is inserted, “documentPage”, and without the hash tag. This hash tag is inserted
automatically during runtime so the developer doesn’t have to insert it, as shown in Listing 10.15.

Listing 10.15 Opening a Document in Another Mobile Page

<xe:outline

id=”outlineMobile”>

<xe:this.treeNodes>

<xe:dominoViewEntriesTreeNode

viewName=”AllStates”

labelColumn=”Key”

var=”o1”>

<xe:this.href><![CDATA[#{javascript:var id =
o1.getUniversalID();

var str = “documentPage&documentId=”+id+”&action=openDocument”;

return str}]]></xe:this.href>

</xe:dominoViewEntriesTreeNode>

</xe:this.treeNodes>

<xe:this.treeRenderer>

<xe:mobileAccordionMenu></xe:mobileAccordionMenu>

</xe:this.treeRenderer>

</xe:outline

310 Chapter 10 XPages Goes Mobile

ptg7987094

6. Editing and Saving Document Changes
There are two actions in this section: one to edit the document and another to save the document.
The Tab Bar and Tab Bar buttons are used here, but developers aren’t restricted to these controls.
In fact, they can use any control as long as it can perform these actions in a mobile page. All they
need to worry about is the styling.

Using button or link controls in this scenario requires the developer to create custom
styling. Without this, these controls display with their typical XPages web rendering. However,
some container controls, like the Data View (xe:dataView) and Form Table (xe:formTable),
have mobile styling. Using XPages buttons or links, these controls inherit this mobile style
automatically. The developer should use these controls when developing XPages Mobile
applications.

For this exercise, the Tab Bar and Tab Bar button is used because they have their own
mobile styling and don’t depend on other container controls. You can configure the Tab Bar
Button like an existing XPages button (xp:button), although it has just one event associated
with it: onClick. A conventional edit document simple action is applied for the Edit Tab Bar
Button. And for the Save Tab Bar Button, a new Extension Library simple action is available:
Move To Mobile Page (xe:moveTo). This action contains properties that allow it to be used for
other actions and not just saving document changes. Transition after the event is catered for with
the direction and transitionType properties. The targetPage property indicates to which page
to transition. And with the saveDocument set to “true”, document changes are submitted to
the document datasource.

Listing 10.16 shows the markup of the Tab Bar and Tab Bar Buttons contained within the
panel that contains the document datasource.

Listing 10.16 Edit and Save Tab Bar Buttons

...

</xp:table>

<xe:tabBar

id=”tabBar1”

barType=”segmentedControl”>

<xe:tabBarButton

id=”tabBarButton1”

label=”Edit”

rendered=”#{javascript:!document1.isEditable()}”>

<xp:eventHandler

event=”onClick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

Hello Mobile World Tutorial 311

ptg7987094

Listing 10.16 (Continued)

<xp:changeDocumentMode

mode=”edit”

var=”document1”>

</xp:changeDocumentMode>

</xp:this.action>

</xp:eventHandler>

</xe:tabBarButton>

<xe:tabBarButton

id=”tabBarButton2”

label=”Save”

rendered=”#{javascript:document1.isEditable()}”>

<xp:eventHandler

event=”onClick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xe:moveTo

direction=”Right to Left”

forceFullRefresh=”true”

saveDocument=”true”

targetPage=”viewPage”

transitionType=”slide”>

</xe:moveTo>

</xp:this.action>

</xp:eventHandler>

</xe:tabBarButton>

</xe:tabBar>

</xp:panel>

</xe:djxmRoundRectList>

Figure 10.14 shows how the Tab Bar appears in the documentPage at runtime. Notice that
the Edit button is showing and the Save button is not.

312 Chapter 10 XPages Goes Mobile

ptg7987094Figure 10.14 Mobile document in Read Mode.

Figure 10.15 shows the same mobile page when the Edit button is selected, which changes
the mode of the document to edit mode. Here the Save button becomes visible.

Hello Mobile World Tutorial 313

Figure 10.15 Mobile document in Edit Mode.

ptg7987094

Using the actionFacet in the Heading for Buttons

Action buttons like these, although not the Tab Bar buttons, could also be placed in the action-
Facet of the Heading control. Here they take on the mobile styling that’s typical for buttons
located at the top-right corner of the mobile page. Listing 10.17 shows these same Edit and Save
actions but in the header.

Listing 10.17 Action Buttons in a Header

<xe:djxmHeading

id=”djxmHeading2”

label=”Document Page”

back=”Back”

moveTo=”viewPage”>

<xp:this.facets>

<xp:panel

xp:key=”actionFacet”>

<xp:button

value=”Edit”

id=”buttonEdit”

rendered=”#{javascript:!document1.isEditable()}”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:changeDocumentMode

mode=”edit”>

</xp:changeDocumentMode>

</xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:button

value=”Save”

id=”buttonSave”

rendered=”#{javascript:document1.isEditable()}”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xe:moveTo

314 Chapter 10 XPages Goes Mobile

ptg7987094

direction=”Right to Left”

saveDocument=”true”

targetPage=”viewPage”

transitionType=”slide”

forceFullRefresh=”true”>

</xe:moveTo>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:panel>

</xp:this.facets>

</xe:djxmHeading

For the example shown in Listing 10.17, the panel used to contain the document datasource
also needs to enclose the Heading control. This is so the actions are performed on that datasource
and the buttons change their rendering dynamically based on that document.

Deep Dive into the Controls in the Extension Library, with Examples
of Their Use
It may surprise you as you read through this section that you may be familiar with many of the
controls mentioned. These are the same Extension Library controls that are used elsewhere in this
book, and they’re the same controls that are used in regular XPages applications. You can exploit
these same controls—with a few minor tweaks—for XPages mobile applications. That topic will
be described in this section.

Outline Control
The Outline control is perfect as a menu or a way to navigate through various pages. The typical
use of the outline is to display a menu of items, perhaps as a root screen or home page. A typical
example of this is shown in Listing 10.18.

Listing 10.18 Outline Control with Various Navigators

<xe:outline

rendererType=”com.ibm.xsp.extlib.MobileOutlineNavigator”

id=”outline1”>

<xe:this.treeNodes>

<xe:basicLeafNode

href=”#profile”

label=”My Profile: #{javascript:sessionScope.commonUserName;}”>

</xe:basicLeafNode>

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 315

ptg7987094

Listing 10.18 (Continued)

<xe:basicContainerNode

label=”Documents”>

<xe:this.children>

<xe:basicLeafNode

href=”#newTopic”

label=”New Topic”>

</xe:basicLeafNode>

<xe:basicLeafNode

href=”#allDocs”

label=”All Documents”>

</xe:basicLeafNode>

<xe:basicLeafNode

href=”#mostRecent”

label=”By Most Recent”>

</xe:basicLeafNode>

<xe:basicLeafNode

href=”#docsByAuthor”

label=”By Author”>

</xe:basicLeafNode>

<xe:basicLeafNode

href=”#tags”

label=”By Tag”>

</xe:basicLeafNode>

<xe:basicLeafNode

href=”#myDocs”

label=”My Documents”>

</xe:basicLeafNode>

</xe:this.children>

</xe:basicContainerNode>

</xe:this.treeNodes>

<xe:this.treeRenderer>

<xe:MobileAccordionMenu></xe:MobileAccordionMenu>

</xe:this.treeRenderer>

</xe:outline

Notice that <xe:outline> has its renderType attribute set to “com.ibm.xsp.
extlib.MobileOutlineNavigator”. This is an example of overriding the default render-
Type to provide a more appropriate styling for a mobile device. In many cases the mobile theme
does this automatically, but it may be overriden if you have an alternative rendering that you’d
prefer.

316 Chapter 10 XPages Goes Mobile

ptg7987094

The Tree Nodes <xe:this.treeNodes> define a group of options to click on, each one
of them a Basic Leaf Node xe:basicLeafNode in which the href property is the link to the
mobile page. Include a hash symbol (#) before the page name to avoid any future issues with redi-
recting and parameter passing. You can use a Basic Container Node xe:basicContainerNode
to create a group inside a single element in the outline when the developer might have a lot of
options and want to break it into sections so the user can read it more easily. Figure 10.16 shows
an example of this with the Documents section. Finally, the treeRenderer defines which way
to display the sections.

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 317

Figure 10.16 The home page of the Mobile Discussion template.

The My Profile label displays the username of the person logged in; a CSS styling is
applied to this “overflow: hidden”. This means if there is any overflow because of a long
name stretching past the end of the row, it will be obscured rather than pushing text down on top
of the next row.

As shown in Figure 10.16, all the functionality of the discussion template’s viewMenu is
replicated here, alongside a profile and new topic link. From this screen, the user can navigate to
all the major sections of the application.

The outline has a renderer applied to it; this is not the way it appears when it’s created. This
renderer is used as a standard control on smartphones and is how mobile users expect to navigate
through an application.

ptg7987094

An outline with the renderer and a single leaf node is a useful way to create a link to a new
page. In the document mobile page, in each reply the standard link has been replaced with this
link to ensure mobile users can interact with it and understand that it opens a new page.

Hash Tags
With the mobile controls, the developer can define multiple pages inside the one XPage. The
developer can set their navigation by appending a hash and then the name of the mobile page to
the name of the file, such as mobileHome.xsp#byAuthor.

Some controls include properties that accept a mobile page as an attribute and offer other
settings, such as the type of transition and the direction of movement.

Form Table Control (xe:formTable)
Form tables are an extremely easy way to make a detail entry or display form for a mobile device.
A form table can have many form rows, each of which can have controls such as a label and text
field added. See Listing 10.19.

Listing 10.19 Form Table Control

<xe:formTable

id=”formTable1”

formTitle=”#{profileDoc.enterWho}”

xp:key=”profile”

style=”font-size:14px; font-weight:normal;”

formDescription=”Profile document of user”>

<xe:formRow

id=”formRow1”

labelPosition=”none”>

<xp:image

id=”photo”

alt=”#{profileDoc.enterWho}”

height=”130px”

width=”130px”>

<xp:this.url><![CDATA[#{javascript:var imageName =
“profileNoPhoto-118px.png”;

var al:java.util.List =
profileDoc.getAttachmentList(“thumbnailUrl”);

if(!al.isEmpty()){

var lastItemIndex = al.size() - 1;

if(lastItemIndex > 0){var eo:NotesEmbeddedObject =
al.get(lastItemIndex);

imageName = eo.getHref();

}else{

318 Chapter 10 XPages Goes Mobile

ptg7987094

var eo:NotesEmbeddedObject = al.get(0);

imageName = eo.getHref();}}

return(imageName);}]]>

</xp:this.url>

</xp:image>

</xe:formRow>

<xe:formRow

id=”formRow3”

label=”Email: “

style=”word-wrap: break-word”>

<xp:link

text=”#{profileDoc.Email}”>

<xp:this.value><![CDATA[#{javascript:”mailto:” +
profileDoc.getItemValueString(‘Email’)}]]></xp:this.value>

</xp:link>

</xe:formRow>

...

</xe:formTable

The properties formTitle and formDescription are displayed in the top-left corner before
the actual rows are displayed, as a means of giving instructions and describing the action to take.
Each xe:formRow is going to be rendered as a row and in this case will contain a label and input
text that is connected to a Domino document.

When you’re running the sample in Listing 10.20, when the Edit button is selected, the
document datasource behind this document is set to Edit Mode and the input text boxes are
enabled; the user can change the content. The Edit button changes to a Save button.

Listing 10.20 Button with Change Dynamic Action

<xp:button

id=”buttonEdit”

value=”Edit”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:actionGroup>

<xp:changeDocumentMode

mode=”edit”

var=”profileDoc”>

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 319

ptg7987094

Listing 10.20 (Continued)

</xp:changeDocumentMode>

<xe:changeDynamicContentAction

facetName=”saveControl”

for=”dynamicContent4”>

</xe:changeDynamicContentAction>

</xp:actionGroup>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Also, the button causes a Dynamic Content control to switch the front end UI, so users can
press the Save button when they are finished editing.

Dynamic Content Control
Previously, it was mentioned that developers can use the Dynamic Content control to change such
things as groups of buttons. Dynamic content allows developers to specify multiple panels inside
the container and assign them values using the xp:key property. Then when the developers
define a dynamic control, they set which panel is the default. The default panel is loaded first;
using an event can change which panel is loaded thereafter. In Listing 10.20, the Edit and Cancel
buttons are on a panel, and Save and Cancel are on a panel that is not being rendered. When the
Edit button is clicked, the changeDynamicContentAction action is fired, and a new panel key is
specified (see Listing 10.21).

Listing 10.21 Dynamic Content Example

<xe:dynamicContent

id=”dynamicContent2”

defaultFacet=”viewContent”>

<xp:this.facets>

<xp:panel

id=”panel4”

xp:key=”viewContent”>

.

</xp:panel>

<xp:panel

id=”panel6”

xp:key=”editContent”>

..

</xp:panel>

</xp:this.facets>

</xe:dynamicContent

320 Chapter 10 XPages Goes Mobile

ptg7987094

Dynamic controls are simple to use. The developer specifies panels inside with
xp:key=”” and a name. The default one is displayed first. Then a control in that panel or some-
where else on the page can call a changeDynamicContent action, where the developer can sup-
ply the name of the dynamic control and the name of the facet to change it to.

If the user created the document, an Edit button appears. Clicking the Edit button switches
to an edit content section with text boxes and Save and Cancel buttons.

The dynamic control can be useful, because another screen doesn’t have to be rendered.
Only the section that is changing needs to be loaded, which can save resources and time. This
control also provides different functionality to users.

The document view screen uses the same XPages code taken from the Discussion template
to display the parent document and its replies. The only difference is that the Read More link
was replaced with an outline with a single entry to make it more usable on a mobile device.
Another issue was limiting the number of indents that are made when you reply to a response to a
reresponse. The desktop version has no limit on indents, but a mobile device is limited to four
indents. Any replies after that are kept at the same level as the one before it.

Data View Control
Data Views are much better than tables for displaying data on mobile devices. Tables aren’t
appropriate in this case because of all the formatting that takes place; the formatting is generally
too wide to see most of it, or it’s condensed to the point that the user can’t read it. Data View takes
care of this because the content is fit to the width of the device. Table 10.1 shows the column
types and their uses.

Table 10.1 Column Types and Their Uses

Column Types Use

Category Column This is used to group items. For example, the By Most Recent View from the
Discussion Template groups data by creation date.

Summary Column This column is placed to the left of the row and is its main focus. For example,
in most of the Data Views in this application, the summary row is the subject of
the post.

Icon Column This column is used to assign icons to a row.

Extra Column There can be multiple extra columns that are placed in the order they are
defined. For example, adding a second column after the first will display on the
right and so on.

However, the layout of the Data View is a little bit different when a renderer is applied to it.
In the All Documents page, the summary row is in the top left and the extras appear beneath it.

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 321

ptg7987094

When developers are using a category column, such as the ones used in Most Recent or By
Author from the Discussion template, they need to make sure the expand level is set correctly.
(Not including it returns a default value, which is acceptable.) The expand level is a property that
denotes whether replies are included; only the parent documents are displayed, but anything cat-
egorized won’t display if the expand level is set not to allow replies (see Listing 10.22).

Listing 10.22 Expand Level Example

<xp:this.expandLevel>

<![CDATA[#{javascript:if(sessionScope.ec==null ||
sessionScope.ec==0){return 1}{return 0}}]]>

</xp:this.expandLevel>

The developer can add facets to a row. On the All Documents page on the Discussion XL
template’s mobile application, a panel has been added to the detail facet and text has been added
to the panel. The panel is the abstract of the post content.

More Link
Every Data View page should have a More link at the bottom that is equivalent to the desktop’s
Next button. With a Data View, the developer specifies how many rows are displayed at the start.
The developer should try not to have too many rows, because it will take longer to load the first
view the user wants to see. In the example in Listing 10.23, the first 10 rows are loaded, and each
time the user presses More, an additional 5 are added to the view. This task is done relatively eas-
ily using the addRows tag (xe:addRows). The code shows the addRows tag, but it also deter-
mines whether the More link needs to be displayed.

Listing 10.23 More Link Example

<xp:this.facets>

<xp:link

escape=”true”

text=”More...”

id=”link6”

xp:key=”pagerBottom”>

<xp:this.rendered>

<![CDATA[#{javascript:

var num = parseInt(dominoView2.getTopLevelEntryCount());

if(num > 10)

return true;

else

return false;}]]>

322 Chapter 10 XPages Goes Mobile

ptg7987094

</xp:this.rendered>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>

<xe:addRows

rowCount=”5”

for=”dataView2”

disableId=”link6”>

</xe:addRows>

</xp:this.script>

</xp:eventHandler>

</xp:link>

</xp:this.facets>

This code adds a label as the bottom-left facet of the Data View. Some of these Domino
views are categorized; the categorized rows count as rows when Add Rows is used.

NOTE

The Data View never adds blank rows. If you have an addRows tag that says to add five
rows and only three are left, only three rows are added.

Filter Data
In a similar way to the desktop version, the developer can specify a filter for the data that is
applied to the Category column: categoryFilter. So, for example, in Listing 10.24, the My Docu-
ments page is similar to the By Author page with the exception of adding a category filter of the
username of the logged-in user. The result is one category being returned instead of many.

Listing 10.24 Category Filtering Example

<xe:this.data>

<xp:dominoView

var=”dominoView”

viewName=”xpAuthorPosts”

dataCache=”full”

categoryFilter=”#{javascript:sessionScope.authorName}:Main”>

</xp:dominoView>

</xe:this.data>

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 323

ptg7987094

Multiple Controls
The last thing you need to know about Data Views is how to combine them with other controls. A
Data View is like any other control; it doesn’t need to be the size of the page. Listing 10.25 is an
example of a form table and two Data Views. The user can click on a username onscreen to view
the details of that user.

The first part of the listing is the same as the Profile View except that it searches for the
username that was clicked on. Two Data Views must exist, because the Data View returns just one
of the sections at a time when it’s filtering the categories. Viewing both sections side by side
requires the developer to have two views.

Listing 10.25 Multiple Controls

<![CDATA[#{javascript:

var nNotesName:NotesName = session.createName(sessionScope.authorName);

var sCanonicalName:String = nNotesName.getCanonical();

var nameAbbreviated = nNotesName.getAbbreviated();

var text = res.getString(“authorProfile.description”) + “: “ +
nameAbbreviated;

//Details

var db:NotesDatabase = database;

var view:NotesView = db.getView(VIEW_PROFILES);

view.setAutoUpdate(false);

var entry:NotesViewEntry =
view.getEntryByKey(nNotesName.getCanonical(), true);

if (entry != null)

{

var cols = entry.getColumnValues();

//viewScope.mAlocation = cols[location];

viewScope.mAemail = cols[COLUMN_EMAIL];

viewScope.mAphone = cols[COLUMN_PHONE];

viewScope.mArole = cols[COLUMN_ROLE];

viewScope.mAgoal = cols[COLUMN_GOAL];

viewScope.mAprofileFound = true;

}

else

{

viewScope.profileFound = false;

}

return text;}]]>

324 Chapter 10 XPages Goes Mobile

ptg7987094

Move to Mobile Page Action
Similar to a redirect with the understanding of how the hash tags work, the Move To
(xe:moveTo) mobile page action allows the developer to specify properties such as the type of
transition the developer would like to see and the direction it moves. The target page is the mobile
page (for example, document would be the target, not mobileHome.xsp#document). See
Listing 10.26.

Listing 10.26 Move To Example

<xp:this.action>

<xe:moveTo

transitionType=”slide”

direction=”Left to Right”

forceFullRefresh=”true”

targetPage=”replyThread?action=openDocument

&documentId=#{javascript:dominoDoc.getNoteID()}

&parentNoteID=#{javascript:dominoDoc.getNoteID()}”>

</xe:moveTo>

</xp:this.action>

One important property is forceFullRefresh. Sometimes when you’re moving between
pages, you want nothing to be saved. Without forceFullRefresh, after entering a new topic and
returning to the screen, the previous elements you entered will still be there, which could affect
security because of passwords and usernames.

The Move To action also allows the user to save the document. In other words, this action
can leave the current screen and update a document.

Heading (xe:djxmheading)
The heading is just a normal control that displays the title of the mobile page and can have a Back
button declared to return to a previous page. The Heading also has events. Developers can’t apply
an event handler to this type of control, so they have to add content to the events the same way as
a property. These events can be useful for running code similar to what was loaded before/after
page load that is missing from defining all pages in the same file (see Listing 10.27).

Listing 10.27 A Mobile Page Heading

<xe:djxmHeading

id=”djxmHeading1”

label=”Home”

back=”Home”

moveTo=”home”>

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 325

ptg7987094

Listing 10.27 (Continued)

<xp:this.onShow>

<![CDATA[#{javascript:

sessionScope.from = “allDocs”;

sessionScope.fromName = “All Docs”;

}]]>

</xp:this.onShow>

</xe:djxmHeading

This example shows a heading defined with a Back button to the home page. The onShow
event updates a session variable that the page currently on is the all documents page. Using this
session variable is not required; it is an example of using dynamic breadcrumbs on the applica-
tion. That is, instead of hard-coding back buttons, the developer could query this session variable.

Large Content
One problem with making a mobile version that connects to the same datasource as a desktop is
that the desktop version can have a rich text box, meaning large tables can be in the data. That, in
turn, can cause a mobile page that displays it to stretch out. A dijit, xsp.largeContent, has
been created to handle this problem; Listing 10.28 is an example of how to call it.

Listing 10.28 Outline Control with Various Navigators

<div

id=”largeContentDiv”

dojoType=”xsp.largeContent”

content=”#{dominoDoc.Body}”

url=”largeContent#{sessionScope.backURL}”

from=”document”>

</div>

The example in Listing 10.28 contains all three available properties: content is used to
specify the content to be displayed; url is used to specify the URL to the page that will display
this content; and the From property is used to tell which mobile page that the transition will be
called on (that is, the mPage ID).

The control takes the content that has been given to it and renders it in a div. Then it looks at
this div to determine its scroll width. If the width is greater than a threshold, a button is rendered.
(The div is set to hide overflow, so it won’t stretch the screen if it’s wide.) The button is linked to
the page defined by the URL that’s passed in. This way if the content is large, it gets cut off, and
the user sees a button to view the content on a separate page that has no mobile controls. Nothing
will be affected by the size of the content.

326 Chapter 10 XPages Goes Mobile

ptg7987094

The xsp.largeContent dijit is found only in the Discussion XL and TeamRoom XL
templates. It is not distributed as part of the ExtLib plugins. To use the xsp.largeContent dijit,
developers must implement this feature in their own NSF.

Using Dojo to Modify Controls
Dojo is a powerful tool to have alongside XPages. Using dojo.query, you can easily access ele-
ments using a simple query syntax that’s based on CSS selectors. This allows you to quickly per-
form operations on one or more elements.

For example, if you wanted to add ‘[XPages]’ to every link on the page, you could use
the following:

dojo.query('a').addContent('[XPages]');

Selecting with the ID selector is not recommended. Because of the way XPages renders the
underlying HTML, it can be difficult to predict the value of an ID unless you calculate it on the
server. That’s why it’s often easier to use a unique styleClass instead.

What follows is an example of a unique styleClass, where we hide a particular label row:

dojo.query('.labelRows1').style('display', 'none');

XPages Mobile Phone Application Gotchas
Developers need to remember numerous things when developing Mobile XPages application as
opposed to regular XPages applications. For the most part, they can continue as they are, devel-
oping XPages, and they will work on a mobile device, with a couple of mobile rendering stylings,
of course. However, there are a few things to look out for when developing XPages for mobile.

The Differences Between Web App and Mobile App Layout
There are a number of differences between XPages web applications and XPages mobile applica-
tions that don’t always translate between the two.

Tables

Tables don’t lend themselves well to mobile applications. A lot of formatting is applied to views
like All Documents and Most Recent, leaving superfluous blank space. Mobile applications just
don’t have room for that blank space because of their limited screen size. Trying to make the con-
tent fit would mean that little of the data would be displayed.

The Data View component in the Extension Library is the mobile phone’s equivalent of dis-
playing data in a table. This allows developers to render the same data but in a way that fits the
screen. More importantly, it is the standard means of displaying data that mobile users will be
familiar with.

XPages Mobile Phone Application Gotchas 327

ptg7987094

Menus

In desktop applications, menus generally go along the left or the top. (The Discussion template
defines a component called a menuView that is in the top-left corner.) This layout doesn’t suit
mobile applications, however, because the controls would be quite small. The mobile equivalent
involves using an outline and giving it a rendererType to display it as a standard mobile
control.

Tag Clouds

The Discussion template uses tag clouds along the left to filter authors who have left posts and
tags that people have assigned to their post. This template renders in a mobile application, but if
it’s not the width of the screen, it can be quite hard to use. When the template is that size, it is
visually poor as a design element for mobile.

Link Tags

Link tags don’t lend themselves well to mobile applications. That can become a problem when
there are many close to each other, because they can be hard to click with a finger on a touch
screen. Mobile users are used to seeing either a button or an outline with a single basic leaf node.
Applications should be tailored to the market that will be using them.

Custom Controls

With mobile applications, defining each mobile page as a Custom Control can be useful. Defining
them in a single file can make it hard to navigate the code searching for a problem. Simply delete
everything that would have gone between the Mobile Page control tags (<xe:appPage>) and
place it in a Custom Control. Then add back the Custom Control reference between the same
mobile page. No further changes are needed.

The Discussion and TeamRoom template applications use this technique, which is shown
in Listing 10.29.

Listing 10.29 Mobile Pages Containing Custom Controls

<xe:singlePageApp

id=”DiscussionApp”

selectedPageName=”mostRecent”>

<xe:appPage

resetContent=”true”

id=”home”

pageName=”home”>

<xc:mobile_home></xc:mobile_home>

</xe:appPage>

<xe:appPage

resetContent=”true”

328 Chapter 10 XPages Goes Mobile

ptg7987094

preload=”true”

id=”profile”

pageName=”profile”>

<xc:authorProfileForm></xc:authorProfileForm>

</xe:appPage>

<xe:appPage

resetContent=”true”

preload=”true”

id=”newTopic”

pageName=”newTopic”>

<xc:mobile_newTopic></xc:mobile_newTopic>

</xe:appPage>

...

</xe:singlePageApp>

Setting a Right Navigation Button

On the iPhone, the developer can define a right navigation button, which is the same as the Back
button, to a Save or Edit button. The Heading control contains a callback or editable area called
actionFacet to allow the developer to locate actions on the top right of a mobile page, as shown in
Listing 10.30.

Listing 10.30 Right Navigation Button Example

<xp:this.facets>

<xp:button

value=”Save”

id=”button2”

xp:key=”actionFacet”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xe:moveTo

saveDocument=”true”

targetPage=”#{javascript:sessionScope.from}”

direction=”Left to Right”

transitionType=”slide”

forceFullRefresh=”true”>

</xe:moveTo>

XPages Mobile Phone Application Gotchas 329

ptg7987094

Listing 10.30 (Continued)

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:this.facets>

What Stays the Same?
There are a number of techniques the XPages developer will not have to rethink when developing
XPages mobile applications.

Repeat List/Table Used to Display Replies

It was previously mentioned that you shouldn’t really use tables; however, there is one exception.
One section of the Discussion application displays replies. A table can be used to lay out the con-
trols placed on that page. Using a repeat to display multiple replies works well on a mobile
device. What’s more, that entire section of code can nearly be copied and placed in another.

JavaScript

With a few exceptions, any JavaScript—whether in a script file or used in CDATA sections, for
example—will not need to be changed. The same code will work in both web applications, be it
on a desktop or mobile device.

Events

For the most part, events used in buttons and links will work if the developer can change the
URL, because it won’t have hash tags for XPage mobile pages. Sometimes it’s necessary to
change the event to a Move To mobile page action.

Domino Documents

Domino document datasources port quite well from a regular XPages app to an XPages Mobile
app. Developers shouldn’t run into as many problems as with JavaScript, because they can define
a Domino document inside a mobile page. A document is applied to the container it is in. So, for
example, creating one datasource inside a panel means only objects in that panel can access it.

What Has Changed?
However, there are a few areas the developer needs to be mindful of when hoping to bring exist-
ing XPages functionality to the mobile application.

330 Chapter 10 XPages Goes Mobile

ptg7987094

Rich Text

Traditional and XPages Rich Text content is not rendered inside an XPage mobile application
because it becomes incomprehensible when it’s scaled down to a small screen even though the
rich text will display in read mode. Generally, the solution is to replace the rich text control with a
multiline editbox (xp:inputTextarea), but that solution means that the user won’t have fea-
tures associated with a rich text format.

NOTE

If developers intend to use some kind of text box in place of a rich text editor, they need to
set the escape property to false if both applications are connecting to the same data-
source. Otherwise, if the desktop version has a rich text box allowing for table creation, the
user will see the tags used to create it rather than the table itself.
Escaping is the default behavior, and removing that option is likely to cause security con-
cerns. That’s why it’s recommended that this text be run through the Active Content Filter if
escaping is turned off. The Active Content Filter is configured through the htmlFilter and
htmlFilterIn properties of the input control in XPages.

Tablet devices in general have a bigger screen, so rich text can be displayed more easily
without having to resort to using the “large content technique” as mentioned previously in this
chapter. Here rich content should display in Read Mode and Edit Mode although this does
depend on the operating system of the tablet.

NOTE

At the time of writing, support for rich text editing in mobile browsers is still very limited;
only the very latest devices have the capabilities to do so. In addition, an issue in Notes
Domino 8.5.3 with the XPages runtime’s wrapping of the CKEditor editor, the default rich
text editor in XPages, is that it isn’t possible to edit rich text in a mobile device. The sug-
gested workaround for this issue is to use the Dojo rich text editor in place of the CKEditor.
IBM aims to address this issue in future releases.

Renderers
Certain components can have a renderer attached to them to make them display differently. For
example, if you add an outline and give it leaf nodes, it displays something like a bulleted list.
However, adding com.ibm.xsp.extlib.MobileOutlineNavigator to the rendererType
property makes it display as a standard mobile tableView object, which is normally used on
mobile devices to navigate pages or as a main menu.

XPages Mobile Phone Application Gotchas 331

ptg7987094

File Upload
File upload doesn’t work because mobile directories aren’t the same as desktop directories, and
for the most part, the file system on mobile devices isn’t accessible through the browser or
web view.

Breadcrumbs
For mobile applications, developers must provide a means of moving back to previous screens.
The mobile header tags allow developers to specify a Back button and a link to the given page.
There are two ways to accomplish this:

• Hard-code Back buttons to force a certain flow if the layout of the app means that a
given page is the only possible one to return to.

• Use JavaScript and session scope to keep track of the previous page, and dynamically
generate the Back button on the page’s creation.

Setting Back Button
Setting the Heading property moveTo to “document” is an example of hard-coding the Back
button. It is recommended that this should be calculated dynamically as shown in Listing 10.31.
Here the property is given a session scoped variable “from” to allow this button’s destination to
be determined dynamically.

Listing 10.31 Setting the Back Page with JavaScript

<xp:this.moveTo>

<![CDATA[#{javascript:var from = sessionScope.get(“from”); return
from;

}]]>

</xp:this.moveTo>

Setting Back Title
Similarly, backButtonTitle and back are the properties for setting the titles in the given controls.
The developer can use the same session variable for the title, but it might not make a good design
because of the names assigned.

Setting Current Page
The idea behind the breadcrumb is that every time the user navigates to a new page using some
sort of onLoad method (maybe of a component), the user accesses the session scope variable and
modifies it to the current page. Therefore, when the following page loads, it reads the last screen.

#{javascript:sessionScope.from = “docsByAuthor”; sessionScope.fromName
= “By Author”;

332 Chapter 10 XPages Goes Mobile

ptg7987094

Sometimes it can be an issue to refresh the current page. Going back to a page may not
allow it to run again because it is not being reloaded. An example of a place to use this is using an
execute script action inside a control during an event such as a click.

Conclusion
The new mobile XPages controls in the ExtLib have broken new ground for Domino application
development. They pull this technology into the present day and beyond, while still keeping to
the core Domino philosophy of building powerful applications rapidly. There are many chal-
lenges ahead while mobile standards converge. The XPages mobile controls have met these chal-
lenges, and future developments may even see these features lead the way.

Conclusion 333

ptg7987094

This page intentionally left blank

ptg7987094

335

C H A P T E R 1 1

REST Services

REpresentational State Transfer (REST) is a set of principles, introduced in 2000 by Roy Field-
ing (http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm), that define a com-
munication protocol used when constructing a web application. REST exploits the power and
openness of HTTP using simple and clean calling conventions. It is easy to look at a REST state-
ment and discover the method for data access. Its simplicity also makes it easy to use in basic
scripting. Typically, REST references today describe a web service that uses the HTTP protocol
in conjunction with a custom application programming interface (API) and XML or JSON
(JavaScript Object Notation) to alter or query the state of a remote resource.

Beginning with IBM Lotus Notes Domino 8.5.3, a REST service provides a way of having a non-
Domino server accessing Domino data without installed software and without using Corba. The
Domino REST services conform to JsonRestStore’s expectations for data structure and let the
developer quickly wire an application to data components such as a Dojo Data Grid, iNotes List,
iNotes Calendar, or a conventional XPages view container like a view panel, which render these
REST services directly in an XPage.

The REST services are customizable by use of properties and parameters. These parameters
allow the user fine-grained control over the data and the output. If the existing services cannot
satisfy a specific use case, a developer can modify the source code available on OpenNTF to gen-
erate the desired implementation and output. The XPages Extension Library also includes
Apache Wink for REST services. This allows the developer a way to produce custom REST ser-
vice without exposing the underlying physical document model.

REST is important to the new Web 2.0 programming model. New technologies like OpenSocial
and Android are embracing REST services to allow remote clients access to server-side data. The
XPages Extension Library has RESTful services in place, opening a whole range of exciting data-
handling options for the XPages developer.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

ptg7987094

336 Chapter 11 REST Services

REST Services in the XPages Extension Library
The basic REST service design establishes a mapping between Create, Read, Update, and Delete
(CRUD) operations to a protocol. Although HTTP is not required, most REST services are, in
fact, implemented using the HTTP methods POST, GET, PUT, and DELETE, as in Table 11.1.

Table 11.1 HTTP Methods Mapped to CRUD Operations

HTTP Methods CRUD Operations

POST To create a resource on the server

GET To read a resource on the server

PUT To update a resource on the server

DELETE To delete a resource on the server

The XPages Extension Library now includes a new set of RESTful, which follow the first
principles of REST, services collectively called Domino REST services. These REST services
allow developers access to the following Domino objects in JSON format (see Table 11.2).

Table 11.2 List of Domino REST Services and the Supported CRUD Operations

Domino REST Services Supported CRUD Operations

Database Collection Service Read the list of databases on the server

View Collection Read the list of views and folders in a database

View Service Create, read, update, and delete the entries in a view or folder

View Design Service Read the design of a view or folder

Document Collection Service Read the list of documents based on a query

Documents Service Create, read, update, and delete documents

There are two ways to consume Domino REST services: access them from an XPages
REST Service control, or access them as a built-in service. When you access them as a built-in
service, they are called the Domino Data Service. Because the same service is being accessed, the
user can expect consistent output regardless of how the service is accessed. The services provided
by the REST Service control are known as extensions to the REST service. The REST Service
control also provides the ability to use additional services that are not included with the Domino
Data Service.

Each of these REST services has a unique set of properties or parameters you can set to
customize the service’s behavior. It is important to note that the same parameters are exposed as
properties of the REST Service control that can be set in the Designer user interface (UI), as

ptg7987094

shown in Figure 11.1. The properties of the REST Service control change depending on the ser-
vice or resource selected. For example, a developer can search a view using the search parameter
or set the search property exposed through the REST Service control. The parameters and output
available for each service listed in Table 11.2 are described in detail near the end of this chapter in
the section called “Accessing Data Services from Domino as a Built-In Service.”

REST Services in the XPages Extension Library 337

Figure 11.1 The properties for View Service displayed in the Domino Designer UI of the REST
Service control.

In most cases, a developer would want to use a REST Service control in an XPage applica-
tion and use the built-in standalone service in an application that does not use XPages. A Dojo
application is not an XPage application, but it may use the standalone service to access Domino
data.

In addition to the services described, there is a way for Java developers to create custom
REST services. This may be required if the REST services provided with the XPage Extension
Library do not meet the particular needs of a developer. The developer can create a custom REST

ptg7987094

service using the REST Service control or by creating a custom servlet or by using the DAS.
More details on developing a custom REST service will be described later in this chapter.

Many of the examples in this chapter are referencing content from the XPages Extension
Library Demo database (XPagesExt.nsf) that is part of the download from OpenNTF. It includes
a REST tab that has several samples that demonstrate the REST Data Service in action. These
samples are highlighted further along in this chapter.

XPages REST Service Control (xe:restService)
One easy way to make the REST services available is to use the predefined XPages REST Service
control (xe:restService). The data from the REST services extensions is exposed to other
controls on the page that directly reference the REST Service control. For example, a Dojo Data
Grid can reference a REST Service control on the same page. The service also becomes available
outside the page through a well-known URL.

The REST Service control is a generic one that handles the communication with the run-
time layer. But the actual service is provided via a complex type added as a property to the con-
trol. There is one complex type implementation per service implementation. You can access the
Domino REST services resources from the XPages REST Service control. The REST Service
control provides a common development UI and means of accessing the selected REST services
extensions.

The REST Service control has two roles. It generates markup at design time, and it acts as a
server at runtime. The markup generated at design time is a fragment of JavaScript that creates a
Dojo store connecting to the service. At runtime, the Dojo store can be accessed via the REST
Service control in a few ways.

In the context of an XPage, at runtime, the REST Service control looks for other components
bound to it. If the control finds those components, it delegates the entire request to the other compo-
nents. Incidentally, it does the same if the request contains a $$axtarget parameter in the query
string. If this parameter refers to a JSF client ID, the component is invoked within its full context.

You can use the pathInfo property to access the Dojo store directly without XPages con-
text. The pathInfo property will be explained in more detail later in the chapter.

Standard Attributes for REST Service Control

Service

From the REST Service control, the developer can select one of the many REST services exten-
sion types listed in Table 11.3. These services are described in detail in later sections of this
chapter.

338 Chapter 11 REST Services

ptg7987094

Table 11.3 REST Services Extension Types

REST Service Control Extension Type

Database Collection Service xe:databaseCollectionJsonService*

View Collection xe:viewCollectionJsonService*

View Service xe:viewJsonService*
xe:viewItemFileService
xe:viewJsonLegacyService
xe:viewXmlLegacyService
xe:calendarJsonLegacyService

View Design Service xe:viewJsonService*

Document Collection Service xe:documentJsonService*

Documents Service xe:documentJsonService*

(*Denotes that the service is also available as a built-in service)

id

The data is exposed to other controls using the id property of the REST Service control.

pathInfo

The REST service data is exposed to an HTTP request using the pathInfo property of the REST
Service control. When a pathInfo is used, the REST service is not executed in any particular con-
text. It is more efficient to access the REST data without a context if the context is not relevant to
the application. The following is an example of using the pathInfo in an HTTP request URL:

http://{host}/{database}/{xpage}/{pathInfo}?{optional parameters}

When the REST control is accessed in the context of an XPage, there is additional overhead
base on its relationship with the other controls on the page. For example, if the REST control is
used as the datasource of the Repeat control, then the repeat will be handled. Although it is
unlikely, a developer can access the REST control in the context of the page by using the
$$axtarget parameter in the query string. In most instances, a developer will use the pathInfo
to access the REST control data without the overhead of the XPage.

XPages REST Service Control (xe:restService) 339

NOTE

Using pathInfo is faster than $$axtarget from a runtime perspective, because it doesn’t
require a particular context. It is also the only reliable way to expose the service to other
pages. Use the pathInfo property when accessing data outside the context of an XPage.

ptg7987094

ignoreRequestParams

The REST Service control exposes a subset of the properties in Designer that can be set from
HTTP as parameters. You can ignore the HTTP parameters by setting the REST Service control
property ignoreRequestParams to true.

preventDojoStore

You can use the REST Service control property preventDojoStore to prevent the Dojo store
from being generated as part of the page markup.

NOTE

The Dojo store class depends on the service that is being selected.

Standard Attributes for Each Service Type
Depending on the REST Service control selected, the developer receives additional properties
that map to the parameter that service supports. For example, the view service supports setting
the form field on new documents. It can be set as a URL parameter form or as a REST Service
control property formName. In most cases, the name of the service property matches the
parameter.

Hello REST World 1: Using the pathInfo Property

Example of an XPage that Uses the REST Service Control
This section walks through the steps of how to build and reference an XPage that uses the REST
Service control to access a Domino REST service. You will access the View Service
(xe:viewJsonService) using the pathInfo property of the REST Service control. You can use
the same steps to access any of the other REST data services.

From Domino Designer, add the REST Service control to a new XPage called MyXPage.
Then enter myPathInfo for the pathInfo property of the REST Service control. The pathInfo is
used in the URL to access the REST service from an HTTP request. Next, select the REST ser-
vice by selecting xe:viewJsonService for the service property of the REST Service control.
When the service is selected, the properties available for the REST service change based on the
service selected. Enter AllContacts for the ViewName property. Now set the property default-
Columns to true; the default is false. Only the system columns are included in the output.
Setting this property to true outputs all the columns. You can view the generated XPage markup
in the Source tab; see Listing 11.1.

340 Chapter 11 REST Services

ptg7987094

Listing 11.1 XPage Markup of an XPage That Uses the REST Service Control

<xe:restService

id=”restService1”

pathInfo=”myPathInfo”>

<xe:this.service>

<xe:viewJsonService

viewName=”AllContacts”

defaultColumns=”true”>

</xe:viewJsonService>

</xe:this.service>

</xe:restService>

To initiate an HTTP GET request using the pathInfo property, enter the following URL
from a browser:

http://myDominoServer/XPagesExt.nsf/MyXPage.xsp/myPathInfo

You use the pathInfo property (myPathInfo) to access the REST service from an HTTP
request; otherwise, the XPage is displayed. The response in JSON is a list of entries in the All-
Contacts view in JSON format. The content looks similar to the response described in the “View
JSON Service” section later in this chapter.

Hello REST World 2: Computed Column to Join Data

Example of a REST Service Control with a Computed Column
You can use the XPages REST Service control to create computed columns. Computed columns
allow you to use JavaScript to do two things: create an additional column that does not exist in the
view, and access data and formula values. The XPages Extension Library sample REST_Dojo-
GridJsonRest.xsp contains a computed column called ShortName. Here a short name is com-
puted by getting the text left of the @ from an existing column value Email.

Now you’ll learn how to build the computed column that looks up the state name in a dif-
ferent table from the state abbreviation. Start by setting the var property of the service
(xe:viewJsonService) to entry, which represents the view entry. Then add a column
(xe:restViewColumn) to the columns (xe:this.columns) property of the REST Service
control. Set the name property to StateName, and set the value property to a computed value
using the script editor. This sample exploits the function @DbLookup, which looks in the speci-
fied view (or folder) and finds all documents containing the key value in the first sorted column
within the view. Specifically, you need to sort the first column (Key) in the AllState view in the
XPage Extension Library sample database so the lookup will work. You can view the generated
XPage markup in the Source tab (see Listing 11.2).

Hello REST World 2: Computed Column to Join Data 341

http://myDominoServer/XPagesExt.nsf/MyXPage.xsp/myPathInfo

ptg7987094

Listing 11.2 XPage Markup of a REST Service Control with a Computed Column

<xe:restService

id=”restService1”>

<xe:this.service>

<xe:viewJsonService

viewName=”AllContacts”

defaultColumns=”true”

var=”entry”>

<xe:this.columns>

<xe:restViewColumn

name=”StateName”>

<xe:this.value><![CDATA[#{javascript:

var state = entry.getColumnValue(“State”)

if(state) {

return @DbLookup(“”, “AllStates”, state, “Name”)

}

return “”

}]]></xe:this.value>

</xe:restViewColumn>

</xe:this.columns>

</xe:viewJsonService>

</xe:this.service>

</xe:restService>

Hello REST World 3: REST Service in a Data Grid

Example of Binding a Grid to a REST Service Control
This section explains how to bind a Dojo Data Grid (xe:djxDataGrid) control to the REST
Service control. Place the Dojo Data Grid on the XPage and set the storeComponentId to rest-
Service1. Next, add Dojo Data Grid Column (xe:djxDataGridColumn), and set the field prop-
erty for each column displayed in the grid. For example, to display the Email column, set the
field property of the column to Email. You can also display the computed column created previ-
ously. Simply adding another column and setting the field property of the column to StateName
displays the computed column. The pathInfo property of the REST Service control is not rele-
vant when binding to a control like a grid. You can view the generated XPage markup in the
Source tab (see Listing 11.3).

342 Chapter 11 REST Services

ptg7987094

Listing 11.3 XPage Markup of Dojo Data Grid Bound to the REST Service Control

<xe:djxDataGrid

id=”djxDataGrid1”

storeComponentId=”restService1”>

<xe:djxDataGridColumn

id=”djxDataGridColumn1”

field=”EMail”>

</xe:djxDataGridColumn>

<xe:djxDataGridColumn

id=”djxDataGridColumn2”

field=” StateName”>

</xe:djxDataGridColumn>

</xe:djxDataGrid>

Domino REST Service from XPages Samples
As mentioned previously, a good resource for using Domino REST services from XPages is the
sample database XPagesExt.nsf, which is included with the XPages Extension Library down-
load. This sample application includes a REST tab that has several samples demonstrating the
REST Data Service, as shown in Figure 11.2. You can open the samples in a browser and in
Designer. They will inspire you to use them your own applications.

Domino REST Service from XPages Samples 343

Figure 11.2 REST samples.

ptg7987094

Data Service
The Data Service page contains an example that demonstrates each of the services included with
the Domino Data REST service. A button launches a URL that references each service from a
REST Service control, as shown in Figure 11.3. To execute the sample, click its button, and the
JSON output of the associated service is displayed. You can use the sample output to aid develop-
ers who intend to parse the JSON to create RESTful applications.

When you click the Database Collection button, it emits the JSON output from the Data-
base Collection JSON Service. Specifically, this is a JSON representation of the databases on
the server. Clicking the View Collection button results in JSON output for views and folders in
the sample database. To get the content of a view (from View Collection JSON Service) or the
design of a view, select the view in the drop-down and click View Entries Collection or View
Design Collection, respectively. Similarly, you can get content of a document in JSON by select-
ing a document UNID from the drop-down and clicking the Document button. You can use the
Document Collection JSON Service to execute a full text search of the database by entering a
query string in the text field and clicking the Document Collection button.

344 Chapter 11 REST Services

Figure 11.3 Data Service.

ptg7987094

Data Services—Contacts and All Types
The Data Services—Contacts and All Types pages contain examples of custom and legacy ser-
vices. Like the Data Service example, a button launches a URL that references the service
described. Click the button for the sample, and the JSON or XML output of the associated service
is displayed. These examples are targeted to both legacy application developers and custom
application developers.

XML output for views has been a feature of Domino for more than a decade. Several years
ago, the feature was enhanced to support JSON output. The buttons for Legacy ReadView-
Entries demonstrate how to call the existing ReadViewEntries with XML and JSON format. In
addition, new implementations for these legacy services, called viewXmlLegacyService and
viewJsonLegacyService, are provided in Java. They emulate ReadViewEntries as XML and
JSON, respectively. Applications that depend on ReadViewEntries continue to work, and now
even more options are available. In fact, if the Java implementation of ReadViewEntries does not
suit a developer’s needs, the Java code can be modified.

In rare instances, some of the Data Services provided may not suit a developer’s needs. In
this case, a developer with Java experience can choose to create a Custom Database Servlet or a
Custom Wink Servlet. A Custom Database Servlet is a Java class that can be added to a database
design. The servlet typically handles incoming HTTP requests by delegating to one of the REST
service classes in the extension library. A Custom Wink Servlet is the most advanced type of
REST service. The open source Apache Wink project defines a service. The servlet is contained
in a plug in that is deployed directly to Domino’s OSGi framework.

Dojo Grid Using JSON Rest Data Services
The Dojo Grid Using JSON Rest page contains an example that demonstrates a Dojo Data Grid
referencing a REST Service control on the same page (see Figure 11.4). The REST Service con-
trol uses xe:viewJsonService to access the AllContacts view. The data from the REST ser-
vices is exposed to grid control using the id property of the REST Service control. Specifically,
the storeComponentId of the xe:djxDataGrid is set to the id (restService1) of the REST Ser-
vice control. The contents of the AllContacts view are then displayed in the grid.

Domino REST Service from XPages Samples 345

ptg7987094
Figure 11.4 Dojo Grid calling JSON REST services.

You can update the data in the grid and then save it to the database. Because you are access-
ing a view, you can update only the columns that reference items. This page also shows a pure
Dojo dialog (from the New Item button) that is only loaded once and keeps the Server-Side com-
ponents after it is closed. You can use JavaScript to create a new item in the database using Dojo
REST Store. The View JSON Service is shown in Listing 11.4.

Listing 11.4 View JSON Service Example

var firstName = dijit.byId(‘#{id:dlgFirstName}’).getValue();

var lastName = dijit.byId(‘#{id:dlgLastName}’).getValue();

var email = dijit.byId(‘#{id:dlgEMail}’).getValue();

var city = dijit.byId(‘#{id:dlgCity}’).getValue();

var newItem = {

“FirstName”:firstName,

“LastName”:lastName,

“Email”:email,

“City”:city

};

var grid = dijit.byId(‘#{id:djxDataGrid1}’);

var store = grid.store;

store.newItem(newItem);

346 Chapter 11 REST Services

ptg7987094

store.save();

store.close();

grid._refresh();

Dojo NotesPeek
The Dojo NotesPeek page contains an example that demonstrates using the built-in Domino
Data REST services as a Dojo Application. A button launches a URL that references the
DojoNotesPeek application, as shown in Figure 11.5. The built-in service requires the data ser-
vice to be enabled for each server, database, and view. Therefore, DojoNotesPeek can access only
data service–enabled applications. Accessing a database or view that has not been enabled results
in the error Sorry, an error occurred. The steps to enable this service per element are
described in the later section “Accessing Data Services from Domino as a Built-In Service.”

Domino REST Service from XPages Samples 347

Figure 11.5 Dojo NotesPeek—launch page.

The application consists of three Dojo grids (dojox.grid.DataGrid) connected to three
Dojo stores (dojox.data.JsonRestStore). The stores reference the Database Collection
JSON Service, View Collection JSON Service, and View JSON Service. The three grids render a
list of databases, a list of views corresponding to the selected database, and the contents of the
view (see Figure 11.6). Selecting and clicking on a row from the view opens a new window that
renders HTML of the JSON document.

ptg7987094
Figure 11.6 Dojo NotesPeek—running example.

Consuming Service Data with Other Controls
The XPages Extension Library Demo app includes an iNotes tab that has several samples demon-
strating the REST Data Service consuming service data with other controls, such as the iNotes
List View and iNotes Calendar.

iNotes List View
The iNotes List View (xe:listView) is a powerful control that renders the output of
xe:viewJsonService as it would be displayed in the Notes Client. The JSON output from a
categorized view appears categorized with collapsible sections, as shown in Figure 11.7.
Columns defined as icons appear as icons instead of the number that defines them.

The iNotes List View control works like the Dojo grid—xe:djxDataGrid—in the way it
uses xe:viewJsonService to access the JSON output of a view. The data from the REST ser-
vices is exposed to iNotes List View control by setting the storeComponentId of the
xe:listView to the ID (restService1) of the REST Service control. The result is the content of
the view displayed in the list.

348 Chapter 11 REST Services

ptg7987094

Figure 11.7 iNotes List View—running example.

iNotes Calendar
The iNotes Calendar—xe:calendarView—is another powerful control that behaves like the
calendar in the Notes Client, as shown in Figure 11.8. It can show the calendar layout as one day,
two days, five days, one week, two weeks, a month, or a year by setting the type. The data from
the REST services is exposed to the iNotes List Calendar control by setting the store-
ComponentId of the xe:calendarView to the ID (restService2) of the REST Service control.
You can view the generated XPage markup in the Source tab (see Listing 11.5).

Listing 11.5 XPage Markup of iNotes List Calendar Bound to a REST Service Control

<xe:restService

id=”restService2”

pathInfo=”/inoteslegacyjson”

preventDojoStore=”false”>

<xe:this.service>

<xe:calendarJsonLegacyService

viewName=”TestCalendar”

var=”entry”

contentType=”text/plain”

colCalendarDate=”$134”

colEntryIcon=”$149”

colStartTime=”$144”

Consuming Service Data with Other Controls 349

ptg7987094

colEndTime=”$146”

colSubject=”$147”

colEntryType=”$152”

colChair=”$153”

colConfidential=”$154”

colStatus=”$160”

colCustomData=”$UserData”

colAltSubject=”$151”>

<xe:this.compact>

<![CDATA[#{javascript:sessionScope.CompactJson2==”true”}]]>

</xe:this.compact>

</xe:calendarJsonLegacyService>

</xe:this.service>

</xe:restService>

<xe:calendarView

id=”calendarView1”

jsId=”cview1”

summarize=”false”

type=”#{javascript: null == viewScope.calendarType? ‘M’ :
viewScope.calendarType }

“

storeComponentId=”restService2”>

</xe:calendarView>

350 Chapter 11 REST Services

Listing 11.5 (Continued)

ptg7987094

Figure 11.8 iNotes Calendar—running example.

Calling a Remote Service from Domino
The XPages Extension Library Demo includes a sample that demonstrates how to make a JSON-
RPC to the Domino server. JSON-RPC is a stateless, lightweight remote procedure call (RPC)
protocol. It is an important part of the REST service because OpenSocial defines REST and RPC
protocols to give remote clients access to Server-Side data. Clients in Android applications also
take advantage of JSON-RPC in applications.

Shindig and JSON-RPC allow multiple methods to be called at once, thus minimizing the
number of requests to the server. This can be a huge saving in connections and resources, which
can increase performance and scalability. This feature is not currently supported at the time of
this writing, but it is being investigated for a future release of the Extension Library.

JSON-RPC Service
Remote Services—xe:jsonRpcService—is a versatile control that allows RPCs to the
Domino server using JSON-RPC. JSON-RPC is a protocol that enables a procedure to execute in
another process or on another computer (in this case, a Domino server). The value of JavaScript is

Calling a Remote Service from Domino 351

ptg7987094

set on the server, and the client uses dojo.rpc. The markup to support this is generated in the
XPage (see Figure 11.9). Also, note that each control can have one or many remote methods.

352 Chapter 11 REST Services

Figure 11.9 Markup generated from JSON-RPC control.

Listing 11.6 demonstrates that JSON-RPC can be used to call @Functions on the Domino
server. The function @DbLookup looks up a user’s email from the AllNames view. This listing
also shows how an argument (xe:remoteMethodArg) known as userName defined in the
method (xe:remoteMethod) can be passed to @DbLookup.

Listing 11.6 JSON-RPC Example

<xe:jsonRpcService

id=”jsonRpcService1”

serviceName=”userinfo”>

<xe:this.methods>

<xe:remoteMethod

name=”dblookup”>

ptg7987094

<xe:this.script><![CDATA[

return (@DbLookup(“”, “AllNames”, userName, “Email”));

]]>

</xe:this.script>

<xe:this.arguments>

<xe:remoteMethodArg

name=”userName”>

</xe:remoteMethodArg>

</xe:this.arguments>

</xe:remoteMethod>

</xe:this.methods>

</xe:jsonRpcService>

You can place the script to call in a button. In a real application, the argument is from a
drop-down or edit control, but here we just pass a hard-coded value (“Linda Lane”) to the
dblookup method, as shown in Listing 11.7.

Listing 11.7 JSON-RPC Example

<xp:button

value=”Lookup User Email”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script><![CDATA[

var deferred = userinfo.dblookup(“Linda Lane”)

deferred.addCallback(function(result) {

alert(result)

});]]>

</xp:this.script>

</xp:eventHandler>

</xp:button>

Consuming Service Data from External Applications

OpenSocial Gadgets
According to Google, OpenSocial is a set of common APIs for building social applications across
many websites. It consists of both JavaScript APIs and REST/RPC protocols for server-to-
server interactions. In general, OpenSocial gadgets are XML files similar to the Dojo NotesPeek

Consuming Service Data from External Applications 353

ptg7987094

application that reference the OpenSocial API. Based on this definition, using the Domino REST
services to build OpenSocial gadgets seems like a perfect fit. Google provides a plethora of infor-
mation on OpenSocial. The XML markup to create a simple gadget using Domino REST service
is shown in Listing 11.8. Figure 11.10 shows this simple OpenSocial gadget accessing the View
JSON Service.

Listing 11.8 OpenSocial Gadget Example

<?xml version=”1.0” encoding=”UTF-8” ?>

<Module>

<ModulePrefs

title=”Simple Data Service Gadget”

height=”500”>

<Require

feature=”osapi” />

<Require

feature=”minimessage” />

<Optional

feature=”dynamic-height” />

</ModulePrefs>

<Content

type=”html”>

<![CDATA[

<div id=”content_div”></div>

<script type=”text/javascript”>

var g_msg = new gadgets.MiniMessage(__MODULE_ID__);

function getAllDocuments(context) {

var url =
“http://xyz.comexample.com/XPagesExt.nsf/api/data/collections/name/AllT
ypes?ps=100”;

osapi.http.get({ “href”: url, “format”: “json”,

“refreshInterval”: 0,

“headers”:

{“Authorization”: [“Basic YWRtaW46YXRsYW50aWM=”]}

}).execute(getAllDocumentsResponse);

}

354 Chapter 11 REST Services

ptg7987094

function getAllDocumentsResponse(data) {

var documents = null;

var html = “”;

if (data != null && data.content != null) {

documents = data.content;

for (var i = 0; documents != undefined && i < documents.length; i++)
{

html += “UNID: “ + documents[i][‘@unid’] + “
”;

html += “Form: “ + documents[i][‘@form’] + “
”;

html += “NoteID: “ + documents[i][‘@noteid’] + “
”;

html += “<right>”;

var jsonLink = “” +
“JSON” + “”;

html += jsonLink + “
”;

html += “</right>”;

html += “<hr/>”;

}

}

else {

html = “No documents.”;

}

html += “”;

document.getElementById(‘content_div’).innerHTML = html;

gadgets.window.adjustHeight();

}

gadgets.util.registerOnLoadHandler(getAllDocuments);

</script>

]]>

</Content>

</Module>

Consuming Service Data from External Applications 355

ptg7987094

Figure 11.10 OpenSocial gadget.

Accessing Data Services from Domino as a Built-In Service
You can access a subset of the Domino REST services as a built-in service. These services are
collectively called the Domino Data Service when they’re accessed as a built-in service, and indi-
vidual components are called resources. An administrator typically doesn’t want the data service
to handle requests on every Domino server because it could expose details of applications not
easily visible in the UI.

The data service is disabled by default. Domino Data Service uses a three-tiered approach
for limiting access. The administrator needs to specifically enable the data service for each server,
database, and view. The following sections describe how to enable the data service. For more
information, please see the Domino Data Service User Guide (Extension Library REST Ser-
vices.pdf) and Domino Data Service Reference (DominoDataServiceDoc.zip), which is
included with the XPage Extension Library download from OpenNTF.

Once enabled, the data service starts along with the HTTP task. Because the data service is
a built-in service, the developer can use it without creating an XPage or adding Java code to the
Domino server. The built-in data service requires Domino 8.5.3 (or greater).

356 Chapter 11 REST Services

ptg7987094

Enabling the Service on the Domino Server
The data service is loaded whenever the Domino HTTP task is started. However, an administrator
typically doesn’t want the data service to handle requests on every Domino server. The adminis-
trator needs to deliberately enable the data service in the appropriate Internet Site document on
each server. To enable the data services, add the Data keyword to the Enabled Services field on
the Internet Site document for the server (see Figure 11.11). A restart of the server is required for
the changes to take place.

Accessing Data Services from Domino as a Built-In Service 357

Add the data
keyword to
the Enabled
services.

Figure 11.11 Add the data keyword to the Enabled services field on the Internet Site
document.

NOTE

The preceding instructions assume the server is configured using Internet Site documents.
If the server is not configured this way, enable the data service in the server document. See
the Domino Data Service User Guide available in the XPage Extension Library download on
OpenNTF for more information:
http://www.openntf.org/internal/home.nsf/releases.xsp?action=openDocument&name=
XPages%20Extension%20Library

http://www.openntf.org/internal/home.nsf/releases.xsp?action=openDocument&name=XPages%20Extension%20Library
http://www.openntf.org/internal/home.nsf/releases.xsp?action=openDocument&name=XPages%20Extension%20Library

ptg7987094

Enabling the Service for a Database

By default, the data service does not have access to each database. Just as the administrator
needed to enable the data service for a server, the data service for a database needs to be deliber-
ately enabled. To enable the data services for a database, use the Notes Client to open the Appli-
cation properties for the database. Then change the field labeled Allow Domino Data Service on
the bottom of the Advanced tab to Views and Documents, as in Figure 11.12.

TIP

Administration of the data service requires Notes 8.5.3 (or later).

358 Chapter 11 REST Services

Figure 11.12 Select the Views and Documents option.

ptg7987094

Figure 11.13 Select the Views and Documents option in the Application Properties.

Enabling the Service for View and Documents

By default, the data service does not have access to each view in a database. The data service for
a view or folder needs to be deliberately enabled. To enable the data service for a view or folder,
use the Domino Designer to open the View Properties for the view or folder. Then select the
check box labeled Allow Domino Data Service Operations on the Advanced tab of the View
properties box (see Figure 11.14).

Accessing Data Services from Domino as a Built-In Service 359

You can also set this property from Domino Designer, as shown in Figure 11.13. Close the
database or close the project for the change to take effect.

ptg7987094

Figure 11.14 Set Allow Domino Data Service Operations.

Domino Data Services
This section describes each resource of the Domino Data Service and how to call each as a built-
in service from HTTP. The same implementation of the Domino RESTful API is described as a
resource when it’s called as a built-in service and described as a service when it’s used in the con-
text of the REST Service control. Because this book is primarily about XPages, the term service
is used. However, the same implementation can be referred to as a resource in other documenta-
tion that is focused on the built-in service and in the context of the Domino Data Service.

The REST Service control can also access each resource of the Domino Data Services. To
change the resource, simply select a different service type in the design properties. To reference
the service from HTTP, use a URL with the database, XPage, and pathInfo property, as described
in the previous section “Standard Attributes for REST Service Control.” Where possible, the
JSON format output by the REST service is consumable by the Dojo data store JsonRestStore.

Database JSON Collection Service
The Database JSON Collection Service supports the HTTP method GET.

GET

To get the list of databases on a server, send an HTTP GET request to the database collection
resource uniform resource identifier (URI):

http://{host}/api/data

The data service returns a response in JSON format, like what’s shown in Listing 11.9.

360 Chapter 11 REST Services

ptg7987094

Listing 11.9 Data Service Response

[

{

“@title”:”Administration Requests”,

“@filepath”:”admin4.nsf”,

“@replicaid”:”852555510361A2F4”,

“@template”:”StdR4AdminRequests”,

“@href”:”http:\/\/example.com\/admin4.nsf\/api\/data\/collections”

},

...

{

“@title”:”XPages Extension Library Demo”,

“@filepath”:”XPagesExt.nsf”,

“@replicaid”:”8525786555581FD3”,

“@template”:””,

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/collections”

}

]

View JSON Collection Service
The View JSON Collection Service supports the HTTP method GET.

GET

To get the list of views and folders in a database, send an HTTP GET request to the view collec-
tion resource URI:

http://{host}/{database}/api/data/collections

The data service returns a response in JSON format, like what is shown in Listing 11.10.

Listing 11.10 Data Service Response

[

{

“@title”:”TestCalendarOutline”,

“@folder”:false,

Domino Data Services 361

ptg7987094

“@private”:false,

“@modified”:”2011-04-29T13:02:20Z”,

“@unid”:”F598C2D31E4E12F68525786500660B7E”,

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/collections\
/unid\/F598C2D31E4E12F68525786500660B7E”

},

...

{

“@title”:”AllContacts”,

“@folder”:false,

“@private”:false,

“@modified”:”2011-04-29T13:02:20Z”,

“@unid”:”CD40A953ABDE036A8525786500660C27”,

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/collections\
/unid\/CD40A953ABDE036A8525786500660C27”

},

...

]

View JSON Service
The View JSON Service supports the HTTP methods GET, PUT, PATCH, POST, and DELETE.

GET

To get a list of entries in a view or folder, send an HTTP GET request to the view entry collection
resource URI:

http://{host}/{database}/api/data/collections/unid/{unid}?{parameters}

http://{host}/{database}/api/data/collections/name/{name or alias}?
{parameters}

362 Chapter 11 REST Services

Listing 11.10 (Continued)

ptg7987094

Domino Data Services 363

Table 11.4 Parameters Are Available to Use for a GET Request

Parameter Description

start Where to start getting items.

count Number of entries to get.

si Used with ps and page to set the start index.

ps Used with si and page to set the page size.

page Used with si and ps to set the page.

Search Full text search of view.

searchmaxdocs Limits the output of the search parameter.

sortcolumn Sort item based on column.

sortorder Sort order of ascending or descending based on design.

startkeys Start at key based on sorted column.

keys Select only items that match criteria.

ceysexactmatch Used with keys to limit to exact match.

expandLevel Get only the entries at the level and higher used to limit results within a
category.

category Only display the entries for this category.

parentid Get response children for this parent.

entrycount Used to emit the Content-Range header with the count. Set to false to disable
the output of the Content-Range header. You can use this as a performance
optimization because it avoids getting the count, which can be costly.

For example, the following URI corresponds to the AllContacts view in the XPage Exten-
sion Library sample database:

http://example.com/XPagesExt.nsf/api/data/collections/name/AllContacts

The data service returns a response in JSON format, like what is shown in Listing 11.11.

Table 11.4 lists parameters that are available to use in a GET request.

http://example.com/XPagesExt.nsf/api/data/collections/name/AllContacts

ptg7987094

Listing 11.11 Data Service Response

[

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/collections\
/name\/AllContacts\/unid\/AAE5C9A07AF9C1A7852578760048C0D6”,

“@link”:

{

“rel”:”document”,

“href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/documents\/unid
\/AAE5C9A07AF9C1A7852578760048C0D6”

},

“@entryid”:”1-AAE5C9A07AF9C1A7852578760048C0D6”,

“@unid”:”AAE5C9A07AF9C1A7852578760048C0D6”,

“@noteid”:”9AA”,

“@position”:”1”,

“@read”:true,

“@siblings”:200,

“@form”:”Contact”,

“Id”:”CN=Adela Rojas\/O=renovations”,

“FirstName”:”Adela”,

“LastName”:”Rojas”,

“EMail”:”adela_rojas@renovations.com”,

“City”:”Paterson”,

“State”:”NJ”,

“created”:”2011-04-18T13:14:39Z”,

“$10”:”Adela Rojas”

},

...

]

When view entries are retrieved, the response also includes a Content-Range header indi-
cating how many entries are included. For example:

Content-Range: items 0-9/201

364 Chapter 11 REST Services

ptg7987094

This header indicates that the data service returned entries 0 through 9 from a total of 201
entries. To get the next 10 entries, you must send a GET request with additional URL parameters:

http://example.com/xpagesext.nsf/api/data/collections/
name/AllContacts?ps=10&page=1

In this example, the ps parameter specifies the page size, and the page parameter specifies
which page to get. In this case, get the second page. (Page numbers are zero-based.) The data ser-
vice returns the second page of data and a new Content-Range header like this:

Content-Range: items 10-19/201

PUT

This replaces (completely updates) a document in a view or folder. You can only update columns
that map directly to fields. The supported parameters are listed in Table 11.5. The parentid,
form, and computewithform parameters are described in more detail later in this chapter in the
section “Document JSON Service” under HTTP method PUT.

http://{host}/{database}/api/data/collections/unid/{unid}/unid/{unid}?
{parameters}

http://{host}/{database}/api/data/collections/name/{name}/unid/{unid}?
{parameters}

Table 11.5 Parameters for PUT Request

Parameter Description

parentid Creates a response child for this parent

form Creates a document with this form

computewithform Run a validation formula based on the form

NOTE

Parameters are the same for PUT, PATCH, and POST, and are listed in Table 11.5.

Domino Data Services 365

http://example.com/xpagesext.nsf/api/data/collections/name/AllContacts?ps=10&page=1
http://example.com/xpagesext.nsf/api/data/collections/name/AllContacts?ps=10&page=1

ptg7987094

PATCH

This is used to partially update a document in a view or folder. Only columns that map directly to
fields can be updated. The supported parameters are listed in Table 11.5.

http://{host}/{database}/api/data/collections/unid/{unid}/unid/{unid}?
{parameters}

http://{host}/{database}/api/data/collections/name/{name}/unid/{unid}?
{parameters}

POST

This creates a document in a view or folder. Only columns that map directly to fields can be cre-
ated. The supported parameters are listed in Table 11.5.

http://{host}/{database}/api/data/collections/unid/{unid}?{parameters}

http://{host}/{database}/api/data/collections/name/{name}?{parameters}

DELETE

To delete a document, an HTTP DELETE request is sent to the URI. If the data service deletes the
document without errors, it returns an HTTP status code of 200.

http://{host}/{database}/api/data/collections/unid/{unid}/unid/{unid}

http://{host}/{database}/api/data/collections/name/{name}/unid/{unid}

View Design JSON Service
The View Design JSON Service supports the HTTP method GET.

GET

To read the design of a view or folder, send an HTTP GET request to the view design
resource URI:

http://{host}/{database}/api/data/collections/unid/{unid}/design

http://{host}/{database}/api/data/collections/name/{name or alias}/design

366 Chapter 11 REST Services

ptg7987094

For example, the following URI corresponds to the AllContacts view in the XPages Exten-
sion Library sample database:

http://example.com/XPagesExt.nsf/api/data/collections/name/AllContacts/
design

The data service returns a response in JSON format, like what’s shown in Listing 11.12.

Listing 11.12 Data Service Response

[

... {

“@columnNumber”:3,

“@name”:”FirstName”,

“@title”:”First Name”,

“@width”:10,

“@alignment”:0,

“@hidden”:false,

“@response”:false,

“@twistie”:false,

“@field”:true,

“@category”:false

},

{

“@columnNumber”:4,

“@name”:”LastName”,

“@title”:”Last Name”,

“@width”:12,

“@alignment”:0,

“@hidden”:false,

“@response”:false,

“@twistie”:false,

“@field”:true,

“@category”:false

},

...

]

Document Collection JSON Service
The Document Collection JSON Service supports the HTTP method GET.

Domino Data Services 367

http://example.com/XPagesExt.nsf/api/data/collections/name/AllContacts/design
http://example.com/XPagesExt.nsf/api/data/collections/name/AllContacts/design

ptg7987094

GET

You can use the HTTP GET request to list all the documents in the database. You can use the
since and search parameters to filter the list as described further in Table 11.6.

http://{host}/{database}/api/data/documents?{parameters}

Table 11.6 Parameters for the Document Collection JSON Service

Parameter Description

since Used to get all the documents since some date time.

search Used to search for documents based on a query

For example, you can use the following URI to search for all documents that contain Tempe
in the XPage Extension Library sample database:

http://example.com/XPagesExt.nsf/api/data/documents?search=Tempe

The data service returns a response in JSON format, like what is shown in Listing 11.13.

Listing 11.13 Data Service Response

[

{

“@modified”:”2011-04-18T13:14:41Z”,

“@unid”:”08F7227475F21A2C852578760048C131”,

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/documents\
/unid\/08F7227475F21A2C852578760048C131”

}

]

Document JSON Service
The Document JSON Service supports the HTTP methods GET, PUT, PATCH, POST, and DELETE.

GET

You can use the HTTP GET request to obtain a document in the database. The supported parame-
ters are listed in Table 11.7.

http://{host}/{database}/api/data/documents/unid/{unid}?{parameters}

368 Chapter 11 REST Services

http://example.com/XPagesExt.nsf/api/data/documents?search=Tempe

ptg7987094

Table 11.7 Parameters for the Document JSON Service

Parameter Description

strongtype Provide type information with output

markread Disable the read mark on get

hidden Emit supported Notes $ fields

Attachments are supported as a URI reference to the resource. For example, you can use
the following URI to obtain a document from the XPage Extension Library sample database:

http://example.com/XPagesExt.nsf/api/data/documents/unid/B08E87F21FE84FAB492
57826004FEB5E

The data service returns a response in JSON format, like what is shown in Listing 11.14.

Listing 11.14 Data Service Response for a Document with an Attachment

{

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/api\/data\/documents\
/unid\/B08E87F21FE84FAB49257826004FEB5E”,

“@unid”:”B08E87F21FE84FAB49257826004FEB5E”,

“@noteid”:”38CA”,

“@created”:”2011-01-28T14:32:55Z”,

“@modified”:”2011-03-24T19:34:07Z”,

“@authors”:”CN=Admin\/O=Peaks”,

“@form”:”AllTypes”,

“$UpdatedBy”:”CN=Admin\/O=Peaks”,

“$Revisions”:”01\/28\/2011 09:32:56 AM;02\/08\/2011 03:31:22 PM “,

“fldText”:”One”,

“fldNumber”:1,

“fldDate”:”2010-01-01”,

“fldTime”:”01:00:00”,

“fldDateTime”:”2010-01-01T06:00:00Z”,

“fldDialogList”:”c1”,

“fldText2”:

[“One”,”Two”,”Three”

],

“fldNumber2”:

[1,2,3

],

“fldDate2”:

Domino Data Services 369

http://example.com/XPagesExt.nsf/api/data/documents/unid/B08E87F21FE84FAB49257826004FEB5E
http://example.com/XPagesExt.nsf/api/data/documents/unid/B08E87F21FE84FAB49257826004FEB5E

ptg7987094

[“2010-01-01”,”2010-01-02”,”2010-01-03”

],

“fldTime2”:

[“01:00:00”,”02:00:00”,”03:00:00”

],

“fldDateTime2”:

[“2010-01-01T06:00:00Z”,”2010-01-02T07:00:00Z”,”2010-01-
03T08:00:00Z”

],

“fldDialogList2”:

[“c1”,”c2”,”c3”

],

“fldRichText”:

{

“contentType”:”text\/html”,

“data”:”<br \/>\r\nThis is
red.<\/font><br \/>\r\nThis is
green.<\/font><br \/>\r\nThis is
blue.<\/font><br \/>\r\n<br \/>\r\n<a class=\”domino-attachment-link\”
style=\”display: inline-block; text-align: center\”
href=\”http:\/\/example.com\/XPagesExt.nsf\/0\/b08e87f21fe84fab49257826
004feb5e\/$FILE\/Picture.JPG\” title=\”Picture.JPG\”><img
src=\”http:\/\/example.com\/XPagesExt.nsf\/0\/b08e87f21fe84fab492578260
04feb5e\/fldRichText\/0.158?OpenElement&FieldElemFormat=gif\”
width=\”72\” height=\”34\” alt=\”Picture.JPG\” border=\”0\” \/><span
class=\”domino-caption\” style=\”display:
block\”>Picture.JPG<\/span><\/a>”,

“attachments”:

[

{
“@href”:”http:\/\/example.com\/XPagesExt.nsf\/0\/b08e87f21fe84fab492578
26004feb5e\/$FILE\/Picture.JPG”

},

{

“@href”:”http:\/\/example.com\/XPagesExt.nsf\/0\/b08e87f21fe84fab492578
26004feb5e\/fldRichText\/0.158?OpenElement&FieldElemFormat=gif”

}

],

“type”:”richtext”

}

}

370 Chapter 11 REST Services

Listing 11.14 (Continued)

ptg7987094

PUT

To replace (completely update) a document, send a PUT request to document resource URI. The
supported parameters are listed in Table 11.5.

http://{host}/{database}/api/data/documents/unid/{unid}?{parameters}

When sending a PUT request, include a Content-Type header, as shown in Listing 11.15.

Listing 11.15 The PUT Request to Change the Content-Type Header

Content-Type: application/json

{

“Id”:”CN=Adela Rojas\/O=renovations”,

“FirstName”:”Adela”,

“LastName”:”Rojas”,

“City”:”Newark”,

“State”:”NJ”,

“EMail”:”adela_rojas@renovations.com”

}

The preceding request changes Adela Rojas’s city from Paterson to Newark. If the data ser-
vice completes the request without errors, it returns an HTTP status code of 200 without a
response body.

TIP

When sending a PUT request, don’t include any @ properties like @unid and @href.
These properties are considered metadata. The data service ignores any attempt to update
metadata.

Usually when a document is to be updated, the business logic contained in a specific form
must be executed. To do this, send a PUT request with additional URL parameters:

http://example.com/xpagesext.nsf/api/data/documents/unid/AAE5C9A07AF9C1A7852
578760048C0D6?form=Contact&computewithform=true

In this example, the form parameter specifies the Contact form. The computewithform
parameter is true, instructing the data service to execute the Contact form’s business logic.

Domino Data Services 371

http://example.com/xpagesext.nsf/api/data/documents/unid/AAE5C9A07AF9C1A7852578760048C0D6?form=Contact&computewithform=true
http://example.com/xpagesext.nsf/api/data/documents/unid/AAE5C9A07AF9C1A7852578760048C0D6?form=Contact&computewithform=true

ptg7987094

PATCH

To partially update a document, send a PATCH request to document resource URI with the avail-
able parameters shown in Table 11.5.

http://{host}/{database}/api/data/documents/unid/{unid}?{parameters}

POST

To create a document, send an HTTP POST. The available parameters are shown in Table 11.5.

http://{host}/{database}/api/data/documents?{parameters}

When sending a POST request, you must send a Content-Type header, as shown in Listing
11.16.

Listing 11.16 Create a New Document Example Using JSON in a POST Request

Content-Type: application/json

{

“FirstName”:”Stephen”,

“LastName”:”Auriemma”,

“City”:”Littleton”,

“State”:”MA”,

“EMail”:”sauriemma@renovations.com”

}

If the data service is able to create the document without errors, it returns an HTTP status
code of 201. The response also includes a Location header identifying the URI of the new docu-
ment resource:

Location:
http://example.com/.../api/data/documents/unid/3249435909DCD22F852578A70063E
8E5

Usually when a new document is created, the business logic contained in a specific form
needs to be run. To do so, send a POST request with additional URL parameters. For example:

http://example.com/xpagesext.nsf/api/data/
documents?form=Contact&computewithform

372 Chapter 11 REST Services

http://example.com/.../api/data/documents/unid/3249435909DCD22F852578A70063E8E5
http://example.com/xpagesext.nsf/api/data/documents?form=Contact&computewithform
http://example.com/xpagesext.nsf/api/data/documents?form=Contact&computewithform
http://example.com/.../api/data/documents/unid/3249435909DCD22F852578A70063E8E5

ptg7987094

The form and computewithform parameters are described in the preceding section “Docu-
ment JSON Service” under the HTTP method PUT.

A user may want to create a document that is a response to another document. Doing this
involves sending a POST request with a parentid parameter. For example:

http://example.com/xpagesext.nsf/api/data/
documents?form=Discussion&computewithform =true&parentid=
440FA99B2F0F839E852578760048C1AD

If the POST request succeeds, the data service creates a response to the document with a
UNID of 440FA99B2F0F839E852578760048C1AD the parent.

DELETE

To delete a document, send an HTTP DELETE request to the document resource URI. If the data
service deletes the document without errors, it returns an HTTP status code of 200.

http://{host}/{database}/api/data/documents/unid/{unid}

Computed Items

You can use the XPages REST control to create computed items. This feature is similar to com-
puted columns mentioned previously. It’s a powerful feature that allows the developer to create
additional items that do not exist in the document using JavaScript and access data and formula
values. In the following example, a short name is computed by getting the text left of the @ from
an existing item value Email.

Here’s how to create a computed item in an XPage:

1. Add a REST Service control to the page and set the service property to xe:document
JsonService.

2. Start by setting the var property of the service (xe:documentJsonService) to
document, which represents the Notes document.

3. Add an item (xe:restDocumentItem) to the items (xe:this.item) property of the
REST Service control.

4. Set the name property to ShortName.

5. Set the value property to a computed value using the script editor.

6. Type the following script into the script editor, as in Listing 11.17.

Domino Data Services 373

ptg7987094

Listing 11.17 JavaScript for a Computed Item Value

var e = document.getItemValue(“EMail”)

if(e) {

var p = @UpperCase(@Left(e,”@”))

return p

}

return “”

To see the results, access the service from a browser by entering the following URL, but
replace the UNID B53EE32CCC6B79218525790300512A36 with the UNID of an actual exist-
ing document:

http://myDominoServer/XPagesExt.nsf/MyXPage.xsp/myPathInfo/B53EE32CCC6B79218
525790300512A36

The data service returns a response in JSON format, like what is shown in Listing 11.18.

Listing 11.18 Data Service Response for the Request with a Computed Item Called Shortname

{

“@unid”:”B53EE32CCC6B79218525790300512A36”,

“@noteid”:”1A22”,

“@created”:”2011-09-06T14:46:32Z”,

“@modified”:”2011-09-06T14:46:32Z”,

“@authors”:”Anonymous”,

“@form”:”Contact”,

“$UpdatedBy”:”Anonymous”,

“State”:”MA”,

“LastName”:”Auriemma”,

“City”:”Littleton”,

“FirstName”:”Stephen”,

“EMail”:”sauriemma@renovations.com”,

“shortname”:”SAURIEMMA”

}

374 Chapter 11 REST Services

http://myDominoServer/XPagesExt.nsf/MyXPage.xsp/myPathInfo/B53EE32CCC6B79218525790300512A36
http://myDominoServer/XPagesExt.nsf/MyXPage.xsp/myPathInfo/B53EE32CCC6B79218525790300512A36

ptg7987094

Developing Custom REST Services
For the most part, this chapter has discussed consuming existing services provided by the XPage
Extension Library. In addition to consuming REST services, the XPages Extension Library
includes a framework to develop a custom a REST service that meets a particular need. This sec-
tion introduces another way to develop a custom a REST service and compares their capabilities.
Knowledge of Java and REST services is required.

Developing Custom REST Services:

The Custom XPages REST Service Control Extension is a service that you can select
from a REST Service control. You can modify the code provided on OpenNTF for the
XPages Extension Library and customize one of the existing services of the implemen-
tation to generate the desired implementation and output.

A Custom Database Servlet is a Java class that you can add to a database design. The
servlet typically handles incoming HTTP requests to one of the REST service classes in
the extension library. This type of REST service requires detailed knowledge of the Java
programming language, but you have complete control over the definition of the service.

A Custom Wink Servlet is the most advanced type of REST service. The Java devel-
oper can use the open source Apache Wink project to define the service. The developer’s
servlet needs to be contained in a plugin deployed directly to Domino’s OSGi frame-
work. The service is not tied to a single database; it can access any data chosen and rep-
resent it in any format.

Conclusion
The XPages Extension Library has a variety of RESTful services and controls for accessing
Domino data. At the heart is the REST Service control that provides one interface for developing
applications that consume REST services. There are several XPage UI controls, including the
iNotes List and iNotes Calendar, that can consume and render these REST services directly in an
XPage. An XPage application is not required to consume REST services using the XPage Exten-
sion Library. For example, a Dojo application can consume as a standalone REST service without
any reference to an XPage. In addition to consuming REST services, the XPages Extension
Library includes a framework for producing a custom REST service.

Conclusion 375

ptg7987094

This page intentionally left blank

ptg7987094

377

C H A P T E R 1 2

XPages Gets
Relational

Until recently, native access to data in XPages has been restricted to data stored within the Notes
Storage Facility (NSF). Access to Relation Database Management Systems (RDBMS) data was
only available by direct access to the core Java Database Connectivity (JDBC) application pro-
gramming interfaces (APIs), and even then surfacing that data to standard XPages controls
required a strong understanding of the XPages runtime. Now, in the Experimental package of the
Extension Library (ExtLib) but not included in Upgrade Pack 1 (UP1), read-only and full
read/write access to relational databases becomes a reality. This release opens the door to utilize
XPages as the integration point between disparate systems.

Through the use of these components, relational data can be utilized in the same manner that
data from the NSF is used to populate components such as view panels and edit controls. This
allows you to directly integrate and extend non-Notes-based data from enterprise applications
without having to synchronize it to an NSF.

This chapter reviews concepts behind integrating relational data and the new relational database
components that the ExtLib provides, including JDBC, the Connection Pool and Connection
Manager, the datasources, and the Java and Server-Side JavaScript (SSJS) APIs included to help
integrate relational data into an XPages application.

Accessing Relational Data Through JDBC
Because XPages is an implementation of Java Server Faces (JSF), it would make sense that
access to relational data would be made through the standard APIs that provide Java program-
mers with connectivity to those datasources. These APIs, known as Java Database Connectivity,
or JDBC for short, define how Java applications, serving as the client, may access a database. The
ExtLib utilizes JDBC to provide connections to other data stores, so a little background informa-
tion on how JDBC operates will make implementing relational datasources in XPages easier.

ptg7987094

JDBC uses a driver manager to load a vendor-specific implementation of a Java class that is
responsible for the low-level communication between the application and the database. Depend-
ing on the type of database and the connection used, this driver may implement any one of a num-
ber of driver types of connectivity models. For example, a JDBC driver may be what is called a
type 1 driver, or a JDBC-Open Database Connectivity (ODBC) bridge, where the calls to the
JDBC driver are converted into ODBC calls and then executed against the datasource using
ODBC. Alternatively, the JDBC driver may have direct native access to the database and may be
able to manipulate and update the database directly. This driver model is known as a type 4 driver.
The XPages ExtLib ships with prebuilt connectivity to a type 4 driver for Apache Derby, which is
a lightweight open source relational database implemented entirely in Java. Other types of drivers
integrate platform-specific libraries (type 2 drivers) or connectivity to a middleware application
server (type 3 driver) that acts as an intermediary to access the data. The type of driver available
to provide connectivity to a given database may depend on factors such as the database platform
and the Client-Side operating system. Any available JDBC driver compatible with the JDBC ver-
sion in use in the Java Virtual Machine (JVM) can provide connectivity for an XPages data-
source. Figure 12.1 illustrates how these JDBC drivers and the JDBC API interacts with the
datasources to provide SQL access to an XPages application.

378 Chapter 12 XPages Gets Relational

XPages Application

Extension Library Relational Data Sources

Extension Library Connection Pool

JDBC Driver Manager

JDBC Driver

Database

JDBC API

Figure 12.1 XPages JDBC connectivity model.

ptg7987094

Installing a JDBC Driver
The only built-in database connectivity provided out of the box with the ExtLib is to an Apache
Derby database, which is included only as a demonstration datasource since it is not intended for
production use. As a result, one of the first steps to implementing relational data in an XPages
application is acquiring and installing the appropriate JDBC driver for the RDBMS that will be
accessed. The examples in this chapter will be connecting to an instance of IBM DB2® Express-
C, which is the free community edition of IBM’s powerful and popular relational and XML data
server available at http://www-01.ibm.com/software/data/db2/express/download.html. As seen
in Figure 12.2, from this page, you can download the full DB2 Express-C package in installable
or virtual machine form, or you can just download the database drivers. Other RDBMS drivers
will be available from the vendor of the RDBMS and may be included on the distribution media
or downloadable from their site.

Accessing Relational Data Through JDBC 379

Figure 12.2 Downloading the DB2 JDBC Driver from IBM.com.

Included in the DB2 Express-C installation is a type 4 JDBC driver composed of two files,
db2jcc4.jar and db2jcc_license_cu.jar, as seen in Figure 12.3. These files must be available to
the Domino JVM. This chapter covers all three ways to install the JDBC driver, but only one is
recommended because the other methods have drawbacks.

http://www-01.ibm.com/software/data/db2/express/download.html

ptg7987094

NOTE

The db2jcc_license_cu.jar filename may vary because of the licensed options of the DB2
server. The community edition includes the db2jcc_license_cu.jar license file.

380 Chapter 12 XPages Gets Relational

Figure 12.3 The DB2 Express-C drivers located in the DB2 installation folder on Linux.

Installing the JDBC Driver into the jvm/lib/ext Folder on the Domino Server
(Not Recommended)

Copying the two JAR files and placing them into the jvm/lib/ext folder of the Lotus Domino
server’s installation is the simplest way to install the driver. The driver needs to call methods that
the Java Security Manager (as implemented in Domino by default) does not allow. Placing the
driver in this folder grants it the required permissions because the code base is in this trusted loca-
tion. However, if you do not use the optional Database Connection Pool, discussed later, you
must load and register the driver manually when it is required. Additionally, because this type of
installation requires access to the server’s file system, it may not be an acceptable option in some
Lotus Domino environments. Due to these drawbacks, this approach of installing the JDBC
driver into the jvm/lib/ext folder is not recommended.

Installing the JDBC Driver in the NSF (Not Recommended)

Alternatively, you can install the JDBC driver inside the NSF. Similar to installing on the server
file system, a JDBC driver in the NSF requires manual registration. However, the NSF is not a
trusted location, and it causes the Java Security Manager to block the execution of code in the
JAR file. To overcome this problem, modify the java.policy file in the server’s jvm/lib/security
folder, adding the location of the NSF as a trusted location. Doing so instructs the Java Security
Manager to allow the execution of code located in the JAR from within the NSF.

This method of installation is not recommended, however, since the JDBC Driver Manager
is a global instance for the entire JVM. Because a JAR file in each NSF is on a different path, the
Driver Manager loads each JAR instance separately. If two NSFs contain the same driver, each
instructs the Driver Manager to load its own JAR, essentially causing multiple versions of
the same driver to be loaded, the Driver Manager becomes confused, and instability results.
Moreover, an NSF can be discarded from memory after a period of inactivity, leaving the JDBC
registry in a bad state, and even introducing memory leaks.

ptg7987094

Installing the JDBC Driver via an OSGi Plugin (Recommended Approach)

The recommended approach is to deploy the driver via an OSGi plugin. This allows the code to be
executed from a trusted location and the driver to be dynamically loaded, only once and as needed,
automatically by the JDBC Driver Manager. You can package the plugin into an update site and
deploy it automatically in the same manner that you deploy ExtLib to servers through the use of
the update site database as described in Chapter 2, “Installation and Deployment of the XPages
Extension Library.” Doing so removes the need to directly deploy the drivers to the server’s file
system and simplifies distributing and managing the drivers across multiple servers.

Although it’s not difficult, the development of an OSGi plugin may be new to many Lotus
Notes and Domino developers. Lack of knowledge on how to accomplish the task may make it
seem more difficult that it needs to be. The ExtLib comes with a sample OSGi plugin for the
Apache Derby driver that can serve as a template for other drivers.

You can develop the plugin using either Domino Designer in the Plug-In Development Per-
spective or the Eclipse Integrated Development Environment (IDE) (which you can download
from http://www.eclipse.org/downloads). As seen in Figure 12.4, the user interface for the
Eclipse IDE should be familiar to most Domino developers because Domino Designer 8.5 and
later is based on the Eclipse IDE. Regardless of the environment chosen to create the plugin, the
steps are the same.

Accessing Relational Data Through JDBC 381

Figure 12.4 The Eclipse 3.5 Galileo IDE.

http://www.eclipse.org/downloads

ptg7987094

You begin creation of an OSGi plugin by switching Domino Designer to the Plug-In Devel-
opment Perspective by selecting Window → Open Perspective → Other, locating and selecting
Plug-In Development, and then clicking OK. Once you’re inside the Plug-In Development per-
spective, you can start the project by creating a new Plug-In Project, found in the New Project
Wizard by selecting File → New → Project in the IDE. Then expand the Plug-In Development
category and click Next, as seen in Figure 12.5.

382 Chapter 12 XPages Gets Relational

Figure 12.5 Selecting the new Plug-In Project Wizard.

The first step in the wizard is to set up the basic properties for the new project, including a
project name, setting paths, and selecting the plugin target for the project. In Figure 12.6, the
project name has been set to com.ZetaOne.JDBC.drivers.DB2, which is a descriptive name-
space to avoid conflicting with another plugin that might already exist.

ptg7987094

Figure 12.6 Setting the project’s name and settings.

After setting the project properties, you set the properties for the plugin, including the ID,
version, and provider. Then set the Execution Environment to No Execution Environment and
deselect Generate an Activator, a Java Class That Controls the Plug-In’s Life Cycle (see
Figure 12.7).

Accessing Relational Data Through JDBC 383

ptg7987094

Figure 12.7 Setting the plugin’s name and settings.

Finally, in the last window of the wizard, deselect the Create a Plug-In Using One of the
Templates, as shown in Figure 12.8. Click the Finish button to generate the project stub.

384 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.8 Finishing the New Plug-In Project Wizard.

As seen in Figure 12.9, after the project is created, Domino Designer opens it. The project
folder appears in the Package Explorer; furthermore, the project Overview, where the settings for
the project are maintained, is displayed. To complete the project, the JDBC driver JARs need to
be imported into the project, several settings within the project need to be modified, and an exten-
sion must be built to provide the driver to the XPages runtime environment.

Accessing Relational Data Through JDBC 385

ptg7987094

Figure 12.9 The new plugin project open in Domino Designer.

The first modification to make occurs on the Overview tab. Identify the plugin as a single-
ton. To enable this, select the This Plug-In Is a Singleton check box, as seen in Figure 12.10.

386 Chapter 12 XPages Gets Relational

Figure 12.10 Enabling the singleton setting for the plugin.

ptg7987094

To deploy the JDBC driver, import the driver JAR files from Figure 12.3 into the lib folder
of the plugin project. To import them, right-click the project in the Package Explorer and select
the Import option, as seen in Figure 12.11.

Accessing Relational Data Through JDBC 387

Figure 12.11 Importing the JDBC driver JARs into the project.

Clicking the Import menu item opens the Import Select dialog that allows you to select the
type of import to be performed (see Figure 12.12). For this example, the JDBC driver JAR files
are on the file system, so select File System and click Next.

ptg7987094

Figure 12.12 Selecting the Import type for the import of the JDBC driver JAR files.

Then in the File System Import dialog, you locate the folder containing the driver JARs by
clicking the Browse button. Select the individual files for import. For DB2, you need to import
both the driver (db2jcc4.jar) and the license (db2jcc_license_cu.jar). In the field for Into
folder, /lib is added to the end of the project file, so the JARs are added to a lib folder within the
project, as seen in Figure 12.13, and the Finish button is clicked.

388 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.13 Importing the DB2 JDBC driver JARs into the lib folder of the project.

Once the import has completed, the new lib folder appears under the project in the Package
Explorer. To make the JARs available to the project, you must add them to the project’s Build
Path by expanding the lib folder, selecting the JAR files, right-clicking them, and selecting Build
Path → Add to Build Path from the pop-up menu (see Figure 12.14). Once you have added the
JARs to the build path, a new folder named Referenced Libraries appears with the JAR files
underneath.

Accessing Relational Data Through JDBC 389

ptg7987094Figure 12.14 Adding the JDBC driver JARs to the project’s build path.

Now that the JARs are properly added to the build path, you can go to the Runtime tab of
the project properties to update the plugin to export the classes from within the driver JARs. The
classes are exported by clicking the Add button under Exported Packages and selecting all the
packages that appear in the dialog (see Figure 12.15).

390 Chapter 12 XPages Gets Relational

Figure 12.15 Selecting the classes the plugin will export.

ptg7987094

Additionally, you need to add the JARs in the project to the classpath, which is set on the
Runtime tab. Adding the JARs to the classpath is done under Classpath by clicking the Add
button and expanding and selecting the JARs in the lib folder, as seen in the JAR selection dialog
displayed in Figure 12.16.

Accessing Relational Data Through JDBC 391

Figure 12.16 Adding the JDBC driver JARs to the classpath.

The next step in prepping the OSGi plugin is to create a driver provider and plug it into the
proper extension point. To identify the extension point, the Extension and Extension Point
pages must be enabled for the project. To do this, on the Overview tab, click the Extensions link
under Extensions / Extension Point Content. Domino Designer confirms that the pages should
be displayed, as seen in Figure 12.17.

ptg7987094

Figure 12.17 Enabling the Extensions and Extension Point Content pages.

After you have enabled the pages, you use the Extensions page to add the extension point
that will be used by clicking the Add button under All Extensions. The Extension Point Selec-
tion dialog appears. You select the extension point by typing the beginning of its name in the
Extension Point Filter edit box (see Figure 12.18). The extension point to be selected is
com.ibm.commons.Extension.

392 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.18 Selecting the extension point in the Extension Point Selection dialog.

Once you have located the extension point, select it from the list, and click the Finish but-
ton. Domino Designer confirms that the plugin com.ibm.commons should be added to the list of
dependencies, as seen in Figure 12.19.

Accessing Relational Data Through JDBC 393

ptg7987094

Figure 12.19 Confirming the addition of the com.ibm.commons plugin to the dependencies.

After you have added the extension point, under the All Extensions header, expand the
extension and select the (service) item. On the right side of the window, enter a type and Java
class to provide the extension. Populate the type field with com.ibm.common.jdbcprovider.
The class is the fully qualified name of a Java class that you need to create in this project. In this
example, the class name is derived from the namespace for the project and the class name
DB2DriverProvider, as seen in Figure 12.20.

394 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.20 Populating the com.ibm.common.jdbcprovider extension point with the
DB2DataProvider class.

Once you have populated the extension point, you must create the DB2DriverProvider
class. You do this by right-clicking the src folder in the project and selecting New → Class, as
seen in Figure 12.21.

Accessing Relational Data Through JDBC 395

Figure 12.21 Launching the New Java Class Wizard.

ptg7987094

Once the New Java Class dialog opens, as pictured in Figure 12.22, you can enter some of
the basic settings for the class, such as the package and class name. Then click the Finish button.

396 Chapter 12 XPages Gets Relational

Figure 12.22 Setting the properties for the new DB2DriverProvider Java class.

At this point, Domino Designer or Eclipse reads the project settings and creates the
required source code for the plugin’s Java class, as displayed in Figure 12.23.

ptg7987094

Figure 12.23 The DB2DriverProvider Java class stub.

The DB2DriverProvider class depends on two classes that must be included in the
dependencies of the plugin. You can resolve these dependencies by adding the com.ibm.
commons.jdbc plugin to the dependencies list, found on the Dependencies tab of the Manifest.
Click the Add button, and the Plug-In Selection dialog is displayed. Within the dialog, the edit
box serves as a filter selection to list plugins that are below. In the filter box, when you enter
com.ibm.commons, the list of matching plugins is displayed (see Figure 12.24). Once you find
the com.ibm.commons.jdbc plugin, select it and click OK.

Accessing Relational Data Through JDBC 397

ptg7987094

Figure 12.24 Adding the com.ibm.commons.jdbc plugin to the plugin dependencies.

After you resolve the dependency, you can finish the driver provider class. The class must
implement the com.ibm.commons.jdbc.drivers.JDBCProvider interface and contain two
methods: loadDriver(String className) and getDriverAliases(). The load-
Driver() method should check the name of the requested driver passed in className. If it
matches the driver’s class, a new instance of the driver should be returned; otherwise, null should
be returned. You can use the getDriverAliases() method to retrieve any driver aliases. Gener-
ally, it returns null. Figure 12.25 shows a sample implementation of the class for the DB2 driver.

398 Chapter 12 XPages Gets Relational

ptg7987094Figure 12.25 The full DB2 driver provider class.

Once you have created the driver provider class, select the class for export. You do this in
the Manifest by clicking Add under Exported Packages on the Runtime tab. The driver
provider package should appear for selection, as shown in Figure 12.26.

Accessing Relational Data Through JDBC 399

ptg7987094

Figure 12.26 Exporting the package that contains the driver provider class.

At this point, you can save the plugin project. It is ready to export and deploy to the server.
As discussed earlier, there are two ways to deploy the OSGi plugin: by either exporting the plugin
and then placing the OSGi driver package directly on the server’s file system, or deploying the
plugin via an update site in an NSF-based update site. The export process to place the plugin on
the server’s file system is quick and can be accessed by right-clicking the project in Package
Explorer and selecting Export from the pop-up menu. In the Export Select dialog that appears
(see Figure 12.27), under Plug-In Development, select the Deployable Plug-Ins and Frag-
ments option, and click the Next button to perform the export.

400 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.27 Selecting the Deployable Plug-Ins and Fragments export.

In the Export dialog, select the plugin project for export. Then set the export path in the
Directory field on the Destination tab, shown in Figure 12.28, and click the Finish button.

Accessing Relational Data Through JDBC 401

ptg7987094

Figure 12.28 Exporting the plugin using the Deployable Plug-Ins and Fragments Wizard.

The export processes the plugin, as seen in Figure 12.29; the result of the export is a JAR in
the location selected during the export.

402 Chapter 12 XPages Gets Relational

Figure 12.29 The plugin export in progress.

ptg7987094

Figure 12.30 The result of the project is a plugin JAR file.

To verify that the drivers are available, you can query the OSGi console in Domino with the
command tell http osgi ss com.ZetaOne, where com.ZetaOne is a filter that restricts
the list of results. The filter should be the beginning of the name of the class, long enough to
uniquely identify it and display it in the results (see Figure 12.31).

Accessing Relational Data Through JDBC 403

You can deploy this JAR file, as seen in Figure 12.30, to the <data>\domino\workspace\
applications\eclipse\plugins directory of the Domino server. Placing the JAR in this directory
should make the drivers available to the XPages runtime.

Figure 12.31 Querying OSGi on the console to determine whether the plugin is resolved.

ptg7987094

For 8.5.3 and above, the preferred method for distributing the plugin is through an Eclipse
update site using the Domino update site database that was described in Chapter 2. You create the
update site in two steps. First create a Feature project by right-clicking inside the Package
Explorer and selecting New → Other. In the Select a Wizard dialog, expand Plug-In Develop-
ment, select Feature Project, and click Next.

In the Feature Properties page, add a project name, such as com.ZetaOne.JDBC.
drivers.DB2.feature, and update the various Feature Properties, similar to what you see in
Figure 12.32, and click Finish.

404 Chapter 12 XPages Gets Relational

Figure 12.32 Creating a new Feature Project for the DB2 drivers.

ptg7987094

Figure 12.33 Adding the DB2 JDBC Plug-in to the frature project.

The final steps in creating the update site are to create the actual update site project by
right-clicking in the Package Explorer, again selecting New → Other, expanding Plug-In
Development, selecting Update Site Project, and clicking Next. In the Update Site Project Wiz-
ard, enter a project name such as com.ZetaOne.JDBC.drivers.DB2.updateSite and click
Finish. Once the update site project opens, click the New Category button. Give the category a
unique Name and Label. Then click the Add Feature button. In the Select a Feature dialog, type
com.ZetaOne in the Filter box and select the DB2 driver feature. The final update site project
should look similar to Figure 12.34.

Accessing Relational Data Through JDBC 405

When the new feature project opens, switch to the Plug-Ins tab, and click the Add button
under Plug-Ins and Fragments. In the Select a Plug-In dialog, type com.ZetaOne in the Edit
box to filter the list of plugins, and select the DB2 driver plugin shown in Figure 12.33. Then save
the project.

ptg7987094

Figure 12.34 The final Update Site project for the DB2 drivers.

To import the plugin into the update site, click the Synchronize button. In the Features
Properties Synchronization dialog, select the Synchronize All Features on This Site option and
click Finish. Finally, to create the actual update site, click the Build All button. After the build
process has completed, the update site has been created and is ready for import into the update
site application from the project’s folder in your workspace (for example C:\Program
Files\IBM\Lotus\Notes\Data\workspace\com.ZetaOne.JDBC.drivers.DB2.updateSite). Import
the update site into the NSF update site database in the same manner that you imported the
ExtLib in Chapter 2. The driver will be available on any server where the NSF-based update site
is installed.

Creating a Connection to the RDBMS
Now that the JVM has access to the JDBC drivers, the next step is setting up the connection
between the driver and the RDBMS. You can establish connections to an RDBMS by creating
connections in the NSF.

Creating Connection Files

The connection file is a simple XML file that contains the driver, a uniform resource locator
(URL) pointing to the server, and other connection-related information. The connection file is

406 Chapter 12 XPages Gets Relational

ptg7987094

named connectionName.jdbc, where connectionName is the unique name that will be given to
the connection and the name used when access to the datasource is required. The format for the
connectionName.jdbc file is shown in Listing 12.1.

Listing 12.1 Definition of a JDBC Connection File

<jdbc type=”connection-pool-type”>

<driver>driver-class</driver>

<url>url-to-database</url>

<user>user-name</user>

<password>password</password>

</jdbc>

Table 12.1 describes each of the field definitions used within the JDBC connection file.

Table 12.1 JDBC Connection File Field Definitions

Field Value Name Field Value Description

connection-pool-type Defines the implementation type of the connection pool that this
connection will use. The default is simple. Simple is the only
current connection pool implemented, but future releases of the
ExtLib may include an implementation of Apache DBCP. Addi-
tional parameters to the connection pool can be provided through
an additional section within the JDBC connection file detailed in
Listing 12.2.

driver-class The fully qualified Java class name of the driver that makes the
connection. The driver vendor should have the driver class docu-
mented for your reference.

url-to-database The JDBC URL to the database this connection will connect to.
(See the later section, “Specifying the Database URL.”)

user-name The username used for the connection.

password The password for user-name’s access to the database.

As mentioned in the connection-pool-type definition in Table 12.1, there are
additional parameters you can set in the JDBC connection file to control the settings for the
connection pool for this connection. To set these, you use an additional section that’s included at
the end of the connection file. The section is enclosed by a tag set using the name of the selected

connection-pool-type. For example, if the connection-pool-type is set to simple, the
tag set would be <simple>...</simple>. Enclosed within the tag set are the
connection-pool-type specific settings for that connection. Listing 12.2 defines the parame-
ters and default values for the simple connection-pool-type, and Table 12.2 defines each of
the parameter’s usage.

Accessing Relational Data Through JDBC 407

ptg7987094

Listing 12.2 Simple Connection Pool Optional Parameters and Default Values

<simple>

<minPoolSize>10</minPoolSize>

<maxPoolSize>20</maxPoolSize>

<maxConnectionSize>200</maxConnectionSize>

<useTimeout>0</useTimeout>

<idleTimeout>0</idleTimeout>

<maxLiveTime>0</maxLiveTime>

<acquireTimeout>10000</acquireTimeout>

</simple>

Table 12.2 Connection File Connection Pool Parameter Definitions for the Simple Pool Type

Field Value Name Field Value Description

minPoolSize Defines the minimum number of JDBC connections that will be maintained
in the connection pool. The default value is 10. This means that at all times,
10 opened JDBC connections will be available in the connection pool.

maxPoolSize Defines the maximum number of connections the connection pool will hold
open. The connection pool will open a connection for any connection
request up to maxConnectionSize, but open connections above max-
PoolSize will be closed when they are returned to the pool.

maxConnectionSize The maximum number of JDBC connections allowed at any one time. The
default value is 200. Once maxConnectionSize connections are opened,
any new connection requests are placed into a queue for acquireTimeout
seconds. If the number of connections drops below maxConnectionSize,
the connection is established; otherwise, an exception is thrown.

useTimeout When set to a value of 1 (one), connections held longer than idleTimeout
are automatically returned to the connection pool, ensuring all connection
requests are returned to the pool.

idleTimeout If a connection (before returning it to the pool) has been idle for this
amount (in seconds), it is automatically closed and returned to the pool.
This ensures that all connections requested by applications are returned to
the document pool.

maxLiveTime Defines the maximum lifetime for a JDBC connection. Connections idle
for longer than maxLiveTime are closed, allowing the connection pool
to optimize the number of open connections held in the pool during low
usage periods.

acquireTimeout The maximum number of seconds a connection waits in the queue while
connections exceed maxConnectionSize. If the timeout is exceeded,
the request is dropped and an exception is thrown.

408 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.35 shows a fully formed implementation of a JDBC connection file in Domino
Designer with both the JDBC connection and the connection pool values set and customized. At
the time of this writing, it is planned to include a way to create a global connection for all appli-
cations on the server. Discussions are ongoing as to how this global connection and connection
pool would be created and managed (for example, whether it would be in the server’s names.nsf
or a separate database). Review the release notes in future releases of the ExtLib for more infor-
mation on this option.

Accessing Relational Data Through JDBC 409

Figure 12.35 A sample NSF-specific DB2 connection in the WebContent\WEB-INF\jdbc
folder.

Specifying the Database URL
The syntax of the URL is defined by the driver you are trying to access, but it is generally defined
as jdbc:DRIVER:server:port:additional-parameters. For example, a DB2 connec-
tion, connecting to the database northwood on server db2.wwcorp.com on port 5021 would be
jdbc:db2://db2.wwwcorp.com:5021/northwood. For a local Apache Derby database
however, the connection URL jdbc:derby:${rcp.data}\derby\XPagesJDBC; create=
true would connect to a derby database file derby/XPagesJDBC located in the local data direc-
tory. Notice in the previous example the use of the configuration property rcp.data in the com-
puted expression ${rcp.data}. The connection files can take advantage of computed properties
in their definitions.

wwwcorp.com:5021/northwood

ptg7987094

Creating Connections and the Connection Pool

The XPages runtime environment implements a simple connection pool to improve performance,
concurrency, and scalability. A connection pool is a global object within the XPages runtime that
manages the open connections to JDBC datasources. When an XPage object needs to interact
with a JDBC datasource, it can request a connection from the connection pool. This pool is likely
to have already established connections to the datasource because other XPages and processes
have requested access previously. If the specific connection requested is not in the pool, the con-
nection is established and then stored in the pool.

Creating these connections can be expensive because of the overhead in network traffic and
processing time in connection initialization. If every XPage session on the Domino server had to
open and manage its own connection to a database, and the application was heavily used, the
sheer number of connections could severely limit the scalability of the application. Likewise, if
the connection was instead managed by every page, each page would have to open and then close
the connection each time the page was accessed. Performance would suffer greatly as each page
took the time to open and process the connection to the RDBMS. With the connection pool, each
of these potential issues is solved because the pool can share these connections between different
sessions and users. The expensive start-up of a connection is only incurred when the pool has
insufficient cached connections for the current demand that the users and the application place on
the server. Once demand drops, the pool will prune out stale connections, releasing and closing
the connections, and tuning the pool to maintain only enough connections to service all the con-
current connection requests without having to initialize new ones.

The existence of the connection pool is practically unknown to developers and creates no
extra effort. The connection pool and the management of its connections are automatic. Once the
JDBC driver is provided to the runtime environment and the connection is defined via the JDBC
connection, Java Naming and Directory Interface (JNDI) publishes the connection at
java:comp/env/jdbc/connectionName, where connectionName is the name of the con-
nection used in XPages RDBMS component’s connectionName. (connectionName is also the
filename of the connection file in the WebContent/WEB-INF/jdbc folder of the NSF. If you
exclude the jdbc/ prefix from the connection name, the runtime automatically adds it.) When the
XPage request ends, the JNDI implementation ensures the connection is properly returned to the
pool, without having to explicitly close it. However, it is best practice when acquiring a connec-
tion programmatically from the pool to close it as soon as it is no longer required. This keeps the
connection pool from establishing too many connections and overusing system resources.

Using Relational Datasources on an XPage
The ExtLib’s RDBMS support adds two new datasource types for use with data-aware compo-
nents. Both xe:jdbcQuery and xe:jdbcRowSet components provide access to RDBMS data
to controls in an XPage, but they have different uses and performance implications. The
xe:jdbcQuery component returns a data set based on a query statement and stores its data using

410 Chapter 12 XPages Gets Relational

ptg7987094

a JDBC result set. The returned record set is read-only and caches data up to maxBlockCount
pages of data at one time. It is optimal for large read-only data sets, where the result set would be
displayed in a view-like interface such as a data table. Conversely, the xe:jdbcRowSet is based
on a JDBC CachedRowSet object, and the results (up to a maximum number of rows) of the
query are loaded and cached in memory. The larger the returned record set, the more memory the
results consume. The xe:jdbcRowSet, however, is a read-write data set. The cached records
capture all changes to the record set and hold the changes in cache until the data is committed
back to the RDBMS.

Adding a JDBC Datasource to an XPage

NOTE

To enable these new datasources, you must first enable the ExtLib in the application. The
ExtLib is enabled the first time you use an ExtLib component from the component palette,
or you can manually enable it in the Application Properties’ Advanced panel. Until the
ExtLib is enabled, the relational datasources do not appear in the list of datasource types
on data-aware components.

The JDBC datasources are available anywhere that an xp:dominoDocument or xp:domi-

noView datasource would be. In the Data tab of a data-aware component (that is, the XPage
itself, or in a View Panel), you can click the Add button to select the available datasources. Once
added, the property list appears in any control where a datasource can be added, as shown in
Figure 12.36.

Using Relational Datasources on an XPage 411

Figure 12.36 Adding a JDBC datasource to an XPage.

ptg7987094

Creating a connection to a datasource requires at least two properties to be populated.
These properties are either connectionName or connectionURL and either sqlFile, sqlQuery,
or sqlTable. As previously discussed, the connectionName is the JNDI name of a connection
defined by a JDBC connection file. The connectionUrl property takes precedence over the con-
nectionName property and provides a direct JDBC URL to the database, such as
jdbc:db2://db2srvr.wwcorp.com:5021/database:user=db2adm;password=db2adm

;. Utilization of the connectionUrl bypasses the JDBC Connection Pool and should be used for
testing only. The sqlFile, sqlQuery, and sqlTable properties establish the SQL statement to
retrieve the data. Only one of the three properties defines the SQL statement. The precedential
order for properties is sqlTable, sqlQuery, and sqlFile. sqlFile is used only if both sqlQuery and
sqlTable are empty, and sqlQuery is used only if sqlTable is empty.

Specifying the SQL Statement

Use of the sqlTable property instructs the JDBC datasource to return a SQL table, view, or stored
procedure. The value of the sqlTable property should be the name of the table, view, or stored
procedure from which the datasource should retrieve its result set. The SQL query executed when
using the sqlTable property is SELECT * FROM sqlTable. You can use a custom SQL query
statement by populating either the sqlQuery or the sqlFile property. The sqlQuery property
directly specifies the query. The sqlFile property specifies the filename of a text file (with the file
extension .sql) containing the SQL query stored in the WebContent/WEB-INF/jdbc folder of
the NSF. The SQL statement in both sqlQuery and sqlFile can be parameterized by using the
sqlParameters property.

Adding Parameters to a SQL Statement
Parameters can be inserted into a prepared SQL statement provided in either the sqlQuery prop-
erty or in the text file identified in the sqlFile property. In each instance where a portion of the
SQL statement needs to be dynamically updated, you insert a question mark (?) character as a
placeholder. At runtime, before the SQL query is executed, the XPages RDBC components eval-
uate SQL statement, and each ? is replaced with the corresponding value from the sqlParameters
property. For example, given the following parameterized SQL statement and parameters in
Figure 12.37, the resulting SQL query that would be executed would be SELECT TOP 10 FROM
ORDERCOUNTS WHERE STATE=’MI’ ORDERBY QUANTITY. The order of parameters in the
sqlParameters property must match the order in which each parameter is inserted into the SQL
statement.

412 Chapter 12 XPages Gets Relational

ptg7987094

Figure 12.37 Parameterizing a SQL statement.

It is highly recommended that prepared SQL statements with parameters be used rather
than calculating dynamic queries. Doing so increases performance because the query can be
cached rather than having to be recomputed on each request. In addition, the use of the prepared
SQL statement with parameters increases security, preventing SQL injection attacks.

Working with the xe:jdbcQuery Datasource
As previously mentioned, the xe:jdbcQuery datasource is a read-only datasource that’s ideal
for displaying large amounts of data because of the way data is cached for the datasource. Unlike
the xe:jdbcRowSet, which caches the entire result set by default, the xe:jdbcQuery caches
blocks of data.

A block of data is the result set returned to fulfil a “page” of data. For example, using the
View Panel that displays 30 rows of records, those 30 lines are one page. The maxBlockCount
property of the xe:jdbcRowSet controls the number of blocks that can be cached. If a database
connection is slow, increasing the number of cache blocks can increase performance, but it comes
at the expense of server memory. By default, the xe:jdbcRowSet does not perform caching.
(maxBlockCount is set to 0.)

The xe:jdbcQuery datasource, displayed in Figure 12.38, supports page and record
counts for the implementation of a pager. When it’s set to true, the calculateCount property
manipulates the SQL statement for the query to add a COUNT(*) function to the statement to

Using Relational Datasources on an XPage 413

ptg7987094

return the number of rows available to the data set. For example, if the generated SQL statement
is SELECT * FROM tableName WHERE COUNTY=”BRANCH”, the component converts the state-
ment to SELECT * COUNT(*) FROM tableName WHERE COUNTY=”BRANCH”. Additionally,
you can use the properties sqlCountQuery and sqlCountFile to set a custom SQL query state-
ment to generate the count. This allows the use of a higher-performing SQL statement to generate
the count that excludes directives such as ORDERBY that would increase computational overhead
and time for the execution of the count statement.

414 Chapter 12 XPages Gets Relational

Figure 12.38 The xe:jdbcQuery datasource added to an XPage.

The xe:jdbcQuery component supports setting a default sort order through the use of the
defaultOrderBy property. Setting the value of the property to a list of comma-separated column
names establishes the default sort order. The datasource also supports user-sorted columns,
which override the defaultOrderBy property.

Working with the xe:jdbcRowSet Datasource
The xe:jdbcRowSet datasource, pictured in Figure 12.39, is optimal for smaller data sets. This
datasource reads and caches all records in the dataset by default. The more records the SQL state-
ment returns, the more memory the component consumes. You can limit the total number of
cached records by setting the maxRows property. It is a read-write datasource; changes made to
the records are held in the cache until the entire record set is committed to the RDBMS. Unlike
the xe:jdbcQuery, xe:jdbcRowSet does not support a full record count for paging. The
record count available from the datasource is the current number of records currently cached in
the datasource.

ptg7987094

Figure 12.39 The xe:jdbcRowSet datasource added to an XPage.

Properties Common to Both the xe:jdbcQuery and xe:jdbcRowSet
Datasources
In addition to the standard component properties that all datasources have, such as
ignoreRequestParams, scope, var, and loaded, both data JDBC sources contain the property
clearOnRendering. This property, when set to true, instructs the data set to clear all caches
before the XPage has rendered, forcing the XPage to acquire the latest data from the RDBMS.

JDBC Datasources and Concurrency
In the typical XPages application based on NSF data, the application architecture exists prebuilt
into the platform to deal with concurrent data access. If you’re building applications on the plat-
form, you don’t need to worry about issues resulting from concurrent data editing related to the
semi-automated nature of resolving the issue. With an RDBMS, concurrent data editing is a real
concern; transactions can read and write records without an indication that a conflict has
occurred. Because an XPages application is multi-threaded and can serve many requests concur-
rently, multiple users modifying the same data set can raise concerns about data integrity.

Additionally, when a single XPage contains more than one JDBC connection to the same
connection, a performance hit can be incurred because each JDBC datasource executes its trans-
action independently. At the end of each transaction, a commit is made to update the transaction
to the RDBMS. Each one of these commits adds overhead to the process, but a commit is not
needed after every transaction if multiple transactions are going to be made to the same
datasource.

Using Relational Datasources on an XPage 415

ptg7987094

NOTE

A commit is the process by which a change to a record becomes permanent in an RDBMS.
During a transaction, a change, or series of changes, is performed against a database, but
the change is held in memory until the RDBMS is instructed to commit the change perma-
nently. Until the commit is executed, you can instruct the RDBMS to roll back any changes
made during a transaction.

By placing an xe:jdbcConnectionManager component on the XPage, you can alleviate
both issues. When you’re using the xe:jdbcConnectionManager, you set the connection-
Name (or connectionURL) property on the xe:jdbcConnectionManager component instead
of the datasource. Then you set each datasource’s connectionManager property to the ID of the
appropriate xe:jdbcConnectionManager component. By default, the xe:jdbc-

ConnectionMananger’s autoCommit property is set to false; you can execute multiple JDBC
calls within a single transaction with a single commit after the grouped transaction, negating the
performance hit.

The Connection Manager can also set a transactional isolation level using the transaction-
Isolation property to help alleviate concurrency issues and maintain data integrity. Three differ-
ent concurrency issues exist. Each of the five levels of transaction isolation is meant to alleviate
different issues of concurrency, with varying impacts on performance.

A concurrency conflict occurs when two separate connections start a transaction simultane-
ously and want to interact with the same record. The three types of concurrency conflicts are
Dirty Read, Unrepeatable Read, and Phantom Read. Each concurrency conflict can cause data
integrity issues for different reasons.

A Dirty Read occurs when the first transaction changes the value of fieldA from A to a
value of B. The second transaction then reads the same record and is given the new value of B.
The second transaction then commits a change back to the RDBMS, with fieldA now equalling
B. Finally, the first transaction encounters some state that would cause the transaction to roll
back, but the record has already been committed with the value of fieldA being equal to B by the
second transaction, causing invalid data to be stored in the record.

An Unrepeatable Read occurs when the first transaction reads the record and retrieves the
value A from fieldA. The second transaction then initiates a change to fieldA, setting the value to
B, and then commits the change. Transaction 1 then rereads the record and retrieves the new
fieldA value of B, while continuing to process and eventually committing the record.

A Phantom Read occurs when a transaction reads a record set with a SELECT statement
that causes a set number of records to be returned (for example, five records). The second trans-
action then inserts and commits a new record that matches the SELECT criteria. The first transac-
tion re-executes the SELECT and returns six records.

Table 12.3 identifies each of the five levels of transaction isolation, the concurrency con-
flicts they address, and their impact to performance.

416 Chapter 12 XPages Gets Relational

ptg7987094

Server-Side JavaScript JDBC API for XPages and Debugging 417

Table 12.3 Transaction Isolation Levels and Performance Impact

Dirty Unrepeatable Phantom

Read Read Read Performance

TRANSACTION_NONE n/a n/a n/a Fastest

TRANSACTION_READ_UNCOMMITED No No No
Protection Protection Protection Fastest

TRANSACTION_READ_COMMITED Protected No No Fast
Protection Protection

TRANSACTION_REPEATABLE_READ Protected Protected No Medium
Protection

TRANSACTION_SERIALIZABLE Protected Protected Protected Slow

The xe:jdbcConnectionManager also provides a method binding called initConnec-
tion that allows you to hook into the connection initialization routine to perform tasks. The con-
nection object is available using the variable connection from within the method.

Note that the available isolation methods depend on what the RDBMS implements. Be
sure to consult the database vendor’s documentation to confirm what levels of isolation are
implemented.

Server-Side JavaScript JDBC API for XPages and Debugging
Several @Functions have been added to Server-Side JavaScript to enable programmatic interac-
tion with JDBC datasources. Each @Function performs a transaction of a specific type and
makes programmatic access to JDBC data as easy as access to NSF data. Those methods that
operate on a record set do not commit after they are called. It is up to you to ensure that either
autoCommit is turned on (it is by default) or a call to commit is made at the appropriate time.
Each of the @Functions is discussed next.

@JdbcGetConnection(data:string)

The @JdbcGetConnection function, an example of which appears in Listing 12.3, returns a
JDBC connection for use within the other @Functions and is a shortcut to the JNDI call. The
data parameter is the name of the connection to return. The connection follows the same rules as
the connectionName parameter used in the JDBC datasources. The connection is released back
to the connection pool when the request is completed.

When you’re using @JdbcGetConnection, you should wrap the code block in a
try...finally block. Inside the finally block, the connection should be closed. This
ensures that the connection is properly closed and returned to the connection pool, even if an
exception is raised.

ptg7987094

Listing 12.3 @JdbcGetConnection(data string)

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Execute additional operations here…

} finally {

con.close();

}

@JdbcDbColumn(connection:any, table:string, column:string) : Array

@JdbcDbColumn(connection:any, table:string, column:string,

where:string) : Array

@JdbcDbColumn(connection:any, table:string, column:string,

where:string, orderBy:string) : Array

This method returns an array of all the values from the specified column in the selected table. You
can use the results of this call, for example, to populate the selection values in a comboBox. You
can filter the values by providing a SQL where clause in the where parameter. You can provide a
comma-separated list of column names by which to sort the results in the orderBy parameter.

Listing 12.4 illustrates the simplest form of use for the method, taking the connection upon
which to act, the table from which to retrieve the column, and the column’s name as parameters.

Listing 12.4 @JdbcDbColumn(connection:any, table:string, column:string):
Array

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

var results:Array =

@JdbcDbColumn(con, “employees”, “employeeNumber”);

} finally {

con.close();

}

Listing 12.5 builds upon the example from the previous listing and adds the additional
where parameter. The where parameter filters the results of the function by appending a SQL
where clause, which is passed as the where parameter, to the SQL statement. In this example,
the results returned from Listing 12.5 are filtered down to records where the value of the field
Active is set to Y.

418 Chapter 12 XPages Gets Relational

ptg7987094

Listing 12.5 @JdbcDbColumn(connection:any, table:string, column:string,
where: string): Array

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

var results:Array =

@JdbcDbColumn(con, “employees”, “employeeNumber”,

“Active=’Y’”);

} finally {

con.close();

}

The orderBy parameter sorts the results of the function by appending a SQL order by
clause, which is passed as the orderBy parameter, to the SQL statement. Listing 12.6 adds this
additional orderBy parameter to the results of Listing 12.5 and sorts the results by last name and
then first name.

Listing 12.6 @JdbcDbColumn(connection:any, table:string, column:string,
where: string, orderBy: String): Array

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

var results:Array =

@JdbcDbColumn(con, “employees”, “employeeNumber”,

“Active=’Y’”, “employeeLast, employeeFirst”);

} finally {

con.close();

}

@JdbcDelete(connection:any, table:string, where:string) : int

@JdbcDelete(connection:any, table:string, where:string, params:Array) :

int

This method deletes a set of records from the specified table in the specified connection that meet
the criteria specified in the where parameter. The return value of the @Function is the number of
rows affected by the delete statement. In the JDBC @Functions, connection can be either a
java.sql.Connection object returned from @JdbcGetConnection or a string specifying
the name of the connection to be used. Listing 12.7 demonstrates the simplest form of
@JdbcDelete, performing a simple unparameterized query to the employees table of the HR
connection to delete a record, where the employeeNumber field matches the value 1234.

Server-Side JavaScript JDBC API for XPages and Debugging 419

ptg7987094

Listing 12.7 @JdbcDelete(connection:any, table:string, where: string): int

var cnt:int = @JdbcDelete(“HR”, “employees”, “employeeNumber=’1234’”);

Additionally, through the use of the optional params parameter, you can send an array of
values to parameterize the SQL table or where parameters. In each instance where a portion of
the SQL statement needs to be dynamically updated, as Listing 12.8 demonstrates, you can insert
a question mark (?) character as a placeholder. Before executing the SQL query, the SQL state-
ment is evaluated, and each ? is replaced with the corresponding value from the params parame-
ter. The return value from the function is the number of records deleted from the selected table.
Notice in Listing 12.8 that after the call to @ JdbcDelete the code checks to ensure the connec-
tion’s auto commit is set to true. If it isn’t, the code permanently commits the change to the
dataset.

Listing 12.8 @JdbcDelete(connection:any, table:string, where: string): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

var parms = [‘employees’,’1234’];

var cnt:int =

@JdbcDelete(con, “?”, “employeeNumber=’?’”,parms);

If (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

@JdbcExecuteQuery(connection:any, sql:string) : java.sql.ResultSet

@JdbcExecuteQuery(connection:any, sql:string, params:Array) :

java.sql.ResultSet

This method executes a custom SQL statement and returns the results of the query as a
java.sql.ResultSet object. Listing 12.9 demonstrates executing a simple query that returns all
the records found in the employees table from the HR connection where the ACTIVE field is set to Y.

Listing 12.9 @JdbcExecuteQuery(connection:any, sql: string):
java.sql.ResultSet

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

420 Chapter 12 XPages Gets Relational

ptg7987094

var results:java.sql.ResultSet =

@JdbcExecuteQuery(con,

“SELECT * FROM employees WHERE ACTIVE=’Y’”);

} finally {

con.close();

}

You can also pass the optional params parameter to @JdbcExecuteQuery to construct
the query from a parameterized query. The value of the params parameter is an array of values
you can use to parameterize the SQL table or where parameters. In each instance where a portion
of the SQL statement needs to be dynamically updated, you can insert a question mark (?) char-
acter as a placeholder. Before you execute the SQL query, the SQL statement is evaluated, and
each ? is replaced with the corresponding value from the params parameter.

Listing 12.10 @JdbcExecuteQuery(connection:any, sql: string, params:
string): java.sql.ResultSet

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

var params = [‘employees’,’1234’];

var results:java.sql.ResultSet =

@JdbcExecuteQuery(con,

“SELECT * FROM ? WHERE ACTIVE=’?’”, params);

} finally {

con.close();

}

@JdbcInsert(connection:any, table:string, values:any) : int

The @JdbcInsert function inserts a new record with values specified in the values parameter.
The values parameter can be either a Java map or an array. For a Java map, the field names are
specified as the map keys. For an array, the values can specify either columnName=value or just
the field values. When the array specifies just field values, they must correspond to the column
order of the specified table. The return value is the number of records inserted. Listing 12.11
demonstrates using the @JdbcInsert function with a simple JavaScript array to provide the val-
ues for each column of the new row in the specified table.

Server-Side JavaScript JDBC API for XPages and Debugging 421

ptg7987094

Listing 12.11 @JdbcInsert(connection:any, table: string, values: any): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Specifying the values as an array of values

var vals = [“1234”, “Y”, “Smith”, “Joe”];

var results:int = @JdbcInsert(con, ‘employees’, vals);

if (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

Listing 12.12 demonstrates using the @JdbcInsert function with a simple JavaScript array,
where each entry in the array is a name/value pair that specifies which value goes into which col-
umn within the table.

Listing 12.12 @JdbcInsert(connection:any, table: string, values: any): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Specifying the values as an array of name=value pairs

var vals = [“employeeNumber=’1234’”, “Active=’Y’”,
“lastName=’Smith’”, “firstName=’Joe’”];

var results:int = @JdbcInsert(con, ‘employees’, vals);

if (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

Listing 12.13 demonstrates using the @JdbcInsert function with a java.util.HashMap,
where each entry in the map is a name and value pair that correlates to the column name and value
that will be inserted into the new row.

422 Chapter 12 XPages Gets Relational

ptg7987094

Listing 12.13 @JdbcInsert(connection:any, table: string, values: any): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Specifying the values using a Java HashMap

var vals:java.util.HashMap = new java.util.HashMap();

vals.put(“employeeNumber”,”1234”);

vals.put(“Active”,”Y”);

vals.put(“lastName”,”Smith”);

vals.put(“firstName”,”Joe”);

var results:int = @JdbcInsert(con, ‘employees’, vals);

if (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

Listing 12.14 demonstrates yet another way to use the @JdbcInsert function, this time with the
JSON object, where the variable name of each member of the object represents the column name,
and the value assigned is the value that will be inserted into that column.

Listing 12.14 @JdbcInsert(connection:any, table: string, values: any): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Specifying the values as a simple JavaScript object

var vals = {

employeeNumber: ”1234”,

Active: “Y”,

lastName: “Smith”,

firstName: “Joe”

};

var results:int = @JdbcInsert(con, ‘employees’, vals);

if (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

Server-Side JavaScript JDBC API for XPages and Debugging 423

ptg7987094

@JdbcUpdate(connection:any, table:string, values:any) : int

@JdbcUpdate(connection:any, table:string, values:any, where:string) : int

@JdbcUpdate(connection:any, table:string, values:any, where:string,

params:Array) : int

This method updates one or more records that match the where clause with values specified in
the values parameter. Like @JdbcInsert, the values parameter can be a JavaScript array, a
JavaScript object, or a Java map.

The optional where parameter appends a where clause to the generated SQL statement
that filters the list of records that will receive the update. Pass the entire contents of the where
conditional (without the WHERE keyword) as the value of the where parameter.

The optional params parameter is an array of values you can use to parameterize the
SQL table or where parameters. In each instance where a portion of the SQL statement needs to
be dynamically updated, you can insert a question mark (?) character as a placeholder. Before
executing the SQL query, the SQL statement is evaluated, and each ? is replaced with the corre-
sponding value from the params parameter.

The return value is the number of records updated. For this method, connection can be
either a java.sql.Connection object returned from @JdbcGetConnection or a string spec-
ifying the name of the connection to be used.

Listing 12.15 is an example of a parameterized @JdbcUpdateFunction using the
where clause.

Listing 12.15 @JdbcUpdate(connection:any, table: string, values: any,
where: string, params: string): int

var con:java.sql.Connection;

try {

con = @JdbcGetConnection(“HR”);

// Specifying the values as a Java Hash Map

var vals:java.util.HashMap = new java.util.HashMap();

vals.put(“Active”,”?”);

var parms = [“N”];

var results:int =

@JdbcInsert(con, ‘employees’, vals,

“employeeNumber=’1234’”, parms);

if (!con.getAutoCommit()) {

con.commit();

}

} finally {

con.close();

}

424 Chapter 12 XPages Gets Relational

ptg7987094

Debugging with the xe:dumpObject Component

For debugging purposes, the ExtLib’s dump object xe:dumpObject, which is available under
the Create → Other menu by expanding the Extension Library category and selecting Dump
Object, is able to dump the database metadata and the contents of a JDBC datasource to an
HTML table. The dump is executed by adding the xe:dumpObject component to the XPage and
selecting the JDBC datasource to be dumped. Listing 12.16 illustrates how to use the dump
object with an xe:jdbcQuery datasource.

Listing 12.16 Using the xe:dumpObject with a JDBC Datasource

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xe=”http://www.ibm.com/xsp/coreex”

dojoParseOnLoad=”true”

dojoTheme=”true”>

<xp:this.data>

<xe:jdbcQuery

var=”jdbcQuery1”

connectionName=”HR”

sqlFile=”activeEmployees.sql”>

</xe:jdbcQuery>

</xp:this.data>

<xe:dumpObject

id=”dumpObject1”

objectNames=”jdbcQuery1”>

</xe:dumpObject>

</xp:view>

Java JDBC API for XPages
Two Java classes are included with the RDBMS support in the ExtLib that give you additional
tools to work with RDBMS datasources in your XPages application. The class
com.ibm.extlib.util.JdbcUtil provides several methods to acquire connections, check
for tables, and load SQL statement design resource files from the NSF. The
com.ibm.xsp.extlib.jdbc.dbhelper.DatabaseHelper class has functions to aid in the
generation and issuance of SQL statements to a given connection.

Java JDBC API for XPages 425

ptg7987094

The com.ibm.xsp.extlib.jdbc.DatabaseHelper class is designed mainly to assist
in the generation and issuance of SQL commands to an RDBMS. Several methods, named
appendSQLType(), take a StringBuilder object as the first parameter and the appropriately
typed value as the second and append the value to the StringBuilder object. The available
StringBuilder-related methods are listed in Listing 12.17.

Listing 12.17 appendSQLType() Methods to Build a SQL Statement Using a StringBuilder

appendSQLBoolean(StringBuilder, boolean)

appendSQLDate(StringBuilder, Date)

appendSQLDouble(StringBuilder, double)

appendSQLFloat(StringBuilder, float)

appendSQLInteger(StringBuilder, int)

appendSQLLong(StringBuilder, long)

appendSQLNull(StringBuilder)

appendSQLShort(StringBuilder, short)

appendSQLString(StringBuilder, String)

appendSQLTime(StringBuilder, Time)

appendSQLTimestamp(StringBuilder, Timestamp, Calendar)

appendUnicodeSQLString(StringBuilder, String)

Additionally, several methods that return just the SQL statement-compatible string version
of a value are available as getSQLType(). Listing 12.18 lists these methods.

Listing 12.18 getSQL

getSQLBoolean(boolean)

getSQLDate(Date)

getSQLDouble(double)

getSQLFloat(float)

getSQLInteger(int)

getSQLLong(long)

getSQLNull()

getSQLShort(short)

getSQLString(String)

getSQLTime(Time)

getSQLTimeStamp(Timestamp, Calendar)

getUnicodeSQLString(String)

426 Chapter 12 XPages Gets Relational

ptg7987094

Java JDBC API for XPages 427

In addition to the methods to help build SQL queries using a string builder, Table 12.4 lists
several additional helper methods that can be used for various JDBC actions.

Table12.4 Additional Methods to Perform Other JDBC-Related Actions

Method Name Method Description

escapeString(String) Escapes string values to be included in a SQL
statement.

findHelper(Connection) Static method for locating the proper Database-
Helper class for a given connection’s database
driver type. Only valid types currently are Derby
and Generic.

getType() Returns the type (enum of
com.ibm.xsp.extlib.jdbc.dbhelp.
DatabaseHelper.type) of the Database-
Helper class. Currently either Generic or Derby.

sendBatch(Connection, Executes a series of SQL statements on the given
List<String>) connection. SQL statements are sent in the
sendBatch(Connection, List<String> parameter. When true, the
List<String>, boolean) optional boolean parameter issues the statements

as a transaction, committing the changes after
issuing the statements, and rolling back the
transaction if any SQL statement fails.

supportsBoolean() Returns true or false indicating whether the
database type supports Boolean types.

In addition to the DatabaseHelper class, the com.ibm.xsp.extlib.util.JdbcUtil
class, detailed in Table 12.5, includes several methods that are useful for Java development in
XPages. The class mainly focuses on getting and creating connections, reading SQL design ele-
ments, and listing and checking for the existence of tables.

ptg7987094

428 Chapter 12 XPages Gets Relational

Table 12.5 Method Summary for com.ibm.xsp.etlib.util.JdbcUtil Class

Method Name Method Description

readSqlFile(String) Loads and reads a SQL statement design element
from the WebContent/WEB-INF/jdbc folder of the
NSF and returns the SQL statement contained within.

listTables(Connection, String Returns a list of tables that match the table name
schemaPattern, String and schema pattern specified.
tableNamePattern)

tableExists(Connection, Returns true if the specified tableName exists.
String tableName)

tableExists(Connection, String Returns true if the specified tableName exists
schema,String tableName) with the specified schema.

createConnectionFromUrl Returns a java.sql.connection for the
(FacesContext,String connectionUrl) given connectionUrl.

createManagedConnection Returns a java.sql.connection managed by
(FacesContext, an xe:connectionManager owned by a
UIComponent component, component for the given connectionName.
String connectionName) Pass in null as the component to use for the cur-

rent view root.

createNamedConnection Creates and returns a new connection for the
(FacesContext, String specified connectionName.
connectionName)

findConnectionManager Returns the connection manager for a given
(FacesContext,UIComponent component and connectionName.
component, String connectionName)

getConnection(FacesContext, Returns a connection to the specified
String connectionName) connectionName by calling

createNamedConnection.

getCountQuery(String) Coverts a SELECT SQL statement to a COUNT
SQL statement.

Conclusion
With the addition of relational database access to XPages, the ability for the platform to truly
become an integration point between disparate systems in the enterprise becomes a reality.
Although support of RDBMS is new to XPages and the tools to integrate it into the Domino
Designer UI are still forthcoming, RDBMS in XPages is already a powerful new tool in the
XPage developer’s arsenal. With a little work and a good understanding of RDBMS systems
design, application developers will find it easy to create and deploy high-performing and highly
scalable applications that cross both Lotus Domino and RDBMS stacks.

ptg7987094

429

C H A P T E R 1 3

Get Social

There is a lot of talk about “social” these days—social applications, social business, social
media, social services, and so forth. The theme of Lotusphere 2012 was “Business. Made Social.”
Social has certainly become something of a buzzword.

Social has a lot of definitions. Some of these definitions are high-level marketing statements, oth-
ers are limited to public social websites, and still more are limited to cloud computing. This chap-
ter uses a definition of social applications in the context of XPages, custom application
development, and IBM Lotus Domino/IBM XWork Server. It describes the new requirements,
maps them to technologies, and shows how the Extension Library (ExtLib) helps implement these
new requirements.

IBM Lotus Domino has always been a collaborative platform. For good reasons, many customers,
partners, and users consider Domino a social platform for helping businesses work together more
effectively. In addition to all the social functionality that Domino has always offered, the XPages
ExtLib now adds functionality to support the new IT landscape and requirements.

Going Social
Today, people are connected more than ever, blurring the lines between their business and private
life. Employees have Twitter accounts that they use to tweet both private and business messages.
Also, many employees use their private smartphones to access business applications and data.
Furthermore, information is scattered, within enterprises and in public social networks, on site
systems, and on the cloud. The inbox is no longer only the mail inbox; new notifications also
come in via Connections, Facebook, Google+, Twitter, and LinkedIn.

Consequently, there are new requirements for technologies to integrate and interoperate
between heterogeneous systems. Technically, this often means REST application programming

ptg7987094

interfaces (APIs), which are the new lightweight and easy-to-consume web services that most
services now support. HTTP requests are invoked to read and write data that is serialized as JSON
or XML/Atom. Most services support OAuth (which is described later in the chapter) to delegate
authorization so that custom applications can access information about these services. The
XPages ExtLib provides utilities that make the usage of REST APIs really easy, including a new
storage facility for OAuth application and user tokens.

Social applications always involve people, so they have to deal with users’ profile informa-
tion. The ExtLib comes with concepts to access the profile information of users not only from
Lotus Domino, but also from these other services. And for some typical scenarios, the XPages
ExtLib comes with reusable user interface controls, Sametime® live name, Connections business
card, files control for Connections, and more.

Given the way collaboration software has evolved over the past 20 years, these new social
tools are set to enable you to exploit this social business landscape.

Get Started
To enable building of social applications, various functionality and samples are available as part
of the XPages ExtLib (http://extlib.openntf.org). At the time of writing, these tools are available
only from the main download from OpenNTF.

Plugin

The ExtLib comes with a plugin called com.ibm.xsp.extlibx.sbt. This plugin contains the core
APIs to invoke REST service calls and handle OAuth. Typically, this plugin is only consumed as-
is rather than being extended or changed.

OAuth Token Store Template

The Domino template OAuth Token Store (WebSecurityStore.ntf) in the XPages ExtLib Open-
NTF project stores both the application keys and the user tokens to invoke REST services via
OAuth.

The Social Enabler Sample Database

The database XPagesSBT.nsf in the XPages ExtLib project contains various samples for how to
do REST calls, how to do OAuth, and how to consume other services’ datasources. It also con-
tains controls showing how to access files from IBM Connections, LotusLive, and Dropbox from
XPages.

430 Chapter 13 Get Social

http://extlib.openntf.org

ptg7987094

Setup
You need to extract the XPagesSBT.nsf and the WebSecurityStore.ntf from the downloaded zip
from the OpenNTF ExtLib project. Put this database and template in the Domino data directory
and then sign it with an ID that can run unrestricted methods and operations on the server.
The new application called websecuritystore.nsf should be created from the OAuth Token Store
template.

After this, you can open the home page (http://myServer/XPagesSBT.nsf/Home.xsp), from
which you can navigate to the different samples.

NOTE

You can’t run all samples out of the box; several of them require configuration. For
example, you need to add your own application tokens when accessing OAuth services
such as Dropbox.

OAuth
OAuth is an open protocol that allows secure API authorization in a simple and standard method
from desktop and web applications. Many popular services today use it, including Facebook,
Twitter, and Dropbox. More and more IBM products are adding support for this protocol, with
some offerings, such as LotusLive, supporting it already.

The web page http://oauth.net/ describes OAuth in more detail. You can also access various
libraries to access OAuth services, one of which is http://oauth.net/code/.

The XPages ExtLib makes it easy to access OAuth services, encapsulating all the complex-
ity such as OAuth dance (exchange of keys). Furthermore, the ExtLib comes with a web security
store in which both application and user token can be securely stored and managed.

The following sections describe how to configure and use OAuth with XPages.

OAuth Dance
Here is a sample of how OAuth works for the DropboxOAuth.xsp accessing Dropbox, as shown
in Figure 13.1. The Social Enabler database contains simple samples for the various services,
which also print out debug information—including the tokens. You can find the samples in the
XXXOAuth XPages (for example, DropboxOAuth.xsp).

OAuth 431

http://myServer/XPagesSBT.nsf/Home.xsp
http://oauth.net/describes
http://oauth.net/code/

ptg7987094

Figure 13.1 OAuth Dance Dropbox example.

When users click the Get an OAuth Token button, they are redirected to a Dropbox page
prompting them for authentication, as shown in Figure 13.2.

432 Chapter 13 Get Social

Figure 13.2 Authentication prompt.

ptg7987094

After users have logged in, they need to give the XPages application permission to access
their information and act on their behalf (see Figure 13.3).

OAuth 433

Figure 13.3 Access permission to third-party service.

After this, users are redirected to the XPages application, which now has access, in this
case, to Dropbox. To test whether you can invoke REST calls, click the button Call the Dropbox
Service - Authenticated, as shown in Figure 13.4.

ptg7987094
Figure 13.4 Third-party service test.

This dance has to be only executed once. After this, the keys are stored in the Web Security
Store database. When tokens expire, they are renewed automatically until the specific service’s
expiration date. Some services allow you to define the period of token validity, such as one
month. In this case, users get prompted again to grant the application access again.

OAuth Token Store Template
You can use any database created from the OAuth Token Store template (WebSecurityStore.ntf)
to store both the application keys and the user tokens to invoke REST services via OAuth. It is
envisaged that only one token store database will be on a server. Although it’s not a restriction,
you can use multiple OAuth Token Store databases to take advantage of various use cases for
social applications. You may not want to use the same OAuth application information for all
applications connecting to a particular service. For example, you may need a way for a said
XPages application to use certain Twitter OAuth app information; and in this case, you need a
different token.

To access services via REST and OAuth, you first need to get your own application keys
and secrets. Each service is different, so it is recommended that for whatever service you want to
obtain for the application, you consult the service’s website, or documentation, which describes
how and where this can be done. For example, for Dropbox, this can be done on http://
www.dropbox.com/developers, as shown in Figure 13.5, which shows the details of a particular
application.

434 Chapter 13 Get Social

http://www.dropbox.com/developers
http://www.dropbox.com/developers

ptg7987094

Figure 13.5 Service information.

As said, each service is different. And each service provider is likely to change the require-
ments from time to time. You need to be mindful of these events, because applications that use
these services are likely to suffer, so they need maintenance. It is recommended that application
owners put strategies and procedures in place to cover such eventualities.

NOTE

To register applications for LotusLive and the IBM Social Business Toolkit (SBT), go here:
LotusLive: http://www-10.lotus.com/ldd/bhwiki.nsf/dx/How_to_get_a_new_oauth_key (For
LotusLive please contact your LotusLive administrator to ask for a key)
SBT: http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Using_OAuth_to_integrate_with_the
_IBM_Social_Business_Toolkit_sbt

Each service, besides having its own keys and secrets, has its own REST endpoints, usually
three. Figure 13.6 shows these endpoints for Dropbox: Request Token, Authorize the Request
Token, and Upgrade to an Access Token.

OAuth 435

http://www-10.lotus.com/ldd/bhwiki.nsf/dx/How_to_get_a_new_oauth_key
http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Using_OAuth_to_integrate_with_the_IBM_Social_Business_Toolkit_sbt
http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Using_OAuth_to_integrate_with_the_IBM_Social_Business_Toolkit_sbt

ptg7987094

Figure 13.6 The three token endpoints.

Rather than putting this information in the application’s source code, you can externalize it
and share it between various XPages. The Application Keys view (http://myserver/
WebSecurityStore.nsf/KeysApplications.xsp) in an OAuth Token Store database lists the applica-
tion keys, shown in Figure 13.7.

436 Chapter 13 Get Social

Figure 13.7 Applications Keys view.

From this view, you can add your own application’s keys, as shown in Figure 13.8.

http://myserver/WebSecurityStore.nsf/KeysApplications.xsp
http://myserver/WebSecurityStore.nsf/KeysApplications.xsp

ptg7987094Figure 13.8 Adding a key.

Application ID and Service Name together are the unique key. They need to map to the
configuration in faces-config.xml, as shown in Listing 13.1.

Listing 13.1 The Application’s faces-config.xml

<managed-property>

<property-name>serviceName</property-name>

<value>Dropbox</value>

</managed-property>

<managed-property>

<property-name>appId</property-name>

<value>XPagesSBT</value>

</managed-property>

Under Consumer Secret and Consumer Key, you need to enter the credentials resulting
from the application registrations. Furthermore, you need to enter the three OAuth endpoints
here.

Under the Security Fields section in the field Readers, you can add more people with read
access. By default, it’s only the user who created the document and the database managers who
have access. You need to add other users here to give them access.

The User Keys view (http://myserver/WebSecurityStore.nsf/KeysUsers.xsp) contains a list
of user tokens, as shown in Figure 13.9. These tokens are added after users have given the appli-
cation access to the various social services.

OAuth 437

http://myserver/WebSecurityStore.nsf/KeysUsers.xsp

ptg7987094

438 Chapter 13 Get Social

Figure 13.9 Tokens view from the Web Security Store database.

From the User Keys view, you can delete specific user tokens. If you want to request new
keys for debugging purposes, you need to delete the tokens here and restart the HTTP server
(restart task http) because the tokens are cached in memory. Theoretically, you could add
and edit the tokens here, but the infrastructure usually does this automatically. By default, only
the user who owns the token and the database managers have access to a user’s tokens

Figure 13.10 shows a user key token as stored in the OAuth Token Store.

Figure 13.10 Token access details.

ptg7987094

Configure Applications to Use OAuth
Now that the application keys are stored in an OAuth Token Store database, you can almost call
REST services. But first, further configuration is needed in the custom application to point to the
Token Store database.

If you have put this database in an alternate directory other than the root, then in the Java
perspective (or Project Explorer view in the Designer perspective), you can open the file
WebContent/WEB-INF/faces-config.xml to link the OAuth Security Store database to the
application, as shown in Listing 13.2.

Listing 13.2 The OAuth Token Store’s faces-config.xml

<managed-bean>

<managed-bean-name>NSFStore</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.security.oauth_10a.store.OAuthNSFTokenStore

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>database</property-name>

<value>WebSecurityStore.nsf</value>

</managed-property>

</managed-bean

REST API Calls and Endpoints
XPages applications need uniform resource locators (URLs) and credentials to call REST ser-
vices. To make this as easy as possible, the XPages ExtLib provides mechanisms to encapsulate
and manage this complexity.

In the XPages ExtLib, the URL and the credentials are encapsulated in an object called an
endpoint. An endpoint is defined via a managed bean, with some managed properties as
parameters. Multiple endpoint implementations are provided, each of them proposing a different
authentication/authorization mechanism.

Here are the available implementations:

• com.ibm.xsp.extlib.sbt.services.client.endpoints.OAuthEndpointBean—
Connects to the service using OAuth tokens. OAuth should be the preferred method
when calling REST services.

• com.ibm.xsp.extlib.sbt.services.client.endpoints.AnonymousEndpointBean—
Connects to the service as anonymous, without credentials.

• com.ibm.xsp.extlib.sbt.services.client.endpoints.FacebookEndpoint—Connects
to Facebook using the Facebook application key.

REST API Calls and Endpoints 439

ptg7987094

• com.ibm.xsp.extlib.sbt.services.client.endpoints.BasicEndpointBean—Connects to
the service using basic authentication, with a username and a password. This is gener-
ally not advised, particularly if HTTPS is not being used. But it is simple and convenient
for demo purposes. Furthermore, this is the only method some servers provide.

More implementations, such as a SAML or a LTPA item, may be added later.

Endpoint Configuration
This section describes the different endpoint configurations. All of them are done in the file
WebContent/WEB-INF/faces-config.xml again.

OAuthEndpointBean

Listing 13.3 shows how this is done for the OAuthEndpointBean.

Listing 13.3 OAuthEndpointBean in the faces-config.xml File

<managed-bean>

<managed-bean-name>dropbox</managed-bean-name>

<managed-bean-
class>com.ibm.xsp.extlib.sbt.services.client.endpoints.OAuthEndpoint
Bean</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<!— Endpoint URL —>

<managed-property>

<property-name>url</property-name>

<value>https://api.dropbox.com</value>

</managed-property>

<managed-property>

<property-name>serviceName</property-name>

<value>Dropbox</value>

</managed-property>

<managed-property>

<property-name>appId</property-name>

<value>XPagesSBT</value>

</managed-property>

<!— OAuth parameters —>

<managed-property>

<property-name>tokenStore</property-name>

<value>NSFStore</value>

</managed-property>

</managed-bean>

440 Chapter 13 Get Social

ptg7987094

The bean name is the variable that you can use later in an XPage. It needs to have the class
com.ibm.xsp.extlib.sbt.services.client.endpoints.OAuthEndpointBean. The appId
and the serviceName need to map to the names defined in the token store. The url is the base
URL of the REST service. The tokenStore value needs to point to the token store bean that you
have defined.

AnonymousEndpointBean

An example of how to configure the AnonymousEndpointBean is shown in Listing 13.4.

Listing 13.4 faces-config.xml Example for the AnonymousEndpointBean

<managed-bean>

<managed-bean-name>lotusliveAnonymous

</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.services.client.endpoints.AnonymousEndpointBean

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>url</property-name>

<value>https://apps.test.lotuslive.com

</value>

</managed-property>

</managed-bean>

In this case, the class name is com.ibm.xsp.extlib.sbt.services.client.end-
points.AnonymousEndpointBean, and the url needs to be defined.

FacebookEndpoint

This endpoint type, FacebookEndpoint, is used to connect to Facebook. To connect to Facebook
and to use its JavaScript SDK, a Facebook API key is needed so that you can be connected, as
shown in Listing 13.5. Follow the dedicated site for this purpose (https://developers.facebook.
com/apps).

Listing 13.5 The faces-config.xml Configuration for the FacebookEndpoint

<managed-bean>

<managed-bean-name>facebook</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.services.client.endpoints.FacebookEndpoint

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

REST API Calls and Endpoints 441

https://developers.facebook.com/apps
https://developers.facebook.com/apps

ptg7987094

<managed-property>

<property-name>url</property-name>

<value>http://www.facebook.com/</value>

</managed-property>

<managed-property>

<property-name>serviceName</property-name>

<value>Facebook</value>

</managed-property>

<managed-property>

<property-name>appId</property-name>

<value>XPagesSBT</value>

</managed-property>

<!— OAuth parameters —>

<managed-property>

<property-name>tokenStore</property-name>

<value>NSFStore</value>

</managed-property>

</managed-bean>

BasicEndpointBean

Listing 13.6 shows the BasicEndpointBean configuration.

Listing 13.6 faces-config.xml Example for BasicEndpointBean

<managed-bean>

<managed-bean-name>greenhouseConnections

</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.services.client.endpoints.BasicEndpointBean

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>url</property-name>

<value>https://greenhouse.lotus.com

</value>

</managed-property>

<managed-property>

<property-name>proxyEnabled</property-name>

442 Chapter 13 Get Social

Listing 13.5 (Continued)

ptg7987094

<value>true</value>

</managed-property>

<managed-property>

<property-name>passwordStore</property-name>

<value>PwdStore</value>

</managed-property>

<managed-property>

<property-name>authenticationPage

</property-name>

<value>_BasicLogin?endpoint=greenhouseConnections

</value>

</managed-property>

</managed-bean>

Set the managed bean class to com.ibm.xsp.extlib.sbt.services.client.

endpoints.BasicEndpointBean and provide the url.
The passwordStore points to the managed bean that defines where to store user credentials

when users choose the option Save My Credentials and Keep Me Signed In Across Sessions
on the login page. In this case, the credentials used for basic authentication are stored encrypted
and are accessible for the user in the database defined in the managed bean PwdStore, which
happens to be the same token store database shown in Listing 13.7.

Listing 13.7 PwdStore Sample faces-config.xml

<managed-bean>

<managed-bean-name>PwdStore</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.security.password.store.BANSFPasswordStore

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>database</property-name>

<value>WebSecurityStore.nsf</value>

</managed-property>

</managed-bean>

In addition, you need to define an XPage to perform the authentication. In the authentica-
tion page, you need to call the login method of the endpoint with the username, the password, and
whether to keep the credentials in the memory store, as shown in Listing 13.8. With the redirect
method to the previous page, this page is displayed again.

REST API Calls and Endpoints 443

ptg7987094

Listing 13.8 BasicLogin XPage Markup

<xp:panel

tagName=”p”

styleClass=”lotusFormField”>

<xp:label

value=”User Name:”

id=”label1”

for=”userInput”></xp:label>

<xp:inputText

id=”userInput”

size=”30”

style=”margin-left:4.0px”></xp:inputText>

</xp:panel>

<xp:panel

tagName=”p”

styleClass=”lotusFormField”>

<xp:label

value=”Password:”

id=”label2”

for=”passwordInput”>

</xp:label>

<xp:inputText

id=”passwordInput”

password=”true”

size=”30”

style=”margin-left:12.0px”>

</xp:inputText>

</xp:panel>

</br>

<xp:panel

tagName=”p”

styleClass=”lotusFormField”>

<xp:checkBox

text=”Save my credentials and keep me signed in across sessions”

id=”ckKeep”

style=”font-weight:normal”>

</xp:checkBox>

</xp:panel>

</br>

<xp:div

444 Chapter 13 Get Social

ptg7987094

rendered=”#{javascript:compositeData.loginButton}”

styleClass=”lotusBtnContainer”>

<xp:button

value=”Login”

id=”button1”

styleClass=”lotusFormButton”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:var ep =
@Endpoint(compositeData.endpoint)

var u = getComponent(“userInput”).getValue();

if(u) {

var p = getComponent(“passwordInput”).getValue();

var k = getComponent(“ckKeep”).isChecked();

if(ep.login(u,p,k)) {

ep.redirect()

}

}

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

</br>

</br>

</xp:div>

Figure 13.11 shows the authentication page.

REST API Calls and Endpoints 445

Figure 13.11 XPages authentication page example.

ptg7987094

Access Endpoints
Now that you have configured everything, you can easily invoke REST calls. The REST calls
are invoked from the server side, which eliminates issues such as cross domain access and
authentication.

Listing 13.9 is an easy example for how to read the current Dropbox username.

Listing 13.9 A Dropbox OAuth Example XPage

<xp:button

value=”Call the Dropbox service - Authenticated”

id=”button4”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”>

<xp:this.action>

<![CDATA[#{javascript:

if(!dropbox.getOAuthProvider().acquireToken()) {

viewScope.text = “Please, acquire a token before calling the service”

return;

}

var svc = new sbt.GenericService(dropbox,”0/account/info/”)

var account_info = svc.get(null,”json”);

var user = account_info.email;

viewScope.text = user

}]]>

</xp:this.action>

</xp:eventHandler>

</xp:button>

The variable dropbox is the name of the managed bean defined in faces-config.xml, which
has the type OAuthEndpointBean.

In addition to using an explicit parameter holding the endpoint name, you can use the
EndpointFactory. The EndpointFactory (com.ibm.xsp.extlib.sbt.services.client.
EndpointFactory) uses a naming convention for the different servers. For example, it uses con-
nections for the Connections server. The actual server names are defined as constants in this
class and are not exhaustive.

When the factory looks for an endpoint, it first tries to get the managed bean name
extlib.endpoint.<name>. If this property is empty, the factory looks for a bean named
<name>.

446 Chapter 13 Get Social

ptg7987094

In practice, naming the beans using the convention (connections, sametime, dropbox,
and so on) is sufficient and easy. But a property exists in case you want to easily switch between
servers (production, test, and more) if there are naming conflicts. For example, if you define a
managed bean connections to point to the Greenhouse Connections install and a second one to
point to Bleedyellow Connections, let’s say bleedyellowConnections, the developer can define
with the property extlib.endpoint.connections in xsp.properties which one to use at runtime as
the default.

xsp.properties: extlib.endpoint.connections=bleedyellowConnections

To access the endpoint from JavaScript, there is a new @Function:

@Endpoint(name)

It returns the endpoint object named name.
The OAuthEndpointBean type has an authenticate(boolean force) to get a token if

no token is stored in the token store database. The parameter force allows you to force a refresh
of the token. With isAuthenticated(), you can check whether a token has already been
acquired.

public boolean isAuthenticated() throws ServicesException

public void authenticate(boolean force) throws ServicesException

REST API Calls
To execute the actual REST service call, there is a generic service com.ibm.xsp. extlib.ser-
vices.client.GenericServicewith get, post, delete, and put methods. Listing 13.8 uses this
to execute a get request to https://api.dropbox.com/0/account/info/ to obtain the current user’s
account information. To find out the supported URLs, check out the service’s website or product
documentation, as shown in Table 13.1.

Table 13.1 Service Documentation

Service Documentation

Dropbox https://www.dropbox.com/developers/web_docs#api-specification

LotusLive http://www-10.lotus.com/ldd/appdevwiki.nsf/
xpViewCategories.xsp?lookupName=API%20Reference

IBM Connections http://publib.boulder.ibm.com/infocenter/ltscnnct/v2r0/
index.jsp?topic=/com.ibm.connections.25.help/c_api_welcome.html

IBM Social Business http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Activity_stream_
Toolkit API_sbt

REST API Calls and Endpoints 447

https://www.dropbox.com/developers/web_docs#api-specification
http://www-10.lotus.com/ldd/appdevwiki.nsf/xpViewCategories.xsp?lookupName=API%20Reference
http://www-10.lotus.com/ldd/appdevwiki.nsf/xpViewCategories.xsp?lookupName=API%20Reference
http://publib.boulder.ibm.com/infocenter/ltscnnct/v2r0/index.jsp?topic=/com.ibm.connections.25.help/c_api_welcome.html
http://publib.boulder.ibm.com/infocenter/ltscnnct/v2r0/index.jsp?topic=/com.ibm.connections.25.help/c_api_welcome.html
http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Activity_stream_API_sbt
http://www-10.lotus.com/ldd/appdevwiki.nsf/dx/Activity_stream_API_sbt
https://api.dropbox.com/0/account/info/

ptg7987094

448 Chapter 13 Get Social

You can create a new instance of a service via the following constructor using
com.ibm.xsp.extlib.sbt.services.client.GenericService or specialized services such
as DropboxService. The endpoint is the managed bean defined in faces-config.xml.

public GenericService(Endpoint endpoint, String serviceUrl)

All services include the methods shown in Table 13.2.

Table 13.2 Available Methods

Object Syntax

public Object get (Map<String,String> parameters, String
format) throws ServicesException

public Object post (Map<String,String> parameters, Object
content, String format) throws
ServicesException

public Object put (Map<String,String> parameters, Object
content, String format) throws
ServicesException

public Object delete (Map<String,String> parameters) throws
ServicesException

With the parameters parameter, name/value pairs can be defined that are added to the
URL to be invoked.

The parameter format defines to which object type output should be converted. The
different types are defined in com.ibm.xsp.extlib.services.client.Serviceas, shown in
Table 13.3.

Table 13.3 Parameter Format

Format Returns

public static final String Returns java.util.String
FORMAT_TEXT= “text”

public static final String Returns org.w3c.dom.Document
FORMAT_XML= “xml”

public static final String Returns com.ibm.jscript.std.
FORMAT_JSON= “json” ObjectObject

For the post and put methods, the actual content needs to be passed in. Depending on the
type, different content types are used, as shown in Table 13.4.

ptg7987094

Table 13.4 Content Types

Instance Content Type

content instanceof IValue contentType = “application/json”

content instanceof JsonObject contentType = “application/json”

content instanceof Node contentType = “application/xml”

Utilities for Parsing
REST services return mostly data in the format of JSON or XML (for example, Atom feed).
Although JSON parsing in JavaScript is rather straightforward, it’s a little bit tricky for XML (for
example, XPath). Even for JSON, you have to write some code manually so it doesn’t run in null
pointer exceptions if certain parts of the tree don’t exist. In any case, parsing JSON and XML is
different when using standard JavaScript mechanisms.

The XPages ExtLib comes with several utilities to make parsing easier. You can run some
samples that are part of the Social Enabler database. Figure 13.12 shows the page with JSON.

REST API Calls and Endpoints 449

Figure 13.12 JSON data navigation example.

ptg7987094

Figure 13.13 shows how a page displays as XML.

450 Chapter 13 Get Social

Figure 13.13 XML data navigation example.

In both of the preceding cases, you can use the same APIs (see Listing 13.10).

Listing 13.10 XML Sample

var doc:DOMDocument = DOMUtil.createDocument()

doc.setXMLString(something)

var d = new sbt.XmlNavigator(xml); var
d2=d.get(‘Persons/Person/Addresses’); d2.stringValues(‘Address/City’)

For a full list of methods, you can open the classes sbt.JsonNavigator and sbt.

XmlNavigator in the package sbt in the plugin com.ibm.xsp.extlibx.sbt.

REST Datasources
As described in the previous section, you can make REST calls programmatically. A typical sce-
nario is developers wanting to display lists of objects. You can do this with the Core View Panel
control, the Repeat control, or the Data View control from the XPages ExtLib. These controls not
only display a list of objects but also allow paging, caching of objects, and other functionality like
expand/collapse. Figure 13.14 illustrates what such a control can look like on an XPage.

ptg7987094

Figure 13.14 REST data in a view collection.

These controls require datasources. The XPages ExtLib comes with a set of additional data-
sources provided by the sbt plugin, as shown in Figure 13.15.

REST Datasources 451

Figure 13.15 Additional social datasources.

ptg7987094

The Connections Datasource (xe:connectionsData)
Listing 13.11 shows the XPages markup of a typical use case of the xe:connectionsData

datasource. It is a simple use case that uses just the required properties to allow this datasource to
function. The datasource uses the maxBlockCount to cache blocks of data. In the example, three
blocks are cached. If this is set to 1 or 0, the blocks are disregarded each time a new data block is
added. The serviceURL property is important here because the relative URL must be used and not
include the server name. You must specify the var property here too, because it is used by the
request scope under which the datasource will be made available.

Listing 13.11 IBM Connections Datasource Sample

<xe:connectionsData

var=”connectionsAtom1”

serviceUrl=”/communities/service/atom/communities/all”

endpoint=”connections”

maxBlockCount=”3”>

</xe:connectionsData>

Additional properties are available for this datasource that may become useful outside the
typical use case. You may use the clearOnRendering property to indicate whether the data
should be refreshed each time it is rendered. If selected, this has an impact on performance
because the default is not to refresh.

File Service Data (xe:fileServiceData) Datasource
The File Service Data datasource does exactly as the name suggests. It’s a datasource that you
can use to retrieve and interact with REST services for files from third parties like IBM Connec-
tions, IBM LotusLive, and Dropbox.

The configuration File Service Data is generic, with only the var property needing to be
set. The var is the request scope variable for which the datasource will be made available in the
XPage. You can set this value to anything.

The serviceType property determines from which file service the datasource will retrieve
data. Now there are three options to choose from this property: xe:connectionsFileData for
IBM Connections, xe:lotusLiveFileData for IBM LotusLive, and xe:dropboxFileData for
Dropbox. The File Service Data datasource depends on an endpoint mechanism to perform
authentication and data retrieval. Endpoints are configured through an application’s faces-
config.xml. The endpoint defines which authentication method the datasource is to use.

Be mindful that third parties provide the REST APIs you are depending on. These APIs
may change without notice, although it’s unlikely.

452 Chapter 13 Get Social

ptg7987094

xe:fileServiceData Example for Connections

The Social Enabler samples database, XPagesSBT.nsf, contains examples for all three service
types. Listing 13.12 shows the example for IBM Connections,, which comes from the
sbtFilesConnections.xsp Custom Control. It uses the Lotus Greenhouse Connections server; the
serviceUrl is specific to that server.

Listing 13.12 File Service Data Control Example for Connections

<xe:fileServiceData

var=”fileServiceData1”

endpoint=”connections”

<xe:this.serviceType>

<xe:connectionsFileData></xe:connectionsFileData>

</xe:this.serviceType>

</xe:fileServiceData>

xe:fileServiceData for Dropbox

A similar connection is made to the Dropbox file service in Listing 13.13, which is the example
from the sbtFilesDropbox.xsp Custom Control in the Social Enabler database.

Listing 13.13 File Service Data for Dropbox Example

<xe:fileServiceData

var=”fileServiceData1”

endpoint=”dropbox”

<xe:this.serviceType>

<xe:dropboxFileData></xe:dropboxFileData>

</xe:this.serviceType>

</xe:fileServiceData>

xe:fileServiceData for LotusLive

Listing 13.14 is the example used for IBM LotusLive from the sbtLotusLive.xsp Custom Control.

Listing 13.14 File Service Data for LotusLive

<xe:fileServiceData

var=”fileServiceData1”

endpoint=”lotuslive”

<xe:this.serviceType>

<xe:lotusLiveFileData></xe:lotusLiveFileData>

REST Datasources 453

ptg7987094

</xe:this.serviceType>

<xe:this.urlParameters>

<xe:urlParameter name=”subscriberId”>

<xe:this.value>

<![CDATA[${javascript:return userBean.lotusLiveSubscriberId;}]]>

</xe:this.value>

</xe:urlParameter>

</xe:this.urlParameters>

</xe:fileServiceData>

For IBM LotusLive, the subscriberId needs to be passed in which is provided by the
user bean.

Activity Stream Data (xe:activityStreamData)
The Activity Stream Data datasource is another new datasource to XPages by way of the ExtLib.
It aims to be a conduit between XPages and use of Activity Streams, one of the Social Business
corner stones, in real life applications.

Activity Streams is an open format specification for activity stream protocols, which syn-
dicate activities taken in social web applications and services. The Activity Stream datasource
aims to harness this. Listing 13.15 shows one such sample in Lotus Greenhouse (http://green-
house.lotus.com/).

Lotus Greenhouse’s activity stream is generated using the IBM Social Business Toolkit.
This is a set of extensible tools and resources for incorporating social capabilities into your appli-
cations and business processes. The Social Business Toolkit works alongside the IBM Social
Business Framework, which is the strategic model for a unified work experience across the IBM
Collaboration Solutions product portfolio. Initially, the Social Business Toolkit delivers a set of
tools that enable you to publish and retrieve events to the activity stream. The activity stream is a
personal view of relevant updates and events that have been aggregated from multiple sources
into a single stream of business information. XPages can then connect to these activity streams,
like that in Lotus Greenhouse, using the Activity Stream Data datasource.

Listing 13.15 is a simple use case of this datasource. The serviceUrl property again is spe-
cific to the activity stream service in question, Lotus Greenhouse. The endpoint property speci-
fies the name of the endpoint that the datasource needs to call to retrieve the actual bean. The
format property then defines the output type of the result. The default output type is JSON, and
in the example it is set to XML-Atom.

454 Chapter 13 Get Social

Listing 13.14 (Continued)

http://greenhouse.lotus.com/
http://greenhouse.lotus.com/

ptg7987094

You can use many properties with this datasource to specifically tailor to a unique
use case.

You can do basic filtering of the activity stream data using the filterBy property. More fil-
tering options are available with operators and certain values, using the filterOp and filterValue
properties, respectively. You can use the appId property to filter the stream based on the applica-
tion ID, which by default gets all applications. And as with applications, you can filter the stream
by a user’s ID with the userId property.

You can use the updateSince property to show results from a specific date. This value can
be expressed as a number, date, or text, which is passed as it is in a URL.

Listing 13.15 Sample Datasource Connection to Lotus Greenhouse

<xe:activityStreamsData

var=”activityStreams1”

serviceUrl=”/vulcan/shindig/rest/activitystreams”

endpoint=”greenHouse”

format=”atom”>

</xe:activityStreamsData>

Proxies
Social applications often request information on other servers. This is no problem for code that
runs on the Domino server, such as the REST calls (see Chapter 11, “REST Services”). Often,
however, you need to access resources such as JavaScript or CSS files located on other
servers/domains from the web browser. Because this opens potential security holes, most
browsers implement the one domain security policy, which means that all requests need to go to
the same domain. To accomplish this, proxies on the same server are typically used. IBM Lotus
Domino comes with such a proxy server and the ExtLib with another ability to use proxies. These
alternatives and the pros and cons are described next.

Domino Proxy
IBM Lotus Domino comes with an out-of-the-box proxy server. You can configure this proxy
server using Domino Administrator and Security Settings and Policies. The advantage of this
proxy is that it is available globally for all Domino applications, and it’s easy to set it up because
only configuration, not development, is needed.

Essentially as a first step, you define the URLs you want to allow applications to connect to
in a Security Settings document, as shown in Figure 13.16.

Proxies 455

ptg7987094

Figure 13.16 Setting a proxy in the Security Settings document.

In a second and last step, you use policies to define for which users these settings should be
employed, as shown in Figure 13.7.

456 Chapter 13 Get Social

Figure 13.17 Final step to setting a proxy.

ptg7987094

For this to work, users need to be authenticated so that the right policies can be found.
After this, you can call URLs like this:

http://myDominoServer.de/xsp/proxy/BasicProxy/http/www.openntf.org/dogear/
atom?email=niklas_heidloff@de.ibm.com

ExtLib Proxies
In addition, you can implement your own proxy servers by building plugins with Java. One
advantage is security, because you can control exactly what can and must not happen. Another
advantage is that you can build this proxy and deploy it as an OSGi bundle (as the ExtLib as
well). The disadvantage is that custom coding is needed.

The ExtLib contains some utilities that make it rather easy to implement proxies. Essen-
tially, you have to implement the interface IProxyHandler.

com.ibm.xsp.extlib.proxy.IProxyHandler:

public interface IProxyHandler { public void
service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException;}

For calls trying to connect to services defined in endpoints, there is a utility class
BasicProxyForEndpoint (com.ibm.xsp.extlib.sbt.proxy.BasicProxyForEndpoint) that
ensures, for example, that only calls to the endpoint’s URL are allowed.

Register proxies programmatically via com.ibm.xsp.extlib.proxy.
ProxyHandlerFactory, like this example from com.ibm.xsp.extlib.sbt.fragment.
SBTFragment:

ProxyHandlerFactory.get().registerHandler(“files”, FileHandler.class);

After this, you can call the proxy using (xsp/.proxy/files/).

http://nheidloff-
1/XPagesSBT.nsf/xsp/.proxy/files//DAS1.gif?type=dropbox&path=/DAS1.
gif&mimeType=image/gif&endpointName=dropbox

To learn more, check out com.ibm.xsp.extlib.sbt.connections.proxy.

ConnectionsProxyHandler or com.ibm.xsp.extlib.sbt.files.proxy.FileHandler in the
plugin.

User Profiles and Identities
Integrating between many systems can be complex and hard to maintain, particularly if the
application code is tightly coupled with the other systems. For example, an application can
choose to display the user picture coming from Connections by emitting a REST request to the

User Profiles and Identities 457

http://myDominoServer.de/xsp/proxy/BasicProxy/http/www.openntf.org/dogear/atom?email=niklas_heidloff@de.ibm.com
http://myDominoServer.de/xsp/proxy/BasicProxy/http/www.openntf.org/dogear/atom?email=niklas_heidloff@de.ibm.com
http://nheidloff-1/XPagesSBT.nsf/xsp/.proxy/files//DAS1.gif?type=dropbox&path=/DAS1.gif&mimeType=image/gif&endpointName=dropbox
http://nheidloff-1/XPagesSBT.nsf/xsp/.proxy/files//DAS1.gif?type=dropbox&path=/DAS1.gif&mimeType=image/gif&endpointName=dropbox
http://nheidloff-1/XPagesSBT.nsf/xsp/.proxy/files//DAS1.gif?type=dropbox&path=/DAS1.gif&mimeType=image/gif&endpointName=dropbox

ptg7987094

Connections server to get the photo URL. But, if the application now needs to get the photo from
a different source, you must change the calling code. Furthermore, calling a REST service every
time you need a picture can be inefficient. Caching the photo URL and other user information is
generally a good idea. Making this code loosely coupled and efficient, while being secured, is a
hard task of the ExtLib.

User and People Beans
The ExtLib provides a social API that gives access to the users and their information. To make it
easily consumable from an XPage, this API is exposed through two managed beans: peopleBean
and userBean. Although the peopleBean requires an explicit user ID, the userBean works with
the user being authenticated in the session. So the userBean is basically a shortcut for people-
Bean[@UserName()] (or peopleBean.getPerson(<userName>) in Java).

Both beans export the user data by accessing their members is JavaScript (for example,
userBean.displayName) or calling a method in Java (for example,
userBean.getField(“displayName”)). The member names are completely generic, but a
convention is used for some common ones:

displayName: The user display name

thumbnailUrl: A URL to the user picture

NOTE

See com.ibm.xsp.extlib.social.Person in the com.ibm.xsp.extlib plugin (not
com.ibm.xsp.extlibx.sbt plugin) for a definition of these standard conventions.

Such beans make it easy to display user data.
Display the current user picture:

<xp:image url="#{userBean.thumbnailUrl}" id="image1"></xp:image>

Display the current user display name:

<xp:text escape="true" id="computedField4" value="#{userBean.display-
Name}"></xp:text>

Display the name of a specific user:

<xp:text escape="true" id="computedField24"
value="#{javascript:peopleBean.getPerson(‘CN=Frank
Adams/O=renovations’).displayName}"></xp:text>

458 Chapter 13 Get Social

ptg7987094

Extensions to User and People Beans
You can extend userBean and peopleBean to return information from other services. In the con-
text of Social, this is important because in many scenarios, user profiles need to be extended with
information from other Social services. Typical examples are unique IDs and quota information.
For example, the LotusLive Files datasource in the com.ibm.xsp.extlibx.sbt plugin requires you
to pass in a subscriberId, which is the unique ID of the current user. For this purpose, the man-
aged bean userBean has a new variable lotusLiveSubscriberId, as shown in Listing 13.16.

Listing 13.16 LotusLive Subscribed ID Sample

<xe:fileServiceData

var=”fileServiceData1”

endpoint=”lotuslive”

serviceUrl=”files/basic/cmis/repository”>

<xe:this.serviceType>

<xe:lotusLiveFileData></xe:lotusLiveFileData>

</xe:this.serviceType>

<xe:this.urlParameters>

<xe:urlParameter name=”subscriberId”>

<xe:this.value>

<![CDATA[${javascript:return userBean.lotusLiveSubscriberId;}]]>

</xe:this.value>

</xe:urlParameter>

</xe:this.urlParameters>

</xe:fileServiceData>

You can add your own variables to this bean by implementing the extension point
com.ibm.xsp.extlib.social.PersonDataProvider in an Eclipse plugin. This extension
point is defined in the core com.ibm.xsp.extlib plugin and the infrastructure in the
com.ibm.xsp.extlib.social package. You can define an extension in your own plugin or
fragment as shown in Listing 13.17.

Listing 13.17 A fragment.xml Sample for the Person Data Provider

<extension point=”com.ibm.commons.Extension”>

<service type=”com.ibm.xsp.extlib.social.PersonDataProvider”

class=”com.ibm.xsp.extlib.sbt.user.LotusLivePeopleDataProvider” />

</extension>

User Profiles and Identities 459

ptg7987094

The custom class needs to extend com.ibm.xsp.extlib.social.impl.

Abstract-PeopleDataProvider, as shown in Listing 13.18.

Listing 13.18 The Abstract People Data Provider Extended

public class LotusLivePeopleDataProvider extends
AbstractPeopleDataProvider {

public static class PeopleData extends PersonImpl.Properties {

boolean privateData;

String lotusLiveSubscriberId;

}

private static PeopleData EMPTY_DATA = new PeopleData();

private final String SUBSCRIBER_ID = “lotusLiveSubscriberId”;

private PeopleData getPeopleData(PersonImpl person) {

String id = person.getId();

PeopleData data = (PeopleData)getProperties(id,
PeopleData.class);

if(data!=null && data.privateData &&
!person.isAuthenticatedUser()) {

data = null;

}

if(data == null) {

synchronized(getSyncObject()) {

data = (PeopleData)getProperties(id, PeopleData.class);

if(data == null) {

data = readPeopleData(person);

if(data!=EMPTY_DATA) {

addProperties(id,data);

}

}

}

}

return data;

}

private PeopleData readPeopleData(PersonImpl person) {

if(!person.isAuthenticatedUser()){

return null;

}

Endpoint ep =
EndpointFactory.getEndPointUnchecked(EndpointFactory.SERVER_LOTUSLIVE);

460 Chapter 13 Get Social

ptg7987094

if(ep!=null) {

try {

if(ep.isAuthenticated()){

GenericService service = new
GenericService(ep,”/manage/oauth/getUserIdentity”);

Object result = service.get(null, “json”);

if(result instanceof FBSValue){

JsonNavigator jsonUtil = new
JsonNavigator(result);

PeopleData data = new PeopleData();

data.lotusLiveSubscriberId =
jsonUtil.stringValue(“subscriberid”);

return data;

}

}

} catch(ClientServicesException ex) {

Platform.getInstance().log(ex);

}

}

return EMPTY_DATA;

}

@Override

public String getName() {

return “LotusLive”;

}

@Override

protected String getDefaultCacheScope() {

return “global”; // $NON-NLS-1$

}

@Override

protected int getDefaultCacheSize() {

return 300;

}

@Override

public Class<?> getType(PersonImpl person, Object key) {

if(SUBSCRIBER_ID.equals(key)){

return String.class;

}

return null;

User Profiles and Identities 461

ptg7987094

}

@Override

public Object getValue(PersonImpl person, Object key) {

if(SUBSCRIBER_ID.equals(key) && person.isAuthenticatedUser()){

return getPeopleData(person).lotusLiveSubscriberId;

}

return null;

}

@Override

public void enumerateProperties(Set<String> propNames) {

super.enumerateProperties(propNames);

propNames.add(SUBSCRIBER_ID);

}

@Override

public void readValues(PersonImpl[] persons) {

}

}

The method public Object getValue(PersonImpl person, Object key) needs to
return the specific variable for a specific person. There is a convenience method getSyncOb-
ject() you can use to synchronize this call so that the same property is not read for the same per-
son multiple times simultaneously.

There is also a second method you can implement to read all properties for all users
together. This speeds up the performance, especially when profile information from multiple
people is displayed: public void readValues(PersonImpl[] persons).

Enablement of Extensions
Defining the extension and implementing the people datasource provider is not sufficient. In
addition, you need to enable datasource providers per application and define the order in which
they are invoked.

While running on the Domino platform, the Domino-related data providers are enabled by
default. They give access to the following Domino data. Figure 13.18 shows how the dumpObject
control displays the properties of the userBean.

UtilUserBean.xsp:

<xe:dumpObject id=”dumpObject1” value=”#{userBean}”></xe:dumpObject>

462 Chapter 13 Get Social

Listing 13.18 (Continued)

ptg7987094

You can ignore the “Domino:” prefix in the property names. It’s only an artifact for the
dumpObject control. Note that this property list is not exhaustive and can grow over time based
on application needs (see Figure 13.18).

User Profiles and Identities 463

Figure 13.18 A userBean configuration example.

There are actually two Domino data providers: one for the global user data and one for the
user data relative to the current database. This is because you can share the global user data across
the databases, but you can’t do that with the one relative to the database. Thus, the caching strat-
egy (discussed later in this section) is different for these two data sets.

You can enable multiple providers at the same time. If nothing is set explicitly, only the
default providers and the one defined within the application are activated. You must explicitly ref-
erence the other global providers in a property in xsp.properties.

extlib.people.provider=profiles;bluepages;lotuslive

The order is important because it defines the way the providers will be searched for a prop-
erty value. For example, if the profiles provider returns a non-null value for thumbNailUrl, nei-
ther bluepages nor lotuslive are returned.

ptg7987094

The default providers, like the Domino one or those defined within the application, are
implicitly added at the beginning of the list. To move them at a different position, you can explic-
itly add them to the property in the xsp.properties.

extlib.people.provider=profiles;bluepages;lotuslive;domino;dominodb

Caching of User Information
The other important part is the way the data is cached. Because an application might need infor-
mation for many users, you should not assume that the user data will remain in memory forever.
The ExtLib runtime uses a cache mechanism and can discard some user data from memory when
it needs it.

The current implementation uses a fixed size cache implementation, where the least recent
used data is discarded when it needs to add new data. But a cache doesn’t act on a whole user, but
rather on the data from each provider independently. When you use this strategy, some data, such
as the Domino-related data, can be cached globally, whereas other data that is specific to an appli-
cation must be cached in the application scope. Also, for security reasons, some data can be
cached in the session scope (thus per connected user) or even in the request scope if it is sensitive.
As stated, this depends on the data provider implementation and how it is parameterized.

If nothing is defined in the data provider, the default cache uses the application scope and
caches 100 entries. This is the case for the DominoDB provider. The data it carries has to be in the
application scope, because it is related to the current database. In contrast, the Domino provider
uses a global cache with 500 default entries. This cache is shared between all the applications to
maximize the memory use.

You can change these default values by using the properties shown in Listing 13.19 in the
xsp.properties.

Listing 13.19 Properties in xsp.properties for Changing Values

extlib.social.people.domino.cachescope=global

extlib.social.people.domino.cachesize=500

extlib.social.people.dominodb.cachescope=application

extlib.social.people.dominodb.cachesize=100

More generally, you can set both the scope and the size of a provider with a property (see
Listing 13.20).

Listing 13.20 Available Method for Setting Scope and Size

extlib.social.people.<provider
name>.cachescope=none|global|application|session|request

extlib.social.people.<provider name>.cachesize=<int value>

464 Chapter 13 Get Social

ptg7987094

The XPages infrastructure stores/caches users’ profile information. To read the latest values,
the infrastructure calls the two clear methods, which you can implement as in Listing 13.21.

Listing 13.21 Available Methods for Infrastructure Calls

public void clear()

public void clear(String id)

User Identities
Because there is no global identity for a particular user, a user might have multiple identities, one
per server. For example, he can be John Doe/Boston/ACME in Notes, jdoe@acme.com in Lotus-
Live, or John_Doe@gmail.com in Google+. Unfortunately (or fortunately), there is no direct,
reliable way for getting one identity from the others. Generally, the identity has to go through a
map implemented within the application or the underlying framework, like the XPages ExtLib.

To make this easier, the XPages ExtLib provides an IdentityMapper (com.ibm.xsp.
extlib.social.impl.IdentityMapper) mechanism that can map between the Domino system
identity and any other one, back and forth. For example, the ProfilesDataProvider that is feeding
the userBean with data from Connections first asks the PeopleService for the Connections iden-
tity corresponding to the bean. If it gets a null response, it doesn’t call the Connections services.
Otherwise, it uses the mapped name to query Connections.

Similarly, the EndpointFactory, some possible identity targets (‘facebook’,’-
connections’, ...) are defined as constants in the IdentityMapper class. But the list of pos-
sible targets is not limited by them.

Some convenience methods are available in the userBean and peopleBean to access user
identities:

userBean.getIdentity(‘facebook’);

There are also two @Functions to get user profile information from JavaScript:

@IdentityFromId(target,id)

This returns the user identity for a particular target (for example, Facebook) from a
Domino ID.

@IdFromIdentity(target,identity)

This returns the user Domino ID for a particular target (for example, Facebook) and the
user identity in this target.

User Profiles and Identities 465

ptg7987094

The Social Enabler database (XPagesSBT.nsf) shows an IdentityMapper implementa-
tion in Listing 13.22.

Listing 13.22 demo.IdentityProvider.java

public class IdentityProvider implements IdentityMapper {

public String getUserIdFromIdentity(String target, String identity) {

if(StringUtil.equals(target,”facebook”)) {

if(StringUtil.equals(identity,”fadams@facebook.com”)) {

return “CN=Frank Adams/O=renovations”;

}

}

return null;

}

public String getUserIdentityFromId(String target, String id) {

if(StringUtil.equals(target,”facebook”)) {

if(StringUtil.equals(id,”CN=Frank Adams/O=renovations”)) {

return “fadams@facebook.com”;

}

}

return null;

}

}

The result, Figure 13.19, is displayed on the XPage UtilFunctions.xsp.

466 Chapter 13 Get Social

Figure 13.19 Identity mapper.

ptg7987094

User Interface Controls
The com.ibm.xsp.extlibx.sbt plugin and the Social Enabler database come with a set of user
interface controls. You can easily use these controls in custom applications.

There are two types of controls: library and custom. Library controls are implemented via
plugins with Java, deployed via OSGi bundles, and globally available to all applications on a
Domino server. Custom Controls live in a Notes Storage Facility (NSF) and are deployed as
part of it.

Some of the following controls have been implemented as library controls, others as
Custom Controls. Controls that are likely to be used as they are and that have few configuration
options have been implemented as library controls. Controls that require a high level of cus-
tomization and often even extensions or bigger changes have been implemented as Custom Con-
trols. These Custom Controls work as they are for standard scenarios. For more specialized
requirements, you must change their source code.

Files Controls for Dropbox, LotusLive, and Connections
The Social Enabler database, XPagesSBT.nsf, comes with three Custom Controls to access files
from Dropbox, LotusLive, and Connections. In all cases, the files are read directly from the dif-
ferent services. There is no synchronization to the NSF happening, even though from the user
interface perspective the files just look like Notes views.

Dropbox

Figure 13.20 shows a list of files and folders read from Dropbox and rendered in an XPage.

User Interface Controls 467

Figure 13.20 Files from Dropbox rendered in XPages.

ptg7987094Figure 13.21 Files and folders in the Dropbox client.

Users can page through the list of files as in other Notes views. They can also open a folder,
navigate back to the parent folder, and create new folders. They can also download files. Techni-
cally, the URL pointing to a file does not point directly to the specific service. Instead, it uses a
proxy server so that it can use OAuth.

To use this control, you can simply drag and drop <xc:sbtFilesDropbox>

</xc:sbtFilesDropbox> from the Designer palette.

Connections

Similar to Dropbox, there is another Custom Control, <xc:sbtFilesConnections/>, for IBM
Connections. Figure 13.22 shows the files in Connections.

468 Chapter 13 Get Social

You can access the same files through other Dropbox clients, such as the Dropbox web user
interface shown in Figure 13.21.

ptg7987094
Figure 13.22 Connections Custom Control sample.

Figure 13.23 shows the same files in an XPage.

User Interface Controls 469

Figure 13.23 IBM Connections in XPages.

ptg7987094

Unlike Dropbox, this Custom Control doesn’t support folders because the Connections
API does not allow it.

LotusLive

Last but not least, there is a third Custom Control for LotusLive, <xc:sbtFilesLotusLive/>,
with similar functionality to the Connections files control. Figure 13.24 shows files in LotusLive.

470 Chapter 13 Get Social

Figure 13.24 Sample files in LotusLive.

Figure 13.25 shows the same files in an XPage.

ptg7987094

Figure 13.25 LotusLive files in XPages.

Sametime Controls
You access IBM Sametime from XPages applications using two library controls: a content type
and two sample Custom Controls. The XPages SametimeLiveName.xsp and SametimeWid-
gets.xsp from the Social Enabler database, XPagesSBT.nsf, show these controls in action.

The Sametime Client Control (xe:sametimeClient)

This control creates the Sametime client. It holds the different Sametime parameters and is
required on the page to use the Sametime features. If it is not on the page, or not rendered, the
other ST controls behave as if they’re not connected to Sametime. For example, it allows Same-
time to be disabled when the target device is mobile.

The Sametime Widget Control (xe:sametimeWidget)

This control renders a Sametime widget based on its Dojo type and attributes. It is disabled if no
Sametime client is rendered in the page.

contentType=”xs:st.livename”

This is a content type to be assigned to a text column or a view column. Again, it has no effect if
no Sametime client is rendered in the page. (The text is displayed without the Sametime widget.)

The xe:sametimeClient works with an endpoint, where the user/password is stored for
the session. This endpoint can also leverage a store (optional), where the credentials can be held
and reused later on. Users can close the browser and not have to log in again when they reconnect,
as shown in Listing 13.23.

User Interface Controls 471

ptg7987094

Listing 13.23 Login Dialog Sample for Sametime Client

<managed-bean>

<managed-bean-name>PwdStore</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.security.password.store.BAMemoryPasswordStore

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

</managed-bean>

<managed-bean>

<managed-bean-name>sametime</managed-bean-name>

<managed-bean-class>

com.ibm.xsp.extlib.sbt.services.client.endpoints.BasicEndpointBean

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>url</property-name>

<value>http://stweb.ibm.com</value>

</managed-property>

<managed-property>

<property-name>passwordStore</property-name>

<value>PwdStore</value>

</managed-property>

The Social Enabler database contains two Custom Controls, sbtLoginDialog and
sbtLoginSection, that provide a login UI as well as an example showing how to log in pro-
grammatically (see Listing 13.24).

Listing 13.24 Login Sample from SametimeLiveName.xsp

<xe:sametimeClient

id=”sametimeClient1”

autoLogin=”true”

clientScriptFile=”livename”

autoTunnelURI=”true”>

</xe:sametimeClient>

Login Section:

<xc:sbtLoginSection

id=”sbtLoginSection1”

sectionTitle=”Login To Sametime”

472 Chapter 13 Get Social

ptg7987094

endpoint=”sametime”

label=”Login To Sametime”>

</xc:sbtLoginSection>

Login Dialog:

<xc:sbtLoginDialog

id=”loginDialog”

dialogTitle=”Login To Sametime”

endpoint=”sametime”

label=”Login To Sametime”>

</xc:sbtLoginDialog>

Sametime logged as:

<xp:text

escape=”true”

id=”computedField4”

value=”#{sametime.user}”>

</xp:text>

Here is an example with only the id:

<xp:text

escape=”true”

id=”computedField1”

contentType=”xs:st.livename”>

<xp:this.value><![CDATA[#{javascript:@Endpoint(“sametime”).
getUserIdentity()}]]></xp:this.value>

</xp:text>

Here is an example with the id and an empty display name:

<xp:text

escape=”true”

id=”computedField2”

contentType=”xs:st.livename”>

<xp:this.value><![CDATA[#{javascript:@Endpoint(“sametime”).
getUserIdentity()+”|”}]]></xp:this.value>

</xp:text>

Here is an example with the id and a display name set:

<xp:text

escape=”true”

id=”computedField3”

contentType=”xs:st.livename”>

User Interface Controls 473

ptg7987094

<xp:this.value><![CDATA[#{javascript:@Endpoint(“sametime”).
getUserIdentity()+”|[user display name]”}]]></xp:this.value>

</xp:text>

Here is an example using a sametime widget:

<xe:sametimeWidget

id=”sametimeWidget1”

dojoType=”sametime.LiveName”>

<xe:this.dojoAttributes>

<xp:dojoAttribute

name=”userId”>

<xp:this.value><![CDATA[#{javascript:@Endpoint(“sametime”).
getUserIdentity()}]]></xp:this.value>

</xp:dojoAttribute>

</xe:this.dojoAttributes>

</xe:sametimeWidget>

Connections Controls
There are library controls to display the IBM Connections business card for specific users and to
display the card of a specific community.

Profiles VCard

You can invoke the business card inline or as a pop-up dialog (see Figure 13.26).

474 Chapter 13 Get Social

Listing 13.24 (Continued)

ptg7987094

Figure 13.26 IBM Connection control sample.

The following sample shows how to use the controls. There is a client control, called
Connections Client (xe:connectionsClient), that needs to be added to an XPage to use the
other control.

The Connections Widget (xe:connectionsWidget) control expects to get passed in the
username and ID. In addition, you can define whether to show the inline or pop-up version using
the dojoType “extlib.dijit.ProfilesVCardInline”.

Alternatively, you can use the content type contentType=”xs:lc.vcard”, as shown in
Listing 13.25.

User Interface Controls 475

ptg7987094

Listing 13.25 Connections Profiles VCard Sample

<xe:connectionsClient

id=”connectionsClient1”

profilesVCard=”true”>

</xe:connectionsClient>

Use content type

<xp:text

escape=”true”

id=”computedField3”

contentType=”xs:lc.vcard”

value=”#{javascript:return
userBean.email+’|’+userBean.groupwareMail}”>

</xp:text>

<xp:text

escape=”true”

id=”computedField2”

contentType=”xs:lc.vcard”

value=”#{javascript:return userBean.id+’|’+userBean.commonName}”>

</xp:text>

Use widgets

<xe:connectionsWidget

id=”connectionsWidget1”

dojoType=”extlib.dijit.ProfilesVCard”>

<xe:this.dojoAttributes>

<xp:dojoAttribute

name=”userName”

value=”#{javascript:return userBean.groupwareMail}”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”userId”

value=”#{javascript:return userBean.email}”>

</xp:dojoAttribute>

</xe:this.dojoAttributes>

</xe:connectionsWidget>

<xe:connectionsWidget

id=”connectionsWidget2”

dojoType=”extlib.dijit.ProfilesVCardInline”>

<xe:this.dojoAttributes>

<xp:dojoAttribute

name=”userName”

476 Chapter 13 Get Social

ptg7987094

value=”#{javascript:return userBean.groupwareMail}”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”userId”

value=”#{javascript:return userBean.email}”>

</xp:dojoAttribute>

</xe:this.dojoAttributes>

</xe:connectionsWidget>

Communities VCard

On the page ConnectionsCommunitiesVCard.xsp is a sample showing how to display the
VCard of a selected community, as shown in Figure 13.27.

User Interface Controls 477

Figure 13.27 IBM Connections Control VCard sample.

For the communities VCard, you need to set the dojoType to “extlib.dijit.Communi-
tiesVCard”, as shown in Listing 13.26.

ptg7987094

Listing 13.26 Connection Sample with dojoType Set

<xe:connectionsClient

id=”connectionsClient1”

communitiesVCard=”true”>

</xe:connectionsClient>

<xe:connectionsWidget

id=”connectionsWidget1”

dojoType=”extlib.dijit.CommunitiesVCard”>

<xe:this.dojoAttributes>

<xp:dojoAttribute

name=”name”

value=”#{javascript:viewScope.cTitle}”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”uuid”

value=”#{javascript:viewScope.cUuid}”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”selectedWidgetId”

value=””>

</xp:dojoAttribute>

</xe:this.dojoAttributes>

</xe:connectionsWidget>

Facebook Controls
You can also use the XPages ExtLib to access Facebook. Facebook provides OAuth and a REST
API that is called Graph API (http://developers.facebook.com/docs/reference/api/). As for other
OAuth services, you need to register your applications first to get a key (https://developers.
facebook.com/apps). The Server-Side OAuth calls, however, are done a little differently than in
the previous samples (see http://developers.facebook.com/docs/authentication/ for details). In
addition to allowing servers to call their APIs, they allow web clients, such as JavaScript code, to
call their REST APIs directly. This functionality is used in the next samples.

Facebook comes with a set of social plugins—most importantly the Login button and the
Like button—that can easily be embedded in websites. To make it even more convenient for you,
the ExtLib comes with some predefined controls: the Login button, the Like button, and the
Comment plugin. Figure 13.28 shows the Like button and the Comment plugin.

478 Chapter 13 Get Social

http://developers.facebook.com/docs/reference/api/
http://developers.facebook.com/docs/authentication/
https://developers.facebook.com/apps
https://developers.facebook.com/apps

ptg7987094

Figure 13.28 Facebook sample plugin.

You can add these controls to an XPage via drag and drop from the Designer palette. To use
any Facebook controls or the Facebook JavaScript SDK, add the xe:facebookClient control
and the Facebook application key to faces-config.xml, as described in Figure 13.28. Listing
13.27 shows how this might be configured.

Listing 13.27 Facebook Client Control Sample from FacebookPlugins.xsp

<xe:facebookClient></xe:facebookClient>

<xe:facebookLikeButton

href=”#{javascript:context.getUrl()}”>

</xe:facebookLikeButton>

<xe:facebookComments

href=”#{javascript:’http://heidloff.net’}”

num_posts=”5”>

</xe:facebookComments>

User Interface Controls 479

ptg7987094

The next sample shows the login control and a Facebook dialog triggered using the
JavaScript API (see Figure 13.29).

480 Chapter 13 Get Social

Figure 13.29 Post to Wall inside XPages.

You can call the REST APIs easily from JavaScript code, as shown in Listing 13.28 from
FacebookClientAPI.xsp.

Listing 13.28 Facebook Login Button Configuration Sample

<xe:facebookClient></xe:facebookClient>

<xe:facebookLoginButton

perms=”email,user_checkins”>Login with
Facebook</xe:facebookLoginButton>

<xp:button

value=”Show Login Status”

id=”button1”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script><![CDATA[

FB.getLoginStatus(function(response) {

if (response.session) {

if (response.perms) {

ptg7987094

alert(“User is logged in and granted some permissions.”);

} else {

alert(“User is logged in, but did not grant any permissions”);

}

} else {

alert(“User is not logged in”);

}

}, true);]]>

</xp:this.script>

</xp:eventHandler>

</xp:button>

<xp:button

value=”Show current User”

id=”button2”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script><![CDATA[

FB.api(‘/me’, function(user) {

if(user != null) {

var image = document.getElementById(‘image’);

image.src = ‘http://graph.facebook.com/’ + user.id + ‘/picture’;

var name = document.getElementById(‘name’);

name.innerHTML = user.name

}

});

]]></xp:this.script>

</xp:eventHandler>

</xp:button>

The code in the listing shows how to call the Facebook API FB.getLoginStatus to get the
login status of the current user and how to use FB.API to open the Facebook dialog to post to
Facebook.

User Interface Controls 481

ptg7987094

IBM Social Business Toolkit
At Lotusphere 2011, there was a lot of talk about the IBM Social Business Framework. In the
wiki, the toolkit is defined (http://www-10.lotus.com/ldd/appdevwiki.nsf/xpViewCategories.
xsp?lookupName=IBM%20Social%20Business%20Toolkit):

The IBM Social Business Toolkit is a set of extensible tools and resources for incorpo-
rating social capabilities into applications and business processes. Social capabilities
include features and functionality that tap into the power of social interactions, business
networks, community-based problem solving, and more. The Social Business Toolkit is
evolving in parallel with the IBM Social Business Framework, a strategic model for a
unified work experience across the IBM Collaboration Solutions product portfolio.

Initially, the Social Business Toolkit delivers a set of tools that enable you to publish and
retrieve events to the activity stream. The activity stream is a personal view of relevant
updates and events that have been aggregated from multiple sources into a single stream
of business information. As part of the Social Business Framework, the activity stream
will eventually become a common component you can embed into multiple products
across the product portfolio.

In line with enhancing the activity stream, the Social Business Toolkit will expand to
include extensibility areas such as embedded experiences, share box, and more. An
embedded experience is a way of interacting with events, notifications, and business
processes dynamically in context directly from an inbox, social home page, and other
containers without having to log into and switch to another application or service. A
share box is a gadget that you can embed into pages for creating and sharing information
and custom content. A share box is an example of an embedded experience.

Since Lotusphere 2011, a first version of this toolkit has been deployed on Lotus Green-
house that everyone can try. There is a sample user interface with an embedded experience
(https://greenhouse.lotus.com/activitystream/) showing items from different sources in a so-
called activity stream (see Figure 13.30).

482 Chapter 13 Get Social

http://www-10.lotus.com/ldd/appdevwiki.nsf/xpViewCategoriesxsp?lookupName=IBM%20Social%20Business%20Toolkit
http://www-10.lotus.com/ldd/appdevwiki.nsf/xpViewCategoriesxsp?lookupName=IBM%20Social%20Business%20Toolkit
https://greenhouse.lotus.com/activitystream/

ptg7987094

Figure 13.30 IBM Lotus Greenhouse activity stream.

There is also a REST API application (https://greenhouse.lotus.com/vulcan/shindig/client/
testAPI.jsp), as shown in Figure 13.31, to add new entries to the activity stream or to get certain
entries as JSON or XML.

IBM Social Business Toolkit 483

Figure 13.31 Activity stream REST service.

https://greenhouse.lotus.com/vulcan/shindig/client/testAPI.jsp
https://greenhouse.lotus.com/vulcan/shindig/client/testAPI.jsp

ptg7987094

The ExtLib comes with some utilities to access the Social Business Toolkit activity stream
from XPages.

NOTE

The Social Business Toolkit samples in the first published version of the
com.ibm.xsp.extlibx.sbt plugin work against the toolkit deployed on Greenhouse in Octo-
ber 2011. However, the SBT REST APIs will change and will require changes to the XPages
samples.

As stated previously in Chapter 11, you can render the activity stream on XPages using a
new datasource that is bound to a view control, as shown in Figure 13.32.

484 Chapter 13 Get Social

Figure 13.32 Activity stream rendered in XPages.

There is also an XPage to read from and write to the activity stream, similar to the SBT
REST API application. This application, however, is done via XPages and shows how to use the
APIs programmatically (see Figure 13.33).

ptg7987094

Figure 13.33 Activity stream configuration via XPages.

Conclusion
This chapter dealt with the exciting new social business tools out there and how to incorporate
them into XPages using the ExtLib. The story isn’t finished yet. Social business is always
moving—quickly. Now you have the tools to keep up and evolve.

Conclusion 485

ptg7987094

This page intentionally left blank

ptg7987094

487

PART IV

Getting Under
the Covers
with Java

14 Java Development in XPages

ptg7987094

This page intentionally left blank

ptg7987094

489

C H A P T E R 1 4

Java Development in
XPages

For more than a decade, the role of the Java language in the toolset available to Notes and
Domino developers has been increasing. Although Java was originally available for use only in
agents, the platform has since added support for Java in LotusScript® through LS2J, Java script
libraries, web services, composite applications, and—now that both the Lotus Notes Client and
Domino Designer are based on Eclipse—extensions to the platform via plugin development.

With the addition of XPages to the platform, the capacity for inclusion of Java in Domino appli-
cations has never been easier or more powerful. This chapter provides a glimpse into some of the
many ways Java can take your applications to the next level, as well as a few ways that you can
get even more use out of some of the XPages Extension Library controls already described in
previous chapters.

Benefits of Java Development
There are many advantages to the use of proprietary languages within any development platform.
Both Notes Formula and LotusScript, for instance, were created specifically for the platform and
are optimized for use within it. They contain little that does not apply to the platform. This not
only provides certain runtime performance benefits, but also simplifies mastery of these lan-
guages, because the boundaries of what they contain are defined by the platform at the vendor’s
discretion.

In contrast, Java is comparatively infinite. Because the language was not defined with a
specific development platform in mind, the foundation is generic, and specific capabilities of the
language have been gradually added in layers atop that foundation. Java is arguably the best
example in wide use today of a true object-oriented language, so its very nature allows for the
creation of object hierarchies that are simply not possible in LotusScript.

ptg7987094

Java has always been designed to be independent of specific operating systems. Code writ-
ten in Java, therefore, can be compiled once and executed within any environment that supports
Java. Although Notes and Domino have long excelled at shielding developers from designing
applications specific to a given operating system, it is important to note that this same goal is fun-
damental to the nature of the Java language.

Perhaps the most significant advantage of Java, however, is the sheer number of people
using it. The 2009 Global Developer Population and Demographics Survey (conducted by Evans
Data Corporation) found the Java developer population to be in excess of 9 million people. Java
also now runs natively on nearly every device imaginable. Because of the combination of these
factors, envision nearly anything developers want their application to do, and it’s likely that
somebody, somewhere in the world, has already done it using Java. By leveraging the work that
has already been done by others, developers can spend less time solving problems others have
already solved and more time producing functionality that is truly unique to the application or its
target audience.

Referencing Native Java in Server-Side JavaScript
There are several ways to leverage Java in an XPage. The easiest is to include references to por-
tions of the core language directly within Server-Side JavaScript (SSJS) expressions.

A core concept in XPages development is the use of scope variables to store and retrieve
objects. Each of these variables is an implementation of a Java construct known as a Map, which
is conceptually similar to the List construct in LotusScript. It is possible, however, to manually
create objects with a similar structure by using the native Java HashMap class.

When you’re constructing a Java object from within SSJS expressions, you must use the
fully qualified name of the class, including the package in which the class is stored, as shown in
Listing 14.1. Java classes are organized into collections of related classes known as packages.
This organization is similar in some respects to bundling related LotusScript classes or functions
into a single script library. Java packages, by convention, are named using a period-delimited
syntax that begins with the Internet domain of the code’s origin in reverse order, followed by a
hierarchy of the nature of the classes each package contains. For example, a package of utility
classes for working with XML developed by ACME, Inc., might be named
com.acme.util.xml. Similarly, all classes that make up the Extension Library are contained in
packages whose name begins with com.ibm.xsp.extlib, with the exception of those whose
package name begins with com.ibm.domino.services. The native HashMap class is con-
tained in the package java.util. The full name of any Java class is its package name plus its
simple name. Hence, the full name of the HashMap class is java.util.HashMap.

Listing 14.1 Accessing Java Classes Using SSJS

var myMap = new java.util.HashMap();

myMap.put(“someKey”, someValue);

sessionScope.put(“nestedMap”, myMap);

490 Chapter 14 Java Development in XPages

ptg7987094

The technique demonstrated in Listing 14.1 allows scope variables to store entire hierar-
chies of objects. This provides an opportunity both for sophisticated performance management
and for the inclusion of advanced functionality.

If classes from the same package will be referenced numerous times within the same
expression, a call to the importPackage function can be made with the package’s name as the
parameter, allowing each class to then be referenced using just the class name rather than the
fully qualified name, as seen in Listing 14.2.

Listing 14.2 Using the SSJS importPackage Directive

importPackage(java.util);

var firstMap = new HashMap();

var secondMap = new HashMap();

Use caution when importing Java packages within SSJS. If a class referenced by only its
simple name exists in more than one imported package, the interpreter may be unable to produce
the intended result. If, for example, ACME has created both a com.acme.rss.Parser class and
a com.acme.json.Parser class, it would be inadvisable to import both packages and attempt
to construct an instance of either Parser using only the class name.

For the same reason, a name collision can occur if a class name within an imported package
is identical to any variable that’s already defined, whether that variable is native to SSJS or has
been declared within the application code. Although you can avoid both of these scenarios by
clearly naming all variables and classes, it is important to be aware of this issue when using
importPackage, particularly because of the volume of code created by others that can be refer-
enced within an XPage. When in doubt, always use the full name of the class instead.

Using Java That Others Have Written
Because Java is such a widely used language, nearly any feature the developer would want to
include in an XPage application has already been implemented by someone, and most likely open
sourced. In particular, many commonly encountered problems or features have been addressed in
libraries and exported using the Java Archive (JAR) format. Developers can simply import these
JARs into an application and start using their features immediately, with no need for manual cus-
tomization to make the library compatible with Domino.

One example of this open source library is called Apache POI, which provides program-
matic generation and manipulation of spreadsheets, presentations, and other productivity docu-
ments. Because this is a necessary feature in many applications, the Apache POI library was
created to provide a robust implementation of this functionality, offering a straightforward appli-
cation programming interface (API) for creating, reading, and modifying these types of files.

Apache POI targets the Office Open XML (OOXML) document standard, which, as the
name suggests, is based upon XML. In theory, therefore, you could manually handle these files

Using Java That Others Have Written 491

ptg7987094

using any XML parser or transformer—or even just low-level string manipulation. One indica-
tion of the complexity of these formats, however, is that the subcomponent of Apache POI that
handles the spreadsheet format is known as Horrible Spreadsheet Format (HSSF). The developer
may not want to deal with these XML formats directly. A far better practice is to leverage the
work others have already done by importing this library into your own application, and letting it
do the low-level file manipulation.

If you are running a version of Domino Designer older than 8.5.3, the first step in adding
external Java code to an XPage application is to customize Designer to reveal more of its true
nature as Eclipse. Eclipse segments its user interface into visual blocks known as views; the col-
lection of views that is visible at any given time is known as a perspective. Few of the standard
views display within the Domino Designer perspective; its default content consists solely of
views IBM has created specifically to streamline interaction with the design of a Domino applica-
tion. Each user can modify perspectives, however, and any installed view can be added to the cur-
rent perspective.

One of the most useful views not included by default in the Domino Designer perspective
prior to 8.5.3 is known as the Package Explorer. This view allows you to browse each application
as a standard Eclipse project, which treats the design of the application as a folder structure.
Some portions of the design of a Domino application can be found only by browsing it in this
fashion; this also allows you to add files to the design that could not otherwise be included.

From the Window menu at the top of Designer, open the submenu labeled Show Eclipse
Views. Then select the menu item labeled Other, as shown in Figure 14.1.

492 Chapter 14 Java Development in XPages

Figure 14.1 The option to select the Other perspective.

A window appears, displaying all installed views. This window includes a field allowing
the list to be filtered. Type the phrase Package Explorer into this field, and the list of views is fil-
tered to contain a single matching item, listed under the Java category (see Figure 14.2).

ptg7987094

Using Java That Others Have Written 493

Figure 14.2 Finding the Package Explorer view.

Select this item, and then click OK. The Package Explorer view is added to the Domino
Designer perspective. Once you have added the view to the perspective, you can drag it to an
alternate location, if desired. For example, dragging it on top of the Application Navigator view
causes both views to become tabs; this allows for rapid switching between Domino-centric
design browsing and Eclipse-centric browsing, as shown in Figure 14.3.

Figure 14.3 Anchoring the Package Explorer.

ptg7987094

To avoid having to reopen the Package Explorer each time Designer is launched, return to
the Window menu and select the menu item labeled Save Perspective As. A window appears,
allowing an existing perspective to be selected or a new name to be entered. The current perspec-
tive, Domino Designer, is selected by default, as shown in Figure 14.4.

494 Chapter 14 Java Development in XPages

Figure 14.4 Naming and saving the perspective.

Click OK, and then confirm that the existing perspective should be overwritten. This
causes the perspective, as it currently is displayed, to be loaded each time Designer is launched.
Repeat this step any time you add or move views and want to retain the new perspective layout.
Alternatively, you can save the changes as a completely new perspective by entering a new
name prior to saving. However, Designer does not open to this perspective immediately. Designer
only reopens to one of the factory default perspectives, such as Domino Designer or XPages.
To reopen the newly named perspective after launching Designer, select Window→Open
Perspective→Other and select the new perspective from the list.

ptg7987094

Figure 14.5 Viewing an application in Package Explorer.

One of the folders within a Domino application that is only accessible via the Package
Explorer is WebContent. Expand this folder to locate the WEB-INF subfolder, as shown in
Figure 14.6.

Using Java That Others Have Written 495

Now that the Package Explorer displays within Designer, locate an open application within
that view. The project corresponding to each application is listed by its filename, followed by an
indication of the full location of the application, as shown in Figure 14.5.

ptg7987094

Figure 14.6 The WEB-INF folder expanded.

Right-click this subfolder, open the submenu labeled New, and then select the menu item
labeled Other. Expand the General section and select Folder; then click the Next button. When
prompted, enter a folder name of lib and click Finish, as shown in Figure 14.7. The WEB-INF
folder now contains the new subfolder.

496 Chapter 14 Java Development in XPages

ptg7987094

Figure 14.7 Creating a new folder in WEB-INF.

In a browser, visit the website for the Apache POI project (http://poi.apache.org/
download.html). Download the latest stable release, and extract the archive contents. Within the
extracted folder (as of this writing, Apache POI 3.7), delete the docs subfolder; you may want to
simply move this subfolder elsewhere, because it contains documentation for the entire library
API. Once you have moved or removed this subfolder, drag the parent folder to the lib folder pre-
viously created in Designer.

After you have imported the folder structure, expand all subfolders. Select all files with
a .jar extension, and then right-click any of the selected files. Open the submenu labeled Build
Path, and then select the menu item labeled Add to Build Path. The selected files no longer
appear within the lib folder structure; instead, they now display beneath Referenced Libraries at
the top of the project (see Figure 14.8).

Using Java That Others Have Written 497

http://poi.apache.org/download.html
http://poi.apache.org/download.html

ptg7987094

Figure 14.8 Adding JARs to the Build Path.

The Apache POI library is now bundled as part of the application, and any SSJS code
within the application may reference classes defined by the library using code similar to the
simple example in Listing 14.3.

Listing 14.3 Using Apache POI in SSJS

var workbook = new org.apache.poi.hssf.usermodel.HSSFWorkbook();

var createHelper = workbook.getCreationHelper();

var sheet = workbook.createSheet(“new sheet”);

var row = sheet.createRow(0);

var cell = row.createCell(0);

cell.setCellValue(“Hello World!”);

The code outlined in Listing 14.3 demonstrates that XPages allow a developer to leverage
entire code libraries written by others, reducing the effort of performing complex operations to
comparatively few lines of code.

498 Chapter 14 Java Development in XPages

ptg7987094

Setting Up Domino Designer to Create Java Classes
Adding a custom class of your own to an XPage project is easy. Starting with version 8.5.3,
Domino Designer exposes a Java design element that you can use to add your own Java classes.
However, prior to this version, a few extra steps had to be taken to prepare the Notes Storage
Facility (NSF) for Java development. This section reviews how to use both methods. First, for
version 8.5.2 and prior, we’ll create a class using the Package Explorer, just as a typical Java
developer using Eclipse for any Java project might. Note that you can also use this method in ver-
sion 8.5.3 and above if desired. You are not required to use the new Java design element in 8.5.3.

The previous section included instructions for adding a folder named lib to the WEB-INF
folder contained within WebContent. Repeat those steps now to add a folder named src in the
same location. Next, right-click the new folder, open the submenu labeled Build Path, and then
choose the menu item labeled Use as Source Folder, as shown in Figure 14.9.

Setting Up Domino Designer to Create Java Classes 499

Figure 14.9 The Use as Source Folder option.

ptg7987094

Although the folder still exists in the same logical location within the project, it will now
display as an Eclipse source folder at the top of the project structure, displaying its relative loca-
tion within the project, as shown in Figure 14.10.

500 Chapter 14 Java Development in XPages

Figure 14.10 New relative location within the project.

The next step is to create a package that indicates the type of classes that will be added to
the project. As previously described, package names conventionally start with an indication of
the origin of the code and end with an indication of the nature of the code.

ptg7987094

Figure 14.11 Shortcut Categories selection.

Setting Up Domino Designer to Create Java Classes 501

Before creating a package for the first time, it’s a good idea to customize the Designer
perspective to more easily create Java artifacts within an XPage project. In Designer, click the
Window menu, and select Customize Perspective. In the dialog that appears, you can customize
the items that appear on certain menus and submenus, such as when you right-click a Java source
folder. In the dialog, under Submenus, select New. Then, in the Shortcut Categories box, find
Java and highlight it so the list of Java shortcuts appears in the Shortcuts box. Place check marks
next to Class, Enum, Interface, Package, and Source Folder, as seen in Figure 14.11.

ptg7987094

Figure 14.12 The Folder option.

Close the dialog, and then in Package Explorer, right-click the WebContent/
WEB-INF/src folder that has been added to the build path. Then expand the New submenu. You
should see the list of items that have been added for Java development, making it easier to create
new Java-related items (see Figure 14.13).

502 Chapter 14 Java Development in XPages

Then, back in the Shortcut Categories box, select General, and place a check mark next
to Folder (see Figure 14.12).

ptg7987094

Figure 14.13 Easier access for creating new Java elements from the right-click context menu.

Now, you’ll create, as an example, a package to contain utility classes for XPages applica-
tions that will be included in an OpenNTF project; to indicate both the nature of the code and its
origin, name the package org.openntf.xsp.util by right-clicking on the WebContent/
WEB-INF/src folder as before and expanding the New submenu. From that submenu, select
Package. A wizard page appears asking you to name the package. This is where you enter the
org.openntf.xsp.util name and then click Finish, as seen in Figure 14.14.

Setting Up Domino Designer to Create Java Classes 503

ptg7987094

Figure 14.14 New Java package.

After creating the package, right-click it, and select New and then Class to create a Java
class. This opens the new Java Class wizard that walks you through creating the new class (see
Figure 14.15).

504 Chapter 14 Java Development in XPages

ptg7987094

Figure 14.15 New Java Class dialog.

This new class opens in the Java editor, as seen in Figure 14.16. Once customized and
saved, the new class is then accessible from within your XPages application, either through SSJS
in the same manner demonstrated prior using Apache POI in SSJS, or even in more integrated
ways, such as a Managed Java Bean.

Setting Up Domino Designer to Create Java Classes 505

ptg7987094

Figure 14.16 Ready to begin writing a Java class.

Introduction to Java Beans
Given the coffee motif of the Java language, the term Bean is used simply to indicate the role a
class plays as a unit of Java. You may have also encountered the acronym POJO: Plain Old Java
Object. A POJO is any Java class that doesn’t conform to specific conventions. A Bean, on the
other hand, conforms to specific—but easy—conventions:

• It includes an argumentless constructor—For those of you with a LotusScript back-
ground, this is similar to the way you can dim a variable as a New NotesSession() or
a New NotesUIWorkspace(). You don’t have to pass parameters, or arguments, to
that declaration; you just create the new object and then interact with it later.

506 Chapter 14 Java Development in XPages

ptg7987094

NOTE

This doesn’t mean that a Bean can’t also have constructors that do accept arguments;
Java, after all, does support method overloading. But at a minimum, the class must sup-
port instantiation with no arguments.

• Attributes of the object are accessible via predictably named getters and setters—
For example, if I create a House Bean, and one of its properties is address, the class
includes a getAddress() method and a setAddress() method. The getter method
accepts no arguments and returns the current value of the argument, in its proper type;
the setter accepts one argument—the new value of the property—also in the proper type.
You may wonder, why not just make the property public if you’re always going to pro-
vide public getters and setters? This is because forcing reads/writes to call methods
ensures that no change is made to the class members without the class knowing it is hap-
pening. This provides an opportunity to sanitize incoming data, for example, to ensure a
property’s value is not being set to invalid data, or if other class members’ values or
states are dependent upon another, it gives the class an opportunity to adjust accord-
ingly. Enforcing this consistency across all classes allows for the utmost flexibility,
while maintaining predictability.

NOTE

One deviation from the getPropertyName/setPropertyName convention is if the property is
a boolean (true/false) value. In this case, the getter uses an is prefix instead of get (for
example, isForeclosed() instead of getForeclosed()). The setter still uses set as
its prefix.

• The class is serializable—Serialization is the process of storing the state of an object
somewhere else. This could be in some flat file on the hard drive, a database record, or
even just a different in-memory format. De-serialization, then, is the reconstruction of
the object state from an alternate location. This is actually a key reason for the previous
two conventions: Some process external to the class definition can parse the serialized
state of an object and restore its state predictably, construct an instance with no argu-
ments, and then call the setters for each of the attribute values it finds.

Everything in an XPage is a Bean. Every control—meaning every inputText, every panel,
every repeat—is a Bean. Your code can interact with control instances in a predictable fashion.
An inputText has a title property that stores a string; therefore, it must have a getTitle()
method that returns a string and a setTitle() method that accepts a string. Just about every
control has a styleClass string property, so it’s generally safe to assume that, even in SSJS,
you can call getStyleClass() and setStyleClass() regardless of which control you’re
interacting with.

Introduction to Java Beans 507

ptg7987094

There are many other advantages to the extent to which everything in XPages is based on
Beans, like using abbreviated expression language (EL) syntax to bind read/write control attrib-
utes to a property of another Bean. To expand on the House and Address example, you can write
an EL expression using the variable name associated with the instance of the House, let’s say
whiteHouse, and the property name that you want to access, such as address, in simple dot
notation, like whiteHouse.address. EL knows to convert that into a call to the
getAddress() method (when reading the value) or the setAddress() method (when assign-
ing the value) of the whiteHouse instance of the House Bean.

Managed Beans
Now that you understand what a Java Bean is, what then, is a Managed Bean? Quite simply, a
Managed Bean is nothing more than a regular Bean that is controlled, or managed, by the XPages
runtime. The runtime decides if an instance of a given Bean is needed; when it is, it is created by
the runtime by calling the argumentless constructor of the Bean’s class. In XPages this occurs
whenever a Managed Bean is referenced from within a bit of code, such as in SSJS or EL.

A Managed Bean can be any Java Bean that has been configured for use as a Managed Bean
in the faces-config.xml file in the project. This file is located within the WebContent/WEB-INF
folder of the NSF. To configure the Managed Bean for use, you add a bit of XML code to this file
to identify the name, class, and scope of the Bean. The name is short; think of a variable or
instance name that globally identifies the Bean throughout the application. For example, earlier
this chapter referred to an instance of the House Bean as whiteHouse. This name could be
the name of the Managed Bean in your application. The class is simply the fully qualified
name of the class you want to serve as the basis for the Managed Bean. For example, this
could be org.openntf.xsp.util.House if your House class was located within the
org.openntf.xsp.util package.

Finally, the scope of the Managed Bean defines the lifetime that any one instance of the Bean
will exist. The proper values here can be none, request, view, session, and application.
None indicates that the Bean is not persisted beyond the code block where it is referenced. With this
scope, if a Bean is referenced in a page event, such as in beforeRenderResponse, once the event has
executed, the instance of the Bean is discarded. For request, view, session, and application,
the lifetime can be directly correlated to the XPage scope object’s requestScope, viewScope,
sessionScope, and applicationScope. Just like these maps, the Managed Bean’s life will be
for the duration of the request, view, session, or entire application’s lifetime (barring idle-timeout or
other lifetime-limiting events). When designing Beans for specific scopes, such as application,
take special care to design the Bean’s instance to initialize itself and restore its state at any time. The
Bean may not know when it is being destroyed or created outside of the constructor, so changes in
state that need to be persisted should be saved in some fashion that if a new instance of the Bean is
initialized, it can re-create the proper state for the Bean.

508 Chapter 14 Java Development in XPages

ptg7987094

Listing 14.4 shows the content of the faces-config.xml file from the TeamRoom, with a
Managed Bean defined.

Listing 14.4 A Sample faces-config.xml Deploying a Managed Bean

<?xml version=”1.0” encoding=”UTF-8”?>

<faces-config>

<managed-Bean>

<managed-Bean-name>CheckboxBean</managed-Bean-name>

<managed-Bean-class>

com.ibm.xsp.teamroom.Beans.CheckboxBean

</managed-Bean-class>

<managed-Bean-scope>view</managed-Bean-scope>

</managed-Bean>

</faces-config>

The User and People Bean
The Extension Library includes some precreated Managed Beans that provide access to pieces of
information that may be commonly used, such as user information. Access to these Beans is
automatic once the Extension Library is installed. You can reference them in both SSJS and EL.

Probably the most used Bean from the Extension Library is the user Bean (userBean),
which was discussed briefly in Chapter 13, “Get Social.” The user Bean provides quick access to
information about the current user, including the user’s name and access level to the current data-
base. To access the Bean, use the symbol userBean. Listing 14.5 shows how to access the Bean
using SSJS.

Listing 14.5 Accessing the User Bean Using SSJS

<xp:this.loaded><![CDATA[${javascript:

(userBean.accessLevel > lotus.domino.ACL.LEVEL_AUTHOR) &&

userBean.canCreateDocs

}]]></xp:this.loaded>

Listing 14.6 shows how to access the Bean using EL.

Listing 14.6 Accessing the User Bean Using EL

<xp:button

loaded=${userBean.canCreateDocs}>

</xp:button>

The User and People Bean 509

ptg7987094

510 Chapter 14 Java Development in XPages

Table 14.1 describes each of the fields that are available from the user Bean.

Table 14.1 Field Values Available from the User Bean

Field Purpose

commonName Returns a string value of the current user’s common name (for
example, John Doe).

distinguishedName Returns the string value of the current user’s distinguished name.

abbreviatedName Returns the abbreviated version of the current user (for example,
John Doe/WWCorp).

canonicalName Returns the canonical name of the current user (for example,
CN=John Doe/O=WWCorp).

effectiveUserName Returns the current effective username.

canCreateDocs Returns true if the user is able to create documents in the current
database.

canDeleteDocs Returns true if the user is able to delete documents in the current
database.

canCreatePrivAgents Returns true if the user is able to create Private Agents in the current
database.

canCreatePrivFoldersViews Returns true if the user is able to create Private Views or Folders in
the current database.

canCreateSharedFoldersViews Returns true if the user is able to create Shared Views or Folders in
the current database.

canCreateScriptAgents Returns true if the user is able to create Java or LotusScript Agents
in the current database.

canReadPublicDocs Returns true if the user is able to read public documents in the
current database.

canWritePublicDocs Returns true if the user is able to write public documents in the
current database.

canReplicateCopyDocs Returns true if the user is able to replicate or copy documents in the
current database.

accessLevel Returns an integer value representing the user’s current access level
in the database. Use constant values in lotus.domino.ACL (for
example, lotus.domino.ACL.LEVEL_READER).

ptg7987094

The User and People Bean 511

Field Purpose

accessLevelAsString Returns a string value representing the user’s current access level in
the database. Returns a value of NOACCESS,
DEPOSITOR, READER, AUTHOR, EDITOR, DESIGNER,
or MANAGER.

accessRoles Returns an array of the roles associated with the current user in the
current database.

notesId Returns the user’s Notes ID as a string.

id Returns the user’s ID as a string.

emailAddress Returns the user’s e-mail address.

displayName Returns the user’s display address.

thumbnailUrl Returns the user’s avatar thumbnail URL.

The TeamRoom makes extensive use of the user Bean. In Listing 14.7, an excerpt from the
Layout Custom Control shows the user Bean in action. In this example, a placebar action is dis-
played if the user’s access to the TeamRoom application is greater than author access.

Listing 14.7 The User Bean in Action in the Layout Custom Control of the TeamRoom

<xe:this.placeBarActions>

<xe:pageTreeNode

title=”TeamRoom Setup”

page=”setup”>

<xe:this.loaded><![CDATA[${javascript:

userBean.accessLevel > lotus.domino.ACL.LEVEL_AUTHOR

}]]></xe:this.loaded>

</xe:pageTreeNode>

</xe:this.placeBarActions>

The people Bean retrieves information about a specific user other than the current user. A
user’s information is retrieved by passing the user’s abbreviated username to the getPerson()
method. The method returns an object that contains bits of the user’s information using the fields
specified in Table 14.1. The TeamRoom application also uses the people Bean. Listing 14.8 dis-
plays a code snippet from the home XPage to display the name of a document author.

ptg7987094

Listing 14.8 Code Snippet from the Home XPage in the TeamRoom Using the People Bean

<xp:link

id=”authorLink”>

<xp:this.text><![CDATA[#{javascript:

peopleBean.getPerson(@Name(“[Abbreviate]”,

viewEntry.getColumnValue(“From”))).displayName

}]]></xp:this.text>

<xp:this.value><![CDATA[#{javascript:

“/members.xsp?profile=” + @Name(“[Abbreviate]”,

viewEntry.getColumnValue(“From”))

}]]></xp:this.value>

</xp:link>

Conclusion
This chapter barely scratched the surface of using Java in an XPages application. It offered a
glimpse into the extensibility of the XPages environment through the use of the Extension
Library, and by extension the XPages Extensibility API that powers the entire Extension Library.
You can find more information on the use of Java in XPages and programming with the
Extensibility API online at the Lotus Notes and Domino Application Development Wiki at
http://www-10.lotus.com/ldd/ddwiki.nsf as well as many other valuable sites across the Internet.

512 Chapter 14 Java Development in XPages

http://www-10.lotus.com/ldd/ddwiki.nsf

ptg7987094

513

A P P E N D I X A

Resources

XPages.info

The website http://XPages.info/ is the best landing page for all things XPages. It contains reams
of information on XPages ranging from the basics, the latest XPages blog posts, and videos, to
listings of the best XPages resources and demos.

XPages Extension Library OpenNTF Project

The XPages Extension Library (ExtLib) project, http://extlib.openntf.org, is the most active and
most downloaded on OpenNTF (http://www.openntf.org/). Not only is this project frequently
updated with new releases, it has active Feature Requests, Discussion, and Defects sections. So
no excuses—drop in, join us, and take part!

Also in the ExtLib project, each download contains a file called XPages-Doc.zip.
Extracted, the file contains a self-contained website displaying information on each control, core
controls, and ExtLib in a javadoc-like format.

Lotus Notes Domino 8.5.3 Upgrade Packs Documentation

Documentation for the Upgrade Packs is available from the Lotus Notes and Domino Application
Development wiki (http://www-10.lotus.com/ldd/ddwiki.nsf). Once there, select the Product
Documentation tab at the top, and then select from the table 8.5.3 UP1 under the Versions col-
umn for any of the products.

XPages Extension Library Wiki Documentation

Documentation for the IBM-supported version of the XPages ExtLib is also available from the
Lotus Notes and Domino Application Development wiki (http://www-10.lotus.com/ldd/
ddwiki.nsf). Select the Product Documentation tab, and then go to the 8.5.3 UP1 link on the

http://XPages.info/is
http://extlib.openntf.org
http://www.openntf.org/
http://www-10.lotus.com/ldd/ddwiki.nsf
http://www-10.lotus.com/ldd/ddwiki.nsf
http://www-10.lotus.com/ldd/ddwiki.nsf

ptg7987094

same row as Domino Designer XPages Extension Library. There are more than 150 articles on
the new controls as well as documents on installation and deployment.

On the table on the same Product Documentation tab, the 8.5.3 UP1 link for the Domino
Data Service displays the documentation for the REST Services.

XPages Extensibility API Wiki Documentation

The Lotus Notes and Domino Application Development wiki also contains documentation on
the XPages Extensibility application programming interface (API) (http://www-10
.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=XPages%20Extensibility%20A
PI), which underpins the XPages ExtLib. This is a vital reference if you need to build your own
Extension Library.

Other Resources

Name Link

Blog, Declan Lynch http://www.qtzar.com/

Blog, Jeremy Hodge http://www.hodgebloge.com/

Blog, Paul Withers http://www.intec.co.uk/blog/

Blog, Tim Tripcony http://www.timtripcony.com/

CSS Specification http://www.w3.org/Style/CSS

Dojo Toolkit http://dojotoolkit.org/

IBM Lotus Domino Designer http://XPag.es/?DesignerInfo
Information Center

J2EE 1.5 Specification http://download.oracle.com/javaee/5/api

Java 1.5 Specification http://java.sun.com/j2se/1.5.0/docs/api

JSF Specification http://www.oracle.com/technetwork/
java/javaee/javaserverfaces-139869.html

XPages Podcasts, The XCast http://thexcast.net/

514 Appendix A Resources

http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=XPages%20Extensibility%20API
http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=XPages%20Extensibility%20API
http://www.qtzar.com/
http://www.hodgebloge.com/
http://www.intec.co.uk/blog/
http://www.timtripcony.com/
http://www.w3.org/Style/CSS
http://dojotoolkit.org/
http://XPag.es/?DesignerInfo
http://download.oracle.com/javaee/5/api
http://java.sun.com/j2se/1.5.0/docs/api
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://thexcast.net/
http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=XPages%20Extensibility%20API

ptg7987094

515

Index

A
access endpoints, 446-447
accessing

data services (from Domino
as a built-in service), 356

enabling services on
Domino servers,
357-359

relational data through
JDBC, 377-378

creating connections to
the RDBMS, 406-407,
409-410

installing JDBC
drivers, 379

Accordion Container, 229-231
properties, 230

Accordion control, 256-257
Accordion Pane, 229-231
actionFacet, Heading

control, 314

Activity Stream Data data
source, 454-455

adding
JDBC data sources to

XPages, 411
parameters to SQL

statements, 412
addOnLoad(), 97
advanced node types

beanTreeNode, 245
dominoViewEntriesTree-

Node, 247
dominoViewListTree

Node, 246
pageTreeNode, 242-245
repeatTreeNode, 245

All Documents, TeamRoom
template, 60

anchoring Package
Explorer, 493

AnonymousEndpointBean, 441

Apache POI, 491
SSJS, 498

APIs (application
programming interfaces), 377

appendSQLType(), 426
application development, 9
Application Layout, 9-10

TeamRoom template, 57-58
Application Layout control

within a Custom Control,
276-280

OneUI development,
264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271

ptg7987094

516 Index

productLogo
property, 273

searchBar property,
271-272

titleBar property, 273
application programming

interfaces (APIs), 377
applications, configuring for

OAuth, 439
automatic server deployment

Domino 8.5.2, 34-38
Domino 8.5.3, 28, 30-34

B
back buttons, setting, 332
back title, setting, 333
banner property, OneUI

development with
Application Layout
control, 272

barType, 298
basicContainerNode, 240-241
BasicEndpointBean, 442-445
basicLeafNode, 239-240
beanTreeNode, 245
Border Container, 225-229

properties, 228
Border Pane, 225-229

properties, 229
Bread Crumbs control, 249
breadcrumbs, 332
Build Path, 497

C
cacheRefreshInterval

property, 259
caching user information,

464-465
Calendar Picker, Dojo Link

Select, 139
calendarJsonLegacyService,

196-197
calendarView, TeamRoom

template, 63
callbacks, xe:forumPost

component, 78
calling remote service

(Domino), 351
JSON RPC Service,

351-353
category column, Data View,

215-217
category row, 216
client-side JavaScript

closing dialogs, 155
opening dialogs, 154
opening Tooltip dialog, 161

closing
dialogs

client-Side
JavaScript, 155

SSJS, 157
Tooltip dialog, SSJS, 162

columns, Data View, 214-215
category column, 215-217
detail, 219
extra column, 218
icon column, 218
multiple columns, 219
summary column, 218

com.ibm.xsp.etlib.util.JdbcUtil-
class, 427

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Anonymous-
EndpointBean, 439

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Basic-
EndpointBean, 440

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Facebook-
Endpoint, 439

com.ibm.xsp.extlib.sbt.services.
client.endpointsOAuth-
EndpointBean, 439

com.ibm.xsp.extlibx.sbt,
430, 467

Combo Box control, 120
communities VCard, 477-478
computed columns, REST

Service control, 341
computed items, Document

JSON Service, 373
concurrency, JDBC data

sources, 415-417
configuring applications for

OAuth, 439
connection files, creating,

406-409
Connection Manager, 416
connection pools, 410
connections

connection pools, 410
creating to RDBMS, 406

creating connection files,
406-409

creating connections
and the connection
pool, 410

ptg7987094

Index 517

Connections
xe:fileServiceData, 453
XPagesSBT.NSF, 468-470

connections controls, 474
communities VCard,

477-478
profiles VCard, 474, 477

Connections Data Source, 452
consuming

service data, OpenSocial
Gadgets, 353, 356

serviced data
iNotes Calendar,

349-351
iNotes List View, 348

containers, mobile apps, 309
Content Pane, 223-224

properties, 225
content types, REST API

calls, 449
contents, Dojo Data Grid,

182-184
contentType=

”xs:st.livename,” 471
controls

Application Layout. See
Application Layout

Data View, 9
Dojo layout controls, 223

Accordion Container,
229-231

Accordion Pane,
229-231

Border Container,
225-229

Border Pane, 225-229
Content Pane, 223-224
Stack Container, 238

Stack Pane, 238
Tab Container, 231-237
Tab Pane, 231-237

Dynamic Content, 9
Dynamic View, 9
KeepSessionAlive, 8
navigator controls, 247

Accordion control,
256-257

Bread Crumbs
control, 249

Link Container
control, 251

List of Links
control, 250

Navigator control,
247-248

Outline control, 255-256
Pop-up Menu control,

252-254
Sort Links control, 251
Tag Cloud control,

257-259
Toolbar control, 254
Widget Container

control, 260
REST Service control. See

REST Service control
createTab methods, 234
CRUD operations, REST

services, 336
current page, setting, 333
Custom Control, Application

Layout within, 276-280
Custom Controls, 4
custom controls, mobile apps

versus web apps, 328
Custom Database Servlet, 375

custom REST services,
developing, 375

Custom Wink Servlet, 375
Custom XPages REST Service

Control Extension, 375

D
Data Service, Domino REST

services, 344
data services, accessing

(Domino as a built-in
service), 356

enabling services on
Domino servers, 357-359

Data Services—Contacts and
All Types pages, Domino
REST services, 345

Data View, 9, 206, 321-322
columns, 214-215

category column,
215-217

detail, 219
extra column, 218
icon column, 218
summary column, 218

mobile apps, 309
multiple columns, 219
opening documents,

306-311
pagers, 207-210
PagerSaverState/View State

Beans, 212-213
properties, 206

Database JSON Collection
Service, 360

ptg7987094

518 Index

database URLs,
specifying, 409

DatabaseHelper class, 427
databases, enabling services for

(Domino), 358
DB2 drivers, 405
DB2DriverProvider, 397
debugging xe:dumpObject, 425
defaultTabContent, 236
delete, Document JSON

Service, 373
Deployable Plug-Ins and

Fragments Wizard, 401
deploying

ExtLib
to developers in

Designer, 18-27
to end users, 40
to end users (creating

widget configuration),
42-50

to end users
(provisioning the
ExtLib widget to other
users), 50-52

to end users (widget
catalog setup), 41

OSGi plugins, 33
Designer

deploying ExtLib to
developers, 18-27

Layout control, 274-275
uninstalling ExtLib, 27-28

detail, Data View, 219
developers, deploying ExtLib

to in Designer, 18-27

developing custom Rest
services, 375

Dialog control, 153-159
dialogs, 153

closing
client-side

JavaScript, 155
SSJS, 157

embedded dialogs, 158
opening

client-side
JavaScript, 154

SSJS, 156
properties, 159-160
Tooltip Dialog control,

160-161
dijit.form.Horizontal

Slider, 101
dijit.form.ValidationTextBox,

97-100
Document Collection JSON

Service, 367-368
Document Form, TeamRoom

template, 61
Document JSON Service,

368-374
documents, opening from Data

View, 306-311
Dojo, 95-96

modifying controls, mobile
apps, 327

Dojo Animation, 143-145
Dojo Animation Property, 144
Dojo Button, 126-128
Dojo Check Box, 126
Dojo Combo Box, 120-125

properties, 125
Dojo Content Pane, 223-224

properties, 225
Dojo Currency Text Box,

113-115
properties, 115

Dojo Data Grid, 175, 179-181
contents, 182-184
InViewEditing, 184-186
properties, 181-182
REST Service control,

176-178, 342
view events, 186-187

Dojo Data Grid Column, 182
properties, 185

Dojo Data Grid Row, 182
Dojo Date Text Box, 116-118
Dojo effects Simple

Actions, 140
Dojo Animation, 143-145
Dojo Fade and Wipe effects,

140-142
Dojo Slide to Effect,

142-143
Dojo extensions, 130

Dojo Image Select, 137, 140
Dojo Link Select, 135-136
Edit Box control, 104

Dojo Currency Text Box,
113-115

Dojo Date Text Box,
116-118

Dojo Number Spinner,
115-116

Dojo Number Text Box,
113-115

ptg7987094

Index 519

Dojo Text Box, 104-106
Dojo Time Text Box,

116-118
Multiline Edit Box, 119-120
Select control, 120

Dojo Check Box, 126
Dojo Combo Box,

120-125
Dojo Filtering Select,

120-125
Dojo Radio Button, 126

sliders, 131-134
Dojo Extensions to Buttons,

126-128
Dojo Toggle Button,

128-130
Dojo Fade, 140-142
Dojo Fade In, 142, 147
Dojo Fade Out, 142
Dojo Filtering Select, 120-125

properties, 125
Dojo fx Wipe In, 142
Dojo fx Wipe Out, 142
Dojo Grid Using JSON Rest

Data Services, 345-346
Dojo Horizontal Slider,

131-133
properties, 131

Dojo Image Select, 137, 140
properties, 140

Dojo layout controls, 223
Accordion Container,

229-231
Accordion Pane, 229-231
Border Container, 225-229

Border Pane, 225-229
Content Pane, 223-224
Stack Container, 238
Stack Pane, 238
Tab Container, 231-237
Tab Pane, 231-237

Dojo libraries, 96-99
sliders, 100-102

Dojo Link Select, 135-136
properties, 137

Dojo List Text Box, 164-165
Dojo modules

dijit.form.Validation
TextBox, 99-100

ExtLib, 103-104
benefits and differences

of, 104
Dojo Name Text Box, 164-165
Dojo NotesPeek, 347
Dojo Number Spinner, 115-116

properties, 116
Dojo Number Text Box,

113-115
properties, 115

Dojo Radio Button, 126
Dojo Simple Text Area,

properties, 120
Dojo Slide to Effect, 142-143

properties, 143
Dojo Slider Rule,

properties, 134
Dojo Slider Rule Labels,

properties, 134
Dojo Text Area, properties, 120

Dojo Text Box control,
104-106

properties, 105
Dojo themes, 102-103
Dojo Time Text Box, 116-118
Dojo Toggle Button, 128-130
Dojo Validation Text Box,

106-112
properties, 112

Dojo Vertical Slider, 131
properties, 131

Dojo widget properties, 105
Dojo Wipe, 140-142
dojo.fx.easing, 141
dojoAttributes, 97
dojoParseOnLoad, 98
dojoTheme, 98
dojoType, 97
Domino, remote service, 351

JSON RPC Service,
351-353

Domino 8.5.2, automatic server
deployment (ExtLib), 34-38

Domino 8.5.3, automatic server
deployment (ExtLib), 28-34

Domino Data Services, 360
Database JSON Collection

Service, 360
Document Collection JSON

Service, 367-368
Document JSON Service,

368-374
View Design JSON Service,

366-367
View JSON Collection

Service, 361-362

ptg7987094

520 Index

View JSON Service,
362-366

Domino Designer, creating
Java classes, 499-505

Domino documents, mobile
apps versus web apps, 331

Domino proxy, 455-457
Domino REST services, 343

Data Service, 344
Data Services—Contacts

and All Types pages, 345
Dojo Grid Using JSON Rest

Data Services, 345-346
Dojo NotesPeek, 347

Domino servers, enabling
services, 357-359

for view and
documents, 359

dominoViewEntriesTree-
Node, 247

dominoViewListTreeNode, 246
downloading ExtLib, 13-17
Dropbox

xe:fileServiceData, 453
XPagesSBT.NSF, 467-468

Dynamic Content, 9, 80,
83-85, 88

properties, 84
Switch, 88-89
TeamRoom template, 61
xe:inPlaceForm, 80-83

Dynamic Content control,
320-321

dynamic ListView, 188, 191

Dynamic View, 9
Dynamic View Panel, 171-174

properties, 175

E
El, accessing user Bean, 509
Eclipse 3.5 Galileo IDE, 381
Edit Box control, Dojo

extensions, 104
Dojo Currency Text Box,

113-115
Dojo Date Text Box,

116-118
Dojo Number Spinner,

115-116
Dojo Number Text Box,

113-115
Dojo Text Box, 104-106
Dojo Time Text box,

116-118
editability, Dojo Data Grid,

184-186
editing document changes,

311-315
embedded dialogs, 158
end users, deploying

ExtLib to, 40
creating widget

configuration, 42-50
provisioning Extlib widget,

50-52
widget catalog setup, 41

endpoints
access endpoints, 446-447
configurations

AnonymousEndpoint
Bean, 441

BasicEndpointBean,
442-445

FacebookEndpoint, 441
OAuthEndpointBean,

440-441
REST API calls, 439

events, mobile apps versus web
apps, 330

extenion point, 392
extensibility, 5
extensions, 392

enablement of, 462-464
to user and people beans,

459-462
external applications,

consuming service data
(OpenSocial Gadgets),
353, 356

ExtLib (XPages Extension
Library), 7, 13

deploying to developers in
Designer, 18-27

deploying to end users, 40
creating widget

configuration, 42-50
provisioning ExtLib

widget to other users,
50-52

widget catalog setup, 41

ptg7987094

Index 521

Dojo modules, 103-104
benefits and

differences, 104
downloading, 13-17
installing via Upgrade

Pack, 17
manually deploying to

servers, 38-40
mobile apps

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327
modifying controls with

Dojo, 327
More link, 322-323
Move To mobile page

action, 325
multiple controls,

324-325
Outline control, 315-318

REST services, 336-338
server deployment

automatic server
deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28-34

uninstalling from Designer,
27-28

ExtLib Demo app, running in
Notes Client, 27

ExtLib proxies, 457
ExtLib widget, provisioning to

other users, 50-52
ExtLibx, 7
extra column, Data View, 218

F
Facebook controls, 478-481
FacebookEndpoint, 441
Fielding, Roy, 335
file controls, 467
File Service Data Data Source,

452-454
file uploads, 332
filtering data, 323
footer links, 269
footer property, OneUI

development with
Application Layout
control, 269

Form Column, properties, 73
Form Layout Column, 71
Form Layout Components, 71

Form Table, 71-77
Forum Post, 78-80

Form Layout Row, 71
Form Row, 77

properties, 73
Form Table, 71-77, 318-320

properties, 72
Forum Post, 78-80
Forum View, 220

G
get

Database JSON Collection
Service, 360

Document Collection JSON
Service, 368

Document JSON Service,
368

View Design JSON Service,
366

View JSON Collection
Service, 361

getSQL, 426

H
hash tags, 318
Heading, mobile apps, 325-326
Heading control,

actionFacet, 314
Hello Mobile World

tutorial, 300
adding a view document

collection to the mobile
page, 302-304

creating new XPages and
mobile apps, 301-302

displaying rows, 304-305
editing and saving

document changes,
311-315

enable apps for ExtLib and
mobile, 300

opening documents from
Data View, 306-311

ptg7987094

522 Index

Hello REST World 1, pathInfo
property (REST Service
control), 340-341

Hello REST World 2,
computed column to join data
(REST Service control), 341

Hello REST World 3, REST
Service in a Data Grid, 342

history
of OneUI, 263-264
of XPages, xv-xvii , 4

homeMembersView.xsp,
TeamRoom template, 59

homeTeamRoomPurpose.xsp,
TeamRoom template, 59

HSSF (Horrible Spreadsheet
Format), 492

HTTP methods, mapped to
CRUD operations, 336

I
IBM Social Business Toolkit,

482-484
icon column, Data View, 218
identities, 457, 465-466
ignoreRequestParams, standard

attributes for REST Service
control, 340

iNotes Calendar, 194, 349-351
Notes Calendar control,

200-202
Notes Client, 194-195
REST service, 196-197

Notes Calendar Store,
197-199

view events, 203-205

iNotes ListView, 187, 348
dynamic ListView, 188, 191
ListView Column, 192-193
properties, 191-192

installing
ExtLib, via Upgrade

Pack, 17
JDBC drivers, 379

into jvm/lib/ext folder
on the Domino
Server, 380

in NSF, 380
via an OSGi plugin,

381-391, 393-394,
396-406

InViewEditing, Dojo Data
Grid, 184-186

io, standard attributes for REST
Service control, 339

IP addresses, validating, 108

J
JAR (Java Archive format), 491
Java, 12

benefits of development,
489-490

referencing in SSJS,
490-491

using Java written by others,
491-498

Java Archive (JAR) format, 491
Java Beans, 506-508
Java classes, creating with

Domino Designer, 499-505
Java Database Connectivity

(JDBC), 377

Java JDBC API for XPages,
425-427

Java Virtual Machine
(JVM), 378

JavaScript, mobile apps versus
web apps, 330

JDBC (Java Database
Connectivity), 377

accessing relational data,
377-378

creating connections to
RDBMS, 406-410

installing JDBC
drivers, 379

JDBC APIs
@JdbcDelete(connection:

any, table:string,
where:string,
params:Array) : int, 419

@JdbcExecuteQuery(conne
ction:any, sql:string,
params:Array) :
java.sql.ResultSet, 420

SSJS, 417
debugging with

xe:dumpObject, 425
@JdbcDelete(connection

:any, table:string,
where:string) : int, 419

@JdbcExecuteQuery
(connection:any,
sql:string) :
java.sql.ResultSet, 420

@JdbcGetConnection
(data:string), 417-419

@JdbcInsert(connection:
any, table:string,
values:any) : int,
421-423

ptg7987094

Index 523

@JdbcUpdate
(connection:any,
table:string,
values:any) : int, 424

@JdbcUpdate
(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate
(connection:any,
table:string, values:any,
where:string,
params:Array) :
int, 424

JDBC data sources
adding to XPages, 411-412
concurrency, 415-417

JDBC drivers, installing, 379
into jvm/lib/ext folder on

the Domino Server, 380
in NSF, 380
via OSGi plugin, 381-391,

393-394, 396-406
@JdbcDbColumn(connection:

any, table:string,
column:string), 418

@JdbcDelete(connection:any,
table:string, where:string) :
int, 419

@JdbcDelete(connection:any,
table:string, where:string,
params:Array) : int, 419

@JdbcExecuteQuery
(connection:any, sql:string) :
java.sql.ResultSet, 420

@JdbcExecuteQuery
(connection:any, sql:string,
params:Array) :
java.sql.ResultSet, 420

@JdbcGetConnection(data:
string), 417-419

@JdbcInsert(connection:any,
table:string, values:any) : int,
421-423

@JdbcInsert(connection:any,
table:string, values:any):
int, 423

@JdbcUpdate(connection:any,
table:string, values:any) :
int, 424

@JdbcUpdate(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate(connection:any,
table:string, values:any,
where:string, params:Array) :
int, 424

JSON, utilities for parsing,
449-450

JSON RPC Service, 351-353
JVM (Java Virtual

Machine), 378
jvm/lib/ext folder, installing

JDBC drivers, 380

K
Keep Session Alive

components, 92-93
KeepSessionAlive control, 8

L
large content, mobile apps,

326-327
layout, mobile apps versus web

apps, 327-330

Layout control, Designer,
274-275

legal property, OneUI
development with
Application Layout control,
267-268

Link Container control, 251
link tags, mobile apps versus

web apps, 328
linkMetaSeparator

property, 259
List Container component,

91-92
List of Links control, 250
listings

The Abstract People Data
Provider Extended, 460

Accessing Java Classes
Using SSJS, 490

Accessing the User Bean
Using EL, 509

Accessing the User Bean
Using SSJS, 509

Action Buttons in a
Header, 314

Action Facet for a Heading
Control, The, 289

appendSQLType() Methods
to Build a SQL Statement
Using a StringBuilder, 426

Application Layout
Facets, 277

The Applications faces-
config.xml, 437

Applying a Dojo
Theme, 103

Available Method for
Setting Scope and
Size, 464

ptg7987094

524 Index

Available Methods for
Infratructure Calls, 465

Basic Navigator Control
with Nodes, 239

Basic Tooltip, 150
basicContainerNode

Example, A, 241
BasicLogin XPage

Markup, 444
Breadcrumbs Control

Sample from the Demo
App, 250

btnRed and btnGreen
Classes, 130

Button Icon and Icon
Position Properties, 298

Button with Change
Dynamic Action, 319

calendarJsonLegacy
Service, 196

Category Filtering
Example, 323

categoryRow Facet on
home.xsp, 215

Closing a Dialog (client-
side JavaScript), 155

Closing a Dialog
(SSJS), 157

Closing the Tooltip Dialog
(SSJS), 162

Code Snippet from the
Home XPage in the
TeamRoom Using the
People Bean, 512

Complex Tooltip, 151
Computing the href Action

to Open a Document from
a View Row, 309

The Configured Application
Layout Control in
layout.xsp, 57

Connection Sample with
dojoType Set, 478

Connections Profiles VCard
Sample, 476

Contains Search
Expression, 121

Core_DojoEffect.xsp Dojo
animation Simple
Action, 145

Create a New Document
Example Using JSON in a
POST Request, 372

createTab Methods, 234
Custom Button Styling for

Mobile Applications, 299
Custom Validator for Picker

Validation, 168
Data Service Response,

361, 364, 367-368
Data Service Response for a

document with an
Attachment, 369

Data Service Response for
the request with a
Computed Item Called
Shortname, 374

Data View with Add Rows
Simple Action, 304

dateRangeActions, 202
Default Tab Bar with

Buttons, 295
defaultTabContent, 236
Definition of a JDBC

Connection File, 407
demo.IdentityProvider.

java, 466

dijit.form.Horizontal
Slider, 101

dijit.form.ValidationTextBo
x, 99

Dojo Button icons, 126
Dojo Data Grid Part One:

Dojo Data Grid
Control, 180

Dojo Data Grid Part Two:
Dojo Data Grid Columns
and Formatter, 183

Dojo Fade Out with
dojo.fx.easing, 141

Dojo Filtering Select Using
Data Store, 124

Dojo Horizontal Slider, 133
Dojo Image Select for

Calendar Picker, 137
dojoParseOnLoad and

dojoTheme, 98
Dropbox OAuth Example

XPage, A, 446
Dynamic Content Control

Example, 61
Dynamic Content

Example, 320
Edit and Save Tab Bar

Buttons, 311
Enabling an Option with a

Mobile Switch
Control, 293

Exact Match Search
Expression, 121

Example of the xe:list and
xe:listInline Controls, 251

Expand Level Example, 322
Facebook Client Control

Sample from
FacebookPlugins.xsp, 479

ptg7987094

Index 525

Facebook Login Button
Configuration
Sample, 480

faces-config.xml
Configuration for the
FacebookEndpoint, 441

faces-config.xml Example
for BasicEndpoint
Bean, 442

faces-config.xml Example
for the
AnonymousEndpoint
Bean, 441

File Service Data
Control Example for
Connections, 453

File Service Data for
Dropbox Example, 453

File Service Data for
LotusLive, 453

Files Extracted from the
ExtLib Download, 15

Footer Links in the ExtLib
Demo App, 269

Form Table Control, 318
A fragment.xml Sample for

the Person Data
Provider, 459

getSQL, 426
IBM Connections Data

Source Sample, 452
JavaScript for a Computed

Item Value, 374
@JdbcDbColumn(connecti

on:any, table:string,
column:string), 418

@JdbcDbColumn(connecti
on:any, table:string,
column:string,
where:string), 419

@JdbcDbColumn(connecti
on:any, table:string,
column:string,
where:string,
orderBy:String):
Array, 419

@JdbcDelete(connection:
any, table:string, where:
string):int, 420

@JdbcDelete(connection:
any, table:string,
where:string): int, 420

@JdbcExecuteQuery(conne
ction:any, sql:
string):java.sql.
ResultSet, 420

@JdbcExecuteQuery
(connection:any, sql:
string, params: string):
java.sql.ResultSet, 421

@JdbcGetConnection(data
string), 418

@JdbcInsert(connection:an
y, table:string, values:any):
int, 422-423

@JdbcUpdate(connection:
any, table:string,
values:sany, where:string,
params:string): int, 424

JSON-RPC Example,
352-353

Link Select Control with
dominoView
ValuePicker, 135

List of Links Sample from
the ExtLib Demo
App, 250

Login Dialog Sample for
Sametime Client, 472

Login Sample from
SametimeLive
Name.xsp, 472

LotusLive Subscribed ID
Sample, 459

A Mobile Page
Heading, 326

Mobile Pages Containing
Custom Controls, 328

More Links Example, 322
Move To Example, 325
Multiple Controls, 324
Name Picker with

dominoNABName
Provider, 166

Navigator Control Using the
onItemClick Event, 249

Notes Calendar
Control, 200

Notes Calendar Store, 200
The OAuth Token Store’s

faces-config.xml, 439
OAuthEndPointBean in the

faces-config.xml File, 440
The oneuiApplication

Markup in the Layout
Customer Control, 266

onNewEntry Event, 204
onRowClick and

onRowDblClick
Events, 186

onStyleRow event, 187

ptg7987094

526 Index

Opening a Dialog (Client-
Side JavaScript), 154

Opening a Document in
Another Mobile Page, 310

Opening Documents from a
Data View in Another
Mobile Page, 307

Opening the Tooltip
Dialog (client-side
JavaScript), 161

OpenSocial Gadget
Example, 354

Outline Control with
Various Navigators,
315, 326

Pager Save State and
viewStateBean
Binding, 213

Pager Sizes Control
Code, 209

pageTreeNode Example
with the Selection
Property, A, 243

Picker Validation, 168
popupMenu Control Bound

to a Button, 252
Programmatic

Implementation of
dijit.form.Validation
TextBox, 97

Properties in xsp.properties
for Changing Values, 464

The PUT Request to
Change the Content-Type
Header, 371

PwdStore Sample faces-
config.xml, 443

A repeatTreeNode
Example, 245

Restoring the
viewStateBean, 213

Right Navigation Button
Example, 329

Rightcolumn Facet in
Action in the
TeamRoom, 280

Rounded List Container for
Data Input, 289

Sample Data Source
Connection to Lotus
Greenhouse, 455

Sample faces-config.xml
Deploying a Managed
Bean, A, 509

Sample nodeBean, 246
Sample of the

dominoViewEntries
TreeNode, 247

Sample Source of XMl with
Features Highlighted, 47

Sample Toolbar
Control, 255

Saving Dojo Data Grid
Edits, 185

SearchBar Markup from the
TeamRoom Layout, 271

Server Console ouput the
NSF-Based Plugins
deployment, 33

Setting the Back Page with
JavaScript, 332

Simple basicLeafNode
Examples, 240

Simple Connection Pool
Optional Parameters and
Default Values, 408

A Simple xe:formTable with
a Form Row and a Footer
Facet, 73

A Simple xe:formTable with
Two Columns, 75

The Single Page
Application Control
Contained Within the
View Tag, 287

Slide Effect with Attributes
Property, 143

Starts with Search
Expression, 122

Static Line Item
Example, 291

Styling the ToggleButton
Control, 129

The Tab Bar as a Segmented
Control, 296

Tag Cloud Sample from the
Demo App, 259

Tags Value Picker, 163
The TeamRoom Tag

Cloud, 258
TeamroomiNotesListView.

xsp, 189
TeamroomViews.xsp, 172
testIcon Class, 127
Use of the mastHeader and

mastFooter, 273
The User Bean in Action in

the Layout Custom
Control of the
TeamRoom, 511

A userTreeNode
Example, 242

Using Apache POI in
SSJS, 498

Using Dojo Animation
Simple Action to Style the
ToggleButton, 146

Using Facets in the Layout
Custom Control, 279

ptg7987094

Index 527

Using the SSJS
importPackage
Directive, 491

Using the xe:dumpObject
with a JDBC Data
Source, 425

Validating an IP
Address, 108

ViewJSON Service
Example, 346

viewJsonLegacy
Service, 198

viewJsonService Rest
Service Control, 176

XML Sample, 450
XPage Markup of a REST

Service Control with a
Computed Column, 342

XPage Markup of an XPage
That Uses the REST
Service Control, 341

XPage Markup of Dojo
Data Grid Bound to
the REST Service
Control, 343

XPage Markup of iNotes
List Calendar Bound to a
REST Service
Control, 349

An XPage with a Dynamic
Content Control, 85

An XPage with a Multi-
Image Component, 90

An XPage with a Switch
Control, 88

An XPage with an
inPlaceForm
Component, 82

An XPage with the xe:list
Component, 91

XPages Markup of a
heading Tag Inside a
Mobile Application, 303

XPages markup of a
Heading Tag Inside a
Mobile Application
Tag, 301

ListView Column, 192-193
properties, 193-194

loginTreeNode, 242
Lotus Notes Domino R.8.5.2, 4
Lotus Notes Domino R8.5.0, 4
LotusLive

xe:fileServiceData, 453
XPagesSBT.NSF, 470

LotusScript, 489

M
Managed Beans, 508
manually deploying libraries to

servers, 38-40
Mastering XPages, xviii
mastFooter property, OneUI

development with
Application Layout
control, 273

mastHeader property, OneUI
development with
Application Layout
control, 273

maxTagLimit property, 258

menus, mobile apps versus
menu apps, 328

mobile, TeamRoom
template, 66

mobile applications
Hello World tutorial, 300

adding a view document
collection to the mobile
page, 302-304

creating new XPages and
mobile apps, 301-302

displaying rows,
304-305

editing and saving
document changes,
311-315

enable apps for ExtLib
and mobile, 300

opening documents from
Data View, 306-311

themes, 298-300
mobile apps

containers, 309
Data View, 309
ExtLib

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327

ptg7987094

528 Index

modifying controls with
Dojo, 327

More link, 322-323
Move To mobile page

action, 325
multiple controls,

324-325
Outline control, 315-318

versus web apps, 332
layout, 327-330

mobile control palette, 285
mobile controls, basics of,

284-286
mobile devices, 283-284
Mobile Page control, 287-288
Mobile Switch, 292, 294
mobility, 11
modernization, TeamRoom

template, 55-56
modifying controls with

Dojo, 327
More link, 322-323
Move To mobile page

action, 325
multi-image component, 89-91
multiColumnCount,

TeamRoom template, 65
Multiline Edit Box, 119-120
multiple columns, Data

View, 219
multiple controls, 324-325

N
Name Picker, 165-167

properties, 170
naming, perspective, 494

narrow mode, 192
navigation buttons, setting, 329
navigation path property,

OneUI development with
Application Layout
control, 268

Navigator control, 247-248
navigator controls, 247

Accordion control, 256-257
Bread Crumbs control, 249
Link Container control, 251
List of Links control, 250
Navigator control, 247-248
Outline control, 255-256
Pop-up Menu control,

252-254
Sort Links control, 251
Tag Cloud control, 257-259
Toolbar control, 254
Widget Container

control, 260
New Java Class Wizard, 395
next generation, 5-6
nodeBean, 246
Notes Calendar control,

200-202
Notes Calendar Store, Calendar

view, 197-199
Notes Client

iNotes Calendar, 194-195
running ExtLib Demo

app, 27
NSF (Notes Storage

Facility), 377
installing JDBC drivers, 380

O
OAuth, 431

configuring applications
for, 439

Token Store template,
434-438

OAuth dance, 431, 433-434
OAuth Token Store template,

434-438
social applications, 430

OAuthEndpointBean, 440-441
OneUI

development with
Application Layout
control, 264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271
productLogo

property, 273
searchBar property,

271-272
titleBar property, 273

history of, 263-264
onNewEntry event, 204
onRowClick event, 186
onRowDblClick event, 186
onStyleRow event, 187
OOXML

(OpenOfficeXML), 491

ptg7987094

Index 529

opening
dialogs

client-side
JavaScript, 154

SSJS, 156
documents from Data View,

306-311
Tooltip dialog, client-side

JavaScript, 161
OpenNTF, 5
OpenNTF Alliance, 5
OpenSocial Gadgets, 353, 356
OSGi plugins

deploying, 33
installing JDBC drivers,

381-391, 393-394,
396-406

Outline control, 255-256,
315-318

P–Q
Package Explorer, 495

anchoring, 493
Page Heading control, 288
Pager, 277
Pager Add Rows,

properties, 211
Pager Detail, properties, 209
Pager Expand, properties, 208
Pager Save State,

properties, 212
Pager Sizes, 209

properties, 210
pagers, Data View, 207-210

PagerSaveState, Data View,
212-213

pageTreeNode, 242-245
parameters, adding to SQL

statements, 412
parsing utilities, 449-450
patch, 366

Document JSON
Service, 372

pathInfo, standard attributes for
REST Service control, 339

pathInfo property, REST
Service control, 340-341

peopleBean, 458, 509-511
extensions, 459, 462

perspective, naming and
saving, 494

pickers, validating, 167-170
placebar property, OneUI

development with
Application Layout control,
270-271

Plug-In Project Wizard, 382
Plugins, social

applications, 430
Pop-up Menu control, 252-254
Porus, xvi
Post, 366

Document JSON
Service, 372

preventDojoStore, standard
attributes for REST Service
control, 340

productLogo property, OneUI
development with
Application Layout
control, 273

profiles VCard, 474, 477
properties

Accordion Container, 230
banner, 272
Border Container, 228
Border Pane, 229
cacheRefreshInterval, 259
Content Pane, 225
Data View, 206
dialogs, 159-160
djDateTimeConstraints, 117
Dojo Animation

Property, 144
Dojo Combo Box, 125
Dojo Currency Text

Box, 115
Dojo Data Grid, 181-182
Dojo Data Grid

Column, 185
Dojo Fade In, 142
Dojo Fade Out, 142
Dojo Filtering Select, 125
Dojo fx Wipe In, 142
Dojo fx Wipe Out, 142
Dojo Horizontal Slider, 131
Dojo Image Select, 140
Dojo Link Select, 137
Dojo Number Spinner, 116
Dojo Number Text Box, 115
Dojo Simple Text Area, 120
Dojo Slide to Effect, 143
Dojo Slider Rule, 134
Dojo Slider Rule

Labels, 134
Dojo Text Area, 120
Dojo Text Box, 105

ptg7987094

530 Index

Dojo Validation
Text Box, 112

Dojo Vertical Slider, 131
Dojo widgets, 105
Dynamic Content, 84
Dynamic View Panel, 175
footer, 269
Form Column, 73
Form Row, 73
Form Table, 72
iNotes ListView, 191-192
legal, 267-268
linkMetaSeparator, 259
ListView Column, 193-194
mastFooter, 273
mastHeader, 273
maxTagLimit, 258
Name Picker, 170
navigation path, 268
Pager Add Rows, 211
Pager Detail, 209
Pager Expand, 208
Pager Save State, 212
Pager Sizes, 210
placebar, 270-271
productLogo, 273
searchBar, 271-272
sortTags, 258
Tab Container, 237
titleBar, 273
tooltipDialog, 159-160
Value Picker, 164
viewJsonService, 179
xe:calendarView, 205
xe:djNumber

Constraint, 114

xe:dojoDojoAnimation
Props, 144

xe:jdbcQuery, 415
xe:jdbcRowSet, 415
xe:viewCategoryColumn,

217-218
xe:viewExtraColumn,

217-218
xe:viewIconColumn, 218
xe:viewSummaryColumn,

217-218
proxies, 455

Domino proxy, 455-457
ExtLib proxies, 457

put
Document JSON

Service, 371
View JSON Service, 365

R
RDBMS (Relation Database

Management Systems),
377, 426

Recent Activities, TeamRoom
template, 59

Redesign, TeamRoom
template, 56

referencing native Java in
SSJS, 490-491

regular expressions, 112
Relation Database

Management Systems
(RDBMS), 377, 426

creating connections to, 406
files, 406-410

relational data, 11

accessing through JDBC,
377-378

creating connections to
RDBMS, 406-410

installing JDBC
drivers, 379

relational data sources, using
on XPages, 410

adding JDBC data sources,
411-412

specifying the SQL
statement, 412-413

xe:JDBC data sources and
concurrency, 415-417

xe:jdbcQuery data source,
413-414

xe:jdbcRowSet data
source, 414

remote service (Domino),
calling, 351

JSON RPC Service,
351-353

renderers, 332
repeat lists, mobile apps versus

web apps, 330
repeatTreeNode, 245
REST (Representational State

Transfer), 12, 335
REST API calls, 447-448

content types, 449
endpoints, 439
methods, 448
parameter format, 448
service documentation, 447

REST data sources, 450-451
Activity Stream Data data

source, 454-455
Connections Data

Source, 452

ptg7987094

Index 531

File Service Data Data
Source, 452-454

REST Service control, 338
computed columns, 341
Dojo Data Grid, 342
pathInfo property, 340-341
standard attributes

for each service
type, 340

ignoreRequestParams,
340

io, 339
pathInfo, 339
preventDojoStore, 340
service, 338

REST services, 335
CRUD operations, 336
developing custom

services, 375
Dojo DataGrid, 176, 178
Domino, 343

Data Service, 344
Data Services—Contacts

and All Types
pages, 345

Dojo Grid Using JSON
Rest Dat Services,
345-346

Dojo NotesPeek, 347
ExtLib, 336-338
iNotes Calendar, 196-197

Notes Calendar Store,
197-199

RESTful web services, 12
restoring viewStateBean, 213
rich text, mobile apps versus

web apps, 331

right navigation button,
setting, 329

Rounded List, 289-290

S
Sametime Client control, 471
sametime controls, 471-472
Sametime Widget control, 471
saving

document changes, 311-315
perspective, 494

searchBar property, OneUI
development with
Application Layout control,
271-272

segmentedControl,
Tab Bar, 297

Select control, 120
Dojo Check Box, 126
Dojo Combo Box, 120-125
Dojo Filtering Select,

120-125
Dojo Radio Button, 126

separatorTreeNode, 242
server deployment

ExtLib
automatic server

deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28, 30-34

manually deploying
libraries to servers, 38-40

service, standard attributes for
REST Service control, 338

service data, consuming
iNotes Calendar, 349-351
iNotes List View, 348
OpenSocial Gadgets,

353, 356
service documentation, REST

API calls, 447
serviceType property, 452
Single Page Application control,

286-287
sliders, 131-134

Dojo libraries, 100, 102
smart phones, 284
social applications, 429-430

OAuth Token Store
template, 430

plugins, 430
setup, 431
social enabler sample

database, 430
social business, 11
social enabler sample database,

social applications, 430
software development, 11
Sort Links control, 251
sortTags property, 258
SQL statements

adding parameters to, 412
specifying, 412-413

sqlTable property, 412
src*.zip files, 15
SSJS (Server-Side JavaScript)

accessing user Bean, 509
Apache POI, 498
closing dialogs, 157
closing Tooltip dialog, 162
JDBC APIs, 417

ptg7987094

532 Index

debugging with
xe:dumpObject, 425

@JdbcExecuteQuery
(connection:any,
sql:string) :
java.sql.ResultSet, 420

@JdbcInsert(connection:
any, table:string,
values:any) : int,
421-423

@JdbcDelete(connection
:any, table:string,
where:string): int, 419

@JdbcDelete(connection
:any, table:string,
where:string,
params:Array) :
int, 419

@JdbcExecuteQuery-
(connection:any,
sql:string,
params:Array) :
java.sql.ResultSet, 420

@JdbcGetConnection-
(data:string), 417-419

@JdbcUpdate-
(connection:any,
table:string,
values:any) : int, 424

@JdbcUpdate-
(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate-
(connection:any,
table:string, values:any,
where:string,
params:Array) :
int, 424

opening dialogs, 156
referencing native Java,

490-491
Stack Container, 238
Stack Pane, 238
standard attributes, REST

Service control
for each service type, 340
ignoreRequestParams, 340
io, 339
pathInfo, 339
preventDojoStore, 340
service, 338

standard node types
basicContainerNode,

240-241
basicLeafNode, 239-240
loginTreeNode, 242
separatorTreeNode, 242
userTreeNode, 242

Static Line Item, 291-292
summary column, Data

View, 218
Switch, 88-89

T
Tab Bar, 295-297
Tab Bar button, 298
Tab Container, 231-237

properties, 237
Tab Pane, 231-237
table devices, rich text, 331
tables, mobile apps versus web

apps, 328
Tag Cloud control, 58, 257-259
tag clouds, mobile apps versus

web apps, 328

TeamRoom template, 53-55
All Documents, 60
Application Layout, 57-58
calendarView, 63
Document Form, 61
Dynamic Content, 61
homeMembersView.xsp, 59
homeTeamRoom

Purpose.xsp, 59
mobile, 66
modernization, 55-56
multiColumnCount, 65
Recent Activities, 59
redesign, 56
Value Picker, 64
Web 2.0 style features, 63

TeamroomiNotesList
View.xsp, 189

TeamroomViews.xsp, 172
templates, TeamRoom

template, 54-55
All Documents, 60
Application Layout, 57-58
calendarView, 63
Document Form, 61
Dynamic Content, 61
homeMembersView.xsp, 59
homeTeamRoom

Purpose.xsp, 59
mobile, 66
modernization, 55-56
multiColumnCount, 65
Recent Activities, 59
redesign, 56
Value Picker, 64
Web 2.0 style features, 63

ptg7987094

Index 533

themes
Dojo, 102-103
mobile applications,

298-300
time picker, 119
titleBar property, OneUI

development with
Application Layout
control, 273

Toolbar control, 254
Tooltip Dialog control, 153,

160-161
Tooltip dialog control

closing SSJS, 162
opening client-side

JavaScript, 161
tooltipDialog properties,

159-160
tooltips, 149-153
tree node concept, 239

advanced node types
beanTreeNode, 245
dominoViewEntriesTree

Node, 247
dominoViewListTree-

Node, 246
pageTreeNode, 242,

244-245
repeatTreeNode, 245

standard node types
basicContainerNode,

240-241
basicLeafNode, 239-240
loginTreeNode, 242
separatorTreeNode, 242
userTreeNode, 242

U
uninstalling ExtLib from

Designer, 27-28
UP1 (Upgrade Pack 1), 377
Upgrade Pack, installing

ExtLib, 17
Upgrade Pack 1 (UP1), 377
URLs (uniform resource

locators), 439
database URLs,

specifying, 409
user Bean, 511
user identities, 465-466
user information, caching,

464-465
user interface controls, 467

connections controls, 474
communities VCard,

477-478
profiles VCard, 474, 477

Facebook controls, 478-481
file controls, 467
sametime controls, 471-472

user profiles, 457
caching of user information,

464-465
extensions

enablement of, 462-464
to user and people beans,

459, 462
peopleBean, 458

userBean, 458
extensions, 459, 462

userTreeNode, 242
utilities for parsing, 449-450

V
validating

IP addresses, 108
pickers, 167-170

Value Picker, 162-163
TeamRoom template, 64

View Design JSON Service,
366-367

view events
Dojo Data Grid, 186-187
iNotes Calendar, 203-205

View JSON Collection Service,
361-362

View JSON Service, 362-366
View State Beans, Data View,

212-213
viewJsonLegacyService, 198
viewJsonService REST

service, 176
views

Data View, 206
columns, 214-217
columns, category

column, 215
columns, detail, 219
columns, extra

column, 218
columns, icon

column, 218
columns, summary

column, 218
multiple columns, 219
pagers, 207-208, 210
PagerSaveState/View

State Beans, 212-213
properties, 206

ptg7987094

534 Index

Dojo DataGrid, 175
Dojo Data Grid contents,

182-184
Dojo Data Grid control,

179-181
InViewEditing, 184-186
REST service, 176-178
view events, 186-187

Dynamic View Panel,
171-174

properties, 175
Forum View, 220
iNotes Calendar, 194

Notes Calendar control,
200-202

Notes Client, 194-195
REST service, 196-197
REST service: Notes

Calendar Store,
197-199

view events, 203-205
iNotes ListView, 187

dynamic ListView,
188, 191

ListView Column,
192-193

viewStateBean, restoring, 213

W
Web 2.0 style features,

TeamRoom template, 63
web apps versus mobile

apps, 332
layout, 327-330

WEB-INF folder, 495-496
widget catalog, deploying

ExtLib to end users, 41
widget configuration,

deploying ExtLib to end
users, 42-50

Widget Container control, 260
wizards

Deployable Plug-Ins and
Fragments Wizard, 401

New Java Class Wizard,
395

Plug-In Project wizard, 382

X–Y–Z
xe:accordion, 256-257
xe:activityStreamData,

454-455
xe:addRows, 304
xe:applicationConfigura-

tion, 266
xe:applicationLayout

within a Custom Control,
276-280

OneUI development,
264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271
productLogo

property, 273

searchBar property,
271-272

titleBar property, 273
xe:appPage, 288
xe:appSearchBar, 271
xe:basicContainerNode,

240-241
xe:basicLeafNode, 239-240
xe:beanTreeNode, 245
xe:beanValuePicker, 137
xe:breadCrumbs, 249-250
xe:calendarView, 63, 194,

349-351
Notes Calendar control,

200-202
Notes Client, 194-195
properties, 205
REST service, 196-197

Notes Calendar Store,
197-200

view events, 203-205
xe:changeDynamicContent

Action, 87
xe:connectionsData, 452
xe:dataView, 9, 59, 206,

321-322
columns, 214-215

category column,
215-217

detail, 219
extra column, 218
icon column, 218
summary column, 218

mobile apps, 309
multiple columns, 219

ptg7987094

Index 535

opening documents,
306-311

pagers, 207-210
PagerSaverState/View State

Beans, 212-213
properties, 206-207

xe:dialog, 153-159
xe:dialogButtonBar, 158
xe:djAccordionContainer,

229-231
properties, 230

xe:djAccordionPane, 231
xe:djBorderContainer, 225-229

properties, 228
xe:djBorderPane, 225-229

properties, 229
xe:djButton, 126-128
xe:djCheckBox, 126
xe:djComboBox, 120-125

properties, 125
xe:djContentPane, 223-224

properties, 225
xe:djCurrencyTextBox,

113-115
properties, 115

xe:djDateTextBox, 116-118
xe:djDateTimeConstraints,

properties, 117
xe:djextListTextBox, 164-165
xe:djextImageSelect, 137, 140

properties, 140
xe:djextLinkSelect, 135-136

properties, 137
xe:djextNameTextBox,

164-165
xe:djFilteringSelect, 120-125

properties, 125

xe:djHorizontalSlider,
131-133

properties, 131
xe:djNumberConstraints, 113

properties, 114
xe:djNumberSpinner, 115-116

properties, 116
xe:djNumberTextBox, 113-115

properties, 115
xe:djRadioButton, 126
xe:djSimpleTextarea, 119-120

properties, 120
xe:djSliderRule, 132-134

properties, 134
xe:djSliderRuleLabels,

132-134
properties, 134

xe:djStackContainer, 238
xe:djStackPane, 238
xe:djTabContainer, 231-237

properties, 237
xe:djTabPane, 231-237
xe:djTextarea, 119-120

properties, 120
xe:djTextBox, 104-106

properties, 105
xe:djTimeTextBox, 116-118
xe:djToggleButton, 128-130
xe:djValidationTextBox,

106-112
properties, 112

xe:djVerticalSlider, 131
properties, 131

xe:djxDataGrid, 175, 179-181
contents, 182-184
InViewEditing, 184-186
properties, 181-182

REST Service control,
176-178, 342

view events, 186-187
xe:djxDataGridColumn, 182

properties, 185
xe:djxDataGridRow, 182
xe:djxmHeading, 288-289,

325-326
xe:djxmLineItem, 291-292
xe:djxmRoundRectList,

289-290
xe:djxmSwitch, 292-295
xe:dojoDojoAnimate

Property, 145
properties, 144

xe:dojoDojoAnimationProps,
145

properties, 144
xe:dojoFadeIn, properties, 142
xe:dojoFadeOut,

properties, 142
xe:dojofxSlideTo,

properties, 143
xe:dojofxWipeIn,

properties, 142
xe:dojofxWipeOut,

properties, 142
xe:dominoNABName-

Picker, 166
xe:dominoViewCloud-

Data, 258
xe:dominoViewEntriesTree

Node, 247, 309
xe:dominoViewListTree-

Node, 246
xe:dominoViewName-

Picker, 170

ptg7987094

536 Index

xe:dominoViewValue-
Picker, 164

xe:dumpObject,
debugging, 425

xe:dynamicContent, 60-61,
83-85, 88, 320-321

xe:dynamicViewPanel,
171-174

properties, 175
xe:fileServiceData, 452-454
xe:formColumn, 71

properties, 73
xe:formRow, 71, 77

properties, 73
xe:formTable, 61, 71-77,

318-320
properties, 72

xe:forumPost, 78-80
xe:forumView, 220
xe:iconEntry, 90
xe:inPlaceForm, 80-83
xe:jsonRpcService, 351-353
xe:jdbcConnection

Manager, 416
xe:jdbcQuery, 410

properties, 415
xe:jdbcQuery data source,

413-414
xe:jdbcRowSet, 410

properties, 415
xe:jdbcRowSet data

source, 414
xe:keepSessionAlive, 92-93
xe:linksList, 250
xe:list, 91-92, 251-252
xe:listInline, 251-252

xe:listView, 187, 348
dynamic ListView, 188, 191
properties, 191-192

xe:listViewColumn, 192-193
properties, 193

xe:loginTreeNode, 242
xe:moveTo, 325
xe:multiImage, 89-91
xe:namePicker, 165-167

properties, 170
xe:namePickerAggregator, 170
xe:navigator, 239, 247-249
xe:notesCalendarStore,

197-200
xe:oneuiApplication, 266
xe:outline, 255-256, 315-318
xe:pagerAddRow, 210-211
xe:pagerDetail, 209
xe:pagerExpand, 208
xe:pagerSaveState, 60, 212-214
xe:pagerSize, 209-210
xe:pageTreeNode, 242-245
xe:pickerValidator, 168
xe:popupMenu, 252-254
xe:remoteMethod, 352
xe:remoteMethodArg, 352
xe:repeatTreeNode, 245
xe:restService, 64, 176-179,

338-343
xe:restViewColumn, 341
xe:sametimeClient, 471
xe:sametimeWidget, 471
xe:selectImage, 137
xe:separatorTreeNode, 242
xe:simpleValuePicker, 164
xe:singlePageApp, 286-287
xe:sortLinks, 251

xe:switchFacet, 88-89
xe:tabBar, 295-297
xe:tabBarButton, 298
xe:tagCloud, 58, 257-259
xe:toolbar, 254-255
xe:tooltip, 150-153
xe:tooltipDialog, 160-161

properties, 159
xe:userTreeNode, 242
xe:valuePicker, 64, 162-163

properties, 164
xe:viewCategoryColumn,

properties, 217-218
xe:viewExtraColumn,

properties, 217-218
xe:viewIconColumn,

properties, 218
xe:viewItemFileService, 124
xe:viewJsonLegacy-

Service, 198
xe:viewJsonService,

properties, 179
xe:viewSummaryColumn,

properties, 217-218
xe:widgetContainer, 59,

260-261
XPages

adding JDBC data
sources to, 411

history of, xv-xvii, 4
Java JDBC API, 425-427
relational data sources, 410

adding JDBC data
sources, 411-412

JDBC data sources and
concurrency, 415-417

specifying the SQL
statement, 412-413

ptg7987094

Index 537

xe:jdbcQuery data
source, 413-414

xe:jdbcRowSet data
source, 414

XPages Extension Library
(ExtLib), 3-7, 13

deploying to developers in
Designer, 18-27

deploying to end users, 40
creating widget

configuration, 42-50
provisioning ExtLib

widget to other users,
50-52

widget catalog setup, 41
Dojo modules, 103-104

benefits and differences,
104

downloading, 13-17
installing via Upgrade

Pack, 17
making app development

easier, faster, and better, 8
manually deploying to

servers, 38-40
mobile apps

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327
modifying controls with

Dojo, 327
More link, 322-323

Move To mobile page
action, 325

multiple controls,
324-325

Outline control, 315-318
REST services, 336-338
server deployment

automatic server
deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28-34

uninstalling from Designer,
27-28

XPages mobile apps, 284
XPagesSBT.NSF, 467

Connections, 468, 470
Dropbox, 467-468
LotusLive, 470

ptg7987094

This page intentionally left blank

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Contributing Authors
	Part I: The Extension Library, Installation, Deployment, and an Application Tour
	Chapter 1 The Next Generation of XPages Controls
	So How Did We Get Here?
	Then Came Domino R.8.5.2, and the Extensibility Door Opened
	Making Domino Application Development Easier, Faster, and Better
	What Are the Most Important Controls and Why?
	XPages Learning Shortcuts
	Bells and Whistles: Welcome to the Future
	Doing It Yourself with Java
	Conclusion

	Chapter 2 Installation and Deployment of the XPages Extension Library
	Downloading the ExtLib
	Installing the ExtLib via the Upgrade Pack
	Deploying ExtLib to Developers in Designer
	Server Deployment
	Deploying the Extension Library to End Users
	Conclusion

	Chapter 3 TeamRoom Template Tour
	Where to Get the TeamRoom Template and How to Get Started
	The TeamRoom Template and Why It Was a Good Candidate for Modernization
	TeamRoom Redesign Brief and Features
	Lessons Learned and Best Practices
	Conclusion

	Part II: The Basics: The Application’s Infrastructure
	Chapter 4 Forms, Dynamic Content, and More!
	Form Layout Components
	Dynamic Content
	Miscellaneous Controls
	Conclusion

	Chapter 5 Dojo Made Easy
	What Is Dojo?
	Default Dojo Libraries Using Dojo Modules in XPages
	Dojo Modules and Dojo in the Extension Library
	Dojo Extensions to the Edit Box Control
	Dojo Extensions to the Multiline Edit Box Control
	Dojo Extensions to the Select Control
	Dojo Extensions to Buttons
	Composite Dojo Extensions
	Dojo Effects Simple Actions
	Conclusion

	Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers
	Tooltip (xe:tooltip)
	Dialogs
	Value Picker (xe:valuePicker)
	Dojo Name Text Box and Dojo List Text Box (xe:djextNameTextBox and xe:djextListTextBox)
	Name Picker (xe:namePicker)
	Conclusion

	Chapter 7 Views
	Dynamic View Panel (xe:dynamicViewPanel)
	Data Grid
	iNotes ListView (xe:listView)
	iNotes Calendar (xe:calendarView)
	Data View (xe:dataView)
	Forum View
	Conclusion

	Chapter 8 Outlines and Navigation
	The Dojo Layout Controls
	Understanding the Tree Node Concept
	Using the Navigator Controls
	Conclusion

	Chapter 9 The Application’s Layout
	History of OneUI
	Easy OneUI Development with the Application Layout Control
	The Layout Control Tooling in Designer
	Using the Application Layout Within a Custom Control
	Conclusion

	Part III: Bell and Whistles: Mobile, REST, RDBMS, and Social
	Chapter 10 XPages Goes Mobile
	In the Beginning…
	The XPages Mobile Controls the Extension Library
	The XPages Mobile Theme
	Hello Mobile World Tutorial
	Deep Dive into the Controls in the Extension Library, with Examples of Their Use
	XPages Mobile Phone Application Gotchas
	Conclusion

	Chapter 11 REST Services
	REST Services in the XPages Extension Library
	XPages REST Service Control (xe:restService)
	Hello REST World 1: Using the pathInfo Property
	Hello REST World 2: Computed Column to Join Data
	Hello REST World 3: REST Service in a Data Grid
	Domino REST Service from XPages Samples
	Consuming Service Data with Other Controls
	Calling a Remote Service from Domino
	Consuming Service Data from External Applications
	Accessing Data Services from Domino as a Built-In Service
	Domino Data Services
	Developing Custom REST Services
	Conclusion

	Chapter 12 XPages Gets Relational
	Accessing Relational Data Through JDBC
	Using Relational Datasources on an XPage
	Server-Side JavaScript JDBC API for XPages and Debugging
	Java JDBC API for XPages
	Conclusion

	Chapter 13 Get Social
	Going Social
	Get Started
	OAuth
	REST API Calls and Endpoints
	REST Datasources
	Proxies
	User Profiles and Identities
	User Interface Controls
	IBM Social Business Toolkit
	Conclusion

	Part IV: Getting Under the Covers with Java
	Chapter 14 Java Development in XPages
	Benefits of Java Development
	Referencing Native Java in Server-Side JavaScript
	Using Java That Others Have Written
	Setting Up Domino Designer to Create Java Classes
	Introduction to Java Beans
	Managed Beans
	The User and People Bean
	Conclusion

	Appendix A: Resources
	Other Resources

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

