
ptg

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David Byrd, Gary Wood,

Tim Speed, Michael Martin, Suzanne Livingston,

Jason Moore, and Morten Kristiansen

ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM

Lotus Connections 2.5 experts thoroughly intro-

duces the newest product and covers every facet

of planning, deploying, and using it success-

fully. The authors cover business and technical

issues and present IBM’s proven, best-practices

methodology for successful implementation. The

authors begin by helping managers and technical

professionals identify opportunities to use social

networking for competitive advantage–and by

explaining how Lotus Connections 2.5 places full-

fledged social networking tools at their fingertips.

IBM Lotus Connections 2.5 carefully describes

each component of the product–including

profiles, activities, blogs, communities, easy social

bookmarking, personal home pages, and more.

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott

ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of

proven resolutions to common problems and has

streamlined processes for infrastructure support.

Elliott systematically addresses support solutions

for all recent Lotus Notes and Domino

environments.

Survival Guide for Lotus Notes and Domino
Administrators is organized for rapid access

to specific solutions in three key areas: client

setup, technical support, and client software

management. It brings together best practices

for planning deployments, managing upgrades,

addressing issues with mail and calendars, con-

figuring settings based on corporate policies, and

optimizing the entire support delivery process.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks/newsletters

Listen to the author’s podcast at:

ibmpressbooks.com/podcasts

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Lotus Notes
Developer’s Toolbox
Tips for Rapid and Successful

Deployment

By Mark Elliott

ISBN-10: 0-13-221448-2

Lotus Notes Developer’s Toolbox will help you

streamline and improve every phase of Notes

development. Leading IBM Lotus Notes developer

Mark Elliott systematically identifies solutions

for the key challenges Notes developers face,

offering powerful advice drawn from his extensive

enterprise experience. This book presents best

practices and step-by-step case studies for

building the five most common types of Notes

applications: collaboration, calendar, workflow,

reference library, and website.

Web 2.0 and Social
Networking for the Enterprise
Guidelines and Examples for

Implementation and Management

Within Your Organization

By Joey Bernal

ISBN: 0-13-700489-3

This book provides hands-on, start-to-finish

guidance for business and IT decision-makers

who want to drive value from Web 2.0 and social

networking technologies. IBM expert Joey Bernal

systematically identifies business functions and

innovations these technologies can enhance and

presents best-practice patterns for using them in

both internal- and external-facing applications.

Drawing on the immense experience of IBM

and its customers, Bernal addresses both the

business and technical issues enterprises must

manage to succeed.

Listen to the author’s podcast at:

ibmpressbooks.com/podcasts

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

DB2 9 for Linux, UNIX, and

Windows

DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise

Information Architecture

A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master

Data Management

An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for

Security Professionals

Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Understanding DB2 9

Security

Bond, See, Wong, Chan
ISBN: 0-13-134590-7

The Social Factor
Innovate, Ignite, and Win through Mass

Collaboration and Social Networking

By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
firewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specific techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.
Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

This page intentionally left blank

Mastering
XPages

This page intentionally left blank

Mastering
XPages:

A Step-by-Step Guide to XPages
Application Development and the
XSP Language

Martin Donnelly, Mark Wallace,

and Tony McGuckin

IBM Press
Pearson plc

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2011 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Dave Dusthimer
Marketing Manager: Stephane Nakib
Executive Editor: Mary Beth Ray
Publicist: Heather Fox
Senior Development Editor: Christopher Cleveland
Managing Editor: Kristy Hart
Designer: Alan Clements
Senior Project Editor: Lori Lyons
Technical Reviewers: Maureen Leland, John Mackey
Copy Editor: Sheri Cain
Indexer: Erika Millen
Senior Compositor: Gloria Schurick
Proofreader: Kathy Ruiz
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U. S., please contact

International Sales
international@pearson.com.

The following terms are trademarks of International Business Machines Corporation in many jurisdictions
worldwide: IBM, Notes, Lotus, Domino, Symphony, Quickr, Sametime, Lotusphere, Rational, WebSphere,
LotusScript, and developerWorks. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

Oracle, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

Microsoft, Windows, ActiveX, and Internet Explorer are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

Donnelly, Martin, 1963-
Mastering XPages : a step-by-step guide to XPages : application development and the XSP language /

Martin Donnelly, Mark Wallace, Tony McGuckin.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-13-248631-6 (pbk. : alk. paper)
1. Internet programming. 2. XPages. 3. Application software—Development. 4. Web site development.
I. Wallace, Mark, 1967- II. McGuckin, Tony, 1974- III. Title.
QA76.625.D66 2011
006.7’6—dc22

2010048618

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-248631-6
ISBN-10: 0-13-248631-8

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.

First printing January 2011

I dedicate this book to the memory of my dear sister Anne,
the brightest and the best.

—Martin

For Dee, Sam, and Becky: I couldn’t have contributed to this book without the
support, encouragement, and unending patience of my wonderful wife.

Thank you, Dee.
—Mark

I want to thank some great people for my involvement in this book.
First, it would not have happened without the encouragement and direction of
my lead architect (and co-author) Martin; thank you for the great opportunity.
Second, I want to thank my development manager, Eamon, and senior technical
architect, Phil, who had to keep things going without a full-time engineer, and

yet both remained upbeat throughout the process.
Finally, I dedicate my contribution to this book to my parents, family, and
especially my wife, Paula, and daughter, Anna-Rose, for putting up with a

part-time husband and dad—I love you both!
—Tony

Contents

Foreword by Philippe Riand xx

Preface xxiv

Part I: Getting Started with XPages 1

Chapter 1 An Introduction to XPages 3
XPages Fundamentals 3
Brand New Technology? 4
A Different Development Paradigm 5
The More Things Change, the More Things Stay the Same 7
New Horizons 7
Conclusion 8

Chapter 2 Getting Everything You Need 9
Downloads, Versions, and Locations 9
Installing Domino Designer 10
Installing Client Fix Packs 11
Client Configuration 11
Quick Tour of Domino Designer 12

Domino Designer Welcome Screen 13
Domino Designer Perspective 14
Creating a New Application 15
Creating an XPage 16
Previewing in the Notes Client 18
Previewing in a Web Browser 18
Adding a Control to an XPage 21

Conclusion 22

Chapter 3 Building Your First XPages Application 23
Laying the Foundations 24
Forms and Views 26
Building an XPages View 31
Completing the CRUD 36
Conclusion 42

Part II: XPages Development: First Principles 43

Chapter 4 Anatomy of an XPage 45
What Exactly Is an XPage? 46
Understanding XSP Tag Markup 47

Getting Started with XML 47
XPages XML Syntax 50
Simple Properties 52
Complex Properties 54
Complex Values 54
Computed Properties 55
Data Binding 59
XPages Tags 60

Data Sources 61
Domino Document 61
Domino View 62
Data Context 63

Controls 64
Editing Controls 64
Command Controls 70
Selection Controls 74
Display Controls 82
File-Handling Controls 84

Containers 87
Panel 87
Table 90
View 91
Data Table 94
Repeat 95
Include Page 99
Tabbed Panel 99
Section 100

XPage Resources 101
Script Library 101
Style Sheet 103
Resource Bundle 104

xii Mastering XPages

Dojo Module 105
Generic Head Resource 106
Metadata Resource 106

Converters 107
Validators 110
Simple Actions 118
Client-Side Scripting 125
HTML Tags 127
Conclusion 128

Chapter 5 XPages and JavaServer Faces 129
What Is JavaServer Faces? 130
JSF Primer 131
How Does XPages Extend JSF? 138

XML-Based Presentation Tier 141
Request Processing Lifecycle 142
User Interface Component Model 143
Standard User-Interface Components 148
Value Binding and Method Binding Expression Evaluation 152
XPages Default Variables 154

Conclusion 156

Chapter 6 Building XPages Business Logic 157
Adding Business Logic 157

Using the xp:eventHandler Tag 160
Simple Actions 167

Change Document Mode 168
Confirm Action 169
Create Response Document 170
Delete Document 171
Delete Selected Documents 172
Execute Client Script 173
Execute Script 173
Modify Field 174
Open Page 175
Publish Component Property 176
Publish View Column 177
Save Data Sources 179
Save Document 180
Set Component Mode 182
Set Value 183
Action Group 184

Contents xiii

Using JavaScript with XPages 186
Server-Side JavaScript 186
Client JavaScript 206

Conclusion 211

Part III: Data Binding 213

Chapter 7 Working with Domino Documents 215
Domino Document Data Source 216

Creating and Editing Documents 219
Controlling URL Parameter Usage 220
Creating Response Documents 220
Executing Form Logic 224
Managing Concurrent Document Updates 227
Multiple Document Data Sources 228
Document Data Source Events 231
Common Data Source Properties 233
Miscellaneous Data Source Properties 234

Working with Domino Documents—Programmatically! 235
Simple Actions 235
JavaScript 236

Rich Documents 238
Conclusion 242

Chapter 8 Working with Domino Views 243
databaseName Property 245
View Data Source Filters 246

categoryFilter Property 246
search, searchMaxDocs Properties 249
parentId Property 251
ignoreRequestParams Property 252
keys, keysExactMatch Properties 253

Other View Content Modifiers 256
startKeys Property 256
expandLevel Property 257

A Page with Two Views 259
requestParamPrefix Property 260

When Is a View Not a View? 261
Go Fetch! Or Maybe Not... 262

loaded, scope Properties 263
postOpenView, queryOpenView Properties 263

Caching View Data 265
Sorting Columns 270
Conclusion 271

xiv Mastering XPages

Chapter 9 Beyond the View Basics 273
Pick a View Control, Any View Control 273
The View Control: Up Close and Personal 276

Column Data Like You’ve Never Seen Before 277
Simple View Panel Make Over 279
Working with Categories 293
View Properties and View Panel Properties 301

Data Table 305
Building a Mini Embedded Profile View using a Data Table 311

Repeat Control 316
A Repeat Control Design Pattern 317
Nested Repeats 318
The Rich Get Richer 320

Some Fun with the Pager 321
Conclusion 324

Part IV: Programmability 325

Chapter 10 Custom Controls 327
Divide and Conquer 328
Getting Started with Custom Controls 329
Using Property Definitions 337

Property Tab 340
Validation Tab 343
Visible Tab 345
Property Definitions Summary 346

Using the compositeData Object 346
Send and You Shall Receive 352

Multiple Instances and Property Groups 355
Custom Control Design Patterns 357

Aggregate Container Pattern 357
Layout Container Pattern 358

Conclusion 365

Chapter 11 Advanced Scripting 367
Application Frameworks 367
AJAX and Partial Refresh 369

Partial Refresh: Out-of-the-Box Style! 369
Partial Refresh: Doing-It-My-Way Style! 376

Event Parameters 384
Dojo Integration 386

dojoTheme and dojoParseOnLoad Properties 387
dojoModule Resource 388
dojoType and dojoAttributes Properties 389
Integrating Dojo Widgets and Extending the Dojo Class Path 390

Contents xv

Working with Traditional Notes/Domino Building Blocks 401
Working with @Functions, @Commands, and Formula Language 402
Working with Agents, In-Memory Documents, and Profile Documents 405

Managed Beans 412
Conclusion 419

Chapter 12 XPages Extensibility 421
How to Create a New User Interface Control 422
Example Component 423
Let’s Get Started 424

Create the Initial Application 424
Add Package Explorer to the Domino Designer Perspective 424
Add a Java Source Code Folder 426

Building a Component 428
Create a UI Component Extension Class 428
Create Tag Specificaton (.xsp-config) for the UI Component Extension 431
Create a Renderer and Register It in the Application Configuration (faces-config.xml) 434
Quick Test Application to Verify Everything Is OK So Far 437

Working with Component Properties 438
Component Properties and Attributes 438
Adding a Property to a Component 439
State Holder: Saving State Between Requests 440
Specifying Simple Properties 440
Inheriting xsp-config Properties 441

Create the Initial xsp-config Definitions 446
Create base.xsp-config 446
Create an Interface to Match the Group Property Definition in base.xsp-config 450
Revisit the Component Properties in Domino Designer 452

Specifying Complex Properties 453
Complete the xsp-config for the UISpinner Component 464
Complete the UI Component Extension, UISpinner 473
Complete the Renderer UISpinnerRenderer 477
Create a Sample Application Using the UISpinner Component 483

Take Your New UI Component Extension for a Test Drive 483
Create a Backing Bean 483
Register the Backing Bean 486
Create the Final Test Application 486
Nice Look and Feel 491
Test to Ensure That It All Works! 491

Where to Go From Here 491
XPages Extensibility API Developers Guide 492
XPages Extension Library 492
IBM developerWorks 492

Conclusion 493

xvi Mastering XPages

Chapter 13 XPages in the Notes Client 495
Think Inside the Box 496
Getting Started with XPages in the Notes Client 498
3, 2, 1...Lift Off 499
Bookmarks 501
Working Offline 503
One of These Things Is Not Like the Other 507
Other Subtle Differences 508
XPages: A Good Notes Citizen 511
Introducing enableModifiedFlag and disableModifiedFlag 513
Keeping Tabs on Your Client Apps 516
Notes Links Versus Domino Links 520
Some Debugging Tips 525
XPages and Composite Applications 528

Making a Component of an XPages Application 529
Is Anyone Out There? Creating a Component that Listens to Your XPages Component 531
Assembling a Composite Application: Aggregating the XPages Discussion

Component and Notes Google Widget 533
Hey, This Is a Two-Way Street! A Component May Receive and Publish Events! 536

Further Adventures with Composite Applications 540

Part V: Application User Experience 541

Chapter 14 XPages Theming 543
It Used to Be Like That...But Not Anymore! 543
Styling with Style! 545

Setting the Style Property Manually 550
Understanding How the Style Property Is Used 551
Computing the Style Property 552

Styling with Class! 552
Getting Something for Nothing! 553
Understanding How the styleClass Property Is Used 559
Computing the styleClass Property 561
Working with Extended styleClass and style Properties 563

Theming on Steroids! 567
What Is a Theme? 567
What Can You Do with a Theme? 568
Understanding Theme Architecture and Inheritance 569
Working with a Theme 576
Theme Resources 587
Resource Paths 597
Theme Properties, themeId, Control Definitions, and Control Properties 606

Conclusion 620

Contents xvii

Chapter 15 Internationalization 621
Using Localization Options 622

Localization with Resource Bundle Files 623
Setting Localization Options 624
Testing a Localized Application 626
Working with Translators 628
Merging XPage Changes 631
Gotchas! 633

Localizing Computed Expressions and JavaScript 636
Adding a Resource Bundle 637
Localizing Computed Expressions 638
Localizing Client-Side JavaScript 639

Localizing Script Libraries 640
Server-Side Script Libraries 640
Client-Side Script Libraries 641

International Enablement 643
Locales in XPages 644
Deprecated Locale Codes 648
Conclusion 650

Part VI: Performance, Scalability, and Security 651

Chapter 16 Application Performance and Scalability 653
Golden Rules 654
Understanding the Request Processing Lifecycle 655

GET-Based Requests and the JSF Lifecycle 656
POST-Based Requests and the JSF Lifecycle 656

Reducing CPU Utilization 658
GET- Versus POST-Based Requests 658
Partial Refresh 663
Partial Execution Mode 665

Reducing Memory Utilization 668
HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet Parameters 669
xsp.persistence.* Properties 669
dataCache Property 670

Conclusion 672

Chapter 17 Security 673
Notes/Domino Security and XPages 673

Server Layer of Security 674
Application Layer of Security 675
Design Element Layer of Security 677
Document Layer of Security 684

xviii Mastering XPages

Workstation ECL Layer of Security 686
Useful Resources 687

Let’s Get Started 687
Creating the Initial Application 687
Implementing ACLs 689
Sign the XPages with Your Signature 690

Programmability Restrictions 691
Sign or Run Unrestricted Methods and Operations 692
Sign Agents to Run on Behalf of Someone Else 692
Sign Agents or XPages to Run on Behalf of the Invoker 693
Sign Script Libraries to Run on Behalf of Someone Else 693

Restricted Operation 693
XPages Security Checking 695

NSF ClassLoader Bridge 695
XPages Security in the Notes Client 696

Execution Control List (ECL) 697
Active Content Filtering 699
Public Access 702

Setting Public Access for XPages 703
Checking for Public Access in XPages 703

SessionAsSigner 704
Troubleshooting XPages Java Security Exceptions 706
Conclusion 707

Part VII: Appendixes 709

Appendix A XSP Programming Reference 711
XSP Tag Reference 711
XSP Java Classes 712
Notes/Domino Java API Classes 714
XSP JavaScript Pseudo Classes 715

Appendix B XSP Style Class Reference 719
XSP CSS Files 719
XSP Style Classes 720

Appendix C Useful XPages Sites on the Net 727

Index 729

Contents xix

Foreword:
Revolution Through Evolution

I never got a chance to meet the inventors of Notes®, but these guys were true visionaries. Their
concepts and ideas of 20 years ago still feed today’s buzz. They invented a robust “NO SQL” data
store, provided a social platform with collaboration features, and made the deployment and repli-
cation of applications easy...it is certainly no accident that Notes became so popular! Backed by a
strong community of passionate developers dedicated to the platform, it elegantly solves real
problems in the collaboration space by bringing together all the necessary components. As a
developer, it makes you very productive.

Lotus Notes is also a fabulous software adventure and definitely a model for other software
projects. At a time when technology evolves at unprecedented speed, where new standards appear
and deprecate quickly, Lotus Notes adapts by keeping up to date. Over the past 20 plus years,
Notes/Domino® has continually embraced diverse technologies in different domains: HTTP,
XML, JavaScript™, Basic, Java™, POP/IMAP, LDAP, ODBC, just to name a few...this makes it
unique in the software industry. Best of all, this is done while maintaining full compatibility with
the previous releases. This reduces the risk for IT organizations and makes their long-term
investment safer. Applications that were built about two decades ago on top of Windows® 2
(remember?) can be run without modification on the latest release of Notes/Domino, using any
modern 64-bit operating system, including Linux® and MAC-OS! Continuity is the master word
here, paired with innovation.

But, the world evolves. Software platforms in the old days were just proprietary, providing
all the features they required by themselves. The need for integration wasn’t that high. However,
as IT has matured over time, most organizations nowadays rely on heterogeneous sets of software
that have to integrate with each other. Starting with version 8, the Notes client became a revolu-
tionary integration platform. Not only does it run all of your traditional Notes/Domino applica-
tions, but it also integrates a Java web container, provides a composite application framework,
embeds Symphony™, offers connectors to Quickr®, Sametime®, Lotus Connections, and so on.
This was a great accomplishment—kudos to the Notes team.

At the same time, a parallel evolution saw the emergence of a more web-oriented world. An
increasing set of applications, which traditionally required a specific proprietary client, started to
become fully available through just a regular web browser. Google is certainly deeply involved in
this mutation. New frameworks, languages, and libraries were designed to support this new no-
deployment model. So, what about Notes/Domino? How can it be remain relevant in this new,
ever-changing world? Of course, the Domino server includes an HTTP server that goes all the
way back to R4.5. But, although it allows you to do pretty much everything, the cost of develop-
ing a web application, and the amount of required experience, was prohibitive. Moreover, the
development model uses a proprietary page-definition language that is not intuitive for newcom-
ers to the platform. Although not insurmountable, this was certainly a significant barrier to entry.
It became clear that Domino web-application development (including Domino Designer) needed
the same kind of revolution that the Notes client had undergone. True to our core values, however,
this had to really be an evolution, where existing investment could be preserved, while throwing
open the door to the new world. In essence, a revolution through an evolution.

During this time, I was leading a team at IBM® working on a development product called
Lotus Component Designer (LCD). Its goal was to provide a Notes/Domino-like programming
model on top of the Java platform, targeting the Lotus Workplace platform. It included most of
the ingredients that made Notes/Domino a successful application development platform, while at
the same time being based upon standard technologies: Java, JavaServer Faces (JSF), and
Eclipse. Designed from the ground-up to generate top-notch web applications, it included a lot of
new innovations, like the AJAX support, way before JSF 2.0 was even spec’d out. What then
could have been a better fit for Notes/Domino app dev modernization? The asset was solid, the
team existed, and the need was great, so it became the natural candidate for integration into
Domino. An initial integration was achieved in a matter of a few weeks, and this is how the
XPages story started!

When I joined the Notes Domino team four years ago (yes, time is running fast!), my mis-
sion was to make that revolution happen, starting with web applications. Taking over such a mis-
sion was intimidating because Domino has such a fabulous community of developers with
unrivaled experience who obviously know much more about the product than I ever could. In
fact, one of our business partners recently showed me a picture of five key employees and pointed
out that they collectively represent more than 80 years of Notes/Domino development experi-
ence! In addition to this, the Lotus Notes/Domino development team is a well-established one,
with mature processes and its own unique culture and habits. The XPages team was not only new
to this world, but located geographically on the other side of it—in Ireland! The challenge thus
became one of gaining acceptance, both internally and externally. This was a risky bet, because
people might have easily just rejected the XPages initiative and pushed for another solution. But,
we were pleasantly and encouragingly surprised. The first reactions were very positive. There
was definitely room to deliver the innovation that the community so badly needed.

Notes/Domino 8.5 was the first release developed using an agile methodology. As it hap-
pened, that perfectly suited a new technology like XPages. It allowed us to communicate a lot

Foreword xxi

with the community, share design decisions, get advice, and modify our development plan
dynamically. We had been, and still are, listening closely to the community through many and
varied sources like blogs, wikis, forums, and of course, direct communication. We are most defi-
nitely dedicated to putting our customers in a winning situation. Everything we do is toward this
goal: We truly understand that our success is our customers’ success.

In this area, the XPages development team showed an impressive commitment. For
example, we organized not one, but two workshops in our development lab 6 months before
releasing the product! And it paid off: We introduced happy customers on stage at Lotusphere®

2009, a mere 15 days after the official release of the Domino 8.5. Their testimonials were encour-
aging and have not been proved wrong since, as the XPages adoption curve moves ever onward
and upward. Many XPages-based solutions were shown at Lotusphere 2010, and Lotusphere
2011 promises to be another great stage with a lot of already mature solutions waiting to be
announced. The team also wrote numerous articles in the Domino Application Development
wiki, recorded many videos, and has been responsive on the different forums. This is also a major
change where the development team is not isolated in its sterilized lab, but interacting positively
with the broader community. The revitalization of openNTF.org is another example. The number
of its monthly hits shows just how successful it is. Many partners have told me that they always
look for already available reusable components before deciding to develop their own, and open-
NTF is just a fantastic resource in this regard.

So, what’s next? Are we done? Certainly not! We have new challenges coming in, particu-
larly with the next generation of browsers and platforms. We need to evolve XPages to generate
applications that can take advantage of the new client capability. We need XPages to be tightly
integrated with the rest of IBM Collaboration Services portfolio (a.k.a. Lotus portfolio). We need
to support the new devices, such as smartphones and tablet PCs. We want to make sure that
XPages plays a leading role with the next generation of Lotus Software (code name Vulcan). But,
beyond the technology, we also have the challenge of transforming the way we create and deliver
software. We want to make the Notes/Domino technology more open. We want to make the
development process more transparent. We want to get feedback earlier, and we even want the
community to contribute to that effort. We’re all here to make it better, aren’t we? The answer, in
my opinion, is to open source some parts of the platform. OpenNTF is becoming our innovation
lab, delivering technology early, breaking the regular release cycles. It allows us to be responsive
to the community needs and then integrate the components later in the core product. Recently, we
successfully experienced this with the new XPages Extension Library. The feedback we received
was very positive, so we want to continue in this direction. Stay tuned...Notes/Domino is the plat-
form of the future!

Finally, this story wouldn’t have happened without a great XPages and Domino Designer
team. For the quality of the work, the innovation path, the willingness to take on new challenges,
the customer focus...well, for many aspects, this team is seen as exemplary in the broader Lotus
organization. I really feel lucky and proud to be part of it. This book’s three authors are also key
members. Each one of them has worked on different areas of XPages; the gang of writers cannot

xxii Mastering XPages

be better staffed. Martin is the team lead in Ireland, and he designed the Notes client integration
and the data access part. Mark is a core runtime expert, and he has been involved since the early
prototypes. Tony is our applications guy, in charge of the new generation of template applica-
tions. He has also been successful on many customer projects. Finally, helping them is Jim Quill,
our security expert and general XPages evangelist. With this book, you definitely get the best of
the best! I have no doubt that you’ll learn a lot by reading it, whether you’re a beginner or an
XPages hacker.

Enjoy, the story has just begun!

Philippe Riand
XPages Chief Architect

Foreword xxiii

Preface

XPages made its official public debut in Notes/Domino version 8.5, which went on general
release in January 2009. At the annual Lotusphere conference that same month in Orlando,
Florida, XPages was featured directly or indirectly in a raft of presentations and workshops,
including the keynote session itself, as the technology was introduced to the broad application-
development community. Throughout the conference, it was variously described as a new frame-
work for Web 2.0 development, a strategic move to reinvigorate the application-development
experience, a standards-based runtime that would greatly boost productivity for the Domino web
developer...to quote but a few! Fancy claims indeed, but then again, Lotusphere has always been
the stage that heralded the arrival of the “next big things” in the Notes/Domino community.

Fast forward to the present time: It’s fair to say that all these claims (excluding maybe one
or two made much, much later into those Floridian evenings) were prophetic and XPages, as a
technology, is indeed living up to its promise in the real world. Evidence of this is all around us. A
vibrant XPages development community has evolved and thrives. Respected bloggers wax enthu-
siastic about the latest XPages tips and tricks. XPages contributions abound in OpenNTF.org,
while the Notes/Domino Design Partner forum sees a steady flow of questions, comments, and,
of course, requests for new cool features.

A recurring pattern evident in the flow of requests is the call for better documentation.
XPages is a powerful Java runtime with a host of rich and sophisticated features that runs the
entire app dev gamut. In the Notes/Domino 8.5 release, would-be XPages developers were left to
their own devices to get up to speed with the technology. Typical approaches for the resourceful
newbie developer included foraging for XPages programming patterns in the standard Notes Dis-
cussion template (which shipped with an out-of-the-box XPages web interface), scouring the lim-
ited Help documentation, and sharing random enablement materials that had started to appear on
the web. Although all these, along with a sizable dollop of developer ingenuity, often worked
remarkably well for those with large reserves of determination, the value of a single source of
XPages information cannot be understated. This book’s goal is to fill that gap and provide a single
comprehensive guide that enables readers to confidently take on, or actively participate in, a real-
world XPages application-development project.

Approach
This book’s objective is to impart as much practical XPages knowledge as possible in a way that
is easy for the reader to digest. The authors seek to cover all aspects of the XPages development
spectrum and to engage the reader with hands-on problems wherever possible. Most chapters
come with a sample application that provides plentiful exercises and examples aimed at enabling
you to quickly and efficiently solve everyday real-world use cases. These resources are located on
the web at www.ibmpressbooks.com/title/9780132486316, so waste no time in downloading
before getting started!

Tinker, Tailor, Soldier, Sailor?

Our Diverse Reading Audience
Although XPages is a new technology that offers a development model familiar to the average
web developer (and the above-average ones, too!), many traditional Notes/Domino development
skills can also be harnessed to good effect. One challenge in writing this book is that no single
developer profile really defines the reader audience. For example, is the typical reader a web-
application developer coming to the Notes/Domino platform or a Notes/Domino web developer
wanting to learn XPages? In fact, since the release of Notes version 8.5.1, the reader may well be
a Notes client application developer seeking to write new XPages applications for the Notes
client or customize web applications that can now be run offline in that environment. Finally, a
fourth category of reader may be the novice developer, for whom all this stuff is pretty much new!
Which one are you? Or you may indeed be graced with the fine talents of bilocation and can
appear in two of these camps at once!

Anyway, suffice to say that there inevitably will be aspects to several topics that are pecu-
liar to a particular category of audience. Such content will typically be represented in this book as
sidebars or tips in the context of the larger topic. Other cases might merit a dedicated section or
chapter, such as Part IV, “Programmability,” which contains a chapter that deals with all the
details of XPages in the Notes client, while Part VI, “Performance, Scalability, and Security,” has
an entire chapter dedicated to the topic of application security.

Other Conventions
Any programming code, markup, or XSP keywords are illustrated in numbered listings using a
fixed width font.

User-interface elements (menus, links, buttons, and so on) of the Notes client, Domino
Designer, or any sample applications are referenced using a bold font.

Visual representations of the design-time experience or runtime features are typically
captured as screen shots and written as numbered figures, using superimposed callouts where
appropriate.

Preface xxv

How This Book Is Organized
This book is divided into seven parts to separately address the many different aspects of XPages
software development in as logical a manner as possible:

Part I, “Getting Started with XPages”: This part gets you familiar with XPages at a conceptual
level to get you up and running quickly with the technology and get you comfortable with the
overall application development paradigm.

• Chapter 1, “An Introduction to XPages”: Here, you are introduced to the history of
XPages and given some high-level insights into its design principles in order for you to
understand exactly what it is and what it is not. This is all about giving you the right con-
text for XPages by defining the problems it solves, the technologies on which it is based,
and where it might go in the future.

• Chapter 2, “Getting Everything You Need”: This chapter concerns itself with the
practical business of obtaining, installing, and configuring your XPages development
environment and successfully walking you through your first “Hello World” XPage!

• Chapter 3, “Building Your First XPages Application”: This chapter aims to provide a
breadth-first hands-on experience of building a simple web application using the
XPages integrated development environment (a.k.a Domino Designer). This is really
just an introductory practical to get your feet wet and ensure you are comfortable with
the basics of the application development model before diving any deeper.

Part II, “XPages Development: First Principles”: This part is mostly architectural in nature
and aims to give you an appreciation of what’s happening under the XPages hood. This is an
essential prerequisite to some of the more advanced topics, like XPages performance and
scalability.

• Chapter 4, “Anatomy of an XPage”: This chapter examines the XSP markup lan-
guage and gives a simple example of all the standard elements (controls and such) that
can be used in an XPage. It provides a great broad-based view of XPages basics.

• Chapter 5, “XPages and JavaServer Faces”: This chapter looks at JavaServer Faces
(JSF), which is the web-application development framework on which XPages is
based. It looks at some core JSF design points and how XPages leverages and extends
the framework.

• Chapter 6, “Building XPages Business Logic”: This chapter is a primer for XPages
programmability. It introduces the various tools that can be used to implement XPages
business logic so that you will be ready to work with the practical examples that are
coming down the pike.

Part III, “Data Binding”: This part is really about how XPages reads and writes Notes data.
XPages comes with a library of visual controls that are populated at runtime using a process
known as data binding. The mechanics of the data binding process is explored in depth for Notes
views and documents.

xxvi Mastering XPages

• Chapter 7, “Working with Domino Documents”: This chapter focuses on reading
and writing Notes documents via XPages. Advanced use cases are explored and every
design property on the Domino document data source is explained and put through its
paces using practical examples.

• Chapter 8, “Working with Domino Views”: In this chapter, the Domino view data
source is dissected and examined, property by property. Again, practical exercises are
used to drive home the material under discussion

• Chapter 9, “Beyond the View Basics”: Working with Notes/Domino views is a large
subject area, so much so that it demands a second chapter to cover all the details. This
chapter looks at the various container controls that are available in the standard XPages
control library, whose job it is to display view data in different formats and layouts in
order to support a myriad of customer use cases.

Part IV, “Programmability”: This part covers the black art of programming—essentially how
to code your applications to do everything from the most basic user operation to writing your own
controls that implement completely customized behaviors. This part concludes with a look at
XPages in the Notes client and considers cross-platform application development issues.

• Chapter 10, “Custom Controls”: This chapter explains the “mini-XPage” design ele-
ment that is the custom control. It explains how to leverage the custom control in order
to “componentize” your application and then maximize the reuse of your XPages devel-
opment artifacts.

• Chapter 11, “Advanced Scripting”: Advanced scripting is an umbrella for many cool
topics, like AJAX, Dojo, @Functions, agent integration, managed beans, and so forth.
This is a must for anyone looking to add pizzazz to their XPages applications.

• Chapter 12, “XPages Extensibility”: This chapter explains how to use the XPages
extensibility APIs to build and/or consume new controls. This is an amazingly powerful
feature that has only recently become available and is well worth exploring once you
have mastered XPages fundamentals.

• Chapter 13, “XPages in the Notes Client”: XPages in the Notes client initially
explains how you can take your XPages web applications offline and then goes on to
highlight how you can take advantage of powerful features of the client platform itself,
and how to manage applications that run in both environments.

Part V, “Application User Experience”: This part is all about application look and feel. You
learn not just how to make your apps look good and behave well, but how to do so for an interna-
tional audience!

• Chapter 14, “XPages Theming”: This chapter teaches you how to manage the appear-
ance and behavior of your application’s user interface. It provides an in-depth look at
ad-hoc XPages application styling using cascading style sheets, as well as the main fea-
tures of the standard XPages UI themes, and explains how to create your own cus-
tomized themes.

Preface xxvii

• Chapter 15, “Internationalization”: Read this chapter to learn how your XPages
applications can be translated so that they look, feel, and behave as native applications
in any geographical locale.

Part VI, “Performance, Scalability, and Security”: Up to this point this book has concentrated
on the skills and tools you need to know to develop state-of-the-art collaborative applications.
Part VI shifts to deployment and what you need to do to make sure your applications meet cus-
tomer expectations in terms of performance, scalability, and security.

• Chapter 16, “Application Performance and Scalability”: This chapter highlights
various tips and tricks that will enable you to tune your XPages application for optimal
performance and scalability in various deployment scenarios.

• Chapter 17, “Security”: Learn about application security issues and considerations
and see how XPages integrates with the Domino server and Notes client security models.

Part VII, “Appendixes”

• Appendix A, “XSP Programming Reference”: This appendix points to a collection of
definitive reference sources that describe all the details of the XSP tags, Java and
JavaScript classes. It provides examples of how to use these resources to find the infor-
mation you need.

• Appendix B, “XSP Style Class Reference”: This appendix identifies all the standard
XPages CSS files and style classes used to build XPages application user interfaces. It’s
an essential quick reference for Chapter 14.

• Appendix C, “Useful XPages Sites on the Net”: A snapshot of the authors’ favorite
XPages websites at the time of writing. This list of sites should help you find whatever it
is you need to know about XPages that isn’t found in this book.

xxviii Mastering XPages

Acknowledgments

This book was a new and eventful journey for all three authors as none of us had been down the
book-writing road before. At times, the trip became a little more arduous than we had anticipated,
but we received a lot of help from some great people along the way. We first want to thank our
contributing author and colleague in IBM Ireland, Jim Quill, who we press-ganged at the
eleventh hour and cajoled into writing a couple of chapters on the specialized topics of extensibil-
ity and security, respectively. Jim duly delivered, and we could not have met our project deadlines
without him—just goes to show, a friend in need is a friend indeed!

We are happy to say that we are still on speaking terms with our two excellent and dedi-
cated technical reviewers, Maureen Leland and John Mackey. Thanks to you both for keeping us
honest and being positive and insightful at all times.

A sincere thank you to those who helped get this book proposal off the ground—especially
Eamon Muldoon, Pete Janzen, and Philippe Riand, for their encouragement and advice along the
way.

We are indebted to Maire Kehoe who always parachutes in for us to solve thorny problems
at the drop of a hat—where would we be without you! Padraic Edwards and Teresa Monahan
deserve our kudos for helping out on composite application use cases, and to Teresa again for her
CK Editor brain dump. And because all the authors are based in Ireland, you can well imagine
that we took every opportunity to lean on the other members of the XPages runtime team at the
IBM Ireland lab. For that help, we want to collectively thank Brian Gleeson, Brian Bermingham,
Darin Egan, Dave Connolly, Edel Gleeson, Gearóid O’Treasaigh, Lisa Henry, Lorcan McDonald,
Paul Hannan, and Willie Doran.

We want to express our thanks to Robert Perron for some articles and documentation utili-
ties that we are glad to leverage in a couple of places in this book. Thanks also to Thomas Gumz
for some collaborative demo work we did at a dim and distant Lotusphere that is still worthy of
print today! We are privileged to say there is a long list of folks at IBM past and present who have
helped push the XPages cause forward over its eventful course thus far. Thanks to Azadeh Salehi,
Bill Hume, Brian Leonard, Dan O’Connor, Dave Kern, David Taieb, Girish P. Baxi, Graham
O’Keeffe, Ishfak Bhagat, Jaitirth Shirole, Jeff deRienzo, Jeff Eisen, Jim Cooper, John Grosjean,

John Woods, Kathy Howard, Margaret Rora, Matthew Flaherty, Mike Kerrigan, Na Pei, Peter
Rubinstein, Russ Holden, Santosh Kumar, Scott Morris, Simon Butcher, Simon Hewett, Srinivas
Rao, Steve Castledine, Steve Leland, Tom Carriker, Xi Pan Xiao, and Yao Zhang. Apologies to
any IBMers accidentally omitted; let us know and we’ll be sure to include you in the reprints!

To our friends at IBM Press—in particular Mary Beth Ray, Chris Cleveland, Lori Lyon,
and Gloria Schurick—it may be a well-worn cliché, but it truly was a pleasure working with you
guys! And on the IBM side of that relationship, we echo those sentiments to Steven Stansel and
Ellice Uffer.

Finally, a great big THANK YOU, as always, to our customers and business partners, par-
ticularly the early adopters who got behind XPages at the get-go and made it the success that it is
today!

xxx Mastering XPages

About the Authors

The authors of this book have a number of things in common. All three hail from Ireland, work
for the IBM Ireland software lab, and have made significant contributions to the development of
XPages over the past number of years.

Martin Donnelly is a software architect and tech lead for the XPages runtime team in IBM
Ireland and has worked on all three XPages releases from Notes/Domino 8.5 through 8.5.2. Prior
to this, Martin also worked on XFaces for Lotus Component Designer and on JSF tooling for
Rational® Application Developer. In the 1990s while living and working in Massachusetts, he was
a lead developer on Domino Designer. Now once again based in Ireland, Martin lives in Cork
with his wife Aileen, daughters Alison, Aisling, and Maeve, and retired greyhounds Evie and
Chelsea. Outside of work, he confesses to playing soccer on a weekly basis, and salmon angling
during the summer when the opportunity presents itself.

Mark Wallace is a software architect working in the IBM Ireland software lab. In the past, he
worked on the XSP runtime, which was developed for Lotus Component Designer and subse-
quently evolved into the XPages runtime. He has a keen interest in programming models and
improving developer productivity. Mark has worked in Lotus and IBM for more than 15 years on
various products and is currently working on Sametime Unified Telephony. Mark lives in Dublin
with his wife and two children and spends as much time as possible in the Ireland’s sunny south
east enjoying fishing and kayaking with his family.

Tony McGuckin is a senior software engineer in the IBM Ireland software lab. Having studied
software engineering at the University of Ulster, he began his career with IBM in 2006 working in
software product development on the component designer runtime before moving into the XPages
core runtime team. When not directly contributing to the core runtime, Tony is busy with software
research and development for the next generation of application development tooling, and also
engaging directly with IBM customers as an XPages consultant. Tony enjoys spending time with
his wife and daughter, and getting out into the great outdoors for hill walking and the occasional
chance to do some hunting in the surrounding hillsides of his native County Derry.

xxxii Mastering XPages

Contributing Author
Jim Quill is a senior software engineer for the XPages team in IBM Ireland. He is relatively new
to the Notes/Domino world, joining IBM just over two years ago at the tail end of the first XPages
release in Domino 8.5. Previous to IBM, Jim enjoyed more than 13 years at Oracle Ireland.
There, he worked in areas such as product development and database migration technology, and
he was both principal software engineer and technical architect for a number of internal Oracle®

support systems. Jim lives in the coastal village of Malahide, north County Dublin, with his wife
and four children. When not acting as the kids’ taxi, he continues to play competitive basket-
ball...way past his retirement date.

1

PART I

Getting
Started with
XPages

1 An Introduction to XPages 3

2 Getting Everything You Need 9

3 Building Your First XPages Application 23

This page intentionally left blank

3

For readers new to XPages, the first step on this journey is to examine the original objectives of
XPages, to understand what it is from a technical standpoint, and to recognize the strategic value
it offers as an application development technology. Even for those with some real XPages experi-
ence under their belt, a reminder of these XPages fundamentals does no harm.

XPages Fundamentals
In a nutshell, XPages is the new web-application development framework for Notes/Domino.
That is, from version 8.5 forward, XPages is the recommended approach for anyone writing a
new web application or embarking on upgrading such an existing application to a Web 2.0 level.
XPages is a Java runtime environment that supports all the defining features of Web 2.0, and it
extends a standards-based framework known as JavaServer Faces (JSF).

This JSF standard is commonly used as a base technology across many other commercial
web-application development offerings, such as IBM Rational Application Developer, Oracle
JDeveloper, JBoss, and so on. The implications of that last statement could be a cause for concern
among a sizeable section of the Notes/Domino application development community, so it’s best
to qualify it immediately in a number of important ways.

Yes, JSF is an industry standard for Java developers engaged in J2EE™ application devel-
opment, but no, it is not necessary to be a Java/Java 2 Platform, Enterprise Edition (J2EE) devel-
oper to use XPages, and there is no requirement to write any Java code to build a “typical”
XPages application. In fact, the existence of JSF as the foundation layer of XPages is completely
transparent to the mainstream Domino application development experience, and any direct usage
should be completely unnecessary for the vast majority of applications.

C H A P T E R 1

An Introduction to
XPages

4 Chapter 1 An Introduction to XPages

XPages is based on JSF version 1.1, although note that some important fixes from JSF ver-
sion 1.2 and 2.0 have been applied to the XPages foundation layer; therefore, in reality, the
XPages base version is more like 1.1++. This was done on a case-by-case basis to either solve a
specific problem or take advantage of particular performance optimization that was introduced to
JSF after the 1.1 release. To date, there has not been an opportune time in the XPages release
cycles to rebase it completely on a more recent JSF version, although this will no doubt happen in
the future.

Also note that JSF version 1.1 was developed through the Java Community Process (JCP)
under Java Specifications Request (JSR) 127. So, what’s all this JCP and JSR mumbo jumbo and
why should you care? Well, according to Wikipedia, the JCP “is a formalized process that allows
interested parties to get involved in the definition of future versions and features of the Java plat-
form.” The JSR, on the other hand, is the instrument used to describe the nitty-gritty details of an
actual feature specification. Thus JSF is not an IBM creation, but the collective result of collabo-
rations between many technical leaders in the industry to come up with an agreed-upon frame-
work that enables all players to build better Java tools and applications. In that light, it’s easy to
argue that building XPages on top of a JSF platform can only be a good thing!

Among the many benefits XPages derives from JSF is the capability to target multiple plat-
forms (for example, Domino server, Notes client, mobile devices) to maintain stateful applica-
tions, to adapt to and work with data from different sources, and so on. All such JSF-centric
topics are given in-depth treatment in Part II, “XPages Development: First Principles.”

Brand New Technology?
As already mentioned, the official release of this new-fangled XPages technology took place in
January 2009. Given that Notes/Domino was 20 years old that year, this casts XPages as the new
kid on the block. Therefore, logic should dictate that, given its lack of both absolute and relative
longevity, XPages is immature as a development technology and needs a few more release cycles
before it “cuts the mustard” in terms of robustness, scalability, and such. Correct? Well... not so
fast.

On reading on the official history of Notes/Domino recently, it was interesting to note that
the provenance of the product itself was not simply traced back to Lotus Notes Release 1 in 1989,
but as far back as work done by the founders of Iris Associates on PLATO Notes in the late 1970s!
To some extent, similarities exist here with XPages. That is, while XPages first surfaced in
Notes/Domino version 8.5, a precursor of the technology, called XFaces, appeared a few years
earlier in a product called Lotus Component Designer (LCD). LCD was an Eclipse-based inte-
grated development environment that used XFaces to build applications for IBM WebSphere®

Application Server (WAS) and IBM WebSphere Portal Server. While Lotus Component Designer
went into maintenance mode for a variety of reasons, its XFaces runtime technology continued to
receive development investment. XFaces was seen as a flexible technology that could quickly
simplify, modernize, and standardize the Notes/Domino web-application development experi-
ence. Thus, it was quickly adapted and specialized for the Notes/Domino platform and evolved

A Different Development Paradigm 5

into what is now known as XPages. In reality, the LCD/XFaces release effectively bought XPages
another couple of years of industrial experience, and when one considers that JSF version 1.1 was
released in June 2004, maybe XPages is not the pimply adolescent you first took it for!

In any event, XPages is here and successfully enjoying its third revision on the
Notes/Domino platform. In its first release, XPages shipped as part of the Domino server and
Domino Designer kits. Domino Designer was rebased to run on the Eclipse platform in that same
8.5 release, and with it, the application development experience for Domino web developers was
thoroughly transformed. The new underlying Eclipse platform meant that an entire host of new
tools could be built for or surfaced in Domino Designer. The XPages development experience sud-
denly featured all the tooling that had been requested for Designer in general for many a long day
(such as a control and data palette, drag-and-drop components, property sheets, structural page
outlines, specialized editors, and so on). A new design element called an XPage, along with a jun-
ior sidekick called a custom control, appeared on the navigator, and instances of these could be
built up in an intuitive WSYISYG fashion, using a combination of all the aforementioned cool
tools. Once built, they could be immediately previewed or run directly on the Domino server from
a web browser. Hmmm, building web applications had never been so easy—there just had to be a
catch!

A Different Development Paradigm
The catch, if you can call it that, is that the XPages development paradigm is different to what
Domino web developers were used to up until version 8.5. Here, black magic practices, like
$$Return fields and strategically embedded pass-through HTML, are no longer the web dev
modus operandi. XPages development is driven by combining Cascading Style Sheets (CSS),
JavaScript, HTML, and the XSP tag language. Although this is no doubt a superior model, and
certainly one that is immediately more intuitive to web developers from a non-Domino back-
ground, an investment of time and energy in learning the ins and outs of XPages development
cannot be avoided.

The term XPages (plural) usually refers to the entity that is the runtime as a whole. In its
singular form, an XPage refers to a Notes/Domino design element, just like a traditional form or
view. It is the basic unit of currency for XPages development. Developers create individual
XPage elements to present information, accept user input, execute business logic, and then link
them to form an end-user application. If you look under the covers at an XPage in Domino
Designer, you see an XML document comprised of various tags and attributes and, at runtime, the
XPages engine in Notes/Domino transforms this XML document into an HMTL page.

Any developer familiar with JSF will already notice a departure here with XPages. The
default markup layer for JSF is provided using a technology known as JavaServer Pages (JSP). As
indicated previously, this layer in XPages has been replaced with a pure XML markup, which
greatly simplifies the programming model. In other words, all the visual controls, business logic,
and layout information that comprise an XPage are encapsulated in a well-defined, well-formed
tag syntax that is easier for developers to work with. Even at that, however, this raw XML file is

6 Chapter 1 An Introduction to XPages

not the default developer interface. Domino Designer provides a design-time visualization of the
XPage that the developer can work with interactively by dragging and dropping controls and data
objects, setting attributes using simple gestures in property panels, or by simply using direct key-
board input. All such activity causes the appropriate XPages XML markup to be generated on
behalf of the user. The XML markup can be viewed or further modified manually via a special-
ized XPages source editor in Designer.

Thus, Designer provides different entry levels for the application developer working at the
XPages frontlines. Newcomers typically begin by working with the visual XPage canvas and then
may start to work more directly with the source markup as they become more familiar with the
technology, depending of course on what they are trying to achieve in a given scenario. At the end
of the day, however, regardless of how it is edited or viewed, it is worth remembering that an
XPage is just a text file made up of an orderly bunch of tags!

It is also important to realize that any controls defined by these XPages tags are user-inter-
face objects only. Associating data with such controls is a separate step that is achieved by explic-
itly binding a control to a data source object. This differs from the traditional Notes/Domino
paradigm where display fields and data items are tightly coupled. (For example, when a field is
created on a form, a data item of the same name is automatically created after a document
instance of that form is saved.) This schema-less approach has always been “the Notes way” and
is useful for putting an application together quickly, but it also has some serious downsides. For
example, when data fields are defined purely within a particular form, what happens if and when
this data needs to be accessed or updated from somewhere else in the application? It may well be
that reusing the same form is not appropriate in that user interface (UI) context. Clever use of
subforms can alleviate that problem to some degree, but metadata often ends up being duplicated
across forms and subforms to get around this issue.

The problem becomes more egregious when dealing with heavyweight design elements,
such as views. A view, like a form, contains all the presentation layout details and the content def-
inition in one big blob. After a view is defined, it is difficult to customize it for reuse elsewhere in
the application. Duplicating views to achieve what are often minor UI customizations inevitably
results in bloatware. It negatively affects the final application by producing a larger NSF foot-
print, adversely impacting performance, and results in a longer list of design elements that the
application developer must then somehow manage. As a consequence, separation of presentation
and data has been a long requested feature of the Notes/Domino application development com-
munity. The good news is that, with XPages, this is exactly what you get!

XPages controls are typically bound to data contained in Domino documents or views. The
XPages runtime comes equipped with standard Domino data source objects that automate the
data connection and retrieval process, and Domino Designer provides various assistants that sim-
plify the procedure of matching controls with items of metadata. Thus, the extra data-binding
overhead imposed on the developer is reduced to some simple point-and-click operations at
design time. This is a small price to pay for the extra design flexibility brought about by decou-
pling the presentation and data. Under this model, for example, a single XPage can work with

The More Things Change, the More Things Stay the Same 7

multiple document data sources (such as read/write documents, where the data is defined in more
than one form), and XPages view controls can effectively “join” data stored in different Domino
views—even across different databases! Part III, “Data Binding,” explores the many and varied
details of data binding, but at this stage, it is important to recognize that the XPages data model is
fundamentally different to the traditional Notes/Domino model.

The More Things Change, the More Things Stay the Same
Although the previous section stressed some advantages of the new XPages development model,
it does not imply that traditional Domino development skills are any less valuable. Quite the con-
trary! For example, if you have already gained experience with the Domino object model by
using the LotusScript® or Java backend classes, these skills enormously benefit you in building
XPages applications, because a parallel set of JavaScript classes are available in XPages. This
means that, albeit with a slightly different class nomenclature, the usual suspects, such as
Session, Database, and Document, are all present and accounted for when it comes to coding
the application business logic.

Similarly, the time you may have spent learning your Notes/Domino @Functions through
the years continues to pay dividends. An extensive set of the procedures you already know and love,
such as @DbColumn(), @DbLookup(), and so on, have been implemented in the XPages runtime
as JavaScript functions and can thus be called directly in any XPage. When adding an XPages inter-
face to an existing Notes/Domino application, many existing assets can be automatically leveraged.
Web agents, for example, can be executed directly from within an XPage; existing design resources,
such as stylesheets, images, and JavaScript files, are also consumable, while the forms and views
can be used as XPages metadata resources.

New Horizons
XPages support for the Notes client was added in version 8.5.1, which was released in October
2009—or approximately nine months after the initial XPages Domino server release. It is a testa-
ment to the architecture of the XPages runtime environment that support for a major platform
could be added in the course of such a quick-turnaround point release. Given the short develop-
ment runway, the feature scope for XPages in the Notes client (abbreviated to XPiNC for conven-
ience, which is pronounced “x-pink”) was understandably restricted. In essence, its main goal
was to enable customers to run their new XPages web applications offline. For any customer with
an existing XPages application, the use case to run locally in the client had just two simple
requirements:

1. Create a local replica of your application using standard NSF replication.

2. Select a new XPages client launch option in the local replica.

Of course, a new XPages client application can be created, just like it could be for the web,
as long as the client launch option is selected in the Notes client or in Domino Designer. With

8 Chapter 1 An Introduction to XPages

some opportunistic exceptions, however, in its initial release, the client user experience was, to a
large extent, a web user experience. Some of the notable exceptions included:

• Enabling XPages to fully participate in Composite applications

• Providing client-side JavaScript-to-Notes platform services

• Conforming with the Notes client security model

• Adding support for preemptive document saving

• Integrating other client behaviors, such as bookmarking and failover

Perhaps the more interesting point is that, thus far in this book, XPages has been described
as a web application runtime—quite intentionally; however, as XPages support for the Notes
client is enhanced and web technologies become richer, will XPages continue to be defined
purely as a web technology or more as a truly portable framework capable of supporting many
platforms in an adaptable specialized manner? The authors of this book are betting on the latter!

Conclusion
This chapter introduced you to XPages at a high and general level. It looked at its provenance and
history, revisited the initial goals of the technology, provided a broad view of the development
paradigm it offers, and took a speculative look at how XPages may evolve in the future. Hope-
fully, you will find it both interesting and useful to have this big-picture context as you prepare to
dive headfirst into the voluminous technical details ahead. The next step is to get you started with
the practical aspects of the technology by installing XPages and Domino Designer and working
through some simple examples. Let the fun begin!

9

This chapter provides a guide for getting the software you need to start working with XPages.
The main tool you need is, of course, Lotus Domino Designer. The good news is that this tool is
available as a no-charge download today!

Downloads, Versions, and Locations
This book is based on Domino Designer 8.5.2, so ideally, you need to obtain this version of the
product or something more recent, if available. Domino Designer can be downloaded from the
IBM developerWorks® site (developer.lotus.com).

Follow these steps to get the latest Domino Designer release:

1. Navigate to http://developer.lotus.com. You are automatically brought to the Lotus sec-
tion in developerWorks. The Lotus Domino Designer no-charge download should be
right there, but if it’s not, go to the Downloads area.

2. Lotus Domino Designer is listed as one of the no-charge downloads in this section (see
Figure 2.1).

3. If you follow the links to download Domino Designer, you are prompted to sign in using
your universal IBM user ID. If you don’t already have one, you must register first. You
just need a valid email address to register.

4. You can select the language version of the client you want to install. Currently, Domino
Designer is available in 26 different languages and runs on Windows Vista Ultimate,
Windows 7 Ultimate, and Windows XP Professional editions.

C H A P T E R 2

Getting Everything
You Need

10 Chapter 2 Getting Everything You Need

5. Before downloading the client, you need to accept the license agreement. This agree-
ment allows you to use IBM Lotus Domino Desinger only for the development of appli-
cations on an individual system that is not connected to an IBM Lotus Domino Server
and to use such applications on the same system on which the Domino Designer is
installed. An additional license is required to deploy these applications to an IBM Lotus
Domino Server. Read the license agreement carefully so you are aware of the specific
terms for the download you are installing.

6. After you accept the license agreement, you are redirected to a page where you can
download IBM Lotus Domino Designer and any fix packs that apply to that version. It is
strongly recommended that you download and install any available fix packs. Your
download is approximately 600–700MB.

Congratulations! You are now in possession of the latest release of IBM Lotus Domino
Designer. The next step is to install the program.

Installing Domino Designer
The Domino Designer download (and any fix packs) is an executable file. Follow these steps to
install the program:

Figure 2.1 Domino Designer no-charge download

Client Configuration 11

1. Launch the executable you downloaded from the developerWorks site. This executable
unpacks all the files needed to install the program on your machine. You can select to
have the install files automatically cleaned up after the install completes or keep them
around for reuse later. You need approximately 2GB of free disk space to perform the
install.

2. The install wizard guides you through the process of installing Domino Designer. You
need to specify your name and the location where you want to install the program.

3. On the screen where you select the program features you want installed, make sure that
the following are selected (at a minimum):

a. Notes Client

b. Domino Designer

c. Composite Application Editor (required for some rich client samples in this book)

4. Select the install option to start the installation of the selected program features.

When the install completes, two icons appear on your desktop: one for Domino Designer
and one for the Notes client. Just a few more short steps before you can create your first XPage!

Installing Client Fix Packs
The download site might list fix packs for the version of Domino Designer you are downloading.
As the name suggests, a fix pack contains fixes that have been made to the product since it was
originally released. You are strongly encouraged to download and apply any available fix packs.
Installing the fix pack couldn’t be simpler:

1. Launch the fix-pack executable you downloaded from the developerWorks site. As
before, the executable unpacks all the files needed to install the fix pack onto your
machine in a location of your choosing, with the option to remove the unpacked files.

2. The wizard guides you through the process of installing the Domino Designer fix pack.
You should not need to provide any settings.

Client Configuration
If you are using the no-charge download version of Domino Designer, you will not be connecting
to a Domino server. You can follow the majority of exercises in this book without being con-
nected to a Domino server. Follow these steps to configure your client:

1. Launch Domino Designer by clicking the icon on your desktop.

2. For the user information, fill out your name and unselect the option to connect to a
Domino Server.

3. You don’t need to configure any of the additional services.

12 Chapter 2 Getting Everything You Need

4. When the client configuration completes, you are presented with a welcome screen that
provides some useful information about the version of Domino Designer you just
installed.

5. Restart your computer.

Quick Tour of Domino Designer
When you start Domino Designer, you are presented with a welcome page that provides some
useful information about the version you have installed. If this is the first time you have used
Domino Designer 8.5 or if you are not familiar with Eclipse-based Integrated Development Envi-
ronments (IDE), the following sidebar provides a brief background on Eclipse.

A BRIEF HISTORY OF ECLIPSE

In the late 1990s, IBM began developing an integrated development environment
platform in IBM’s Object Technology International (OTI) labs. This later formed the
basis of the Eclipse project. The main goal was to develop a platform that could be
used within IBM for its many IDE projects—and specifically for a new Java IDE. IBM
recognized that developing a community of third parties who would use and con-
tribute to this new platform was critical to its success. So, in November 2001, this
new platform and the associated Java tooling was used to seed the Eclipse open
source project, and the Eclipse consortium was founded. Since its inception,
Eclipse.org has experienced huge success and rapid growth. IBM has been devel-
oping Eclipse-based product offerings for 10 years now, and the platform has
evolved to include not only IDE products but also end-user products. Both IBM
Lotus Sametime and Notes are now Eclipse Rich Client Platform (RCP) applications.
RCP is an Eclipse platform for building end-user desktop applications. As Eclipse
evolved, its IDE-specific parts were abstracted out to provide a generic windowing
framework that could be used to create general-purpose applications. A great
advantage of RCP is that the GUI end product is native to the particular target plat-
form, be it Windows, Linux, or MAC.

What does it mean that Domino Designer is now an Eclipse-based product?

• If you are not familiar with Eclipse-based tools, you need to familiarize yourself
with the basic concepts, such as perspectives, editors, and views (nothing to do
with Notes views). Visit www.eclipse.org for more information. The URL http:/
/eclipsetutorial.sourceforge.net/workbench.html takes you to a tutorial that
teaches you how to use the features of the Eclipse workbench.

• Eclipse is a highly productive environment to work in, largely because there are
so many add-ons available that allow the developer to customize his work envi-
ronment to exactly meet his needs.

Quick Tour of Domino Designer 13

Domino Designer Welcome Screen
When you launch Domino Designer, you are presented with the Welcome screen (see Figure 2.2).
This book is being written as Domino Designer 8.5.2 is being developed, so if you have installed
a later version, there might be some information on the Welcome screen about other cool new fea-
tures. You probably don’t want to always see the Welcome screen every time you start, so you can
uncheck the option to always show at startup. To dismiss the Welcome screen, click the Close
button in the top corner.

• Existing Eclipse-based tooling (such as Java source editors) now becomes avail-
able directly within Domino Designer.

• Because of its open source heritage, Eclipse is widely used in academia, partic-
ularly in the fields of computer science and information technology. Conse-
quently, lots of new and recent graduates are already familiar with using
Eclipse-based IDEs.

• Eclipse provides Domino developers with the opportunity to extend Domino
Designer in ways that have never been possible. In Chapter 12, “XPages Exten-
s bility,” you see that XPages provides similar possibilities for the runtime.

Whichever way you look at it, taking a popular development tool with a 20-year his-
tory and a unique set of development artifacts and moving it to a new Java-based
IDE platform has got to be a risky proposition, right? If the approach was to rewrite
all the existing tools (for example, editors for Forms, Views, and so on), the answer is
a most definite yes. In release 8.5, the Domino Designer team took to the approach
of hosting some of the preexisting Domino Designer tools (such as the Form and
View editors) within the Eclipse IDE and developing brand new native Eclipse tooling
(such as the new JavaScript editor). So, for most traditional Domino design ele-
ments, it was business as usual insofar as the design-time experience remained the
same. This is also the approach that was adopted and proven in moving the Notes
Client to the Eclipse RCP; however, that’s only the first part of the story. In addition to
having all the old tools without the risk of a rewrite, developers now have lots of new
stuff (such as new editors for style sheets, Java, and JavaScript). All the tools for
XPages were developed specifically for Eclipse and, as such, take full advantage of
the platform. The new Domino Designer also includes a virtual file system that allows
Eclipses to view an NSF file as a hierarchical collection of files.

I’ve been using Eclipse for many years, but I’m still learning new things all the time.
When I sit with a colleague to do some pair programming, I often find that he has a
slightly different way of doing something or a cool shortcut that I haven’t seen. We
share our favorite tips with you throughout this book.

14 Chapter 2 Getting Everything You Need

Domino Designer Perspective
The Domino Designer perspective is where you do the majority of your work, as shown in Figure
2.3. This provides a Domino-centric view on all the projects that you have open. The Application
Navigator lists all the Domino applications you are working on. Start by creating a new applica-
tion and creating your first XPage. The Domino Designer home page provides a shortcut that
allows you to quickly create a new application.

In the event that you get lost in Eclipse, and it can happen when you start to explore, you
can always get back to the Domino Designer perspective by using Window > Open Perspective
> Domino Designer. You can also reset your Domino Designer perspective to the defaults by
using Window > Reset Perspective.

Figure 2.2 Domino Designer Welcome screen

Quick Tour of Domino Designer 15

Creating a New Application
Following the time honored tradition, your first step is to create a “Hello World” application.
Here are the steps to create a new application:

1. Choose File > New > Application.

2. In the New Application dialog (see Figure 2.4), enter the filename of the application (for
example, HelloWorld.nsf) and choose OK.

A new application is created and appears in the Applications navigator (see Figure 2.5 in
the next section).

Application Navigator Home Window

Figure 2.3 Domino Designer Perspective with the Home window

16 Chapter 2 Getting Everything You Need

Figure 2.4 New Application dialog

Creating an XPage
Next, create your first XPage design element:

1. Choose File > New > XPage.

2. In the New XPage dialog, enter the name for the XPage (for example, home) and choose
OK.

3. Type the text “Hello World” into the new XPage Editor Panel and save the XPage.

After you create and open an XPage design element, the Domino perspective fills with all
the appropriate tools for you to work on that design element, as shown in Figure 2.5.

The default tools that are provided are as follows:

• XPages Design Elements: All the application XPages design elements are listed here.
Double-click the XPages entry in the Designer Database Navigator to bring up the
XPages design list. This lists all the application XPages and some summary information
about each item.

• XPages Editor: An XPages-specific editor supports two modes of operation:

• The default mode of operation is visual editing; that is, you can type directly in the
editor to add text, drag-and-drop new controls into the editor, and change the attrib-
utes of the page or elements within the page using the property panels.

• Source-mode editing is also provided; each XPage is just an XML file and, in source
mode, you can directly edit the tags.

Quick Tour of Domino Designer 17

• Controls Palette: Lists all the standard user interface controls that you can add to an
XPage to create your application user interface. This palette automatically gets
extended with any custom controls you create. Custom controls are explained in
Chapter 10, “Custom Controls.”

• Property Sheets: Contain tabs for the selected item’s Properties, Events, and Problems:

• The Properties tab allows you to visually configure the properties for the currently
selected item (for example, the XPage or a selected item within the page).

• The Events tab lists all the events for the currently selected item and allows you to
add business logic, which executes when that event is triggered.

• The Problems tab lists any errors or warnings for the current XPage.

• Outline: Provides a hierarchical outline that shows all the elements in the current
XPage.

• Data: Shows all the data sources associated with the current XPage and allows you to
define new data sources (not shown in Figure 2.5). Data sources are covered in more
detail in Chapters 7 and 8.

Property Sheets

XPages Design Elements

XPages Editor

Property Sheets

Outline

Controls Palette

Figure 2.5 XPages Editor

18 Chapter 2 Getting Everything You Need

The “Hello World” application is complete. The next step is to run it and see it working.
Domino Designer provides options to preview an XPage in the Notes Client or a web browser.

Previewing in the Notes Client
Previewing an XPage design element in the Notes Client couldn’t be simpler:

1. Choose Design > Preview in Notes.

2. The Notes Client starts and the XPage is displayed, as shown in Figure 2.6.

TIP The Preview in Notes option is available in the context menu when you right-click in
an XPage design element. It’s also available on the toolbar under the Design top-level
menu, and by right-clicking the XPage in the navigator.

Figure 2.6 XPages Preview in Notes

Previewing in a Web Browser
If you try to preview the XPage in a web browser, you see the following error message:

To successfully preview this element in a Web Browser, please add (or
modify) the ACL entry for Anonymous (or the default ACL) to have at
least Author access with the ability to create documents.

Quick Tour of Domino Designer 19

The security aspects of Notes and Domino are covered in depth later in this book; however,
for now, it suffices to say that access to every application is controlled using an access control list
(ACL). By default, anonymous access is prevented, but this is the access level used when preview-
ing a local application for the web.

Here is how you allow anonymous access to the Notes application:

1. Choose File > Application > Access Control.

2. The Default entry is selected in the Access Control List.

3. Change the Access level from No Access to Author.

4. Select the option to Create documents (see Figure 2.7) and choose OK.

Figure 2.7 ACL for the Hello World application

Now the application is configured to allow you to preview in a web browser. The next step
is to configure your application to use the XPage that you just created as the design element when
the application is launched:

1. Choose File > Application > Properties.

2. Choose the Launch tab.

3. Under Web Browser Launch, select Open designated XPage from the Launch drop-
down.

20 Chapter 2 Getting Everything You Need

4. Select the home XPage from the list the XPage drop-down, as shown in Figure 2.8.

5. Choose File > Save to apply these new application properties.

6. Choose Design > Preview in Web Browser > Select either of the default browsers as
specific browser to use when previewing.

7. Your preferred web browser starts and the XPage appears, as shown in Figure 2.9.

XPage home configured for Web Browser launch

Figure 2.8 Web browser Launch Properties

Figure 2.9 XPage Preview in a web browser

Preview in Notes and the web browser dynamically updates in response to changes in the
XPage being previewed. You can see this working by going back to Domino Designer, changing
and saving the XPage, and then going back and hitting the Refresh button in the Notes Client or
web browser. Your changes are updated immediately in the preview.

Quick Tour of Domino Designer 21

So far, you’ve seen how easy it is to create the basic “Hello World” application and preview
your work. Next, you complete this application by adding a customized greeting.

Adding a Control to an XPage
You now change “World” to a Computed Field (possible theme song for this book):

1. Delete the text “Hello World” from the home XPage.

2. Drag-and-drop a Computed Field from the Controls palette to the XPage.

3. In the Properties sheet, choose the Value tab.

4. Select JavaScript as the Bind data using option.

5. Enter the following JavaScript and save the XPage (see Figure 2.10):

”Hello “ + context.getUser().getFullName()

Edit the Value for the Computed Field

Figure 2.10 Adding a Computed Field

You just added a control that computes its value, and you configured it to retrieve the com-
mon name of the current user and prefixed this with the static text “Hello.” Chapter 6, “Building
XPages Business Logic,” covers data binding and the JavaScript classes in more detail. You
should now preview this XPage again.

22 Chapter 2 Getting Everything You Need

As you saw earlier when previewing in a web browser, anonymous access is used. So, it’s
no surprise how the greeting appears in the browser preview (see Figure 2.11).

TIP Change the computed expression to ”Hello “+session.getCommonUserName() and
you get a proper username when previewing in a web browser.

If you repeat the Notes Client preview, you see that the name comes from the Notes ID that
was used when you logged into Domino Designer (see Figure 2.12).

TIP If you are using the no-charge download, you may see “Hello null” when you do this
test. This is because the full name may not be set on the Notes user ID that was
created.

Figure 2.11 Preview in a web browser

Figure 2.12 Preview in Notes

You can refer to Appendix C, “Useful XPages Sites on the Net,” for some useful resources
to help supplement your skills and understanding of developing in Lotus Domino Designer.

Congratulations! You are now up and running with XPages development.

Conclusion
Now you have everything you need to start exploring the world of XPages. There is a sample Notes
application associated with each chapter of the book, which includes the XPages discussed in the
chapter (you can access these files at www.ibmpressbooks.com/title/9780132486316). The
best way to get the most from this book is to follow along with the samples in Domino Designer. In
the next chapter, you will build your first XPages application.

23

Now that the setup details are squared away, it’s time to roll up your sleeves and start some real-
world XPages application development. Development technologies are best absorbed by working
through practical examples and solving everyday concrete problems. For this, you need a refer-
ence application to work with, and the standard Notes Discussion template is an ideal candidate.
Pretty much all the topics covered in this book are already implemented in one way or another in
the Discussion template, and you will disassemble and rebuild this application as a way of devel-
oping your XPages expertise! This is also convenient for you insofar as the Discussion template
ships out-of-the-box with Domino Designer, so you automatically obtained this application tem-
plate as part of the installation work performed in Chapter 2, “Getting Everything You Need.”

A different instance of the reference application is provided for each chapter. Be sure to
download these resources so that you can work through the exercises in Domino Designer
according as you read your way through this book. This will undoubtedly be the most effective
approach from a learning point of view. Typically, the name of a given reference application
instance is derived from the chapter with which it is associated. For example, for this chapter,
open Chapter3.nsf in Designer. The .nsf resources can be downloaded from this website:

www.ibmpressbooks.com/title/9780132486316

This chapter provides a general breadth of information covering both Designer and
XPages. It gets you accustomed to building simple XPages that read and write Notes data and
implement standard application features. In summary, you will learn the following:

• How to define application metadata using forms and views

• How Notes stores real app data using documents and views

• How XPages can access that data for reading and writing

C H A P T E R 3

Building Your First
XPages Application

24 Chapter 3 Building Your First XPages Application

• How XPages can be linked to form a cohesive entity

• How to implement simple business logic without writing any code

This is an ambitious undertaking for one chapter! Obviously, some details will need to be
glossed over to achieve this goal in such a short time, but any such details will be explored in
depth in the remainder of this book.

Laying the Foundations
You should start by creating an instance of the Discussion application and play around with it to
get a feel for its features and functionality. As you learned in the previous chapter, you can create
a new application by simply selecting the File > New main menu option or type Control-N in
your Designer workspace. Many application templates are shipped with Notes (mail, discussion,
doc library, and so on), and you should select discussion8.ntf to create your new application
based on the latest Discussion design. Figure 3.1 shows all the relevant selections.

To experiment with the application, simply open its main page, allDocuments.xsp, and
choose to preview it using a web browser or the Notes client. To enable web preview, you need to
tweak the application’s access control list (ACL), as you learned in Chapter 2. To save yourself
some time, you should also enable the Anonymous user to delete documents, because you will
need this capability for a later exercise. Once opened in preview mode, the application is fully

Figure 3.1 Creating a new Discussion application in Domino Designer

Laying the Foundations 25

functional, so you can create new documents, categorize them into different groupings, navigate
between different views, and so on. Figure 3.2 outlines the anatomy of a Discussion application
populated with some sample data.

As you explore the template more fully over the course of this book, you will discover that
it is a feature-rich Web 2.0 application, making full use of Ajax, Dojo, JavaScript, and Cascading
Style Sheets (CSS). This is what makes it so useful as a learning vehicle. At this point, however,
you might need to start with the basics, such as learning how documents are defined, created, and
stored in an application.

Figure 3.3 shows a sample new topic under composition in the XPages Discussion app. At
this point, you can use the New Topic button to create some sample documents. The text you
enter in the Subject field is displayed in the summary document view, the Tags field categorizes
your documents (it supports multiple categories if you use comma-separated entries), and the
third field is the main document body and is fully rich-text enabled. When you enter data in all
three fields, click Save to store the document. As you navigate around the application, you can
also edit and delete these documents. Doing so gives you a feel for the application’s features and
behaviors.

App Navigator

Author Cloud Tag Cloud

Full Text Search

View Pager

Toolbar

Actions

Categorized View

Figure 3.2 Sample Discussion application and its component parts

26 Chapter 3 Building Your First XPages Application

A cursory glance at Figure 3.3 tells you that any new document, from a data standpoint,
must contain at least three data items: say Subject, Categories, and Body. For those of you new
to XPages and Notes, the question is how and where these data items are defined.

Save the sample document shown here, because it is used in the upcoming exercises.

Forms and Views
Although you have just been playing with the Discussion template as an XPages application, it is
also, of course, a native Notes application that runs independently of XPages in the client. In fact,
the XPages interface was only added to the template in version 8.5, while the Discussion app
itself was first introduced over a decade before that! The original Discussion application was built
using traditional Domino design elements, such as forms and views. To see the native application
in operation, simply expand the Forms entry in the Designer navigator, double-click the Main
Topic form to open it, and perform a client design preview using the same Preview toolbar button
used when previewing any XPage. After the form loads, enter some text. Compare the XPage
interface shown in Figure 3.3 to the classic form shown in Figure 3.4—different renderings but
the same data! For the purpose of the exercises in this chapter, there is no need to save the docu-
ment shown here.

Return to Designer and, this time, open the Views entry in the navigator. (It is recom-
mended that you work your way through this chapter and actually perform the various tasks in
Designer while you read them here.) Locate and select the All Documents view in the navigator

Figure 3.3 Sample topic document

Forms and Views 27

and click the Preview in Notes toolbar button. When the view opens in the client, you see that the
document you just created is presented. Now, you should reopen the sample document, right-
click anywhere in the view window, and select Document Properties from the context menu. A
nonmodal floating dialog box, commonly known as an infobox in Notes/Domino, is presented,
and this can inspect the data stored within the document. Choose the second (Fields) tab on the
infobox and click any of the fields presented in the listbox. As you do so, the data stored in those
fields is displayed in the adjacent text box—for example, the XPages category text appears to be
stored in a WebCategories field, as shown in Figure 3.5.

All the fields you see listed in the infobox are defined using a form design element. In
Notes, a document is simply an instance of a form. All the fields or items defined on any given
form can be assigned values after a document is composed and then saved. For traditional Notes
applications, the form design element is the container for the both the metadata (for example,
data design and structure definitions) and the user interface (controls, layout, and so on). The key
point for you to understand is that an XPage allows you to create a Notes document based on the
metadata defined within a form, but entirely ignores the form’s presentation layer. In other words,
XPages gets the data definition of any given document directly from one or more forms, but pro-
vides its own user interface and business logic.

Figure 3.4 Preview of the Main Topic form

Figure 3.5 Infobox listing the field properties of a sample Notes document

28 Chapter 3 Building Your First XPages Application

Reopen the Main Topic form in Designer. Figure 3.6 shows the three fields mentioned ear-
lier as defined within the form. All the other UI artifacts you see are irrelevant to XPages. As you
start to build new XPages apps from scratch, you will still need to create forms to define the appli-
cation metadata, but these will be much smaller than the traditional Notes form definitions you
see here, because no UI or business logic will be stored in them. In other words, think of these
Notes forms as comprising the database schema for your XPages application.

From an XPages perspective, there is not a lot to learn about form design because XPages
only really uses them as metadata containers. On any form, you simply use the Create > Field
option on the main menu to add a field and then enter the name and data type via the infobox.
Figure 3.7 shows a sample field infobox.

The types displayed in Figure 3.7 are interesting, because they appear to represent a mix-
ture of data and presentation concepts. It is easy to think of the first three types (Text,
Date/Time, Number) purely in data terms; however, many of other types are usually thought of
only as UI widgets, rather than as data types per se (for example, Radio button, Listbox, and
Combobox). For example, if a field is defined as a Radio button in Notes, what type of data is
stored in the document when the user makes a selection at runtime? The answer is perhaps not
clear cut. If you are working with forms designed by other developers (such as a legacy applica-
tion that you inherited), it is always useful to inspect some document instances using the infobox
and reconcile the metadata definitions with the actual document field data.

Note that other important fields are created and stored automatically by Notes, over and
above those that are explicitly defined in an application’s forms. Every document, for example,
automatically contains a document ID and unique ID (UNID). These items will prove useful in
your development tasks later on, and examples of these fields are shown in Figure 3.8.

Data fields

Figure 3.6 Field definitions in Main Topic form

Forms and Views 29

Figure 3.7 Inspecting field definitions in Designer

TIP Other tools are available to inspect Notes data. A long-time favorite in the commu-
nity is Notespeek, which provides an explorer-like interface for NSF files and the elements
contained within them. This utility can be downloaded from an IBM developerWorks sand-
box site—simply search for Notespeek on the Internet.

Although the form design element is used to define the content of a document, the view
design element is what Notes uses to manage collections of documents. A Notes view presents
summary data for a collection of documents, and the documents included in the collection are
chosen using some type of selection query. Explore some of the many views in the Discussion
template. You see that they all contain a View Selection query. For example, Figure 3.9 shows
the ($xpCategorized) view in design mode, including a simple Notes formula language query:

SELECT (form = “Main Topic”)

Document UNID

Document Note ID

Database Replica ID

Date of Revision

Figure 3.8 Document IDs in the infobox

30 Chapter 3 Building Your First XPages Application

Refresh

View Selection Formula Column Properties

Figure 3.9 View design

Basically, every Notes document is automatically assigned a Form field that identifies the
form used to compose it, and this particular view includes all documents contained within the
NSF that were created using the Main Topic form.

The view itself is comprised of an array of columns. A column can simply be the name of a
field contained in the selected documents or a computed value. The top-left corner of the view
contains a Refresh button that allows you to populate the view at design time, which comes in
handy if you are building a view from scratch and want to periodically validate your content.

Again, for Notes/Domino neophytes, there’s not a lot to figure out with Notes view
design—certainly at this basic level. New view instances are typically created using the helper
dialog invoked from the Create > Design > View menu or by copying and modifying an existing
view of a similar design to what you want. Columns are added to a view via the main menu or
view context menu, and configured using the infobox—just like fields in a form.

The form and view you will work with in this chapter already exist, namely Main Topic
and All Documents, respectively. Thus, at this juncture, there is no need to delve any deeper into
how these elements are created. The key thing to understand is that XPages uses a Notes view to
work with a document collection. Again, XPages is not interested in the presentational aspect of
the Notes view, but just its content. The presentation of the view data is performed by XPages;
this concept will become c--learer when you build a sample view in the next section.

Building an XPages View 31

TIP If you are new to the Notes/Domino document-centric data model, but understand
the basic relational data model, the following analogy might add clarity. Think of the docu-
ments as records, the document items as fields, and the views as tables.

In any case, it’s time to create some new XPages and put what you just learned about Notes
forms, documents, and views to good use!

Building an XPages View
The Discussion template offers the user numerous ways to view the documents contained in the
application (for example, By Author, By Tag, and so on). In this section, you learn to build a
view just like these. To jump in, create a new XPage, call it myView, accept all other dialog
default values, and click OK. Start by finding the View control within the Container Controls
section of the Controls palette and dropping it anywhere on the blank page (aesthetics are not
important at this point). Figure 3.10 identifies the required control for you.

Figure 3.10 View control in Container Controls palette

As the drag-and-drop gesture is executed, Designer presents a helper dialog that allows
you to bind this XPages View control to a Notes/Domino view data source. Confused? Hope not—
this is where you bind the XPages UI View control to the backend Domino view data (remember
the concept of presentation/data separation previously discussed). The View control picked from
the palette is the presentation layer object that will display data, and you can bind it to the Notes
All Documents view, which contains the actual data. Figure 3.11 shows the binding dialog.

32 Chapter 3 Building Your First XPages Application

App Browser

View Picker

Column Picker

Figure 3.11 View data binding helper dialog

After All Documents is selected, a list of its constituent columns are dynamically retrieved
and displayed. Thus, you are not compelled to select all columns from the Notes view chosen as
the data source. If you do not want to display a particular column in your XPage, simply deselect
it by unchecking the checkbox that is located alongside its name. To keep it simple in this
instance, select just two columns—Date and Topic—and click OK.

The result is perhaps surprising! I think you’ll agree that this helper dialog has done a lot of
work on your behalf. A View control has been defined on the XPage based on the dialog choices
provided, and some default settings have been applied, such as the maximum number of rows to
display in the View control at any one time (30 by default).

Domino Designer provides at least three interesting ways to look at the View control. Obvi-
ously, there is the WYSIWYG design pane representation, which gives a rough sketch of how the
view will look at runtime. Then, there is the outline viewer, which may be more instructive in this
instance. The fully expanded outline shown in the bottom-left corner of Figure 3.12 encapsulates
the hierarchical structure of the control that’s been created. You can see that the View control has
many parts, including a default pager wrapped up in something called a facet (more on facets in
Part II, “XPages Development: First Principles”), a view data source reference, and two columns,
each of which contain header elements. The full markup is also available in the Source pane and
included in Listing 3.1.

Building an XPages View 33

Hierarchical View Structure

Design-Time Rendering

View Data Source Details

Figure 3.12 View drag-and-drop results

continues

Listing 3.1 View Control XSP Markup

<xp:viewPanel rows=”30” id=”viewPanel1”>

<xp:this.facets>

<xp:pager partialRefresh=”true” layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”view1”

viewName=”($All)”></xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”$106” id=”viewColumn1”>

<xp:viewColumnHeader value=”Date”

id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”$120” id=”viewColumn2”>

<xp:viewColumnHeader value=”Topic”

34 Chapter 3 Building Your First XPages Application

id=”viewColumnHeader2”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

With the possible exception of the pager element, which will be expanded on in later sec-
tions, it can be reasonably argued that the markup semantics are self-explanatory—for the most
part, just a descriptive summary of the information collected in the data binding helper dialog.
Save the page and then, when you preview it, you will see that the correct summary data is now
displayed in your view, as shown in Figure 3.13. Note that the empty parentheses in the Topic
column entry would normally display the name of the document author. This document has been
created using Anonymous access and, for simplicity, the XPage did not create a From field in the
underlying Main Topic form, so no author information is available for display. You learn how to
compute and save an author field in the section, “Executing Form Logic” in Chapter 7, “Working
with Domino Documents.”

Figure 3.13 View control preview

Listing 3.1 (Continued)

So far, so good, but how do you work directly with individual documents as opposed to
viewing document collections? To do this, you need another XPage. Call this new XPage
myTopic, because it will be used to create, read, and edit documents created using the Main
Topic form. The first thing you do in this new XPage is create a new document data source.
Again, this is a simple point-and-click procedure:

1. Select the Data property sheet on the new blank XPage.

2. Choose Domino Document from the Add drop-down button.

3. In the Form combo box, select the Main Topic form.

This is all you need to do to create a new basic document data source. There are, of course,
a host of other options that can be used to configure the data source (see Chapter 7 for all the
details), but simply nominating a form is sufficient to gain access to all of its metadata, and that’s
all you need to do at this stage.

Building an XPages View 35

TIP From Notes/Domino version 8.5.1 onward, you can create the Domino document data
source while creating the XPage. There is a new option on the New XPage dialog to add the
data source at the same time. This is a useful shortcut.

The contents of the document data source (all the fields defined in the Main Topic form)
can be viewed by activating the Data palette, which is the tab adjacent to the Controls palette in
the top right of the Designer perspective. You will see many fields listed there, but you are just
interested in three of them: Subject, WebCategories, and Body. These fields can be selected by
control-clicking each member, and then dragging the fields to the blank XPage, which again
saves you a lot of work. Figure 3.14 should closely match your results. Save the XPage and pre-
view it to see how it looks at runtime.

Link to Data Palette

Auto-generated page contents

Data Source field list

Data source definition

Figure 3.14 Document drag-and-drop results

Now for the missing link—quite literally! It would be natural in any view to be able to open
one of its entries by simply clicking it. The view control supports this feature in a simple way.
Track back to the myView XPage and select the View property sheet. There is a combo box with
the label “At runtime, open selected document using:”, and here is where you can bridge
myView to myTopic by simply selecting the latter as the target XPage.

36 Chapter 3 Building Your First XPages Application

It’s save and preview time again—as long you’re making progress, you’ll never tire of this
feature! This time, your XPage renders the “Hello XPagers!” text as a link, and following this
link opens the XPage that contains all the full document details. Here, you can read and edit the
details. You could even save your changes if the XPage allowed you to, and navigate back to the
original XPage. Hmmm...I guess it’s obvious what needs to be done next!

Completing the CRUD
Most any application you have ever used is required to create, read, update, and delete records—or
perform CRUD operations, as it is commonly known. To fully support CRUD operations in the
current example, there are a few things left to do.

Active View Control Column

Column content will be presented as a link

Enables user to select row entries

Figure 3.15 Display view column as link property

After you mark the View control column as a link column, XPages opens the associated
document using myTopic.xsp when the column entry is selected by an end user at runtime. So, to
finish this task, select the Topic column in the View control and move to the Display property
sheet. This property sheet provides the option to wrap the column’s data as an HTML link, so
check the appropriate checkbox, as shown in Figure 3.15.

Completing the CRUD 37

First, myTopic.xsp needs a way to save new or edited documents, or cancel such edits and
navigate back to the view. Second, you need to enable the user to create new documents and delete
existing documents.You can do this by adding actions to myView.xsp. Start with myTopic.

The drag-and-drop action of the Domino document data source in myTopic neatly
wrapped all the generated controls into a HTML table. Select a table cell in the bottom row of the
table presented in the Design pane and use the main menu Table > Append Row(s) option to add
a new row to the bottom of the table. Then, drag-and-drop a Button from the Control palette into
each table cell. These will become your save and cancel actions.

Start by clicking the left-hand button and changing its label text to “Save” in the Button
property sheet. Immediately adjacent to this label is an Options group box that, among other
things, allows the button type to be set. Make this a Submit button. This simply means that, when
this button is clicked, the entire page is submitted to the server, and once that occurs, any data
sources contained therein will be saved (assuming no validation failures). Thus, in this case, there
is no need to perform an explicit document save operation. Simply designating the button to be of
type Submit means that this happens automatically (see Figure 3.16). Nice!

Active Button

Button Type Options

Figure 3.16 Adding action buttons

Taking care of the cancel action is even easier. Again, you must first change the label,
although this time, let’s do it a little differently to show off another Designer feature. When you
select the second Button control, hit function key F2 on your keyboard; this allows you to change

38 Chapter 3 Building Your First XPages Application

the label using in-place editing (for example, you can type the new text directly into the control).
This update is immediately reflected in the property sheet and, on the same sheet, you should set
the Button type to Cancel. Save your sheet and view the markup generated for these two controls
in the source pane. If all goes well, your source-code snippet should be identical to Listing 3.2.

Listing 3.2 XSP Button Markup

<xp:tr>

<xp:td>

<xp:button id=”button1” value=”Save”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”

immediate=”false”

save=”true”>

</xp:eventHandler>

</xp:button>

</xp:td>

<xp:td>

<xp:button value=”Cancel” id=”button2”>

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”

immediate=”true”

save=”false”>

</xp:eventHandler>

</xp:button>

</xp:td>

</xp:tr>

Although you are not required in this chapter to directly enter any XSP markup in the
Source pane, it is nevertheless interesting to see what is automatically generated by selecting a
few simple UI options. The event handlers you see here define the runtime behavior that occurs
when the buttons are clicked. Ignoring some of the more subtle attributes for the moment, you
can see that the first button requests a save and the second button does not.

TIP If you don’t like the way some tags are autoformatted in the source pane window,
you can quickly reformat or “pretty print” the tags in question by highlighting them with the
mouse and typing Control-Shift-F on your keyboard. Try it!

Completing the CRUD 39

The last thing you need to do with myTopic.xsp is to define some simple navigation rules
to control where the user ends up after these actions are performed. The XPage itself has Next
Page properties that you can use. Simply click anywhere outside the main table so that the XPage
itself becomes the selected object, or select the XPage root node in the Outline pane and choose
myView from the Next Page combo boxes on the property sheet, as shown in Figure 3.17. Thus,
the user returns to myView after the myTopic is submitted. In fact, in Figure 3.17, the myView
page navigation is also selected in the case where there is an update failure, so you will end up in
myView.xsp one way or another.

XPage Navigation Pickers

Figure 3.17 XPage navigation properties

The second part of your current task is to revisit myView.xsp and introduce CREATE and
DELETE operations. After the myView XPage is activated in Designer, add two new Button con-
trols anywhere on the page. Being a dab hand with buttons at this stage, you can quickly change
their titles to “New Topic” and “Delete Selected Document(s),” respectively. Once complete, use
what are known as Simple Actions to execute the operations.

To create a new topic document, select the Button on the Design pane and activate the
Events tab that is located alongside the Properties tab. Front and central on this property sheet is
an Add Action button. Assuming that Simple Actions is the currently selected action type (it is
by default), click this button and you see the helper dialog presented in Figure 3.18. In summary,
the steps are as follows:

1. Select the New Topic button.

2. Activate the Events tab.

3. Be sure that both the onclick event and Server tab are selected.

4. Click the Add Action button to launch the Simple Action helper dialog.

5. Choose the Open Page as your action.

6. Choose New Document as the target document.

7. Click OK to complete the operation.

40 Chapter 3 Building Your First XPages Application

You do not need to enter or compute a document ID in the helper dialog because your
action is creating a new document, so the ID is automatically created by Notes at runtime. If you
were using this simple action to open an existing document, you would need to provide an identi-
fier. In later chapters, you will see examples of how these IDs can be obtained programmatically.

Similarly, with the second button, you need to add another simple action. This time, it is a
Delete Selected Documents action, and it’s safe to say that, as a best practice, you need to add
some text to warn the user that this action will remove data from the database! Figure 3.19 sum-
marizes this task.

Be aware that the action needs at least one row to be selected to have something to act on
(that is, the user must have the capability of identifying the document to be deleted). In order for
rows in a view to be selectable in the first place, each view row needs to display a checkbox that
enables the end user to make the necessary selection. This checkbox is not displayed by default,
but it can be enabled via the same property sheet shown in Figure 3.15. Yes, you guessed it—it’s
the checkbox property called Check box. Select this option for the first column (Date) in the
view control.

All that remains is to preview the myView page to verify that everything works as intended.
You should now be able to carry out a full CRUD operation in preview mode. Test this scenario as
follows:

Action Button

Simple Action event trigger

Simple Action for Button

Events Panel

Figure 3.18 Add Simple Action dialog: open page

Completing the CRUD 41

Figure 3.19 Add Simple Action dialog: delete selected documents

1. Use the New Topic button to create a new “throw away” document.

2. Enter some arbitrary details and click Save.

3. Once returned to the view, click the link to your new document and edit its details.

4. Save your modifications and verify that those changes are saved.

5. Once returned to the view for the last time, select the checkbox for the newly created
document and click Delete Selected Document(s).

6. Verify that a warning dialog is presented (see Figure 3.20). Click OK to proceed.

7. Verify that your new “throw away” document has indeed been thrown away, meaning
that it is no longer displayed in the view (it has been deleted from the NSF).

Figure 3.20 Confirmation dialog for Delete Selected Documents action

42 Chapter 3 Building Your First XPages Application

If all the preceding steps execute as described, then congratulations are justifiably in order,
as you have succeeded in building a functional XPages CRUD application in no time at all. You
have followed the same basic procedures that are used in the template itself, although these would
not be clearly evident to you at this stage because the real XPages contain so many other features.
In having walked through this scenario in the course of umpteen XPages demonstrations, this
author can assure you that this whole CRUD app dev scenario can be completed from scratch in
about ten minutes. Rapid application development indeed!

Conclusion
Although you made great progress in a short time, there’s obviously a long way to go with build-
ing the XPages applications. Remember that this chapter gave you some breadth on XPages
application development—all the depth comes later. You learned to build a basic view similar to
those you see in the standard Discussion template. You learned to perform CRUD operations on
Notes documents using only point-and-click operations. You linked XPages to create an applica-
tion flow, and you implemented simple business logic without writing a line of code.

Going forward, clearly more advanced features need to be added; for example, input vali-
dations need to be applied to manage end-user data entry, rich objects need to be handled, upload-
ing and downloading must be supported, security enforced, a sleeker and more dynamic user
interface built, yada, yada, yada! You will do all those things and more over the course of this
book.

TIP If you are new to XPages and want to work on other introductory examples before
continuing, study the XPages Site Finder tutorial under Lotus Domino Designer User Guide
in Designer Help.

Now that you have gotten your feet wet in XPages application development, it is perhaps
the most appropriate time to take a brief sojourn from the Discussion template, and instead take a
more holistic look at the technology that underpins what you have just built. Part II, therefore,
provides an architectural view of XPages, which hopefully will prove all the more meaningful
now that you have done some introductory practical work with the technology here in Part I.

Thus armed with both experience and deeper understanding, you will return to hands-on
XPages application development in Part III. You will dive deeply into the great spread of XPages
features and look at how they can be applied when building more sophisticated application solu-
tions. Sound like a plan?

43

PART II

XPages
Development:
First Principles

4 Anatomy of an XPage 45

5 XPages and JavaServer Faces 129

6 Building XPages Business Logic 157

This page intentionally left blank

45

Several years ago, I participated in a study that set out to identify steps to help increase the use of
Eclipse in universities and colleges around the world. One aspect of the study involved conduct-
ing a series of interviews with lecturers of computer and information technology–related courses.
During the interviews, I heard the same message being repeated, and it was something that ini-
tially took me by surprise. Most lecturers actively discouraged or even disallowed the use of Inte-
grated Development Environments (IDEs) when teaching a programming language course. For
example, when teaching Java, a common practice was to have students write their code in a plain
text editor and then compile and run it from the command line. The value in this approach was
that students learned the fundamentals of the language (how to write code without the benefit of
content assistance and other tools that would help them write code and prevent them from making
obvious mistakes).

This is the primary reason that this chapter is important to you:
You will learn to create an XPage by hand so that you understand what is actually happen-

ing under the covers to an XPage when you use Designer.
You might even find that you prefer to create XPages this way. More importantly, you

won’t be bound to the editors and wizards of Designer. Depending on your preference and\or the
task you are performing, you can switch between visual and source code editing. In particular,
when you need to modify an existing XPage, using the source mode allows you to see the full
page in one go and can be quicker than navigating through the relevant editors.

That said, using Designer’s editors and properties panels typically remains the fastest way
to create an XPage for even experienced developers. In the real world, professional developers
need tools to help increase their productivity and make performing simple, routine tasks quick
and easy. However, there is one drawback with using a graphical editor tool: It can be difficult to
understand how an XPage actually works. If you weren’t the person who created a particular

C H A P T E R 4

Anatomy of an XPage

46 Chapter 4 Anatomy of an XPage

XPage, it’s often difficult to quickly understand what the XPage is doing and where the business
logic is embedded. This is because the XPage, as presented in the graphical editor, can be dramat-
ically different from what is presented at runtime, especially when there is heavy use of custom
controls and Cascading Style Sheets. The XPage graphical editor has some great features to help
you see where the business logic is specified (such as the computed diamond to overview all
properties of a particular element in the page or within the All Properties view). Although you
can do everything with the WYSIWYG editor in Designer, an important skill to develop is the
ability to read and understand the markup of an actual XPage. This is the secondary reason that
this chapter is important to you:

You will learn how to read the XPage source (XSP markup) and understand how the differ-
ent elements work together at runtime.

This chapter teaches you to write and read XSP markup and helps you understand the first
principles of the XPages programming model. This chapter is written to allow you to skim for
now if you are happy to rely on the graphical editor and to come back later to dive into particular
concepts as they get introduced. This chapter contains many sample XPages that demonstrate dif-
ferent syntaxes and the behavior of different tags. To get the most out of this chapter, preview
each sample so you can see how they behave and experiment by modifying the samples. You can
use these samples as a source of snippets of XSP markup for reuse within your own applications.

With these thoughts in mind, let’s dispense with the WYSIWYG editor in Designer and work
primarily in the Source editor. Even when working in source mode, the graphical tools are useful
for inspecting the properties of a tag you are editing or providing a starting point when creating the
user interface. Be sure to download the chapter4.nsf file provided online for this book to run
through the exercises throughout the chapter. You can access these files at www.ibmpressbooks.
com/title/9780132486316.

What Exactly Is an XPage?
The definition of an XPage will grow the more you learn about the XPages programming model.
For now, an XPage is

A Notes database design element that is used to present content in either a web
browser or the Notes client.

Each Notes database design element performs a specific job, such as a Notes Form is used
to create, edit, and view Notes documents, and a Notes View is used to view collections of Notes
documents. An XPage is a powerful Notes design element because it can do the same types of
content presentation that a Notes Form and a Notes View can do—and more. Also, the XPages
programming model supports the capability to use XPages to extend itself. Later in this book,
you see that a special kind of XPage can be created, called a Custom Control, which allows you to
extend the set of controls available for use in your applications. This is a powerful concept; if you
need to extend XPages, firstly you can do so easily, and secondly, you don’t need to learn some-
thing new to do it.

Understanding XSP Tag Markup 47

You will learn more about the architectural heritage of the XPages programming model
later in Chapter 5, “XPages and Java Server Faces,” and this will increase your understanding of
XPages’ capabilities.

Understanding XSP Tag Markup
XPages uses XML as its file format. The XPages XML syntax is called XSP (this ancronym
doesn’t stand for anything). If you are new to XML, we strongly urge you to read one of the many
XML primers available on the Internet or, if you’re feeling brave, look at the specification (www.
w3.org/XML/). For now, the following XML primer provides the basics.

Getting Started with XML
XML is a text-based data format that has been defined by the World Wide Web Consortium
(W3C). It is widely used for many applications, including electronic publishing, data exchange,
document file formats, and more. The primary characteristics of XML are

• XML is a markup language and similar to HTML.

• XML is a standard widely used in the industry.

• XML is a general-purpose data format with strict rules in how the data is formatted.

• XML does not include any definition of tags.

HTML is probably the most widely known markup language; however, HTML differs from
XML in the last two points in the preceding list.

First, the formatting of HTML is not strict, and web browsers still render HTML that doesn’t
have properly terminated tags or properly defined attributes. Listing 4.1 shows an example of some
badly formed HTML that will nevertheless work in a browser. In this example, notice that the tags
are not properly terminated and the attribute is not inside quotes. This is one of the strengths of
HTML—it’s easy for anyone to create an HTML page that displays correctly.

Listing 4.1 Sample HTML

<html>

<table BORDER=1>

<td>First Cell

<td>Second Cell

</html>

By contrast, XML must be well formed, which means that, at a minimum, all tags must be
properly terminated and all attributes correctly defined. So, taking the same example, to be well-
formed XML, it must look like Listing 4.2.

48 Chapter 4 Anatomy of an XPage

Listing 4.2 Sample XML

<html>

<table BORDER=”1”>

<tr>

<td>First Cell</td>

<td>Second Cell</td>

</tr>

</table>

</html>

XML is general purpose and does not define any tags. Instead, XML can be used as the
basis for the definition of many different languages. The language definition has its own rules;
these rules can be defined in a Document Type Definition (DTD) or an XML schema. XML
DTDs and schema are two ways to define an XML-based language—they define the rules to
which the language must adhere. The rules define the tags that are permissable in that language,
what attributes can be used with these tags, and the relationship between the tags. One such lan-
guage definition is Extensible Hypertext Markup Language (XHTML), which is an XML-based
version of HTML. So, considering the previous example one more time, the XHTML version
looks like Listing 4.3.

Listing 4.3 Sample XHTML

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Strict//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Title goes here</title>

</head>

<body>

<table border=”1”>

<tr>

<td>First Cell</td>

<td>Second Cell</td>

</tr>

</table>

</body>

</html>

If you are familiar with HTML, the majority of the markup in Listing 4.3 should be readily
understood. As you can see, XHTML is strict: All of your tags must be lowercase and correctly

Understanding XSP Tag Markup 49

terminated—attribute values must also be quoted. The <html> tag is the root of this XML docu-
ment and the rest of the document forms a tree, which starts at this root tag. The root <html> tag
contains the head and body tags, the relationship is described in terms of parents and children. So,
the <html> tag has two children—the <head> and <body> tags—and the parent of the <head> tag
is the <html> tag.

What’s more, there’s no cheating in XHTML; a page that doesn’t obey the rules is not
processed. The DOCTYPE declaration at the beginning of the markup declares what the markup
contains and is used by whatever browser processes the markup to make sure that the rules are
obeyed. The DOCTYPE is not mandatory and is not declared within XPages markup, but it is
emitted in the generated HTML response. So, it is useful to understand this declaration because
you have ways to change the default DOCTYPE that XPages uses.

One other thing might be new to you in this sample, and that is the xmlns attribute. The
xmlns attribute is a reserved XML attribute and is used to define an XML namespace. An XML
namespace qualifies the tags and attributes in an XML document, meaning that it declares that
these specific tags belong to a specific XML language. So, the xmlns attribute in the previous
example specifies that all the associated tags belong to the declared XHTML namespace. The
usefulness of XML namespaces is not immediately obvious; however, consider the following
problem: What if you want to create an XML document that contains tags from two different
XML languages? Different languages have different tags, and the XML author needs to be able
to specify which language specific tags belong to. Different languages might use the same tag
name, so it is critical to differentiate one from another. This is where XML namespaces are your
friend; in the previous example. we used an abbreviated form of the xmlns attribute. The follow-
ing form, which includes a namespace prefix, can also be used:

xmlns:xhtml=”http://www.w3.org/1999/xhtml”

This form of the xmlns attribute allows you to specify a prefix, and all tags that use this pre-
fix belong to the associated namespace. An XML document that contains multiple namespaces is
referred to as a compound document. Listing 4.4 shows an XML document that contains multiple
namespaces.

Listing 4.4 XML Document with XHTML and XForms

<?xml version=”1.0” encoding=”UTF-8”?>

<xhtml:html

xmlns:xhtml=http://www.w3.org/1999/xhtml
xmlns:xf=”http://www.w3.org/2002/xforms”>

<xhtml:head>

<xf:model>

<xf:instance id=”person”>

<person xmlns=””>

<firstName>How</firstName>

continues

50 Chapter 4 Anatomy of an XPage

<lastName>Bloggs</lastName>

</person>

</xf:instance>

</xf:model>

</xhtml:head>

<xhtml:body>

<xhtml:p>

First name:

<xf:input ref=”instance(‘person’)/firstName” />

<xhtml:br />

Last name:

<xf:input ref=”instance(‘person’)/lastName” />

</xhtml:p>

</xhtml:body>

</xhtml:html>

This example starts with an XML processing instruction:

<?xml version=”1.0” encoding=”UTF-8”?>

This defines the version and encoding of the XML document. All XPages contain this same
instruction and are encoded as UTF-8, which means unicode is used by default.

Chapter 10, “Custom Controls,” shows you how useful XML namespaces can be.
This ends a brief tour of XML. More XML tips are provided throughout this chapter, but

for now, let’s look at the XPages application of XML.

XPages XML Syntax
By now, you know that XML can be used to define new applications. In XPages, XML is used to
define a declarative programming model—a way to program where you define what you want
done but not how to do it. You already saw how a basic application can be created using XPages
without the need to write a single line of code. You won’t always be able to do that, but you’ll be
pleasantly surprised by how much you can acheive without writing code.

So, the XPages markup allows you to

1. Create the user interface for your application.

2. Define the data that will be manipulated and displayed.

3. Define the business logic to be executed in response to events that occur.

Therefore, you need tags that represent the building blocks for an application. Each tag in
XSP markup corresponds to a user interface control, a data source, predefined business logic, or a

Listing 4.4 (Continued)

Understanding XSP Tag Markup 51

property used by one of these components. There is a well-defined interaction between the user
interface, data, and business logic components. You must learn how the various components
intereact to program using XSP. Each component can be configured to provide a variety of behav-
iors. In XSP, you program by creating a hierarchy of tags and and setting the attributes of these
different tags. This process allows you to describe a user interface, its data, and what happens
when the user interacts with this user interface. So, you are telling XSP what to do in your appli-
cation rather than how to do it. This is the power of declarative programming; applications repeat
a lot of the same behaviors and all this logic is implemented, tested, and debugged just once for
each and reused many times. If that was all XPages supported, people would quickly run into lim-
its; however, because of its extensible architecture, you can also add your own custom business
logic and create your own components to extend the programming model.

Let’s start by creating a new XPage and then switching to the Source view, as shown in
Figure 4.1.

Each new XPage is an XML document, and every XML document must have a root tag.
The root tag for every XPage is the <xp:view> tag (not to be confused with a Notes view). Why
view? Here, you begin to see the XPages heritage emerging, the root of a JavaServer Faces (JSF)
component hierarchy is the <view> tag, and this convention has been adopted in XPages. (The
relationship between XPages and JSF is discussed in Chapter 5.) XPages markup allows you to
create a view that is displayed as HTML and the <view> tag represents the component that is root
of this HTML document—effectively, this notion of a view maps directly to the HTML <body>
tag.

The XPages namespace is www.ibm.com/xsp/core (no, there is nothing at this URL) and the
default prefix is xp. This namespace is reserved for use by IBM, because all namespaces begin-
ning with www.ibm.com are. When you need to define your own namespace, the convention is to
use a URL that starts with your company’s web address to ensure that there are no collisions.

Source View

Figure 4.1 New XPage

Simple Properties
The first thing you will learn is how to alter the behavior of the <view> tag by changing its prop-
erties. XML allows you to set attributes on a tag, and this is one way you can set the properties of
the component associated with that tag. To get a list of all the properties associated with a partic-
ular tag, perform the following steps:

1. Expand the XPage outline and select the tag (in this case, the tag labelled XPage).

2. Select the All Properties tab from the Properties page.

All the properties for that tag are listed, and they are categorized based on function:

• Acessibility: Properties used to make your application more readily interpreted by
assistive technologies.

• Basics: General category of properties.

• Dojo: Properties that are used by Dojo (this use of Dojo in XPages is covered in Chapter
11, “Advanced Scripting”).

• Data: Optional properties that allow data to be associated with the tag and its children.

• Events: Properties that are events to which the component can respond.

• Styling: Properties that control the visual appearance of the component.

To set the value of a property, you can select the cell in the Value column and directly type
in the value. For example, to set the background color of the XPage to a shade of light gray, edit
the style property. The style property allows you to use Cascading Style Sheets (CSS) syntax to
change the appearance of the XPage. Select the style property and type in the following value:

background-color:rgb(0,0,255)

When you do this, the markup changes as you type, and you see the style attribute being
added to the view tag, as shown in Figure 4.2.

When you select a cell in the value column of the All Properties tab, you might see a button
to the right of the editable value area. This button allows you to launch an external property editor
if one exists for the property you are currently editing. An external property editor provides a GUI
that simplifies the editing of a specific property type for well-known property types. (You learn
how to work with property editors in Chapter 10.) So, if you are not a CSS expert, you can open
the property editor and have a user-friendly interface that allows you to set the style property, as
shown in Figure 4.3.

If you switch back to the Design tab for this XPage, you see that the page now has a blue
background.

52 Chapter 4 Anatomy of an XPage

Understanding XSP Tag Markup 53

XPage Tag AllProperties Tab Edit Style Property

Figure 4.2 Editing a tag property

Figure 4.3 Style Editor

Complex Properties
XML attributes can be used to set properties that have primitive data types (such as strings, inte-
gers, and so on); however, not all the properties of a component are primitive types. Nonprimitive
properties are referred to as complex properties. Complex properties are represented as their
own tags in the XPages XML vocabulary. Listing 4.5 shows an example of how to set the data
property.

Listing 4.5 Setting the Data Property

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1”></xp:dominoDocument>

</xp:this.data>

</xp:view>

A tag that begins with the prefix xp:this. is interpreted in a special way in XPages. This
tag indicates that a property is being set on the parent tag, and the name of the property is the part
of the tag name that follows the this. prefix. These tags are referred to as this tags and the syntax
is referred to as the xp:this. (or just this) syntax. The value of the property is the child of the
this tag. In the previous example, the data property of the view component is being set to a
Domino document (as represented by the xp:dominoDocument tag). Data source tags are dis-
cussed in detail later in the section, “Data Sources.” To summarize, the xp:this. syntax allows
you to set complex properties on the parent tag.

Complex Values
The this tag syntax is generic and can be used to set any property of an XPages component.
Listing 4.6 demonstrates how you set the id property using xp:this.id. This is for educational
purposes only; it’s not recommend for use in practice.

Listing 4.6 Setting the ID Property Using the xp:this. Syntax

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.id>view1</xp:this.id>

</xp:view>

This time, instead of using an XML attribute to set the property value, the this syntax and
the value of the property is the text nested between the start and end tags. As previously men-
tioned, you can set string property values using the XML attribute syntax; however, XML
imposes numerous limitations on attributes—they cannot contain certain characters (<, >, ”) and
linebreaks. Most of the time, this is not a problem, but there is one main case where this is a major

54 Chapter 4 Anatomy of an XPage

Understanding XSP Tag Markup 55

issue. When using the event properties, you typically want to add some JavaScript code that will
execute when that event is triggered. Your JavaScript code might span multiple lines and might
need to include some characters that are illegal for an XML attribute. XML has a solution to this
problem: character data (CDATA) section. A CDATA section allows you to add content to an
XML document that an XML parser interprets as character data and not markup. A CDATA sec-
tion starts with the following sequence of characters:

<![CDATA[

and ends with this sequence:

]]>

TIP The delimiters used in a CDATA section are intentionally meant to be obscure—
something that would not normally appear in an XML document and, as such, are easily
forgotten. By default, when you use the XPages Editor to add JavaScript, it is included in a
CDATA section. So, if you forget the exact syntax of a CDATA section, using the Script Edi-
tor is a quick way to generate one.

Listing 4.7 shows how to add some JavaScript that executes on the server after the XPage
loads. This example uses the XPage afterPageLoad event property; this event is triggered after
the XPage first loads and the associated business logic is executed.

Listing 4.7 Using a CDATA Section with the xp:this. Syntax

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<![CDATA[#{javascript:var msg = ”Page loaded successfully”;

println(msg);}]]>

</xp:this.afterPageLoad>

</xp:view>

TIP When you preview this page in the Notes client, you can see the message that was
printed using this JavaScript by viewing the trace (Help > Support > View Trace). This
trace file contains all server logging and server print statements.

Computed Properties
So far, you have seen how to set static property values (values that are fixed to a specific value
that is known at the time the XPage is created). But, what happens if you need to compute the
value of a property dynamically? For example, the value is not known when the page is created,

but it needs to be computed based on some data that will be available at the time the XPage exe-
cutes, such as the current username or current time. A good example of this is deciding when to
display some part of the user interface. XPages uses the rendered property to control when part
of the user interface is displayed. This is a boolean property, so the valid values are either true or
false (in the UI, this property is called Visible). If you go to the All Properties tab and edit this
property, you are presented with a drop-down that lists the valid values, but also notice a small
blue diamond. By default, this diamond is empty, which means that the property value is not
being computed. If you add business logic to compute the property value, the diamond changes to
a solid blue diamond. This convention is used throughout the user interface to allow you to easily
determine where business logic is being used. Select this diamond and you are presented with an
option to compute the property value, as shown in Figure 4.4.

56 Chapter 4 Anatomy of an XPage

Figure 4.4 Computing a property value

Figure 4.5 Script Editor

The Script Editor is opened to allow you to add your own JavaScript business logic to com-
pute the property value, as shown in Figure 4.5.

Understanding XSP Tag Markup 57

The Script Editor is discussed later in this book, but for now, let’s look at how computed
values are presented in the XPages markup. Listing 4.8 uses a Computed Field control that dis-
plays the computed value and a submit button, which is labeled “Refresh”, to cause the page to
be redrawn.

Listing 4.8 Computing a Value Dynamically

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text escape=”true”

value=”#{javascript:new Date().getSeconds()}”>

</xp:text>

<xp:button value=”Refresh” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”true”>

</xp:eventHandler>

</xp:button>

</xp:view>

TIP Controls that can display HTML or XML (such as a Computed Field or rich text edi-
tor) support a property called escape. This property indicates that the contents need to be
encoded before being displayed so that characters senstive in HTML or XML (such as <,>)
are escaped and display correctly.

A dynamically computed expression starts with the #{ character sequence, followed by the
programming language (for example, javascript), then a : character, then the computed
expression, and it ends with the } character. Here is the generic syntax of a dynamically com-
puted expression:

propertyName=”#{<language>:<expression>}”

Preview the page in the Notes client and the number of seconds is displayed, as shown in
Figure 4.6.

Computer seconds

Figure 4.6 Preview a computed value

Select the submit button, the page refreshes, and the number of seconds is updated. This is
because the value is being computed every time it is accessed. It is important to know that the
property is computed each time it is accessed, which might be more often than you may expect.
The property might be accessed multiple times as a page is being processed, so be careful if
you’re performing expensive computations. Another option is to compute the property value
once, when the page is loaded. Listing 4.9 shows a modified version of the previous example,
where the value is computed just once when the page loads.

Listing 4.9 Computing a Value when the Page Loads

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text escape=”true”

value=”${javascript:new Date().getSeconds()}”>

</xp:text>

<xp:button value=”Refresh” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”true”>

</xp:eventHandler>

</xp:button>

</xp:view>

Computed expressions are evaluated either every time they are accessed, dynamically or just
once when the XPage loads. The only difference between a dynamically computed expression and
one that is computed when the page loads is the start delimiter. The start delimiter for a computed
expression that is only evaluated when the page loads is the ${ character sequence. Here is the
generic syntax of a computed expression that is evaluated when the page is loaded:

propertyName=”${<language>:<expression>}”

With that one small change, submitting the page no longer changes the computed value,
because it does not get reevaluated after the initial page load.

Listing 4.10 shows example XPages markup for a more complete sample that shows dynam-
ically computed and computed-on-page-load values side by side. When you preview this sample,
initially both values should be the same (or at least within 1 second of each other), but each time
you click the submit button, only the dynamically computed value changes.

Listing 4.10 Complete Computed Values Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table>

58 Chapter 4 Anatomy of an XPage

Understanding XSP Tag Markup 59

<xp:tr>

<xp:td>Compute dynamically:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:new Date().getSeconds()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Compute on page load:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”${javascript:new Date().getSeconds()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick”

submit=”true”

refreshMode=”complete”

immediate=”false”

save=”true”>

</xp:eventHandler>

</xp:button>

</xp:td>

<xp:td></xp:td>

</xp:tr>

</xp:table>

</xp:view>

Data Binding
The computed values you saw in the previous section are read only. But, what if you want to bind a
control to a value and allow the control to read and update that value? You already saw an example
of this in Chapter 3, “Building Your First XPages Application,” where an edit box was used to edit
the value in a Notes document. Listing 4.11 shows the basic syntax of how to bind an edit box to a
field in a Domino document so that the edit box can be used to read and write the field value.

60 Chapter 4 Anatomy of an XPage

Listing 4.11 Data Binding to a Notes Document Field

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:inputText id=”inputText1” value=”#{document1.TextField}”>

</xp:inputText>

</xp:view>

Notice that, again, the #{ and } delimiters have been used around the value to which the
control is bound. In this case, no programming language is specified. When no language is speci-
fied, the default Expression Language (EL) is used. EL is a scripting language that provides
access to Java objects, and it is discussed in Chapter 5. Here again, you see XPages’ JSF heritage
emerging, because EL is what JSF uses by default for data binding. EL allows you to bind the edit
box value to a property of some object (in this case, a field named TextField in a Domino docu-
ment). This data binding is bidirectional (it can be used to read and write the property value). EL
is discussed in more detail in Chapters 5 and 6.

XPages Tags
Now that we’ve covered the basics of the XPages syntax, let’s look at the different types of tags
that XPages supports. There are nine categories of tags:

• Data sources

• Controls

• Containers

• View resources

• Converters

• Validators

• Simple actions

• Client-side scripting

• HTML

All the tags are listed by category, and we look closely at what the tags in each category are
used for and the specialized behavior of each type of tag.

Data Sources 61

Data Sources
The data source tags represent the data that users of your application can read and possibly create,
update, and delete. A data source can be set as the property of the main xp:view tag, and this
makes the data available to the entire XPage. Domino applications are inherently a special type of
database that allows you to store application data as Domino documents. A Domino document
stores the data as a collection of fields, each with its own data type. The structure of the data in a
Domino document can be specified by creating a form, which acts as a schema for the fields,
when a document is created using that form. A Domino document also contains special reserved
fields that contain information about the document (metadata), such as when the document was
last modified. Domino documents are discussed in Chapter 7, “Working with Domino Docu-
ments.” The data from a collection of Domino documents can be read using a Domino view.
When a Domino view is created, you must specify the types of documents it will contain (such as
documents created with a particular form) and what data from those documents is displayed in
the view (specific fields or event values computed from multiple fields). Domino views are dis-
cussed in Chapter 8, “Working with Domino Views.” Not surprisingly, data source tags corre-
spond to Domino documents and Domino views, as described in the following sections.

Domino Document
An xp:dominoDocument tag can be added to an XPage when you want to use that page to create
a new document, edit an existing document, read an existing document, or any combination of
these actions. Always specify the var and formName properties. The var property defines a vari-
able name by which the Domino document can be referenced by other tags in the XPage. For
example, when binding a control to a Domino document, the value of the var property is the first
part of the value binding expression (normally set to document1). The formName property defines
the form associated with the Domino document. As previously mentioned, the form defines the
structure of a document created with that form, and the XPages editor uses the information when
creating binding controls to the Domino document. By default, the Domino document being
operated on is contained in the same Domino database as the XPage; however, you can specify
another database on the same or even another server by using the databaseName property.
Listing 4.12 demonstrates how to edit the first Domino document in the Countries view.

Listing 4.12 Domino Document Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Country”

documentId=”#{javascript:database.getView(‘Countries’)
.getNthDocument(1).getNoteID()}”action=”editDocument”>

</xp:dominoDocument>

</xp:this.data>
continues

62 Chapter 4 Anatomy of an XPage

Country name:

<xp:inputText value=”#{document1.CountryName}” id=”countryName1”>

</xp:inputText>

<xp:br></xp:br>

Country code:

<xp:inputText value=”#{document1.CountryCode}” id=”countryCode1”>

</xp:inputText>

<xp:br></xp:br>

<xp:button value=”Save” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”true”>

</xp:eventHandler>

</xp:button>

</xp:view>

Domino View
A xp:dominoView tag can provide access to the collection of documents associated with a
Domino view. Listing 4.13 shows how a Domino view data source, which is configured on the
top-level xp:view tag, can be accessed by a data table control and a Computed Field. The data
table control iterates over the data to which it is bound (in this case, each entry or row in the
view). The data table makes the row data available by using the variable name specified by the
var property (for example, country). The row data can then be accessed, and values from the cur-
rent row are displayed by a Computed Field. The example shows how to access the column value
using JavaScript and EL. The data table control is discussed in more detail in the section, “Con-
tainers.” The Domino view data source is most often used with the view control, and Chapter 8
gives a detailed explanation.

Listing 4.13 Domino View Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:dataTable rows=”30” id=”dataTable1” value=”#{countries}”

var=”country”>

Listing 4.12 (Continued)

Data Sources 63

<xp:column id=”column1”>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:country.getColumnValue(‘Country
Code’)}”>

</xp:text>

</xp:column>

<xp:column id=”column2”>

<xp:text escape=”true” id=”computedField2”

value=”#{country[‘Country Name’]}”>

</xp:text>

</xp:column>

</xp:dataTable>

<xp:text escape=”true” id=”computedField3”

value=”#{javascript:’Entries Count: ‘ +
countries.getAllEntries().getCount()}”>

</xp:text>

</xp:view>

Data Context
The xp:dataContext tag provides access to data values within an XPage. Strictly speaking,
this tag is not a data source because there is no underlying data store; however, it is used in a
similar way. A data context can be used compute a value. (If you needed to compute a value
based on some fields in a Domino document, you could compute the value once using a data
context and then make the result available through a variable that can be referenced throughout
the XPage.) Listing 4.14 demonstrates how a data context is configured to compute a date value
and then how the value is referenced by a Computed Field.

Listing 4.14 Data Context Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.dataContexts>

<xp:dataContext

var=”FirstJan2010”

value=”${javascript:new Date(2010,0,1,0,0,0,0)}”>

</xp:dataContext>

</xp:this.dataContexts>

<xp:text value=”#{FirstJan2010}”>

</xp:text>

</xp:view>

64 Chapter 4 Anatomy of an XPage

Controls
The control tags represent the user interface widgets that you can use to create your application
interface. There are five broad categories of controls:

• Controls that support both the display and modification of a data value.

• Controls that provide a way for a user to trigger some action in the application (these
include buttons and hyperlinks).

• Controls that allow the user to select one or more predefined values.

• Controls that are used to display purposes only (for example, the user cannot interact
with these controls to directly modify the data).

• Controls that are used to upload and download files.

Each group of controls shares common properties, and the behavior of those properties is
basically the same across the group. If you can understand how a property applies to one control,
you can apply that knowledge to other controls of the same type. Control properties belong to the
following categories:

• Styling: Controls the appearance and some behavior of the control. All styling in
XPages is performed using CSS, which is an industry standard.

• Events: Provide a way to add logic that will be executed when an event associated with
a control is triggered. All controls support a set client-side JavaScript event, which can
be scripted.

• Data: Most, but not all, controls can be bound to data, either to display/modify the data
or manage the data for their child controls.

• Dojo: Adds Dojo functionality to a control.

• Basics: All controls have some shared basic properties (such as control ID, flag indicat-
ing if the control should be rendered, and so on).

• Accessibility: Provides more information about a control for use by assistive
technologies.

This section helps you to learn how to read the markup for the XPages control and under-
stand what that control does. Most controls are represented by a single tag in the markup, which
makes understanding them straightforward. Some controls are represented by a collection of tags
(such as a data table control). Other controls are normally used together in standard patterns. This
section takes you through some of the most common patterns for the different types of controls.

Editing Controls
Editing controls are used to edit data values in your application. Each control can be bound to a
data value and used to display and modify that value. This section reviews the following controls:

Controls 65

• Edit box

• Multiline edit box

• Rich text

• Date time picker

Here are some other things that you can do with editing controls:

• One or more validators can be applied, which checks that the value entered by the user
adheres to certain constraints.

• A single converter can be applied, which converts the user-entered string into another
data type (such as an integer value).

• Business logic can be written, which executes when the value bound to the control
changes.

• Type ahead can be enabled for an edit box, which provides a list of suggestions as the
user types a value.

Converters and validators are covered later in this chapter in the sections, “Converters” and
“Validators,” respectively.

Edit Box

The edit box xp:inputText tag adds a text edit control to the page. Listing 4.15 demonstrates
the most common use case where the edit box is bound to text field in a Notes document.

Listing 4.15 Edit Box Bound to a Notes Document Field

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:inputText id=”inputText1” value=”#{document1.TextField}”>

</xp:inputText>

</xp:view>

To enable type ahead, add the xp:typeAhead tag as a child of the edit box. The type ahead
is responsible for adding new behavior to the edit box, which displays the appropriate list of sug-
gestions as the user types. Listing 4.16 demonstrates a fixed list of suggestions that is provided
using a comma-separated list, but you can also dynamically compute the list of suggestions (for
example, using a column from a Notes view). Preview the associated sample and type the letter A
in the text field to see the type ahead in action.

66 Chapter 4 Anatomy of an XPage

Listing 4.16 Adding Type Ahead to an Edit Box

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:inputText id=”inputText1” value=”#{document1.TextField}”>

<xp:typeAhead mode=”full” minChars=”1”

valueList=”Australia,Austria,Canada,China,Estonia,

Ethiopia,Germany,Ghana,Iceland,Ireland”
valueListSeparator=”,” ignoreCase=”true”>

</xp:typeAhead>

</xp:inputText>

</xp:view>

Multiline Edit Box

Listing 4.17 shows the markup for a multiline edit box that has been configured to display a spe-
cific size. The size is based on the number of rows and columns of text to display and, therefore,
resizes itself if the default font changes. Type ahead is not supported for multiline edit boxes.

Listing 4.17 Multiline Edit Box Bound to a Notes Document Field

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:inputTextarea id=”inputTextarea1” value=”#{document1.TextField}”

rows=”4” cols=”40”>

</xp:inputTextarea>

</xp:view>

Controls 67

Rich Text

A rich text edit xp:inputRichText tag allows the user to enter text with some basic rich format-
ting using HTML syntax. Listing 4.18 shows a rich text control being used to edit a rich text
Notes field. The sample also has a Computed Field that displays the contents of the Notes field,
and a submit button so you can add rich text, submit, and then see what the rich text looks like.
The rich text content is stored in MIME format and is rendered to HTML for display. The Com-
puted Field is configured to escape the rich text, which will display the rich text markup. You can
experiment with changing this escape property to false, and you will see that the Computed Field
now displays the rich text instead of the markup.

Listing 4.18 Rich Text Control Bound to a Notes Document Field

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:inputRichText id=”inputRichText1”

value=”#{document1.RichTextField}”>

</xp:inputRichText>

<xp:text escape=”true” id=”computedField1”

value=”#{document1.RichTextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”

immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Figure 4.7 shows this sample previewed in the Notes client. You see that the rich text
markup is displayed in the Computed Field.

68 Chapter 4 Anatomy of an XPage

Date Time Picker

The date/time picker xp:dataTimeHelper tag is a helper that adds some behavior to an edit box
that helps the end user enter date and time values in the correct format. Components that add
behavior to another control are typically nested as children of the control they are enhancing. This
is the case for the date/time picker. Listing 4.19 demonstrates the default date/time picker settings.

Listing 4.19 Date/Time Picker Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:inputText id=”inputText1”>

<xp:this.converter>

<xp:convertDateTime type=”date”>

</xp:convertDateTime>

</xp:this.converter>

<xp:dateTimeHelper id=”dateTimeHelper1”>

</xp:dateTimeHelper>

</xp:inputText>

</xp:view>

A date/time picker is constructed from an edit box with two children: a date/time converter
xp:convertDateTime and the date/time helper xp:dataTimeHelper. The data being entered is
stored in a date format, and the converter is required to handle data conversion. The date/time
helper displays a button beside the edit box that can be used to open a date or time or date and
time picker user interface. Listing 4.20 shows how to use the date/time picker to enter the date
only, time only, and date plus time.

Rich text markup

Figure 4.7 Rich text sample

Controls 69

Listing 4.20 Date Only, Time Only, and Date Plus Time Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:inputText id=”inputText1”>

<xp:dateTimeHelper id=”dateTimeHelper1”>

</xp:dateTimeHelper>

<xp:this.converter>

<xp:convertDateTime type=”date”>

</xp:convertDateTime>

</xp:this.converter>

</xp:inputText>

<xp:inputText id=”inputText2”>

<xp:dateTimeHelper id=”dateTimeHelper2”>

</xp:dateTimeHelper>

<xp:this.converter>

<xp:convertDateTime type=”time”>

</xp:convertDateTime>

</xp:this.converter>

</xp:inputText>

<xp:inputText id=”inputText3”>

<xp:dateTimeHelper id=”dateTimeHelper3”>

</xp:dateTimeHelper>

<xp:this.converter>

<xp:convertDateTime type=”dateTime”>

</xp:convertDateTime>

</xp:this.converter>

</xp:inputText>

</xp:view>

Listing 4.20 uses , which is the entity number for a nonbreaking space and is used to
add space between the date time picker controls. When you preview this example, you see but-
tons beside each edit box and, when you click a button, the appropriate picker control is displayed
to allow you to enter either a date, time, or both, as shown in Figure 4.8.

70 Chapter 4 Anatomy of an XPage

Command Controls
Command controls provide one way for the user to trigger some business logic within your appli-
cation. The following controls can trigger the execution of server-side business logic in response
to a user action:

• Event handler

• Button

• Link

Event Handler

Chapter 3 presented some examples where buttons were used to save a document or cancel the
editing of a document. In those examples, an xp:eventHandler tag was automatically added as
a child of the button to submit the page and optionally save the document. The event handler is
not displayed on the rendered page. Instead, it is added as the child to another control, which is
visible on the page, and then it listens for client-side JavaScript events coming from its parent and
will submit the page. Listing 4.21 shows how an xp:eventHandler tag can be added to a Com-
puted Field control to force a page submit when the Computed Field is clicked.

Listing 4.21 Using an Event Handler to Submit an XPage when a Computed Field Is Clicked

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text id=”computedField1”

style=”border-color:rgb(0,0,0);border-style:double”

value=”#{javascript:new Date().getSeconds()}”>

<xp:eventHandler event=”onclick” submit=”true”

Date picker Time picker Date\time picker

Figure 4.8 Date picker, time picker, and date/time picker

Controls 71

refreshMode=”complete” immediate=”true” save=”false”>

</xp:eventHandler>

</xp:text>

</xp:view>

The event handler is normally used in conjunction with a button; however, as you can see
from the previous example, it can be used with any control. The event handler has built-in func-
tionality that allows you to automatically save the documents associated with the XPage. Setting
its save property to true automatically saves document updates. The event handler is also used
when you want to cancel editing and move to another page. In this case, the immediate property
needs to be set to true; this causes all processing of the submitted data to be ignored. The event
handler is covered in Chapter 6, “Building XPages Business Logic.”

Button

The xp:button tag is normally used in conjunction with an event handler. It is a command con-
trol, and it can directly invoke server-side JavaScript business logic. Listing 4.22 demonstrates
using a button click to execute some server-side JavaScript that manipulates the rendered prop-
erty of an image control. The server-side JavaScript code gets the component associated with the
image control and toggles the rendered flag and then, when the page is redisplayed, the image is
either shown or hidden. When you run this sample, you see that, initially, the image is displayed
and the label of the button is Hide Image. Clicking the button submits the page and, when it is
redisplayed, the label of the button is Show Image, and the image will no longer be displayed.

Listing 4.22 Executing Server-Side JavaScript Business Logic in Response to a Button Click

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:button id=”button1” immediate=”true” type=”submit”>

<xp:this.value><![CDATA[#{javascript:

var image1 = getComponent(”image1”);

if (image1.isRendered()) {

return ”Hide Image”;

}

else {

return ”Show Image”;

}}]]></xp:this.value>

<xp:this.action><![CDATA[#{javascript:

var image1 = getComponent(”image1”);

image1.setRendered(!image1.isRendered());

}]]></xp:this.action>

continues

72 Chapter 4 Anatomy of an XPage

</xp:button>

<xp:br></xp:br>

<xp:image url=”/notes_70x70.gif” id=”image1”></xp:image>

</xp:view>

Link

The xp:link tag displays a hyperlink on the rendered page. The link control is normally used to
navigate to another XPage, open a URL, or jump to another part of the current page (specified by
an anchor). A link can also be used in conjunction with an event handler to submit the XPage and
execute server-side JavaScript business logic. Listing 4.23 demonstrates the most common
usages of the link control. The value property of the link control can be set to either a location of
an XPage within the current application or any URL link. From Designer, you can specify the
link type as being either one of the following:

• Open Page allows you to specify the page to open

• URL allows you to open HTTP URL or an anchor, which allows you to navigate to
another part of the current page

Listing 4.23 Opening Another XPage, Web Page, and Submitting the Current Page with a Link

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:link escape=”true” text=”Open the Button Sample” id=”link1”

value=”ButtonSample.xsp”>

</xp:link>

<xp:br></xp:br>

<xp:link escape=”true” text=”xpagesblog.com” id=”link2”

value=”http://xpagesblog.com/”>

</xp:link>

<xp:br></xp:br>

<xp:link escape=”true” id=”link3”

text=”#{javascript:new Date().getSeconds()}”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:link>

</xp:view>

Listing 4.22 (Continued)

Controls 73

TIP Often, you might want to navigate to a different XPage after performing some busi-
ness logic. The next XPage may differ, depending on the outcome of the business logic.
You can use the xp:navigationRule tag to associate an XPage with an outcome. The
business logic can return an outcome value and change which page is displayed next.
Listing 4.24 contains the source code for two XPages that use navigation rules to navigate
from one to the other. The action associated with the button is coded to the outcome in the
navigation rule, and this is sufficient to trigger the navigation to the specified page.

Listing 4.24 Navigation Rule Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.navigationRules>

<xp:navigationRule

outcome=”NavigateB”

viewId=”/NavigateB.xsp”/>

</xp:this.navigationRules>

Navigate A

<xp:br/>

<xp:button

value=”Navigate B” id=”button1”

type=”submit” action=”NavigateB”>

</xp:button>

</xp:view>

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.navigationRules>

<xp:navigationRule

outcome=”NavigateA”

viewId=”/NavigateA.xsp”/>

</xp:this.navigationRules>

Navigate B

<xp:br/>

<xp:button

value=”Navigate A” id=”button1”

type=”submit” action=”NavigateA”>

</xp:button>

</xp:view>

74 Chapter 4 Anatomy of an XPage

Selection Controls
Selection controls allow the user to enter data by selecting one or more values from an available
list of options. So, the data that can be entered is constrained by the options that you present to the
user. In this section, you see how to specify what options are available to the user for each control.
Each example shows the control bound to a field in a Notes document, a Computed Field, and a
submit button. When you run the example, you can submit the page and see how changing the
selection in the control impacts the values that is saved to the document. This section reviews the
following controls:

• Listbox

• Combo box

• Checkbox

• Radio button

• Checkbox group

• Radio button group

The xp:listBox tag presents a list of options to the user, and the user can select either a
single value or multiple values, depending on how the listbox is configured.

Listbox

The listbox example in Listing 4.25 shows a single selection listbox and contains a fixed list of
values that are coded into the XPage using xp:selectItem tags (which represent the listbox
items). Each item has a label, which is what is displayed to the user, and a value, which is what is
saved to the document. When you preview this sample, select a language, and submit the page,
you see that the current value is set to the item value instead of the item label.

Listing 4.25 Listbox Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:listBox id=”listBox1” value=”#{document1.TextField}”>

<xp:selectItem itemLabel=”Irish” itemValue=”ga”>

</xp:selectItem>

<xp:selectItem itemLabel=”English” itemValue=”en”>

</xp:selectItem>

<xp:selectItem itemLabel=”French” itemValue=”fr”>

</xp:selectItem>

Controls 75

<xp:selectItem itemLabel=”German” itemValue=”de”>

</xp:selectItem>

</xp:listBox>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

The listbox example shown in Listing 4.26 shows a multiple selection listbox and how the
options are computed using server-side JavaScript. The server-side JavaScript expression returns
an array of strings, where each string is a label/value pair delimited by the | (pipe) character.
These strings are then automatcially converted into a collection of select items by the XPages
runtime. Note that the computed expression is computed only once, when the page is loaded as
indicated by the initial $ in the computed expression. This makes sense, because the list of
options shouldn’t change every time the page is submitted. When you preview this sample, notice
that you can select multiple items from the listbox. When you submit the page, you see that the
current value is set to a comma-delimited string that contains the item values of the selected
items.

Listing 4.26 Computed Listbox Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

Computed List

<xp:br></xp:br>

<xp:listBox id=”listBox1” value=”#{document1.TextField}”

multiple=”true”>

<xp:selectItems>

continues

76 Chapter 4 Anatomy of an XPage

<xp:this.value><![CDATA[${javascript:

var languages = new Array()

languages[0]=”Irish|ga”;

languages[1]=”English|en”;

languages[2]=”French|fr”;

languages[3]=”German|de”;

return languages;

}]]>

</xp:this.value>

</xp:selectItems>

</xp:listBox>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Combo Box

The xp:comboBox tag is a visually more compact form of a single-selection listbox control. It
presents a list of options to the user, and the user can select a single item. Listing 4.27 demon-
strates a combo box with a fixed list of options.

Listing 4.27 Combo Box Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:comboBox id=”comboBox1” value=”#{document1.TextField}”>

Listing 4.26 (Continued)

Controls 77

<xp:selectItem itemLabel=”Ireland” itemValue=”IE”>

</xp:selectItem>

<xp:selectItem itemLabel=”United Kingdom” itemValue=”GB”>

</xp:selectItem>

<xp:selectItem itemLabel=”France” itemValue=”FR”>

</xp:selectItem>

<xp:selectItem itemLabel=”Germany” itemValue=”DE”>

</xp:selectItem>

</xp:comboBox>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Figure 4.9 shows a Notes view that is used to populate the values in the combo box sample
shown in Listing 4.28. The third column of the Notes view contains the options to be displayed.
The lookup column contains the values needed for each select item that will be added to the
combo box. Each value in the third column contains the label and value for the select item that
will be created.

Instead of using <xp:selectItem> tags, the value property of the xp:comboBox tag has a
JavaScript expression that reads the third column of the Countries view. When this JavaScript
expression is evaluated, the combo box selections are automatically added. This JavaScript
expression uses a server-side JavaScript @function to access the database column (using
@DbColumn(), in fact) and the current database (@DbName()). Server-side JavaScript @ functions
are covered in Chapter 6. You can see from Listing 4.28 that it is easy to populate a combo box
from the contents of a view. Readers familiar with Notes programming know that this means that,
as your application supports more countries, the combo box automatically displays the new
options after the corresponding Notes document is added to the Countries view.

78 Chapter 4 Anatomy of an XPage

Listing 4.28 Computed Combo Box Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:comboBox id=”comboBox1” value=”#{document1.TextField}”>

<xp:selectItems

value=”#{javascript:@DbColumn(@DbName(), ‘Countries’, 3)}”>

</xp:selectItems>

</xp:comboBox>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

Date picker

Figure 4.9 Countries view

Controls 79

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Checkbox

A xp:checkBox tag allows the user to select or unselect a particular option. Depending on the
option the user selects, the checkbox returns a different value. The default values for a checkbox
are true and false. The checked and unchecked values can be set to any arbitrary value that is
appropriate for your application. In Listing 4.29, the check and unchecked values are set to
CHECKED and UNCHECKED, respectively.

Listing 4.29 Checkbox Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1”

formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:checkBox text=”I am a checkbox” id=”checkBox1”

defaultChecked=”true”

value=”#{document1.TextField}” checkedValue=”CHECKED”

uncheckedValue=”UNCHECKED”>

</xp:checkBox>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

80 Chapter 4 Anatomy of an XPage

Radio Button

A xp:radio tag allows the user to select only one option from a list of selections (the options are
all mutually exclusive). Radio buttons are always created in a group, because it doesn’t make sense
to have a single radio button on an XPage. When one radio button in a group is selected, all the
other radio buttons are automatically unselected. You can also specify which radio button is
selected by default. Listing 4.30 provides three options (Red, Green, and Blue, with Red being
selected by default). The label displayed to the user differs from the value saved when the user
selects that radio button. For example, the first radio button will have a label of Red (as denoted by
the text property), but the saved value will be RED (as denoted by the selectedValue property).

Listing 4.30 Radio Button Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>
</xp:dominoDocument>

</xp:this.data>

<xp:radio text=”Red” id=”radio1” groupName=”PrimaryColours”

defaultSelected=”true” selectedValue=”RED”

value=”#{document1.TextField}”>

</xp:radio>

<xp:radio id=”radio2” text=”Green” groupName=”PrimaryColours”

selectedValue=”GREEN” value=”#{document1.TextField}”>

</xp:radio>

<xp:radio id=”radio3” text=”Blue” groupName=”PrimaryColours”

selectedValue=”BLUE” value=”#{document1.TextField}”>

</xp:radio>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Controls 81

Checkbox Group

A xp:checkBoxGroup tag allows the user to select or unselect from a list of options. Depending
on the options the user selects, the checkbox group returns a different value. The value is a
comma-delimited string made up of the item values for all the selected items. In Listing 4.31, the
item values are 1,2,3 and, when all three items are selected, the value stored on the document will
be 1,2,3.

Listing 4.31 Checkbox Group Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:checkBoxGroup id=”checkBoxGroup1” value=”#{document1.TextField}”>

<xp:selectItem itemLabel=”First” itemValue=”1”>

</xp:selectItem>

<xp:selectItem itemLabel=”Second” itemValue=”2”>

</xp:selectItem>

<xp:selectItem itemLabel=”Third” itemValue=”3”>

</xp:selectItem>

</xp:checkBoxGroup>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

</xp:view>

Radio Button Group

A xp:radioGroup tag allows the user to select only one option from a list of items (the options
are all mutually exclusive). You use a radio button group in preference to individual groups when

82 Chapter 4 Anatomy of an XPage

all the items are at the same level in the hierarchy and are being grouped together without any
other controls or text between them. Listing 4.32 shows an example of this, which is functionally
equivalent to the earlier example that used individual radio buttons.

Listing 4.32 Radio Button Group Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:radioGroup id=”radioGroup1” value=”#{document1.TextField}”

defaultValue=”RED”>

<xp:selectItem itemLabel=”Red” itemValue=”RED”>

</xp:selectItem>

<xp:selectItem itemLabel=”Green” itemValue=”GREEN”>

</xp:selectItem>

<xp:selectItem itemLabel=”Blue” itemValue=”BLUE”>

</xp:selectItem>

</xp:radioGroup>

<xp:br></xp:br>

Current value:

<xp:text escape=”true” id=”computedField1”

value=”#{document1.TextField}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Submit” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”false”>

</xp:eventHandler>

</xp:button>

<xp:view>

Display Controls
Display controls present data to the user. These controls do not support any editing features. The
following controls are reviewed in this section:

• Label

• Computed Field

• Image

Controls 83

Label

The label xp:label tag provides a way for you to specify information about another control, typ-
ically the data to be entered for an input control (such as an edit box). Labels can be specified by
entering text next to the input control; however, doing this causes a problem for screen readers.
For example, when a visually impaired user sets focus on an edit box, his screen reader looks for
the label associated with that control and reads out the label text. If you do not associate a label
control with its corresponding input field control, a screen reader will not have the critical hint
and your application is not fully accessible. Listing 4.33 demonstrates how to associate a label
control with an edit box.

Listing 4.33 Label Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:label value=”Label for inputText1” id=”label1”

for=”inputText1”>

</xp:label>

<xp:inputText id=”inputText1”>

</xp:inputText>

</xp:view>

Computed Field

An xp:text tag presents the value of some computed expression to the user. The value can be
computed dynamically each time the page is displayed or alternatively when the page is first
loaded. Listing 4.34 demonstrates two Computed Fields, both of which have the same computed
value: Bold. The first Computed Field presents the computed value as typed in the pre-
vious sentence. The second Computed Field presents the computed value in Bold format. This is
because the second Computed Field has its escape property set to false so that the computed
value is not encoded for presentation as HTML.

Listing 4.34 Computed Field Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:’Bold’}]]>

</xp:this.value>

</xp:text>

<xp:br></xp:br>

<xp:text escape=”false” id=”computedField2”>

continues

84 Chapter 4 Anatomy of an XPage

<xp:this.value><![CDATA[#{javascript:’Bold’}]]>

</xp:this.value>

</xp:text>

</xp:view>

Image

The xp:image tag allows you to add graphics to an Xpage, as shown in Listing 4.35. Images can
be imported and stored as part of your Domino application as image resource design elements.
When you add an image control to an XPage, you can select from the images that have been
imported into your application. You can find the images under Resources > Images in the appli-
cation navigator.

Listing 4.35 Image Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:image url=”/notes_70x70.gif” id=”image1”>

</xp:image>

</xp:view>

File-Handling Controls
The file-handling controls allow you to upload and download files from the Domino document
data store. The files are saved as attachments to the current Domino document. The following
controls are reviewed in this section:

• File Upload

• Filed Download

File Upload

Listing 4.36 demonstrates how to use the File Upload control to attach a file to a Domino docu-
ment. The xp:fileUpload tag is bound to a rich text field in the Domino document and, when the
Domino document is saved, the file specified by the user is attached to the field in the document.

Listing 4.36 File Upload Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

Listing 4.34 (Continued)

Controls 85

<xp:dominoDocument var=”document1” formName=”PersonPhoto”>

</xp:dominoDocument>

</xp:this.data>

<xp:table>

<xp:tr>

<xp:td>

<xp:label value=”Person name:”

id=”personName_Label1” for=”personName1”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText value=”#{document1.personName}”

id=”personName1”>

</xp:inputText>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Person photo:”

id=”personPhoto_Label1”

for=”personPhoto1”>

</xp:label>

</xp:td>

<xp:td>

<xp:fileUpload

value=”#{document1.personPhoto}”

id=”personPhoto1”>

</xp:fileUpload>

</xp:td>

</xp:tr>

</xp:table>

<xp:button value=”Save” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”true”>

</xp:eventHandler>

</xp:button>

</xp:view>

86 Chapter 4 Anatomy of an XPage

File Download

Listing 4.37 shows how to use the File Download control to download an image attached to the
first document from the PeoplePhotos view. The xp:fileDownload tag is bound to the rich text
field in the Domino document and displays all files that are attached to this field. The File Down-
load control presents a list of the files that can be downloaded by the user and are retrievable by
clicking the associated link within this control.

Listing 4.37 File Download Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”PersonPhoto”

documentId=”#{javascript:database.getView(‘PeoplePhotos’).getNthDocument(1)
.getNoteID()}”

action=”openDocument”>

</xp:dominoDocument>

</xp:this.data>

<xp:table>

<xp:tr>

<xp:td>

<xp:label value=”Person name:”

id=”personName_Label1”

for=”personName1”>

</xp:label>

</xp:td>

<xp:td>

<xp:text value=”#{document1.personName}”

id=”personName1”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Person photo:”

id=”personPhoto_Label1”

for=”personPhoto1”>

</xp:label>

</xp:td>

<xp:td>

<xp:fileDownload

Containers 87

value=”#{document1.personPhoto}”

id=”personPhoto1”>

</xp:fileDownload>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

Containers
Containers are a specialized group of controls that can contain other controls. Some containers
are used for layout purposes, but some can be used to provide additional behavior to the controls
they contain. Several containers are designed for use with collections of data (such as the view,
data table, and repeat controls). Other containers allow you to more efficiently use the real estate
within your XPage (the tabbed panel and section controls). The following containers are available
for use within XPages:

• Panel

• Table

• View

• Data table

• Repeat

• Include page

• Tabbed panel

• Section

The following sections describe these containers in detail.

Panel
The panel container is used to layout its children within a rectangular area of an XPage. A panel
allows you to manipulate its children as a group. In Listing 4.38, the background-color for the
panel is set, and this changes the background for the Computed Fields contained within the panel.
You could also show or hide a group of controls by changing the rendered property of their par-
ent panel. Another powerful feature is the ability to scope data using panels. In Listing 4.38, there
are two document data sources—one associated with the XPage and one associated with a Panel
within the XPage. Both document sources use the same variable name: document. Three
Computed Fields reference the document variable and, at first glance, you might expect that they
will reference the same data source. When you run this example, you see that the first and third
Computed Field reference the document data source associated with the XPage. The second

88 Chapter 4 Anatomy of an XPage

Computed Field, however, references the data source associated with the panel. So, the document
data source is different for controls within the panel as opposed to those outside the panel,
because the data source associated with the panel is scoped to the children of the panel and is not
made available to controls outside the panel.

Listing 4.38 Panel Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:document.getNoteID()}”>

</xp:text>

<xp:panel id=”panel1” style=”background-color:rgb(215,215,255)”>

<xp:this.data>

<xp:dominoDocument var=”document” formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:text escape=”true” id=”computedField2”

value=”#{javascript:document.getNoteID()}”>

</xp:text>

</xp:panel>

<xp:text escape=”true” id=”computedField3”

value=”#{javascript:document.getNoteID()}”>

</xp:text>

</xp:view>

Another useful feature of the panel container is the ability to assign access control to a
panel. This allows you to do the following:

• Prevent certain users or groups of users from accessing part of an XPage

• Provide read-only access to part of an XPage for certain users or groups of users

Listing 4.39 includes four panels, each with an associated access control list (ACL). An
ACL (<xp:acl> tag) determines what access a user or group has to the associated content (the
contents of the panel). An ACL contains a list of entries (<xp:aclEntry> tag), and each entry has
a type, access rights, and optionally the name of the user or group. In Listing 4.39, the access is
set as follows:

Containers 89

• The first panel defaults to no access, so when you run the sample, you cannot see the
contents.

• The second panel provides reader access, so you can only read the contents; editing is
disabled.

• The third panel provides editor access, so you can edit the value.

• The fourth panel appears to provide multiple conflicting access but, in fact, the user gets
the highest access available. This is because a user might be in a user group (who might
have read-only access) and an administrators group (who might have editor access) and,
in this case, the user gets higher access rights.

Listing 4.39 Access Control List Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text value=”Default: No Access “ />

<xp:panel style=”border-style: double; padding: 4;”>

<xp:this.acl>

<xp:acl>

<xp:aclEntry type=”DEFAULT” right=”NOACCESS” />

</xp:acl>

</xp:this.acl>

<xp:inputText value=”Some Value” />

</xp:panel>

<xp:br />

<xp:br />

<xp:text value=”Default: Reader “ />

<xp:panel style=”border-style: double; padding: 4;”>

<xp:this.acl>

<xp:acl>

<xp:aclEntry type=”DEFAULT” right=”READER” />

</xp:acl>

</xp:this.acl>

<xp:inputText value=”Some Value” />

</xp:panel>

<xp:br />

<xp:br />

<xp:text value=”Default: Editor “ style=”width:200px;” />

<xp:panel style=”border-style: double; padding: 4;”>

<xp:this.acl>

<xp:acl>

continues

90 Chapter 4 Anatomy of an XPage

<xp:aclEntry type=”DEFAULT” right=”EDITOR” />

</xp:acl>

</xp:this.acl>

<xp:inputText value=”Some Value” />

</xp:panel>

<xp:br />

<xp:br />

<xp:text value=”Default: Editor, Reader, No Access “

style=”width:200px;” />

<xp:panel style=”border-style: double; padding: 4;”>

<xp:this.acl>

<xp:acl>

<xp:aclEntry type=”DEFAULT” right=”EDITOR” />

<xp:aclEntry type=”DEFAULT” right=”READER” />

<xp:aclEntry type=”DEFAULT” right=”NOACCESS” />

</xp:acl>

</xp:this.acl>

<xp:inputText value=”Some Value” />

</xp:panel>

<xp:messages showDetail=”true” />

</xp:view>

TIP The <xp:acl> tag can be used with the XPage view. ACLs are covered in detail in
Chapter 17, “Security.”

Table
A table container provides a way to lay out controls in an HTML table. The table is made up of
one or more rows with each row containing one or more cells. Cells can span multiple rows or
multiple columns. The style can be set for an individual cell or the entire row. The vertical and
horizontal alignment for rows and cells can also be set. Listing 4.40 includes a table with some
cells spanning multiple columns and rows. You can see that the syntax is similar to that used for a
regular HTML table. The reason XPages provides its own table tags is so that the associated com-
ponents can be manipulated in JavaScript like all the other XPages controls.

Listing 4.39 (Continued)

Containers 91

Listing 4.40 Table Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table border=”2”>

<xp:tr>

<xp:td style=”background-color:yellow”>1</xp:td>

<xp:td>2</xp:td>

<xp:td>3</xp:td>

<xp:td rowspan=”2” valign=”top”>4&8</xp:td>

</xp:tr>

<xp:tr>

<xp:td colspan=”2”>5&6</xp:td>

<xp:td>7</xp:td>

</xp:tr>

</xp:table>

</xp:view>

View
The view control provides a way to display collections of Domino documents. An entire chapter
is dedicated to the view control, so for now, the basic functionality is introduced. Listing 4.41
shows the default markup that is generated when you drag a view onto an XPage and configure it
to display data from an existing Notes view. The default view control has the following features:

• A pager is displayed at the top of the view control to allow users to page over all the doc-
uments in the view. Only the contents of the view control are retrieved and modified dur-
ing paging.

• A view column is created for each column of data. Each column has a header that dis-
plays the column title. The view column displays the contents of the Domino view col-
umn with the same name.

• The associated view data source is defined within the view control and scoped to that
control.

Listing 4.41 View Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:viewPanel rows=”30” id=”viewPanel1”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

continues

92 Chapter 4 Anatomy of an XPage

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”Country Code” id=”viewColumn1”>

<xp:viewColumnHeader value=”Country Code”

id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”Country Name” id=”viewColumn2”>

<xp:viewColumnHeader value=”Country Name”

id=”viewColumnHeader2”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

</xp:view>

Facets In Listing 4.41, notice that the view has a property called facets (the value being
set is a complex property so the this.facets syntax is used). Also notice that the page
tag has an attribute called xp:key. These two constructs work together to provide a mech-
anism that allows child controls to be placed in a specific place within their container. When
you preview the view sample, you see that the pager is displayed at the top of the view.
This is because the view has a reserved area at the top, and the pager is configured to be
placed within that region. This reserved area within a container is called a facet. Each facet
has a name. To place a control within a facet, you must add that control to the facet’s prop-
erty and use the xp:key attribute to specify the name of the facet. Facets are stored using
a map with the facet name being the key. The special xp:key attribute is used by the
XPages page loader to assign a complex property to a map. The order that the controls
appear in the facets property is irrelevant; only the value of the xp:key attribute is impor-
tant. Listing 4.42 shows a view with two pagers: the first is placed in the footer of the view
and the second in the header area. Each control has defined facet key values that corre-
spond to specific areas where a facet can be displayed.

Listing 4.41 (Continued)

Containers 93

Listing 4.42 View with Two Pagers

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:viewPanel rows=”30” id=”viewPanel1”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”footerPager” id=”pager2”

style=”background-color:rgb(255,206,255)”>

</xp:pager>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”

style=”background-color:rgb(255,255,206)”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”Country Code” id=”viewColumn1”>

<xp:viewColumnHeader value=”Country Code”

id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”Country Name” id=”viewColumn2”>

<xp:viewColumnHeader value=”Country Name”

id=”viewColumnHeader2”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

</xp:view>

TIP In Chapter 10, you learn how to extend XPages by creating your own custom con-
trols. When you create a custom control, you need a way to specify the location of its
facets. The xp:callback tag provides a way for custom controls to specify the location of
a facet.

94 Chapter 4 Anatomy of an XPage

Data Table
The data table provides the same functionality as the view control, but without the adaptations to
make it work seamlessly with a Domino view data source. In fact, the view control extends the
data table control and adds these adaptations. It is possible to create the same behavior using a
data table, and this is a good way to demonstrate what data tables can do and to improve your
understanding of what a view control does under the covers. Listing 4.43 shows a data table con-
figured with the same functionality as a standard view. The contents of the data table are defined
using xp:column tags. Each column can contain an arbitrary control, including other containers.
A column header can be specified using the header facet. The data table is bound to a collection
data value (in this case, a Domino view). It iterates over a dataset and renders the contents of each
column once for each entry. The value of the entry (such as the row data) is made available to the
children in the columns using the name specified in the var property. The children in the column
can extract values from the row data by using computed expressions. In Listing 4.43, you see that
the Computed Fields are configured to display the value of a specific column in the corresponding
row of the Domino view. The data table provides much more flexibility than the view control, but
as you can see, it requires more work to configure.

Listing 4.43 Data Table Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:dataTable rows=”30” id=”dataTable1” value=”#{countries}”

var=”country” style=”width:auto”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”header” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:column id=”column1”>

<xp:this.facets>

<xp:text escape=”true” xp:key=”header”

id=”computedField1” value=”Country Code”

style=”font-weight:bold;color:blue”>

</xp:text>

</xp:this.facets>

<xp:text escape=”true” id=”computedField2”

Containers 95

value=”#{javascript:country.getColumnValue(‘Country Code’)}”>

</xp:text>

</xp:column>

<xp:column id=”column2”>

<xp:this.facets>

<xp:text escape=”true” xp:key=”header”

id=”computedField3” value=”Country Name”

style=”color:blue;font-weight:bold”>

</xp:text>

</xp:this.facets>

<xp:text escape=”true” id=”computedField4”

value=”#{javascript:country.getColumnValue(‘Country Name’)}”>

</xp:text>

</xp:column>

</xp:dataTable>

</xp:view>

Repeat
The repeat control is the last in the family of containers that provide a way to iterate a dataset. The
repeat is useful when building modern style user interfaces. Unlike the view and data table, the
repeat does not limit you to displaying multiple columns of data and controls. The first repeat
example shows how to display multiple values using a Computed Field and have the values dis-
play in a row. In Listing 4.44, you can see that the repeat does not impose any layout restrictions
on its children.

Listing 4.44 Repeat Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:repeat id=”repeat1” value=”#{countries}” var=”country”

indexVar=”index”>

<xp:text id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:

var text = country.getColumnValue(“Country Name”);

var count = countries.getAllEntries().getCount();

if (index + 1 < count) {

continues

96 Chapter 4 Anatomy of an XPage

text += “,”;

}

return text;

}]]></xp:this.value>

</xp:text>

</xp:repeat>

</xp:view>

The repeat control can also be used to create controls. Consider the data table example in
Listing 4.43 again. What if you don’t know how many columns are needed in the data table when
you are designing the XPage (for example, if the dataset varies depending on who the user is)?
The repeat control can be used to create the correct number of columns and then it can remove
itself from the XPage after its job is done. Listing 4.45 shows how to do this and introduces a new
way to work with computed expressions. Setting the repeatControls property to true instructs
the repeat control to create a new copy of its children for each iteration over the dataset. The
removeRepeat property tells the repeat control to remove itself after the XPage is built. It is
important to remove the repeat in this example because, for the data table to work correctly, its
children must be xp:column tags. So, after the repeat creates the correct number of columns, it
needs to be removed to allow the data table to its job. The data table is bound to a two-dimen-
sional array with three columns of data and ten rows of data. The repeat is bound to an array, the
size of which defines the number of columns that will be created (such as three columns), and the
contents of this array are used as the titles of the columns (for example, A, B, C). The Computed
Field in the header facet of each column is bound using a load time computed expression; this
means that the title is computed once and remains static thereafter. The Computed Field, which
displays the column value, needs to be a computed value bound to the row data that the data table
makes available. A load time computed expression is used to compute the dynamic computed
expression, which binds the Computed Field to the row data. Here’s the sequence of computa-
tions for the Computed Field, which displays the data for each column:

1. During page load, the following expression is computed:

’#{data[‘+rowIndex+’]}’

2. This results in a dynamic computed expression; for example, the first column is

#{data[0]}

3. This expression extracts the appropriate value for the two-dimensional array.

Listing 4.44 (Continued)

Containers 97

Listing 4.45 Repeat Data Table Columns Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:dataTable id=”dataTable1” var=”data”>

<xp:this.value><![CDATA[${javascript:

var rows = new Array(10)

for (i=0; i<10; i++)

rows[i] = [“A” + i, “B” + i, “C” + i];

return rows;}]]>

</xp:this.value>

<xp:repeat id=”repeat1” rows=”30” repeatControls=”true”

var=”rowData” value=”#{javascript:[‘A’, ‘B’, ‘C’]}”

removeRepeat=”true” indexVar=”rowIndex”>

<xp:column>

<xp:this.facets>

<xp:text xp:key=”header”

value=”${rowData}”

style=”font-weight:bold” />

</xp:this.facets>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value>

<![CDATA[${javascript:’#{data[‘+rowIndex+’]}’}]]>

</xp:this.value>

</xp:text>

</xp:column>

</xp:repeat>

</xp:dataTable>

</xp:view>

When you preview the example shown in Listing 4.45, you see a table that contains the
three columns and ten rows of data with the headings A, B, C, as shown in Figure 4.10.

The final repeat example also shows how to create controls using a repeat; this time, radio
buttons are created. Radio buttons allow the user to select one from a list of mutually exclusive
options. Defining a group for the radio buttons ensures that only one button can be selected.
When all the radio buttons are at the same level in the control hierarchy, this works fine; however,
when radio buttons are nested inside different containers, this grouping behavior doesn’t work as
expected. You need to instruct the radio button to skip the correct number of containers for the
groups to apply. Listing 4.46 demonstrates how the skipContainers property on the radio but-
ton is set to 1 to get the group behavior to work correctly. By setting the skipContainers

98 Chapter 4 Anatomy of an XPage

property to 1, each radio button behaves as if it was a separate control in the containing XPage
and, because they appear at the same level in the page hierarchy and they have the same group
name, they have a group behavior (only one can be selected at a time).

Figure 4.10 Repeat columns sample

Listing 4.46 Repeat Radio Buttons Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoView var=”countries” viewName=”Countries”>

</xp:dominoView>

</xp:this.data>

<xp:repeat id=”repeat1” var=”country” removeRepeat=”true”

repeatControls=”true”

value=”#{javascript:database.getView(‘Countries’).getAllEntries()}”

indexVar=”index”>

<xp:radio id=”radio1” groupName=”countries”

text=”${javascript:country.getColumnValues().elementAt(1)}”

selectedValue=”${javascript:country.getColumnValues().elementAt(0)}”

defaultSelected=”${javascript:index==0}”

skipContainers=”1”>

</xp:radio>

</xp:repeat>

</xp:view>

Containers 99

Include Page
This control allows you to embed the contents of one XPage into another XPage. Listing 4.47
includes the view sample and data table sample shown earlier, so you can see the two samples
side by side. The page name to include can be computed, but only using an expression that is
evaluated when the page loads.

Listing 4.47 Include Page Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:include pageName=”/ViewSample.xsp” id=”include1”>

</xp:include>

<xp:include pageName=”/DataTableSample.xsp” id=”include2”>

</xp:include>

</xp:view>

Tabbed Panel
This container allows you to organize its children across multiple tabs. This allows you to group
related controls, which helps the user focus on a particular part of your XPage. Listing 4.48
extends the include page sample and adds each included page into a separate tab. It also shows
how to use a button to navigate between the tabs; this is a common pattern in wizard-style
interfaces.

Listing 4.48 Tabbed Panel Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:tabbedPanel id=”tabbedPanel1” selectedTab=”tabPanel1”>

<xp:tabPanel label=”View Sample” id=”tabPanel1”>

<xp:include

pageName=”/ViewSample.xsp” id=”include1”>

</xp:include>

<xp:button value=”Next” id=”button1”

immediate=”true” type=”submit”>

<xp:this.action><![CDATA[#{javascript:

var tabbedPanel = getComponent(“tabbedPanel1”);

tabbedPanel.setSelectedTab(“tabPanel2”);

}]]></xp:this.action>

</xp:button>

</xp:tabPanel>

continues

100 Chapter 4 Anatomy of an XPage

<xp:tabPanel label=”Data Table Sample” id=”tabPanel2”>

<xp:include

pageName=”/DataTableSample.xsp” id=”include2”>

</xp:include>

<xp:button value=”Previous” id=”button2”

immediate=”true” type=”submit”>

<xp:this.action><![CDATA[#{javascript:

var tabbedPanel = getComponent(“tabbedPanel1”);

tabbedPanel.setSelectedTab(“tabPanel1”);

}]]></xp:this.action>

</xp:button>

</xp:tabPanel>

</xp:tabbedPanel>

</xp:view>

Section
The section container organizes its children in a region that can be toggled between an opened
and closed state. In Listing 4.49, there are two sections: first, a default section that is closed by
default; and second, a section that is surrounded by gray bars on all sides, which is initially open.
It is also possible to disable the ability to expand and collapse a section, so if, in certain circum-
stances, it is not appropriate to allow this, that feature can be controlled.

Listing 4.49 Section Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:section id=”section1” header=”View” initClosed=”true”>

<xp:include pageName=”/ViewSample.xsp” id=”include1”>

</xp:include>

</xp:section>

<xp:section id=”section2” header=”Data Table” type=”box”>

<xp:include pageName=”/dataTableSample.xsp” id=”include2”>

</xp:include>

</xp:section>

</xp:view>

Listing 4.48 (Continued)

XPage Resources 101

XPage Resources
For all the example XPages shown in this chapter, all the JavaScript has been included within the
page, typically in CDATA sections. This procedure is acceptable when the JavaScript code is
simple. However, as your XPages applications become more complex, the need arises to write
JavaScript that might be broken into multiple methods and needs to be shared across multiple,
different XPages. The same applies for styling; if you apply styles to each individual control in
each XPage, it becomes difficult to maintain consistency across all of your XPages. For example,
if you decide to change the standard look for your buttons, you have to change every XPage that
contains a button control. These are the two most common examples of the need to associate
resources with your XPage. To solve these problems, XPages supports the ability to link to exter-
nal resource files. You have already seen an example of this, where the image control allows you
to link to an image resource that was created in the application. Six types of resources can be
associated with an XPage:

• Script library

• Style sheet

• Resource bundle

• Dojo module

• Generic resource

• Metadata

The sections that follow examine these resources in greater detail.

Script Library
XPages supports linking to client-side or server-side JavaScript script libraries. To create a script
library, follow these steps:

1. Choose File > New > Script Library.

2. In the New Script Library dialog (shown in Figure 4.11), enter a name (such as Server-
JavaScriptSample), and change the type to Server JavaScript.

3. Choose OK, and the new script library opens in the JavaScript™ editor (see Figure 4.12).

Next, create a simple JavaScript method that will be referenced later from an XPage:

1. Use the keyword function to start a new method (see Figure 4.12).

2. Give the method a name (such as getSomeText). This method does not take any
parameters.

3. In the body of this new method, return a static string (such as Some Text).

102 Chapter 4 Anatomy of an XPage

Finally, the script library can be referenced in an XPage, and the method you created can be
called (see Listing 4.50). The xp:script tag links to a script library. This tag can be added as a
child to the resources property of the xp:view tag. This makes the contents of the script library
available within the XPage. The script library can be created for either client-side or server-side
scripting. If the script library is for client-side use, a link to the library will be created in the head
section of the HTML page. The method that was defined can now be invoked from within the
XPage. In Listing 4.50, you can see the method being used to set the value property of a Com-
puted Field.

Figure 4.11 New Script Library dialog

Figure 4.12 JavaScript editor

XPage Resources 103

Listing 4.50 Script Library Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:script src=”/ServerJavaScriptSample.jss”

clientSide=”false”>

</xp:script>

</xp:this.resources>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:getSomeText()}”>

</xp:text>

</xp:view>

The use of JavaScript libraries, both client-side and server-side, is covered in Chapter 11.

Style Sheet
Follow these steps to create a style sheet:

1. Choose File > New > Style Sheet Resource.

2. In the New Style Sheet dialog (see Figure 4.13), enter a name (such as StyleSheetSam-
ple).

3. Choose OK, and the new style sheet opens in the style sheet editor (see Figure 4.14).

Figure 4.13 New Style Sheet dialog

104 Chapter 4 Anatomy of an XPage

The style sheet can now be referenced from an XPage, and the style class you defined can
be applied to controls. The xp:styleSheet tag links to a style sheet resource. This tag can be
added as a child to the resources property of the xp:view tag. Listing 4.51 demonstrates how the
style class you just defined can be applied to a button.

Listing 4.51 Style Sheet Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:styleSheet href=”/StyleSheetSample.css”>

</xp:styleSheet>

</xp:this.resources>

<xp:button value=”Button Sample” id=”button1”

styleClass=”sample”>

</xp:button>

</xp:view>

The use of style sheets is covered in Chapter 14, “XPages Theming.”

Resource Bundle
This complex property is used to load a resource bundle file and make its contents available
within the XPage. A resource bundle file is a text file that contains name/value pairs and is the

Figure 4.14 Style sheet editor

Next, create a button style class that will be referenced later from an XPage:

1. Use the name .sample to indicate that this style only applies to all elements with style
class set to sample (see Figure 4.14).

2. In the body of this new style class, set the various styles that you want to apply.

XPage Resources 105

standard format used when localizing Java-based applications. XPages and the resource bundle
are explained in Chapter 15, “Internationalization.” Listing 4.52 demonstrates how to load a
resource bundle where the source is a file associated with the Domino application. It also shows
how to reference a value from within the properties bundle (run this to get a free Irish lesson).
Chapter 15 covers the use of dojo with XPages in detail.

Listing 4.52 Resource Bundle Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:bundle

var=”greetings”

src=”greetings.properties”>

</xp:bundle>

</xp:this.resources>

<xp:text

escape=”true” id=”computedField1”

value=”${greetings.hello}”>

</xp:text>

</xp:view>

Dojo Module
This complex property conditionallys load Dojo modules. Although XPages already provides a
nice set of controls, you might want to use some of the additional controls in the Dojo library in
your application. In this case, you need to add the appropriate module to your page. Listing 4.53
demonstrates a sample of the <xp:dojoModule> tag. Chapter 11 covers the use of Dojo with
XPages.

Listing 4.53 Dojo Module Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:dojoModule

condition=”dojo.isBrowser” name=”some.Module”>

</xp:dojoModule>

</xp:this.resources>

</xp:view>

106 Chapter 4 Anatomy of an XPage

Generic Head Resource
This complex property provides a way to link to any external resource. (For example, you can
output a HTML <link> tag into the HTML page generated for an XPage.) HTML authors typi-
cally use this for linking to style sheets. Listing 4.54 demonstrates how to use the
<xp:linkResource> tag to link to a style sheet. As you can see, this is a lot less intuitive than
using the <xp:styleSheet> tag.

Listing 4.54 Generic Head Resource Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:linkResource

rel=”stylesheet”

type=”text/css”

href=”/xsp/chap04.nsf/xsp/StyleSheetSample.css”>

</xp:linkResource>

</xp:this.resources>

<xp:button value=”Button Sample” id=”button1”

styleClass=”sample”>

</xp:button>

</xp:view>

Metadata Resource
This complex property provides a way to output an HTML <meta> tag in the head section of the
HTML page generated for an XPage. Meta tags provide information about the page (such as a
page description, keywords, author name, and other metadata). The meta tag is added inside of
the HTML <head> tag. Listing 4.55 shows how to use the <xp:metaData> tag to provide
description metadata about an XPage. If you preview this sample and view the page source, you
see the following HTML tag within the generated HTML:

<meta name=”description” content=”Meta-Data Resource Sample”>

Listing 4.55 Metadata Resource Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:metaData

name=”description”

Converters 107

content=”Meta-Data Resource Sample”>

</xp:metaData>

</xp:this.resources>

Meta-Data Resource Sample

</xp:view>

Converters
Every control that has an associated value optionally needs to be able to convert that value into a
format that’s suitable for display to the application users. Additionally, if the control allows the
user to enter a new value, the control optionally needs to be able to convert the value the user
entered into the appropriate data type. Controls with an associated value use string values by
default, but even if the underlying data value is a string, conversion might still be needed because
users should see the data by using the appropriate conventions for their locale. When the underly-
ing data type is not a string, conversion must be performed both when the initial values are pre-
sented to the user and before the user-inputted value is processed by the application business
logic. Converters perform these conversions. You have already seen converters being used in the
date/time picker example—a date/time converter is set on the edit box to handle the date/time
conversion. Table 4.1 lists all the converter tags, the converter name, and a short description.

Table 4.1 Converters

Tag Converter ID Description

xp:convertDateTime Date Time Converts to and from date values.

xp:convertList List Converts between to and from list values. The
string representation of the list is the string value
of each list item separated by the specified
delimiter.

xp:convertMask Mask Masks the local value.

xp:convertNumber Number Converts to and from numeric values, including
currency and percent values.

xp:customConverter Custom Provides a way to provide your own logic to
convert the data value to and from its string
representation.

108 Chapter 4 Anatomy of an XPage

Listing 4.56 demonstrates how to use each of the converters with a Computed Field:

• The Date Time converter is to the German/Germany locale and displays the long repre-
sentation of the date and time. The xp:converter tag allows another converter to be
loaded using its converter ID.

• The List converter is shown converting a JavaScript array to a | delimited string.

• The Mask converter masks out the first three uppercase characters for the string value.

• The Number converter converts a random number (between 1 and 100) with two deci-
mal places.

• The Custom converter converts the string value 1 to the string representation One.
A custom converter allows you to provide your own conversion logic.

Listing 4.56 Converter Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<xp:actionGroup>

<xp:setValue binding=”#{viewScope.date}”

value=”#{javascript:new Date()}” />

<xp:setValue binding=”#{viewScope.number}”

value=”#{javascript:Math.random()*100}” />

</xp:actionGroup>

</xp:this.afterPageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.date}”>

<xp:this.converter>

<xp:convertDateTime locale=”de_DE”

dateStyle=”long”

timeStyle=”long”

type=”both”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

<xp:br/>

<xp:text escape=”true” id=”computedField2”

value=”#{viewScope.date}”>

<xp:this.converter>

<xp:converter

converterId=”com.ibm.xsp.DateTime”>

Converters 109

</xp:converter>

</xp:this.converter>

</xp:text>

<xp:br/>

<xp:text escape=”true” id=”computedField3”

value=”#{javascript:[‘One’,’Two’,’Three’]}”>

<xp:this.converter>

<xp:convertList delimiter=”|”>

</xp:convertList>

</xp:this.converter>

</xp:text>

<xp:br/>

<xp:text escape=”true” id=”computedField4”

value=”AbCdEf”>

<xp:this.converter>

<xp:convertMask

mask=”UUU”>

</xp:convertMask>

</xp:this.converter>

</xp:text>

<xp:br/>

<xp:text escape=”true” id=”computedField5”

value=”#{viewScope.number}”>

<xp:this.converter>

<xp:convertNumber

maxFractionDigits=”2”>

</xp:convertNumber>

</xp:this.converter>

</xp:text>

<xp:br/>

<xp:text escape=”true” id=”computedField6”

value=”1”>

<xp:this.converter>

<xp:customConverter

getAsObject=”#{javascript:if(value==’One’) return ‘1’}”

getAsString=”#{javascript:if(value==’1’) return ‘One’}”>

</xp:customConverter>

</xp:this.converter>

</xp:text>

</xp:view>

110 Chapter 4 Anatomy of an XPage

Validators
Every control that can be used to edit a value must have a way to allow the inputted value to be
checked for correctness. This is the purpose of a validator—you can optionally associate one or
more validators with an input control to check that the value the user entered meets certain crite-
ria. The validation can be performed as the XPage is submitted and, if the values are invalid, the
submit operation is cancelled. This saves unnecessary round trips to the server and improves the
user experience. When validation fails, an error message is presented to the user, allowing him to
take corrective action. XPages supports special output controls for displaying either the error
messages associated with a single control or all the error messages for the entire XPage. Table 4.2
lists all the validator tags, the validator name, and a short description.

Table 4.2 Validators

Tag Name Description

xp:validateRequired Required Used when a value must be provided.

xp:validateConstraint Constraint Used when the value must adhere to a
convention as defined by the associ-
ated regular expression.

xp:validateDateTimeRange Date Time Range Used when a date value must lie
within a specified range.

xp:validateDoubleRange Double Range Used when a double value must lie
within a specified range.

xp:validateExpression Expression Used when the value must adhere to a
convention as defined by the associ-
ated computed expression.

xp:validateLength Length Used when the length of a string value
must be constrained to a certain size.

xp:validateLongRange Long Range Used when a long value must lie
within a specified range.

xp:validateModulusSelfCheck Modulus Self
Check

Used for numbers with a self-check
digit (such as a credit-card number).

xp:customValidator Custom Used when custom business logic
needs to be provided to validate the
value.

Validators 111

Listing 4.57 demonstrates usage for each validator listed in Table 4.2. Notice that there is
no data source associated with this page, but you can still run this sample and see the validators in
action. If you preview this page and select the Submit button without entering any values, you are
prompted with an error message saying, “Value is required,” and the page is not submitted. This is
because the first validator requires that you enter a valid in the first edit box. This is an example of
client-side validation in action (that is, the value is validated on the client-side and the page won’t
be submitted with invalid values). Performing the validation on the client-side is good from the
user perspective, because she doesn’t have to wait for a server round trip before finding out that
she hasn’t entered a value correctly. It is also good from the server perspective, because valuable
server cycles are not taken up processing pages that need to be returned to the user. Entering a
value allows you to submit the page because only this first edit box is a required value. To see the
other validators in action, you must enter a value. Try entering various values to see how each val-
idator behaves. The only validator that does not support client-side validation is the modulus self-
check validator. When you enter an invalid value into the associated edit box, the page is
submitted and the error is displayed when the page is redrawn. The xp:message tag displays any
error messages associated with a specific control. To see all the error messages for the entire page,
the xp:messages tag is used.

Listing 4.57 Validator Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table>

<xp:tr>

<xp:td>

<xp:label value=”Required:” id=”label1”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText1”>

<xp:this.validators>

<xp:validateRequired

message=”Value is required.”>

</xp:validateRequired>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message1” for=”inputText1”>

</xp:message>

</xp:td>

continues

112 Chapter 4 Anatomy of an XPage

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Constraint (‘foo’):”

id=”label2”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText2”>

<xp:this.validators>

<xp:validateConstraint

message=”Value must be set to ‘foo’”

regex=”foo”>

</xp:validateConstraint>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message2” for=”inputText2”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Date Range (after 31 Dec 2010):”

id=”label3”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText3”>

<xp:this.validators>

<xp:validateDateTimeRange

message=”Earliest date is 1 Jan 2011”

minimum=”#{javascript:new Date(2011,0,1,0,0,0,0)}”>

</xp:validateDateTimeRange>

</xp:this.validators>

<xp:dateTimeHelper id=”dateTimeHelper1”>

</xp:dateTimeHelper>

Listing 4.57 (Continued)

Validators 113

<xp:this.converter>

<xp:convertDateTime type=”date”>

</xp:convertDateTime>

</xp:this.converter>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message3” for=”inputText3”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Double Range (1-100):”

id=”label4”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText4”>

<xp:this.validators>

<xp:validateDoubleRange

maximum=”100”

minimum=”1”

message=”Enter value between 1-100”>

</xp:validateDoubleRange>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message4” for=”inputText4”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Expression (‘bar’):”

id=”label5”>

</xp:label>

</xp:td>

<xp:td>

continues

114 Chapter 4 Anatomy of an XPage

<xp:inputText id=”inputText5”>

<xp:this.validators>

<xp:validateExpression
clientScript=”value==’bar’”
expression=”#{javascript:value==’bar’}”

message=”Value must be set to ‘bar’”>

</xp:validateExpression>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message5” for=”inputText5”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Length (min. 5 chars.):”

id=”label6”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText6”>

<xp:this.validators>

<xp:validateLength minimum=”5”

message=”Enter min. 5 characters”>

</xp:validateLength>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message6” for=”inputText6”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Long Range (1-100):”

Listing 4.57 (Continued)

Validators 115

id=”label7”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText7”>

<xp:this.validators>

<xp:validateLongRange

minimum=”1”

maximum=”100”

message=”Enter value between 1-100”>

</xp:validateLongRange>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message7” for=”inputText7”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Modulus Self Check (964387):”

id=”label9”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText9”>

<xp:this.validators>

<xp:validateModulusSelfCheck

modulus=”10”

message=”Value must be modulus 10”>

</xp:validateModulusSelfCheck>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message9” for=”inputText9”>

</xp:message>

</xp:td>

</xp:tr>

continues

116 Chapter 4 Anatomy of an XPage

<xp:tr>

<xp:td>

<xp:label value=”Custom Validator (‘baz’):”

id=”label10”>

</xp:label>

</xp:td>

<xp:td>

<xp:inputText id=”inputText10”>

<xp:this.validators>

<xp:customValidator>

<xp:this.validate>

<![CDATA[#{javascript:

if (value != “baz”) {

return new javax.faces.application.FacesMessage(“Value must be set to
‘baz’”);

}

}]]>

</xp:this.validate>

</xp:customValidator>

</xp:this.validators>

</xp:inputText>

</xp:td>

<xp:td>

<xp:message id=”message10” for=”inputText10”>

</xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td colspan=”3”>

<xp:messages id=”messages1” layout=”table”>

</xp:messages>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td colspan=”3”>

<xp:button value=”Submit”

id=”button1”>

Listing 4.57 (Continued)

Validators 117

<xp:eventHandler

event=”onclick”

submit=”true”

refreshMode=”complete”

immediate=”false”

id=”eventHandler1”>

</xp:eventHandler>

</xp:button>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

TIP There are occasions where using client-side validation is not what you want. So you
can disable this for a particular edit control using the disableClientSideValidation
property, set this to true to disable client-side validation. To disable client-side validation
for the entire page, don’t use the xp:eventHandler tag to submit the page—if using a
button to submit, change its type to submit. To disable client-side validation for the entire
application, go to the application properties and set Client Validation to off. To disable
client-side validation for the entire server, change the server xsp.properties file. Figure 4.15
shows how the page behaves when client-side validation is not being used.

Figure 4.15 Validation failing

118 Chapter 4 Anatomy of an XPage

Table 4.3 Simple Action Tags

Tag Name Type Description

xp:changeDocumentMode Change Document
Mode

server Changes the access
mode for the document
to one of: read only, edit,
auto edit (i.e. edit mode
if user has sufficient
rights) and toggle (if in
edit mode, change to
read-only and vice
versa).

For your interest, to get the page to submit with no errors using the values shown, see
Figure 4.16.

Figure 4.16 Validation passing

Simple Actions
Simple actions provide a simple way to add business logic to an XPage without the need to write
any code. They perform common actions, such as opening a page, setting a value, deleting a doc-
ument, and so on. Their behavior can be simply configured by changing their parameters. Simple
actions are covered in Chapter 6. In this section, the tags are listed with a brief description, and
the syntax for using simple actions is shown and explained.

Table 4.3 lists all the simple action tags and briefly describes their purposes.

Simple Actions 119

Table 4.3 Simple Action Tags

Tag Name Type Description

xp:confirm Confirm Action server Presents the user with a
message and options to
allow execution to con-
tinue or stop.

xp:createResponse Create Response
Document

server Creates a response
document and opens the
specified page to edit it.

xp:deleteDocument Delete Document server Deletes the current
document and opens the
current page.

xp:deleteSelectedDocuments Delete Selected
Documents

server Deletes the documents
selected in a view after
first prompting the user
to confirm this action.

xp:executeClientScript Execute Client
Script

client Executes a client-side
script.

xp:executeScript Execute Script server Executes a server-side
script.

xp:modifyField Modify Field server Modifies a field in the
current document.

xp:openPage Open Page server Navigates to a specific
page where you can set
the document ID of an
existing document that
can be opened for read-
ing or editing.

xp:publishValue Publish Component
Property

client Publishes the value for a
component event.

xp:publishViewColumn Publish View
Column

client Publishes the value of
a view column as a
component event.

120 Chapter 4 Anatomy of an XPage

Some of the simple actions refer to the current document, which means the nearest Domino
document to the action. You saw earlier in this chapter that an XPage can contain multiple
Domino documents, and each can be referenced by name using the value of its var property. The
current document can be referenced by an implicit variable called currentDocument. Listing
4.58 contains two Domino documents: one associated with the view and one associated with a
panel. Two Computed Fields are both bound to the variable currentDocument, which displays a
string representation of the value of that variable. (In this case, it is the Java class name and hash
code of the associated Java object.) When you run this sample, you see that the values displayed
by each Computed Field is different, which means that the Domino document being referenced
changes. In this case, the Domino document referenced by the first Computed Field is the docu-
ment associated with the view. The second Computed Field references the document associated
with the panel.

Listing 4.58 Current Document Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”document1”

Table 4.3 Simple Action Tags

Tag Name Type Description

xp:save Save Data Sources server Saves all the data
sources in the current
page and optionally
navigates to another
page.

xp:saveDocument Save Document server Saves the current
document.

xp:setComponentMode Set Component
Mode Action

server Changes the mode of a
component to either
view, edit, or help mode.

xp:setValue Set Value server Sets the value of a
computed expression.

xp:actionGroup Action Groups server Executes a group of
simple actions.

Simple Actions 121

formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:text escape=”true” id=”computedField1”

value=”#{currentDocument}”>

</xp:text>

<xp:br/>

<xp:panel>

<xp:this.data>

<xp:dominoDocument var=”document2”

formName=”Document”>

</xp:dominoDocument>

</xp:this.data>

<xp:text escape=”true” id=”computedField2”

value=”#{currentDocument}”>

</xp:text>

</xp:panel>

</xp:view>

Simple actions are associated with the event properties of a control, which means that,
when the corresponding event is triggered, the simple action is executed. Listing 4.59 demon-
strates the set value simple action being used to set a view scope (limited to the lifetime of the
XPages view) variable to the value Some Value. The simple action is executed once, after the
page loads. A Computed Field on the XPage is also bound to the same variable and displays the
value. When you run this sample, you see the string Some Value displayed on the page.

Listing 4.59 Simple Action Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<xp:setValue

binding=”#{viewScope.someValue}”

value=”Some Value” />

</xp:this.afterPageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.someValue}”>

</xp:text>

</xp:view>

122 Chapter 4 Anatomy of an XPage

Multiple simple actions can be grouped and executed together by using action groups.
Action groups can be nested and have conditions that allow you to build up an execution hierar-
chy. Listing 4.60 demonstrates using action groups to create a simple calculator that can perform
addition and subtraction. The sample contains edit boxes that allow you to enter the values to use
in the calculation and buttons to specify the operation you want to execute. When you select the =
button, the action group that executes will execute one of two child action groups. The first is
used when the operation is subtraction, and the second when the operation is addition.

Listing 4.60 Action Group Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<xp:actionGroup>

<xp:setValue

binding=”#{viewScope.first}”

value=”0” />

<xp:setValue

binding=”#{viewScope.second}”

value=”0” />

<xp:setValue

binding=”#{viewScope.operation}”

value=”+” />

</xp:actionGroup>

</xp:this.afterPageLoad>

<xp:table>

<xp:tr>

<xp:td>

<xp:inputText id=”inputText1” style=”width:50px”

value=”#{viewScope.first}”>

<xp:this.converter>

<xp:convertNumber type=”number”>

</xp:convertNumber>

</xp:this.converter>

</xp:inputText>

</xp:td>

<xp:td>

<xp:button value=”+” id=”button1”

style=”width:25px;height:25.0px”

type=”submit”>

<xp:this.action>

Simple Actions 123

<xp:setValue

binding=”#{viewScope.operation}”

value=”+” />

</xp:this.action>

</xp:button>

</xp:td>

<xp:td></xp:td>

<xp:td></xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:inputText id=”inputText2” style=”width:50px”

value=”#{viewScope.second}”>

<xp:this.converter>

<xp:convertNumber type=”number”>

</xp:convertNumber>

</xp:this.converter>

</xp:inputText>

</xp:td>

<xp:td>

<xp:button value=”-” id=”button2”

style=”width:25px;height:25.0px”

type=”submit”>

<xp:this.action>

<xp:setValue

binding=”#{viewScope.operation}”

value=”-” />

</xp:this.action>

</xp:button>

</xp:td>

<xp:td>

<xp:button value=”=” id=”button3”

style=”width:25px;height:25.0px”

type=”submit”>

<xp:this.action>

<xp:actionGroup>

<xp:actionGroup

condition=”#{viewScope.operation==’-’}”>

<xp:setValuebinding=
”#{viewScope.result}”

continues

124 Chapter 4 Anatomy of an XPage

value=”#{viewScope.first - viewScope.second}” />

</xp:actionGroup>

<xp:actionGroup

condition=”#{viewScope.operation==’+’}”>

<xp:setValue

binding=”#{viewScope.result}”

value=”#{viewScope.first + viewScope.second}” />

</xp:actionGroup>

</xp:actionGroup>

</xp:this.action>

</xp:button>

</xp:td>

<xp:td>

<xp:inputText id=”inputText3” style=”width:50px”

value=”#{viewScope.result}”>

<xp:this.converter>

<xp:convertNumber type=”number”>

</xp:convertNumber>

</xp:this.converter>

</xp:inputText>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

As well as making execution conditional based on some computed value, you can also
make execution conditional on the user agreeing to proceed. The confirm simple action can
prompt the user before proceeding with an execution. In Listing 4.61, the confirm simple action is
used within an action group. This causes some client-side JavaScript to execute when the user
clicks the button. The specified message, such as “Add some more?,” displays with OK and Can-
cel options. If the user chooses OK, the page is submitted, the next action executes, and otherwise
no further action occurs. The simple actions for deleting a single document or multiple docu-
ments have this confirmation built in.

Listing 4.60 (Continued)

Client-Side Scripting 125

Listing 4.61 Confirm Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<xp:setValue

binding=”#{viewScope.someValue}”

value=”Some Value” />

</xp:this.afterPageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.someValue}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Add More?” id=”button2”>

<xp:eventHandler event=”onclick”

submit=”true” refreshMode=”complete”>

<xp:this.action>

<xp:actionGroup>

<xp:confirm

message=”Add some more?”>

</xp:confirm>

<xp:setValue

binding=”#{viewScope.someValue}”

value=”#{viewScope.someValue} More”>

</xp:setValue>

</xp:actionGroup>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Client-Side Scripting
Earlier, you saw how to add a script library to an XPage, which is the most common approach to
including client-side JavaScript. Two additional tags can be used for client-side scripting:

• The xp:scriptBlock tag (Script Block) can be used to include a block of JavaScript
code at a specified location in the page.

126 Chapter 4 Anatomy of an XPage

• The xp:handler tag (Event Handler) is used to add an event handler to a control. This
tag is used in conjunction with the xp:eventHandler to set its handlers property, mean-
ing that you must create an xp:this.handlers tag as a child of xp:eventHandler and
make the xp:handler a child of this, as shown in Listing 4.62.

Listing 4.62 demonstrates how to include two JavaScript functions in a script block and
how to call those functions in response to the onclick event from a button. (Chapter 11 covers
client-side JavaScript scripting in depth.)

Listing 4.62 Client-Side Scripting Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:scriptBlock type=”text/javascript”>

<xp:this.value>

<![CDATA[

function doSomething() {

alert(“Did Something”);

}

function doSomethingElse() {

alert(“Did Something Else”);

}

]]>

</xp:this.value>

</xp:scriptBlock>

<xp:button value=”Do Something” id=”button1”>

<xp:eventHandler event=”onclick”>

<xp:this.handlers>

<xp:handler

type=”text/javascript”

script=”doSomething()”>

</xp:handler>

</xp:this.handlers>

</xp:eventHandler>

</xp:button>

<xp:br/>

<xp:button value=”Do Something Else” id=”button2”>

<xp:eventHandler event=”onclick”>

<xp:this.handlers>

<xp:handler

HTML Tags 127

type=”text/javascript”

script=”doSomethingElse()”>

</xp:handler>

</xp:this.handlers>

</xp:eventHandler>

</xp:button>

</xp:view>

HTML Tags
The next group of tags add some fundamental HTML tags to the displayed page. Table 4.4 lists
the tags, their name, and a short description. You can also type text and HTML directly into the
source view of an XPage to add arbitrary markup to an XPage.

Table 4.4 HTML Tags

Tag Name Description

<xp:br> Line Break Inserts a line break at the specified point in the
XPage

<xp:span> Span Content Inserts an HTML span at the specified point in the
XPage

<xp:paragraph> Paragraph Inserts an HTML paragraph at the specified point in
the XPage

Listing 4.63 demonstrates the use of these tags and how to add the equivalent markup
directly to an XPage. One of the main reasons that you might favor the XSP tags or plain pass-
through HTML is that you can manipulate the XSP tags by using server JavaScript. (In the example
shown, the rendered property is being set using a JavaScript-computed expression. This allows
you to easily show/hide the XSP tags using server logic.)

128 Chapter 4 Anatomy of an XPage

Listing 4.63 HTML Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:span id=”span1” rendered=”#{javascript:true}”>

This is a XSP span

</xp:span>

<xp:br></xp:br>

<xp:paragraph id=”paragraph1” rendered=”#{javascript:true}”>

This is a XSP paragraph

</xp:paragraph>

This is a HTML span

</br>

<p>This is a HTML paragraph</p>

</xp:view>

Conclusion
This concludes your lesson on the basics of the XSP language. Don’t worry if you haven’t fully
mastered all the tags covered; at this point, the important thing is to look at the source for a simple
XPage (like the samples provided in this chapter) and to read the source and begin to understand
what the page will do. Being able to use source mode to read and write XSP is a key skill that you
need to master XPages and the XSP programming language. In the next chapter, XPages is
explored at a deeper level, and you learn about its JSF foundations. If you want to stick with pure
XPages programming for now, feel free to temporarily skip the next chapter. But, you are
strongly urged to read at least the section on the JSF processing model in the next chapter before
moving on, because it provides some critical insight into how XPages are processed on the server.

129

As mentioned in the beginning of this book, XPages evolved from a previous runtime technology
called XFaces. XFaces was conceived as a way for IBM to provide a universal user-interface pro-
gramming model that could be adopted across its diverse portfolio of application development
platforms. As a runtime technology, it needed to cater to developers of differing skill sets, such as
Java/J2EE developers, Domino developers, and so forth. These categorizations are not mutually
exclusive, and many organizations contain developers with both sets of skills who might be work-
ing on the same projects. In fact, many such developers want to choose which tools to use based
on the task they need to accomplish at any given time. (For example, they might need to rapidly
create a user interface using a WYSIWYG tool and then switch to using Java to add some com-
plex business logic.)

What IBM set out to achieve with XFaces was to define a programming model that would
be suitable for a so-called script-level developer, such as someone who knows how to program
using a markup language and JavaScript. This programming model was intended to allow devel-
opers to target multiple platforms, such as web and the Eclipse Rich Client Platform (RCP). Also,
this programming model was based on the JavaServer Faces (JSF) standard-based web applica-
tion development framework. Achieving this goal would provide the following benefits to appli-
cation developers:

• Learn Once, Write Anywhere: Developers need only learn one model for development
across these platforms. The model must be flexible and powerful to allows programmers
to fully exploit and optimize the UI for any particular platform.

• Write Once, Run Anywhere™: Developers can create a single set of artifacts that can
run across multiple platforms.

C H A P T E R 5

XPages and
JavaServer Faces

130 Chapter 5 XPages and JavaServer Faces

• Provide a script-based programming model: A model that would be familiar for
developers with a Domino Designer (or similar) and dynamic HTML programming
background (no Java skills required).

• Allow artifacts to be shared between Java and Script developers who work on the
same project: For example, script developers create the frontend user interface and Java
developers create the backend business logic.

• Flexibility: Allows developers to use the most appropriate tool for the task they per-
form.

As XFaces morphed into XPages, these design points were all retained. This chapter exam-
ines the relationship between XPages and JSF. Although one of the goals in XPages is to hide all
the Java and J2EE-centric aspects of the JSF programming model, having an understanding of the
underlying technology is a major asset for any XPages developer. By understanding how JSF
works, and especially the workings of the JSF lifecycle, you learn how your XPages are
processed as your application executes. This helps understanding why your application behaves
in a particular fashion. Also, both XPages and JSF are designed to be extended. For the Domino
Developer, you are no longer restricted to what is provided within the platform as delivered by
IBM; it’s now possible to extend the platform either to solve a particular problem or as a way to
start a new business.

This chapter is aimed at developers who are interested in extending the XPages runtime using
Java by creating new XSP components or developers who are coming from a J2EE background and
want to understand how XPages extends JavaServer Faces. This chapter uses the standard JSF ter-
minology when explaining how JSF works and the relationship between JSF and XPages. In JSF
parlance, a component is a UI element or what has been previously referred to as a UI control (an
edit box or button). JSF also uses the terms view and component tree interchangeably. XPages also
uses view (remember the root tag of every XPage is the xp:view tag) and an XPages’ view is, in
fact, a component tree. Knowing this means the working definition of XPages can be extended to
this: XPages is an XML-based language that can be used to define JSF views, and an XPage is a
static representation of a JSF component tree.

Be sure to download the chapter5.nsf files provided online for this book to run through the
exercises throughout this chapter. You can access these files at www.ibmpressbooks.com/
title/9780132486316.

What Is JavaServer Faces?
JSF is a component-based, user interface framework for building Java-based web applications.
The framework provides the following capabilities:

• A set of reusable user-interface components that can be used to easily create an applica-
tion frontend or can be used as the starting point to create new custom user interface
components

JSF Primer 131

• A Model-View-Controller (MVC) programming model that supports event-driven
programming

• A state-full server representation of the user interface that can be synchronized with the
client representation

• A mechanism to allow data flow to and from the user interface, including the capability
to perform data conversion and data validation

• A framework that can be extended using Java programming techniques

Using the JSF framework as the starting point when creating a web application frees the
application developer from having to deal with the stateless nature of HTTP—without the use of a
framework, no application state is maintained on the server between requests. The developer can
create the required user interface using the standard UI components (a.k.a controls) provided by
JSF. Then, the developer can bind these controls to the application data (in the form of Java beans)
and then trigger server-side business logic in response to user actions on the application user inter-
face. A Java bean is a reusable Java-based software component (see http://java.sun.com/developer/
onlineTraining/Beans/bean01/index.html for more details). This type of programming model is
familiar to developers of rich client-based applications using technologies such as the Standard
Widget Toolkit (SWT); however, at the time JSF was introduced, it was pretty much a new concept
for web developers.

The following JSF Primer sidebar provides a basic introduction to JSF and is written with
the assumption that you have no knowledge of Java2 Enterprise Edition (J2EE). The relevant
J2EE concepts are briefly explained in this sidebar. The JSF lifecycle is also explained in the side-
bar; this is a key concept that all XPages developers should understand. For a detailed look at the
JSF technology, the authors recommend the following resources:

• JavaServer Faces Specification, version 1.1 (http://java.sun.com/javaee/javaserverfaces/
reference/api/)

• JavaServer Faces (O’Reilly)

• Mastering JavaServer Faces (Wiley)

JSF Primer
To run a JSF-based application, you need a Java web container, such as an Apache Tomcat server,
and an implementation of the JSF specification. (Sun Microsystems provides a reference imple-
mentation available here: http://java.sun.com/j2ee/javaserverfaces.) A Java web container is a
Java-based server for running Java web applications. JSF 1.1 requires a web container that imple-
ments, at a minimum, the Servlet 2.3 and JavaServer Pages 1.2 specifications. (XPages requires
support for the Servlet 2.4 specification.) IBM WebSphere Application Server (WAS) and Portal
Server support the Servlet and JSP specifications.

132 Chapter 5 XPages and JavaServer Faces

A servlet is a Java class that runs in the web container, processes client requests, and gener-
ates responses. A servlet is passed parameters that represent the request and response and, in
simple cases, all the processing logic can be included within the servlet. Typically, a servlet is
defined as the entry point or front controller for a web application. A servlet typically delegates to
request handlers to process the client requests and a presentation tier to generate the responses.
Listing 5.1 shows the source code for a simple HTTP servlet. This servlet handles an HTTP GET
request and responds with a HTML page that displays the text Hello World. The code to handle
the request has access to a request object, which can be used to retrieve information about the
request being processed and a response object, which can be used to write the response that is
returned to the client.

Listing 5.1 Sample HTTP Servlet

package mxp.chap05;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

* Sample Servlet

*/

public class SampleServlet extends HttpServlet {

/**

* Handle a HTTP GET request.

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(“text/html”);

PrintWriter out = response.getWriter();

out.println(“<HTML>”);

out.println(“<HEAD>”);

out.println(“<TITLE>Hello World</TITLE>”);

JSF Primer 133

out.println(“</HEAD>”);

out.println(“<BODY>”);

out.println(“Hello World”);

out.println(“</BODY>”);

out.println(“</HTML>”);

}

}

JavaServer Pages (JSP) is a presentation logic layer that can generate HTML pages in
response to client requests. A JSP page looks like a HTML page, but it contains a mix of static
HTML and JSP directives, which can be used to generate dynamic content or performing some
processing associated with generating the client response. JSP uses tag libraries to allow spe-
cial tags to be declared, which can then be invoked by the JSP engine. A JSP implementation
comes with a standard tag library called the JavaServer Pages Standard Tag Library (JSTL).

Listing 5.2 shows a sample JSP page that uses the JSF tag library to embed JSF compo-
nents within an HTML page. Based on what you have learned so far about XSP markup, this
sample should be readable. It contains a mix of HTML and JSF tags. The JSF tags cause JSF
components to be created and results in a HTML form being created, which contains an edit box
that can be used to enter a value and a button that can be used to submit the form.

Listing 5.2 Sample JSP with JSF Tags

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

<BODY>

<f:view>

<h:form id=”form1”>

Enter some value:

<h:inputText

id=”inputText1” value=”#{ModelBean.someValue}”/>

<h:commandButton

id=”commandButton1” action=”success” value=”Submit”/>

</h:form>

</f:view>

</BODY>

JSP is the default presentation tier used by the JSF reference implementation. The presenta-
tion tier is the layer in an application framework that is responsible for displaying the application
data in a human-readable format. The presentation tier defines the JSF component tree (also known
as the JSF view), which is the hierarchy of controls that is presented in the user interface. A typical

134 Chapter 5 XPages and JavaServer Faces

starting point for a JSF-based application is where a user requests a JSP, such as typing a URL like
this into a browser:

http://somehost/jsfapp/somepage.jsp

This causes the JSP engine to load and execute the specified JSP. If this page contains JSF
components (using the standard JSF tag library), a JSF component tree is also created in addition
to the regular JSP processing (the JSF tags are responsible for creating the JSF component tree).
The JSF components generate the HTML markup that is presented to the user and the view is
cached for the user (see section 2.1.1 of the JSF 1.1. specification, “Non-Faces Request Gener-
ates Faces Response”).

Now, if the same page is submitted back to the server, it is handled by the JSF servlet. This
servlet is part of the JSF implementation and acts as a front controller for all JSF-based applica-
tions. JSF requests are processed in accordance with the rules defined by the JSF request process-
ing lifecycle. The JSF request processing lifecycle consists of a number of well-defined phases
that describe how each request is handled and, of course, these phases also apply to XPages. The
phases on the standard request processing lifecycle are as follows:

1. Restore View

2. Apply Request Values

3. Process Validations

4. Update Model Values

5. Invoke Application

6. Render Response

Figure 5.1 illustrates how the processing lifecycle operates.
The Restore View phase retrieves the JSF view for the request. If no JSF view exists, a new

one is created and cached for later use. Maintaining a consistent representation of the JSF view
between requests simplifies the programming task for the application developer by simplifying
the application logic to focus on the business problem and not having to maintain information
about the state of the view.

The Apply Request Values phase is used to allow the JSF components to update their state
based on the values from the current request; for example, if the component represents an
editable value, the component stores the current value. Action and editable components have a
special behavior during this phase. If the component immediate property is set to true, the JSF
lifecyle is short circuited. For an action component, the action processing happens at the end of
this phase instead of during the lifecycle. For an editable component, the validation processing
happens immediately.

The Process Validations phase allows any validators associated with components in the
view and any built-in validation associated with a specific component to be executed. All compo-
nents that can be used to edit a value and support validation, have an associated property (aptly

JSF Primer 135

Response
Complete

Response
Complete

Faces
Request Restore

View
Process
Events

Process
Events

Apply Request
Values

Process
Validations

Faces
Response Render

Response
Process
Events

Process
Events

Invoke
Application

Update Model
Values

Render Response

Response
Complete

Response
Complete

Conversion Errors/
Render Response

Validation/Conversion
Errors/Render Response

Figure 5.1 JSF request processing lifecycle

If the Update Model Values phase is reached, it is assumed that the values provided in the
request are valid (as defined by any validators specified in the view). The current values are stored
in the localValue property of the associated component. During this phase, the application data
is updated with the new values. In the case of an XPages application, the values are written to the
Domino document during this phase.

If the Invoke Application phase is reached, it is assumed that the application data has been
updated. The relevant application logic specified in the view is executed during this phase. In an
XPages application, if application logic is associated with a button and that button caused the
page to be submitted, it is now that the logic is executed.

The Render Response phase generates the response and to saves the state of the view. In the
XPages case, the response is an HTML page and the rendering is performed using a platform-
specific renderkits, and the application developer has control over the state saving (for example,
to optimize server performance, he can decide not to save any state). The JSF response rendering
model is flexible and is discussed further.

named valid) to indicate whether the current value is valid. When validation errors occur, mes-
sages are queued and the valid property of the associated component is set to false. Validation
error messages can displayed to the end user using the xp:message or xp:messages tags as
described in Chapter 4, “Anatomy of an XPage.” Validation errors typically cause the lifecycle
processing to terminate and result in a response being immedeatly sent back to the end user.

136 Chapter 5 XPages and JavaServer Faces

From Figure 5.1, you see that, after certain phases, there is an event-processing operation
that can result in the lifecycle being short circuited and the response being rendered. This typi-
cally happens if there is a conversion or validation error, which means that data specified by the
end user is not valid, so it doesn’t make sense to update the application data or to execute any
application logic.

Numerous other key concepts in JSF are important to understand before looking at how
XPages builds on top of this foundation:

1. Integration with JSP

2. User Interface Component Model

3. Value Binding and Method Binding Expression Evaluation

4. Per-Request State Model

5. Application Integration

6. Rendering Model

7. JSF APIs

JSF implementations must support JSP as the page-description language (the mechanism
for defining the JSF component tree). This allows J2EE developers to start creating JSF-based
applications using a well-known technology. When JSF tags are added to a JSP page, they cause
the JSF component tree to be created when the page is executed.

A JSF user interface is created as a tree of components (known as controls in XPages).
Components typically are rendered to the user as HTML markup, which produces the application
interface. However, not all components render as visual elements in the UI; they can render no
markup or just client-side JavaScript and thereby add behavior to the UI. Components can be
manipulated on the server, and this can result in changes to the application UI (the Button sample
in Chapter 4 shows an example of this). Components can have different types, such as have the
ability to trigger application logic, can be a container for other components, can have an associ-
ated value, or can edit its associated value. A well-defined data conversion model associated with
components allows application data to be converted between the underlying data types and string
values and back again. This is essential as data is going to be represented as string values in the
HTML markup. There is also a well-defined validation model that allows multiple checks to be
performed on user input and prevents application logic executing on invalid data. JSF implemen-
tations provide a standard set of user interface components, and these form the basis for the con-
trols you can add to an XPage. Finally, a standard set of data model classes can be used with the
standard controls; refer to the JSF Java documentation for the javax.faces.model package for
more information (http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/).

Binding expressions are how application logic and data binding is performed in JSF. Value
bindings are used when you need to compute a component property or when you want to bind
application data to a component for display and\or editing. JSF uses Expression Language (EL)
to specify value binding expressions. EL is fully defined in the JavaServer Pages specification
(version 2.0) and the JSF usage only differs in the delimiters used, such as #{ and } instead of

JSF Primer 137

${ and } and the fact that EL functions are not supported. EL can be used in XPages applications,
as demonstrated in examples in Chapter 4.

Method-binding expressions are a variation on value bindings where parameters can be
passed to the method being invoked and the result can be returned. Method bindings invoke appli-
cation logic, which in JSF applications is code in Java. XPages additionally supports application
logic written in JavaScript. JSF supports an extensible mechanism for resolving binding expres-
sion variables and properties. By default, JSF supports Java beans-based property resolution and
a well-defined set of variables. This Java-centric approach has been extended in XPages to better
support the use of JavaScript and Domino.

During the JSF request processing lifecycle, the request state is represented by a set of JSF
objects, such as FacesContext, FacesMessage, ResponseStream, ResponseWriter, and
FacesContextFactory. JSF provides a mechanism to allow built-in request related objects to be
available during request processing.

The JSF programming model is Java-based, and there is a well-defined model for the exe-
cution of the JSF-based application. XPages provides a dynamic HTML-like programming
model (combination of JavaScript and Markup Language) on top of JSF. This can be achieved
because JSF provides an extensible mechanism to modify the exeution of a JSF application. The
application integration APIs in JSF provide access to modify the behavior of how JSF-based
applications are executed.

During the execution of a JSF request, the incoming request values need to be decoded at
the start of the lifecycle during the Apply Request Values phase and subsequently encoded when
the response is generated. JSF allows each component to handle the decoding and encoding
processes directly. One disadvantage with this approach is that it can tie a component to a partic-
ular platform or rendering technology, such as a component that decodes HTTP requests and
encodes HTML responses that can’t be used with a VoiceML client. To address this problem, JSF
supports a model where each component can delegate the encoding and decoding processes to an
associated renderer. Now, different renderer implementations can be provided for different client
types, and JSF provides a simple mechanism to group these renders into a renderkit along with
the ability to switch between renderkits. This keeps the components platform independent. JSF
provides a default HTML renderkit.

The JSF reference implementation comes in two parts:

1. JSF API

2. JSF Implementation

The JSF API is a Java API that consists of interfaces and abstract classes that define the
abstractions that make up the JSF engine. JSF allows key parts of the implementation to be
extended while still preserving the default behavior. This is achieved by means of a delegation
model, where the new extension has the option to execute first and then delegate to the default
implementation when appropriate. The JSF API provides abstract Java classes for the modules,
which can be extended. JSF also has an XML configuration file format and a mechanism for load-
ing multiple instances of this file. To override a module in the JSF engine, you need to provide

138 Chapter 5 XPages and JavaServer Faces

your custom implemntation and a Faces configuration XML file that specifies that your imple-
mentation should be loaded and used instead of the default one. Consider the following quote
from the JavaServer Faces specification:

JSF’s core architecture is designed to be independent of specific protocols and markup.
However it is also aimed directly at solving many of the common problems encountered
when writing applications for HTML clients that communicate via HTTP to a Java
application server that supports servlets and JavaServer Pages (JSP) based applications.

Although JSF is Java-centric and J2EE-based, the API provides sufficient flexibility to
allow the JSF framework to be used in other contents. So, it is possible to create a non Java-cen-
tric programming model on top of JSF and still maintain the benefits of providing a standards-
based solution, and this is what has been achieved in XPages.

How Does XPages Extend JSF?
As previously mentioned, JSF provides a delegation model whereby key modules in the JSF
engine can be replaced. To do this, you need to create your own Java class that extends the base
class, which defines the module you want to extend. This class must have a constructor that takes
a single argument, which is an instance of the class defining the module you are extending. A
concrete example of this would be the custom variable resolver that is provided in XPages. The
default variable resolver in JSF provides access to a number of built-in variables (see Table 5.1).

Table 5.1 JSF Default Variables

Name Value

applicationScope Map containing the application scope values

Cookie Map containing the cookies for the current request

facesContext The FacesContext instance for the current request

Header Map containing the HTTP header values for the current request

headerValues Map containing arrays that contain the header values for the
HTTP headers for the current request

initParam Map containing the initialization parameters for the web
application

Param Map containing the request parameters for the current request

paramValues Map containing arrays that contain the parameter values for
request parameters for the current request

requestScope Map containing the request attributes for the current request

How Does XPages Extend JSF? 139

XPages extends these variables to include some additional ones, which are relevant for a
Domino application developer, such as the current database. JSF provides a pluggable mecha-
nism to allow what is called a variable resolver to be configured for a JSF application. This vari-
able resolver must provide the default behavior as defined in the JSF specification but can provide
additional functionality. To do this, the following two steps are required:

1. An implementation of javax.faces.el.VariableResolver must be provided. It
either must implement the default behavior or else delegate to the default implementa-
tion.

2. The faces-config.xml file for the JSF application must be edited to specify the new
variable resolver implementation.

The faces-config.xml file is the main configuration file for a JSF-based application. It
is used to configure the behavior of the application and the JSF runtime. You need to switch to the
Java perspective in Domino Designer to perform both of these steps. The faces-config.xml
file is located in the \WebContent\WEB-INF folder.

Listing 5.3 shows the Java code for a variable resolver, which adds support for an addi-
tional variable called “magic,” which resolves to a string value “Abracadabra.” This class pro-
vides a constructor that takes a single variable, which is an instance of VariableResolver; this
delegate provides the default behavior. The custom implementation can delegate to this and still
provide the default behavior and be compliant with the JSF specification.

Listing 5.3 Sample Variable Resolver

package mxp.chap05;

import java.util.logging.Logger;

import javax.faces.context.FacesContext;

import javax.faces.el.EvaluationException;

import javax.faces.el.VariableResolver;

/**

* Sample variable resolver

*/

Name Value

sessionScope Map containing the session attributes for the current request

View UIViewRoot of the current component tree

(continues)

140 Chapter 5 XPages and JavaServer Faces

public class SampleVariableResolver extends VariableResolver {

private VariableResolver delegate;

/**

* Constructor which takes delegate VariableResolver

*/

public SampleVariableResolver(VariableResolver resolver) {

delegate = resolver;

}

/**

* Return the object associated with the specified variable name.

*/

public Object resolveVariable(FacesContext context, String name)

throws EvaluationException {

if (“magic”.equals(name)) {

return “Abracadabra”;

}

return delegate.resolveVariable(context, name);

}

}

To get this instance to load, an entry must be added to the faces-config.xml specifying
that this class as the variable resolver. Listing 5.4 shows what this entry looks like in the faces-
config.xml.

Listing 5.4 Variable Resolver Configuration

<?xml version=”1.0” encoding=”UTF-8”?>

<faces-config>

<application><variable-resolver>

mxp.chap05.SampleVariableResolver

</variable-resolver>

</application>

<!—AUTOGEN-START-BUILDER: Automatically generated by IBM Lotus Domino

Designer. Do not modify.—>

<!—AUTOGEN-END-BUILDER: End of automatically generated section—>

</faces-config>

Listing 5.3 (Continued)

How Does XPages Extend JSF? 141

After these two changes are made, you can now reference the “magic” variable from the
SampleVariableResolver XPage. Listing 5.5 shows the XSP markup that contains Com-
puted Fields that reference the new “magic” variable.

Listing 5.5 Variable Resolver Sample XPage

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:text escape=”true” id=”computedField1” value=”#{magic}”>

</xp:text>

</xp:view>

When you preview this page, you see the results illustrated in Figure 5.2.

Figure 5.2 Variable resolver sample preview

TIP The preceding example explains one of the mechanisms that XPages uses to extend
JSF. XPages is currently built on top of JSF 1.1; however, in JSF 2.0, the VariableResolver
class has been deprecated in favor of a new class called ELResolver. XPages might be
updated to use JSF 2.0 (or later) in the future. So, if you bypass the XPages programming
model and use the JSF classes directly, check the JSF 2.0 documentation so you under-
stand the implications. Deprecated APIs continue to be supported, but the best practice is
to upgrade your code to the newer API. The key message is that, although the XPages pro-
gramming model is supported consistently from release to release, when you opt to go
direct to JSF, you need to consider future compatibility.

XML-Based Presentation Tier
As mentioned earlier, the default presentation tier in JSF version 1.1 is JSP. There are well-known
issues with using JSP and JSF, but the biggest hurdle from the Domino developer perspective is
that JSP is a Java-based technology, and not all Domino developers are familiar with Java.
Domino developers are, however, familiar with creating HTML markup and, therefore, it was
decided to create a new markup-based presentation for JSF. Additionally, JSF developers use the
faces-config.xml file to configure certain aspects of their application, such as navigation
rules and managed beans. In designing the new presentation tier, it was decided to allow the
developer to perform most of the application configuration within the XPage itself including page

142 Chapter 5 XPages and JavaServer Faces

navigation, the configuration of data sources, and the inclusion of business logic. This new pres-
entation tier became the XSP language.

JSF provides the capability for a custom implementation to be provided for the Render
Response and Restore View phases of the JSF lifecycle. An abstract Java class called
ViewHandler can be extended and then this new implementation configured to be the view han-
dler for the JSF application (as demonstrated previously with the custom navigation handler).
This mechanism is used in XPages to provide the XSP markup-based presentation tier. So, the
first and most important enhancement that XPages provides on top of JSF is the capability to cre-
ate the JSF view using a markup language. Additionally, XPages provides some custom options
for the Restore View phase. The default behavior for saving the state of the JSF view is to walk
the component tree and request that each component save its state. The state data is then either
stored on the server or serialized into the HTML response and stored on the client. Saving view
state on the server has performance implications for the server. Saving state in the response
increases the size of the response and, therefore, increases the network traffic. In some cases,
there is no need to store the full state of the view (for example, when the page is being used for
display only).

Request Processing Lifecycle
XPages allows you to execute the JSF request processing lifecycle on a portion of the component
tree. To do this, use the execMode and execId properties of the event handler. The execMode
property allows you to specify that either the complete or partial execution of the lifecycle. When
partial execution is specified by setting execMode=”partial”, only a portion of the component
tree is used when executing the lifecycle. Components that are not part of this subtree are not
processed during the lifecycle. The execId property specifies the component ID of a control
within the pages component tree, which is the root of the subtree to be used when executing in the
lifecycle. This allows you to optimize the execution of the lifecycle as a much smaller number of
components need to be processed. This is something you will want to do to decrease the load on
your server and to improve the performance of your XPages.

XPages also provides an optimization for the Render Response phase of the lifecycle, which
either limits or eliminates the response. The event handler has two properties—refreshMode and
refreshId—which specify and control partial refresh (partial or no rendering of the response).
When partial refresh is specified by setting refreshMode=”partial”, only a portion of the com-
ponent tree contributes to the generated response. The response can also be completed eliminated by
setting refreshMode=”norefresh”. The refreshId is used in conjunction with a partial
refresh to specify the portion of the component tree, which is used to generate the response, the spec-
ified control ID, which be the root of the subtree that is used. Partial or no refresh is another opti-
mization technique. The responsiveness of your XPages and the end user’s experience can be
significantly improved by using partial refresh to update just a part of the page and to reduce the
number of page reloads.

How Does XPages Extend JSF? 143

User Interface Component Model
JSF uses the term component to refer to user interface components or what are known as controls in
XPages. These components are the user interface elements used to create the application user inter-
face. JSF provides the following:

• A fundamental API for user interface components

• Component behavioral interfaces that allow components to provide specific functional-
ity, such as access to a data model

• A facility to convert data values (for example, to string representation for use in the pres-
entation tier)

• A facility for validating user input

XPages builds on top of the JSF user interface component model to provide the following:

• XPages behavioral interfaces that allow components to contribute to the XPages-spe-
cific pages

• XPages converters, which extend the default conversion facility provided by JSF

• XPages validators, which extend the default user validation provided by JSF

XPages Behavioral Interfaces

The behavioral interfaces are implemented by user-interface components that support XPages-spe-
cific behavior. For example, in regular JSF, you must add a tag corresponding to a form component
in the view definition to have a HTML form rendered in the response. For convenience, the standard
XPages view root component automatically adds a form to each XPages view. But, what happens
now if you want to manually add the form yourself? When you do this, the standard XPages form
component automatically disables the automatic form creation by finding the parent, which creates
the form and tells it not to automatically create a form. This list describes the XPages behavioral
interfaces:

• FacesAjaxComponent: Implemented by user-interface components that can handle
an AJAX request and return a valid response. The type-ahead component implements
this interface and returns the list of suggestions in XML format as the response to an
AJAX request.

• FacesAutoForm: Implemented by user-interface components that automatically create
a form component and is used to ensure that when a form is manually inserted into the
view that an automatic form is not created. The XPages view root component implements
this interface and normally automatically creates a form for each XPage.

• FacesComponent: Implemented by user-interface components that need to perform
some initialization before and/or after their children are created or want to build their
own children. The repeat component implements this because it builds its own children.

144 Chapter 5 XPages and JavaServer Faces

The repeat container component (which is the parent for each row of children in a
repeat) also implements this interface to ensure the correct row data is available to its
children as they are being created.

• FacesDataIterator: Implemented by user-interface components that iterate over a
value and is used to get information about the data model being used and the rows of
data that is displayed. The repeat component implements this.

• FacesDataProvider: Implemented by user-interface components that can be config-
ured with a data source. The view root implements this and can be configured with a
Domino document or view data source.

• FacesInputComponent: Implemented by input components and is used to disable
validation and to disable the behavior in the Notes client where the user gets prompted if
a value is modified and might need to be saved before closing an XPage. The XPages
standard input component (described in the next section) implements this interface.

• FacesInputFiltering: Implemented by input components that support input filter-
ing and find the correct input filer to be applied. The XPages standard input component
implements this interface and supports the filtering of active content.

• FacesNestedDataTable: Implemented by user-interface components that render
using multiple tables and is used to support AJAX requests that replaces the component
rendering. The XPages standard view panel component (described in the next section)
implements this interface.

• FacesOutputFiltering: Implemented by output components that support output
filtering and is used to find the correct output filter to be applied. The XPages standard
output component (described in the next section) implements this interface and supports
the filtering of active content.

• FacesPageIncluder: Implemented by user-interface components that include
another XPage and need to perform some initialization before and/or after their children
are created or want to build their own children. The include component implements this
interface because it is used to include another XPage. The standard include composite
component (described in the next section) also implements this interface because
including a Custom Control is a special case of including another XPage.

• FacesPageProvider: Implemented by user-interface components that act as the root
of a page during the create view phase of the JSF lifecycle. This is only intended for
internal use by the XPages page-loading mechanism and must never be implemented by
a third party.

• FacesParentReliantComponent: Implemented by user-interface components that
have a strict child/parent relationship and does not behave correctly if an additional con-
tainer is inserted between them, and their parent and is used with Custom Controls to
force the include composite component to remove itself when the children of the Custom

How Does XPages Extend JSF? 145

Control all rely on the parent. The XPages select item component implements this
because it depends on its parent to render the selection it represents.

• FacesPropertyProvider: Implemented by the include composite component and
used in the publishing of composite data. This must not be implemented by third parties.

• FacesRefreshableComponent: Implemented by user-interface components that can
be refreshed by one of its children in response to an Ajax request. If the component
changes its client ID while rendering its children (this is allowed for a NamingCon-
tainer), the child uses the wrong client ID and the refresh fails. This interface allows the
child to get the correct client ID for use in a partial refresh. The XPages standard data
component implements this interface.

• FacesRowIndex: Implemented by user-interface components that support a row index
and is used by data sources to compute the components bean ID. The XPages standard
data component implements this interface.

• FacesSaveBehavior: Implemented by action components which support the save
property and is used to check if the data source son the page should be saved after the
corresponding action is performed. The XPages standard command component
(described in the next section) implements this interface.

• FacesThemeHandler: Implemented by user-interface components that handle setting
their own default styles. The XPages standard file download component implements this
interface.

• FacesDojoComponent: Implemented by user-interface components that support Dojo
attributes. The XPages type-ahead component implements this interface.

• FacesDojoComponentDelegate: Implemented by user-interface components that
support Dojo attributes on behalf of another component. The XPages date time helper
component implements this interface.

• ThemeControl: Implemented by user-interface components that support style kits.
The majority of the XPages components support this.

You could use the behavioral interfaces if you decide to extend XPages (for example, by
building your own Java components for XPages). This subject is covered in Chapter 12, “XPages
Extensibility.”

XPages Converters

JSF defines a mechanism to perform conversion to and from the string representation of the data
model value. Model values need to be converted to a string representation to be displayed for the
user and, when the user edits a value, it is received as a string value and needs to be converted to
the correct type for the underlying data model. The javax.faces.convert.Converter inter-
face defineS the converter behavior. JSF provides a standard set of converters for common data
types: various number formats and date\time values. XPages extends two of the standard convert-
ers and provides one new converter implementation:

146 Chapter 5 XPages and JavaServer Faces

• DateTimeConverter: The XPages data/time converter extends the standard JSF
date/time converter, but it uses the International Components for Unicode (ICU) libraries
for the conversions. For more information on ICU, visit http: //site.icu-project.org.

• MaskConverter: The XPages mask converter applies the specified mask to the string
representation of the value being converted. Table 5.2 shows a table listing the supported
mask characters.

• NumberConverter: The XPages number converter handles the fractional part of inte-
gers and can handle the result of XPath.

XPages Validators

JSF defines a mechanism to provide the validation (checks) of user inputted values. Multiple
checks can be performed on a single value. The javax.faces.validator.Validator inter-
face defines the validator behavior. Again, JSF provides some standard validators for checking
that numbers or strings lie within a specific range. XPages provides some additional validators
and some additional interfaces to customize the validator behavior. The following list describes
the XPages validators in detail:

• ClientSideValidator: Implemented by validators that support client-side valida-
tion. Validators that support client-side validation are asked to provide a single line of
JavaScript to be included in the rendered response. For XPages validators, this
JavaScript references the xspClientDojo.js library and emits a call to the appropriate
validator method. Listing 5.6 shows the JavaScript that gets included in a page that

Table 5.2 Mask Characters

Mask
Character

Description

Any valid decimal digit number (uses Character.isDigit)

‘ Used to escape any of the special formatting characters

U All lowercase letters are mapped to uppercase (uses Character.isLetter)

L All lowercase letters are mapped to uppercase (uses Character.isLetter)

A Any valid decimal digit or letter (uses Character.isDigit and
Character.isLetter)

? Any letter

* Anything

H Any valid hex character (0–9, a–f or A–F)

How Does XPages Extend JSF? 147

contains an edit box with a length validator and a submit button. Note the call to attach
the length validator to the input control in the HTML page; this associates the length
validator with the edit box whose contents it needs to validate.

Listing 5.6 Length Validator Client-Side JavaScript

<script type=”text/javascript”>

XSP.addOnLoad(function() {

XSP.attachValidator(“view:_id1:inputText1”,null,null,new

XSP.LengthValidator(0,5,”Incorrect length”));

XSP.attachEvent(“view:_id1:_id4”, “view:_id1:button1”, “onclick”, null,
true, false);

});

</script>

• FacesRequiredValidator: Implemented by the required validator and used by the
XPages standard input component to identify if a required validator has been added to
its list of validators.

• ConstraintValidator: Validates using the specified regular expression or, if the reg-
ular expression is set to one of the predefined keywords, performs the associated standard
validation. Table 5.3 shows the predefined keywords the constraint validator supports.

Table 5.3 Predefined Constraint Checks

Regex Description

Alphabetonly Checks if the value contain only letter characters

Digitonly Checks if the value contain only number characters

AlnumOnly Checks if the value contain only letter and number characters

• DateTimeRangeValidator: Validates that a date value lies within the specified time
period. Client-side validation and computed properties are supported.

• DoubleRangeValidatorEx2: Extends the standard JSF validator to support client-
side validation and computed properties.

• ExpressionValidator: Enables you to provide custom logic for the client-side and
server-side validation.

• LengthValidatorEx and LongRangeValidatorEx2: The XPages version of these
validators extends the standard JSF validator to support client-side validation and com-
puted properties.

148 Chapter 5 XPages and JavaServer Faces

• ModulusSelfCheckValidator: Performs a modulus self check (for modulus 10 and
11 only). Client-side validation is not supported. A modulus self check is a standard
mechanism for validating identification numbers; for example, modulua 10 (or Luhn
algorithm) is a single checksum formula used to validate credit-card numbers.

• RequiredValidator: Checks that a value has been specified.

Standard User-Interface Components
JSF provides a standard set of user interface components which cover the standard control types.
Each of these components has a well-defined behavior which is platform independent. The inten-
tion is that the JSF standard components would be extended to provide specific implementations
for different client platforms. In fact, JSF extends these standard components to provide HTML-
specific components. XPages extends the standard components to add XPages-specific behavior
and also defines its own completely new standard components. XPages then extends these com-
ponents to provide the specialized XPages user interface components that are used in Domino
Designer and supports the browser and Lotus Notes clients. Figure 5.3 shows the hierarchy of
user interface components. If you are going to create your own user interface components you
will normally be extending one of the JSF or XPages standard components.

UIComponent

JSF Component Interface

UIComponentBaseUIGraphic, UIData, …

JSF Standard Components

UIComponentBaseUIDataEx, UIFileDownload, …

XPages Standard Components

UIComponentBaseXspInputText, XspSection, …

XPages Specialized Components

Figure 5.3 XPages user interface component hierarchy

How Does XPages Extend JSF? 149

The following list briefly describes each of the standard user interface components.

• UICallback: Represents an area in Custom Control where the user of the Custom
Control can add additional content. This component builds its own contents and, after its
children are added, it checks if they are all instances of NamingContainer and, if they
are, it removes itself from the component hierarchy.

• UIColumnEx: Represents a single column of data and expects to have a parent UIData.
UIColumnEx implements FacesParentRelientComponent to signal this depend-
ency on its parent.

• UICommandButton: Represents a button that, when clicked by the user, can trigger
some application logic.

• UICommandEx2: Represents a control that, when activated by the user, can trigger some
application logic. UICommandEx2 implements FacesSaveBehavior, which means
that, when triggered, it can cause the saving of all data sources on the XPage.

• UIComponentTag: An abstract component that is extended by specialized XPages com-
ponents which represent a tag, such as a div, span, table, and so on.

• UIDataColumn: Extends UIColumnEx, but currently does not add any new behavior.

• UIDataEx: Represents a multirow data model. The only allowed children are instances
of UIColumnEx, which collectively define the presentation a row of data from the
model.

• UIDataIterator: Like UIDataEx, this component represents a multirow data model,
but does not have any restriction on what type of children it will have. The children
process multiple rows of data, but in a free format rather than the tabular format that
UIData uses.

• UIDataPanelBase: Represents a component that organizes the layout of its children
and provides data (it implements FacesDataProvider) that is scoped to its children.

• UIDateTimeHelper: Used to transform an edit box into a date time picker.

• UIEventHandler: Used to handle events on behalf of its parent. It can be configured
to handle both client-side events or server-side actions for the component that is its
direct parent.

• UIFileDownload: Represents a control that can be used to download one or more
files.

• UIFileuploadEx: Represents a control and can be used to upload a file from a user to
the server.

• UIFormEx: Represents a HTML form and ensures an XPages doesn’t contain nested
forms because of the automatic creation of a form elsewhere in the component
hierarchy.

150 Chapter 5 XPages and JavaServer Faces

• UIGraphicEx: Represents a control that displays a graphical image to the user. Cur-
rently, the XPages version does not add any new behavior, but it might do so in the
future.

• UIInclude: Used to support including one XPage within another.

• UIIncludeComposite: Used to support including a Custom Control within an
XPage.

• UIInputCheckbox: Represents a checkbox control.

• UIInputEx: Used for controls that display a value and allow that value to be edited.
UIInputEx adds support for HTML filtering, disabling the validation, and Dojo.

• UIInputRadio: Represents a radio button control.

• UIInputRichText: Represents a rich text edit control.

• UIInputText: Represents an edit box control.

• UIMessageEx: Supports the display of error messages for a specific component and
adds style kit support.

• UIMessagesEx: Supports the display of error messages not related to a specific com-
ponent and adds theme support.

• UIOutputEx: Used to display data model values to the user and adds HTML filtering
support.

• UIOutputLink: Represents a HTML link.

• UIOutputText: Displays a computed value.

• UIPager: Used to display a pager control to allow paging through the rows of data
associated with the UIData or UIDataIterator component.

• UIPagerControl: Used to display one of the buttons in a pager control, such as first,
previous, next, or last buttons.

• UIPanelEx: Used as a base component for the controls that are used include an XPage.

• UIPassThroughTag: Used whenever a non-xsp tag is added to an XPage. There is no
associated xsp tag for this component, but it is used by the page loading mechanism and
appears in the XPages page-translation source code.

• UIPassThroughText: Used whenever text added to an XPage. There is no associated
xsp tag for this component, but it is used by the page loading mechanism and appears in
the XPages page translation source code.

• UIPlatformEvent: Represents a control that can handle a platform event. When the
specified platform event occurs, the associated script is executed.

• UIRepeat: This component is a FacesDataIterator and has two modes of opera-
tion: It can either use either a single instances of its children (like a UIData component)
or it can create one instance of its children for every row of data.

How Does XPages Extend JSF? 151

• UIRepeatContainer: Used by the UIRepeat component when it is creating mul-
tiple instances of its children. Each instance of UIRepeats children are nested inside
a UIRepeatContainer, and the container provides access to the row data and index.

• UIScriptCollector: Automatically added to the root of an XPages component tree.
Its job is to aggregate all the JavaScript code that needs to be included in the generated
HTML and to include it within a single script tag at the bottom of the page.

• UISection: Represents a container control that displays as a section and can be
expanded and collapsed.

• UISelectItemEx: Represents a single selection option for a control that allows the
user to select from a number of choices, such as a listbox.

• UISelectItemsEx: Represents multiple section options for a control that allows the
user to select from a number of choices, such as a listbox.

• UISelectListbox: A listbox control, which will have nested UISelectItemEx or
UISelectItemsEx, representing the available choices. Depending on whether the list-
box is configured for multiple selection, a different specialized XPages component is
used, either XspSelectManyListbox or XspSelectOneListbox.

• UISelectManyEx: Represents a control that allows the user to select multiple values
from a number of choices.

• UISelectOneEx: Represents a control that allows the user to select one value from a
number of choices.

• UITabbedPanel: Represents a control that contains children which are instances of
UITabPanel and displays the children as a series of tabs.

• UITabPanel: Represents a single tab in a tabbed panel control.

• UITypeAhead: A helper component that is used with an edit box to provide type-ahead
functionality, such as the ability for the user to start typing in the edit box and see a list
of suggestions.

• UIViewColumn: Represents a single column in a view control.

• UIViewColumnHeader: Represents the header for a single column in a view control.

• UIViewPager: Represents a pager in a view control.

• UIViewPanel: Represents a view control that can be bound to the data in a Domino
view.

• UIViewRootEx2: The root component of all XPages component hierarchies.

• UIViewTitle: Represents the title of a view control.

You could use one the standard user interface components as the base class if you were
building your own Java components for XPages. This subject is covered in Chapter 12.

152 Chapter 5 XPages and JavaServer Faces

Value Binding and Method Binding Expression Evaluation
JSF supports two types of binding expressions:

• Value binding: Computes a value for a property and can support both reading and writ-
ing a value

• Method binding: Executes come logic

Binding expressions are identified using the #{ and } expression delimiters. JSF supports
Expression Language (EL) for value and method bindings. JSF defines the
javax.faces.el.ValueBinding abstract class to represent a value binding expression and
javax.faces.el.MethodBinding to represent a method binding. The JSF application object
is responsible for creating instances of these for use in the JSF processing. XPages extends sup-
port for expression binding to include the following:

• Using JavaScript

• Using a special syntax to resolve client IDs

• Support for multipart expressions

• Simple actions

JavaScript Binding Expressions

A JavaScript binding expression is delimited using #{javascript: and }. Listing 5.7 shows an
example of a JavaScript value binding expression being used to compute the value for a Com-
puted Field. When this code is executed, a string representation of the database property is dis-
played in the Computed Field.

Listing 5.7 JavaScript Value Binding Expression

<xp:text escape=”true”

id=”computedField2”

value=”#{javascript:database}”>

</xp:text>

Listing 5.8 shows the syntax for the JavaScript method binding. When the button is clicked,
the XPage is submitted and the JavaScript executes. The output from the print statement can be
seen in the trace file.

Listing 5.8 JavaScript Method Binding Expression

<xp:button value=”Execute JavaScript” id=”button1” type=”submit”>

<xp:this.action>

<![CDATA[#{javascript:print(“Executed JavaScript”)}]]>

</xp:this.action>

</xp:button>

How Does XPages Extend JSF? 153

Client ID Binding Expressions

An ID binding expression is delimited using #{id: and }. The ID of the user component whose
client ID you want to compute is specified in the content of the computed expression, as shown in
Listing 5.9. ID expressions are typically used as part of a multipart expression.

Listing 5.9 Client ID Binding Expression

<xp:text escape=”true”

id=”computedField3”

value=”#{id:computedField3}”>

</xp:text>

Multipart Binding Expressions

A multipart expression allows static and dynamic content to be mixed. In Listing 5.10, the value
of the Computed Field combines static text, a client ID computed expression, and a JavaScript
computed expression.

Listing 5.10 Multipart Value Binding Expression

<xp:text escape=”true”

id=”computedField4”

value=”ID: #{id:computedField4} DB: #{javascript:database}”>

</xp:text>

Simple Actions

A simple action is a special type of method binding which is represented by a tag in the XPage
and its behavior can be configured using properties. Listing 5.11 shows how to configure a simple
ExecuteScript action, which, in turn, invokes a JavaScript method binding.

Listing 5.11 Simple Action Method Binding Expression

<xp:button value=”Execute Simple Action” id=”button2” type=”submit”>

<xp:this.action>

<xp:executeScript

script=”#{javascript:print(‘Executed Simple Action’)}”>

</xp:executeScript>

</xp:this.action>

</xp:button>

154 Chapter 5 XPages and JavaServer Faces

XPages Default Variables
Earlier in this chapter, the default JSF variables were listed (see Table 5.1). XPages provides
some additional default variables for the Domino application developer. Figure 5.4 shows an
XPage that contains a table listing all the default variables, their value, and a short description of
each variable. Refer to the XPage named DefaultVariables in chapter5.nsf to see how this table
was generated. At the end of the list, the three new XPages default variables are listed:

• viewScope: Map containing the view scope values

• context: XspContext instance for the current request

• database: Database instance for the current request

• session: Session instance for the current request

• sessionAsSigner: Session instance with the credentials of the XPage signer

• sessionAsSignerWithFullAccess: Session instance with the credentials based on
those of the XPager signer and with fill administrative access

Figure 5.4 Table of default variables

Chapter 6, “Building XPages Business Logic,” covers XPages default variables and
examples of their usage in more detail. A short description of each of the XPages default vari-
ables is provided next.

How Does XPages Extend JSF? 155

viewScope

XPages introduces this new scoped variable to supplement the default scoped variables:
requestScope, sessionScope, and applicationScope. The viewScope variable allows
you to scope your own variables to the lifetime of the associated view, such as XPage. As previ-
ously mentioned, the state of a view can be cached between requests so that multiple requests act
on the same state of the XPage. The view is restored at the beginning and saved at the end of each
request and any view scope variables are saved and restored as part of this process. The
viewScope object is a map, so you can add your own variables keyed by name. By default, this
map is empty, so you can select whatever names you want without concern for name clashes. The
variables you add must be serializable for their state to be saved.

context

The context variable provides access to the XPages XSPContext object, which is an instance
of com.ibm.xsp.designer.context.XSPContext. The context object provides XPages-
specific contextual information about the current request, such as access to the associated user,
timezone, locale, and so on. It also provides numerous utility methods that can be used within
your application logic, such as page navigation, HTML filtering, and so on.

database

The database variable provides access to the Database object, which is an instance of
lotus.domino.Database. The database object provides access to the current Domino data-
base and supports a wide range of database centric operations. The complete documentation for
the Database class is available in the Java/CORBA Classes section of the Lotus Domino
Designer Basic User Guide and Reference help document, which is part of the Domino Designer
help. Use Help > Help Contents to access this documentation

session

The session variable provides access to the Session object, which is an instance of
lotus.domino.Session. The session is assigned credentials based on those of the current
user. The session is restricted by the application’s ACL and the security tab of the server’s
Domino Directory entry. The complete documentation for the Session class is available in the
Java/CORBA Classes section of the Lotus Domino Designer Basic User Guide and Reference
help document.

sessionAsSigner

The session variable provides access to the Session object, which is an instance of
lotus.domino.Session. The session is assigned credentials based on those of the signer of
the XPages’ design element. The session is restricted by the application’s ACL and the Security
tab of the server’s Domino Directory entry. The complete documentation for the Session class
is available in the Java/CORBA Classes section of the Lotus Domino Designer Basic User Guide
and Reference help document.

156 Chapter 5 XPages and JavaServer Faces

sessionAsSignerWithFullAccess

The session variable provides access to the Session object, which is an instance of
lotus.domino.Session. The session is assigned credentials based on those of the signer of
the XPages’ design element and allows full administrative access to the application’s data. The
signer must have permission for full administrative access or this session is not created and will
not be available. The complete documentation for the Session class is available in the
Java/CORBA Classes section of the Lotus Domino Designer Basic User Guide and Reference
help document.

Conclusion
This concludes the overview of how XPages is built on top of JSF. You learned how XPages
extends JSF to add new capabilities and enhanced behaviors while maintaining the JSF standard.
As previously mentioned, XPages is currently built with JSF version 1.1, so if you plan to read
more about JSF, this is the version to reference.

157

This is the first of two chapters where you learn about adding business logic to your XPages
application. This chapter introduces the fundamental principles: how to add your business logic,
simple actions, and using JavaScript with XPages. This chapter explores the differences between
creating server and client-side business logic and explains the Script Editor tool. You also learn
about some of the common objects that you can use from within your business logic. Be sure to
download the chapter6.nsf file provided online for this book to run through the exercises
throughout this chapter. You can access these files at www.ibmpressbooks.com/title/
9780132486316.

Signing the Sample Applications In this and the subsequent chapter, you preview
samples that contain business logic, so it is recommended that you sign the sample data-
base to avoid receiving execution control list (ECL) alerts. You can assign each database
from Designer by right-clicking it in the application navigator and selecting Application >
Sign Design.

Adding Business Logic
Your business logic is normally executed in response to a user action, such as when a user clicks a
button to submit a page, you might want to process the data that has been inputted. To achieve
this, when editing an XPage in Designer, use the Events tab to add business logic to the onclick
event for the respective button. There are two main options for adding your business logic:
Server or Client. Service logic executes in the XPages engine and has access to the XSP repre-
sentation of the page and the associated XSP runtime artifacts. Client logic is running in a
browser context and has access to the browser Document Object Model (DOM) and some addi-
tional artifacts when running in the Notes client (more on this in Chapter 13, “XPages in the

C H A P T E R 6

Building XPages
Business Logic

158 Chapter 6 Building XPages Business Logic

Events Tab Server Logic

Simple Actions

Server Options

Figure 6.1 Events tab with Server and Simple Actions selected

Notes Client”). Figure 6.1 shows the Events tab with the Server subtab selected. This is your
starting point for adding business logic that executes on the server. When Server is selected, you
see a Server Options section available. This is only available when adding server-side business
logic, and these options are discussed in Chapter 11, “Advanced Scripting.”

Within both the Client and Server subtabs, there are options to use Simple Actions or the
Script Editor. A simple action represents some standard business logic, such as creating a
response document, that can be configured by simply just changing its properties. The intent is to
free the application developer from having to write (and debug) code for common actions. Figure
6.2 shows the Events tab with the Client subtab selected and the Script Editor option selected.
This allows you to view the client-side JavaScript expression, which executes when the specified
event occurs. You can also open the Script Editor dialog from here, which provides additional
features to help you add scripting logic.

Adding Business Logic 159

Events Tab Script Editor JavaScript Editor

Client Logic

Figure 6.2 Events tab with Client and Script Editor selected

So, what happens in your XPage when you use one of these options to add some business
logic? There are four possible options:

• Server simple action

• Server script

• Client simple action

• Client script

The good news is that in the XPages markup there is a single syntax that can be used for all
four options, so there is only one thing you need to learn: the xp:eventHandler tag.

The xp:eventHandler tag is a component that associates business logic with any con-
trol in an XPage. You have seen this pattern before (xp:dataTimeHelper) where XPages uses
a child tag to add new behavior to its parent. So, the xp:eventHandler tag can be nested
inside any control tag when you want to trigger business logic in response to an event fired from
the control, and that business logic can be server and/or client-side simple actions and/or
JavaScript. Yes, you can combine client-side and server-side business logic in response to the
same event! An example of this is where you might want to prompt the user for confirmation

160 Chapter 6 Building XPages Business Logic

before deleting documents on the server. The client-side logic executes first, and then the
server-side logic executes unless the client-side logic prevented submission of the page.

Using the xp:eventHandler Tag
Listing 6.1 shows a snippet of XPages markup that includes some logic to create a new Date
object that contains the current date and time, followed by a Computed Field that displays this
value. A converter ensures that the value is presented correctly for the end user’s locale.

Listing 6.1 XPages Sample to Display the Current Date/Time

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.beforePageLoad>

<![CDATA[#{javascript:viewScope.put(“now”, new Date())}]]>

</xp:this.beforePageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.now}”

style=”font-size:16pt;font-weight:bold”>

<xp:this.converter>

<xp:convertDateTime type=”both”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

<xp:br></xp:br>

</xp:view>

This view scope value is created as the page is being loaded, using the beforePageLoad
event, and can subsequently be updated using server or client-side simple actions or JavaScript.

Refreshing Using a Server-Side Simple Action

Use the following steps to add logic that allows the value in the Computed Field to be updated using
a server-side simple action (the completed sample is available in XPage named CurrentTime):

1. Add a button to the XPage.

2. Go to the Event tab and select Server and Simple Actions (this should be the default).

3. Select Add Action, and then select the Set Value simple action.

4. Set Binding to be a computed value, select Expression Language, and enter
viewScope.now.

5. Set Value to be a computed value, select JavaScript (Server Side) and enter new
Date().

Adding Business Logic 161

6. Save the XPage.

Listing 6.2 shows the markup that is generated for you. An xp:eventHandler tag is
added as a child of the button control and is configured as follows:

1. The event property is set to onclick, which means the event handler is triggered in
response to the user clicking the button.

2. The submit property is to true, which causes the page to be submitted.

3. The refreshMode is set to complete, which means the entire page will be redrawn.

4. The action property is set to the xp:setValue tag, which represents the single
action to be invoked.

Listing 6.2 Server Simple Action to Update the Current Date/Time

<xp:button value=”Refresh (Server Simple Action)” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:setValue

binding=”#{viewScope.now}”

value=”#{javascript:new Date()}”>

</xp:setValue>

</xp:this.action>

</xp:eventHandler>

</xp:button>

The xp:eventHandler causes the runtime to add some client-side JavaScript to the
rendered page. This JavaScript adds a listener to the button, which responds to the onclick
event by submitting the page. This is the line of code in the rendered page, which causes this to
happen:

XSP.attachEvent(“view:_id1:_id3”, “view:_id1:button1”, “onclick”,
null, true, false);

If you preview this page, you can click this button and see the page being submitted and the
current date/time being refreshed when the page is redisplayed. If you do a view source on the
previewed page, you can see the preceding script in the generated markup.

Refreshing Using Server-Side JavaScript

Refreshing using server-side JavaScript is similar to the previous simple action example except,
in this case, the supplied JavaScript expression is executed. Here are the steps:

162 Chapter 6 Building XPages Business Logic

1. Add a button to the XPage.

2. Go to the Event tab and select Server and Script Editor.

3. Enter the expression viewScope.put(“now”, new Date()).

4. Save the XPage.

Listing 6.3 shows the markup that is generated for you. The only difference in how the
xp:eventHandler tag is configured is that now the action property contains a computed
expression that contains the JavaScript to be executed.

Listing 6.3 Server JavaScript to Update the Current Date/Time

<xp:eventHandler event=”onclick” submit=”true” refreshMode=”complete”>

<xp:this.action>

<![CDATA[#{javascript:viewScope.put(“now”, new Date())}]]>

</xp:this.action>

</xp:eventHandler>

Refreshing Using a Client-Side Simple Action

The steps to add a client-side simple action are similar to the ones you used earlier to add a
server-side simple action. As you would expect, the available simple actions differ between client
and server because the environment where the simple actions execute is different, more on this
later in the section, “Simple Actions.” Follow these steps:

1. Add a button to the XPage.

2. Go to the Event tab and select Client and Simple Actions.

3. Select Add Action and select the Execute Client Script simple action.

4. Set Language to be a JavaScript (Client Side).

5. Set Condition to be the following JavaScript expression:

var computedField1 =
document.getElementById(“#{id:computedField1}”);

computedField1.innerHTML = new Date();

6. Save the XPage.

This time, the xp:eventHandler tag has the script property set. The script property
is used when a client-side simple action or JavaScript is to be executed. The script in this sample
gets the DOM element corresponding to computedField1 using the getElementById method
and then updates the contents of the element by setting the innerHTML property to the current

Adding Business Logic 163

time. As you saw earlier, the action property is used for server-side simple actions and
JavaScript. An xp:executeClientScript tag is set as the value for the script property. This
represents the client-side simple action. An xp:executeClientScript tag has its own
script property, which is set to the client-side JavaScript to be executed. In the generated
markup, notice that the submit property is set to true. If you preview the page and click this but-
ton, you see that the current date/time changes momentarily and then changes back to the previ-
ous value. This is because the page is being submitted in response to the button click and then
redrawn with the only server value. To prevent the submit from happening, you need to make sure
the submit property on the xp:eventHandler is set to false. Now, if you preview the page,
notice that the date/time value does change and the page is no longer submitted. Also, notice that
the format of the date/time string is different. This is because a pure client-side operation has
been executed and the value is not being set in the view scope and converted for display using the
configured converter. The client-side script is just updating the HTML within the browser or
Notes client. Listing 6.4 shows the XSP markup for this example.

Listing 6.4 Client Simple Action to Update the Current Date/Time

<xp:eventHandler event=”onclick” submit=”false”

refreshMode=”complete”>

<xp:this.script>

<xp:executeClientScript>

<xp:this.script>

<![CDATA[var computedField1 =
document.getElementById(“#{id:computedField1}”);

computedField1.innerHTML = new Date();]]>

</xp:this.script>

</xp:executeClientScript>

</xp:this.script>

</xp:eventHandler>

Listing 6.5 shows the client-side script that the xp:executeClientScript caused to be
included in the rendered page. The xp:eventHandler also includes client-side script that
causes this method to be invoked when the associated button is clicked.

Listing 6.5 JavaScript Rendered by xp:executeClientScript

function view__id1__id7_clientSide_onclick(thisEvent) {

var computedField1 = document.getElementById(“view:_id1:computedField1”);

computedField1.innerHTML = new Date();

}

164 Chapter 6 Building XPages Business Logic

Refreshing Using Client-Side JavaScript

Refreshing using client-side JavaScript uses the same script as the previous example. Here are
the steps:

1. Add a button to the XPage.

2. Go to the Event tab and select Client and Script Editor.

3. Enter the following expression:

var computedField1 =
document.getElementById(“#{id:computedField1}”);

computedField1.innerHTML = new Date();

4. Save the XPage.

Listing 6.6 shows the markup that is generated for you. You can see that now the script
expression is associated with the script property on the xp:eventHandler tag and, this time, the
submit property is set to false, so no manual update of the XPage is required.

Listing 6.6 Client JavaScript to Update the Current Date/Time

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.script>

<![CDATA[var computedField1 =
document.getElementById(“#{id:computedField1}”);

computedField1.innerHTML = new Date();]]>

</xp:this.script>

</xp:eventHandler>

As you expect, the rendered JavaScript is almost identical to the previous case where the
xp:executeClientScript was used and the behavior when clicking the button is the same.

Event Handler Properties

This section describes the properties associated with the xp:eventHandler tag. Numerous
properties are relevant when using the event handler to make an AJAX request, such as for a par-
tial refresh of the page. These properties are described in Chapter 11 and elsewhere.

• event: Name of the event, which triggers the associated server action or client script.

• execId: ID of the control, which is the root of the branch used for the partial execution
of the JSF lifecycle.

• execMode: Execution mode for the event handler. Valid values are

• complete: Lifecycle is executed on the complete control hierarchy (default).

• partial: Lifecycle is executed on the part of the branch of the control hierarchy
specified by the execId.

Adding Business Logic 165

NOTE Chapter 11 covers the uses of the execMode property in detail.

• handlers: Collection of client event handlers. Each handler has the following proper-
ties:

• type: Currently only text/javascript is supported.

• script: The client script that is executed.

• renderkit: Use HTML_BASIC if this script is for the web only and HTML_RCP if this
script is for the Notes client.

Listing 6.7 shows how to have different client scripts for the browser and Notes clients.
Other examples of web and Notes platform differentiation are covered in Chapter 13.

Listing 6.7 Renderkit-Specific Client Script Handlers

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:button id=”button1” value=”Click Me”>

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.handlers>

<xp:handler

type=”text/javascript”

script=”alert(‘Browser’)”

renderkit=”HTML_BASIC”>

</xp:handler>

<xp:handler

type=”text/javascript”

script=”alert(‘Notes’)”

renderkit=”HTML_RCP”>

</xp:handler>

</xp:this.handlers>

</xp:eventHandler>

</xp:button>

</xp:view>

• loaded: A boolean flag that indicates if the event handler should be included in the con-
trol hierarchy when the page is loaded. Set this to false if you want the event handler to
be omitted when the page is loaded. The default value is true, and one example where
you would use this is if there was business logic didn’t apply to a particular user based
on their application roles.

166 Chapter 6 Building XPages Business Logic

• navigate: A boolean flag that indicates if navigation should be performed when the
event associated with the event handler is being processed.

• refreshId: ID of the control, which is the root of the branch to be refreshed when par-
tial refresh has been specified.

• refreshMode: The refresh mode for the event handler. Valid values are

• complete: Entire page is refreshed (default).

• partial: Part of the page specified by the refreshId is refreshed.

• norefresh: No part of the page is refreshed.

• rendered: Boolean flag that indicates in the event handler should be rendered as part of
the page. Set this to false if you want the event handler to be omitted when the page is
rendered.

• save: Boolean flag that indicates if a save operation should be performed when the
event handler is processed. Set to true to automatically save the data sources on the
page.

• submit: Boolean flag that indicates if the page should be submitted when the event
associated with this event handler is triggered. Set to true to submit the page.

• parameters: Collection of parameters and name/value pairs, which are made available
when the action associated with the event handler is executed.

• action: The server action that executes when this event handler is triggered. This can
be a simple action, a JavaScript expression or a Java method.

• immediate: Boolean flag that indicates that processing of the server action associ-
ated with the event handler should proceed after the apply-request-values phase of the
JSF lifecycle and before the inputted values are validated. If the action causes a navi-
gation to another XPage or causes the page to be redrawn, the remaining phases of the
lifecycle are not executed. The immediate property is set to true when you specify a
button type is Cancel (as shown in Listing 6.8) because this allows the operation to
proceed even if the inputted values are not valid. Because the update-model phase has
not executed when the action is processed, the latest values are not available in the
model. If the update-model phase doesn’t execute (which is the norm with
immediate set to true), the values entered by the user are discarded. If, during the
processing of an immediate action, the inputted values need to be referenced, one
option is to reference them directly from the control. Be aware that, if you do this, the
values are available in string format only; they have not been converted to the correct
type or validated.

Simple Actions 167

Listing 6.8 Using the immediate Property for a Cancel Button

<xp:button value=”Cancel” id=”button1”>

<xp:eventHandler

event=”onclick” submit=”true”

refreshMode=”complete” immediate=”true”

save=”false”>

</xp:eventHandler>

</xp:button>

Using Immediate with an Input Control The immediate property is also sup-
ported for input controls. When set to true, the inputted value is validated during the
apply-request-values phase of the JSF lifecycle. If validation fails on a control
marked as immediate, the response is rendered and the validation errors are available in
the response.
Non-immediate controls may not be validated if a validation error in an immediate control
caused the response to be rendered. Non-immediate controls only validate in the
process-validations phase of the lifecycle.

• onComplete: Used when the event handler triggers an AJAX request. This property is
the client script to be executed after the AJAX request is executed.

• onError: Used when the event handler will trigger an AJAX request. This property is
the client script to be executed if there is an error executing the AJAX request.

• onStart: Used when the event handler will trigger an AJAX request. This property is
the client script to be executed before the AJAX request is executed.

• script: The client script to be executed when the associated event associated with the
event handler is triggered.

Using onXXX Properties The onComplete, onError, and onStart properties can
be accessed by selecting the event handler in the Outline view and using All Properties or
by typing them directly into the XPage in source mode.

Simple Actions
Previously, you saw how some examples of simple actions that execute in the client and on the
server. Simple actions are represented by tags in the XPage and provide reusable business logic
that can be configured by setting the tag properties. In this section, you learn how to use all the
simple actions and you find descriptions of their properties. Required properties are identified; if

168 Chapter 6 Building XPages Business Logic

you save an XPage without specifying a value for the required properties, the XPage has errors
(which you can see in the Problems panel). Localizable properties are also identified; these prop-
erties can be localized using the built-in localization features, which you learn about in Chapter
15, “Internationalization.” The following sections describe each of the simple actions, its proper-
ties, and sample usage.

Change Document Mode
The change document mode simple action changes the access mode, read-only or editable, for the
specified document.

Tag:

xp:changeDocumentMode

Properties:

• var: The variable name of the document whose mode is to be changed. If not specified,
this defaults to currentDocument (the closest available Domino Document).

• mode: The access mode to set for the document. This is a required property.

The mode can be set to one of the following values:

• toggle: Changes the document mode to edit mode so its contents can be modified.

• readOnly: Changes the document mode to read only; editing is not possible.

• autoEdit: Changes the document mode to edit if the current user has permission to
edit the document; otherwise, set mode to read only.

• toggle: Toggles the document mode between read-only and edit mode (for
example, if document is currently read-only, toggle to edit mode and vice versa).

Sample:
Listing 6.9 shows the change document mode simple action being used to set the mode of

the Domino document referenced by dominoDocument1 to editable. Note that the button that
triggers the simple action is displayed only when the document is not already editable.

TIP If you were to test the sample shown in Listing 6.9 using Preview in Browser with
the normal Anonymous as Author access, you find it doesn’t work. When you click the but-
ton, the document stays in edit mode. This is because you need to change Anonymous
access to Editor to allow users to edit a document. This can trip you up during develop-
ment, but it’s reassuring to know that users with the incorrect access level cannot edit
existing documents, even if the application puts them in a position to do so.

Simple Actions 169

Listing 6.9 Change Document Mode to Editable

<xp:button value=”Edit” id=”button2”

rendered=”#{javascript:!currentDocument.isEditable()}”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:changeDocumentMode

var=”dominoDocument1”

mode=”edit”>

</xp:changeDocumentMode>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Confirm Action
The confirm simple action presents the user with a message and options to allow execution to con-
tinue or stop.

Tag:

xp:confirm

Properties:

• message: The message displayed to the user. This is a required property.

Sample:
Listing 6.10 uses three simple actions, namely the action group, delete document, and con-

firm actions. The action group and delete document actions are covered later in this section. The
confirm action causes a JavaScript function to be included in the rendered page. This function is
called after the Delete button is clicked, but before the page is submitted, and prompts the user
with the specified message and provides her the opportunity to either proceed or cancel.

TIP You need to ensure that Anonymous access is allowed to delete documents before
this sample works.

Listing 6.10 Confirm Before Deleting a Document

<xp:button value=”Delete” id=”button4”

rendered=”#{javascript:!currentDocument.isNewNote()}”>

<xp:eventHandler event=”onclick” submit=”true”

170 Chapter 6 Building XPages Business Logic

refreshMode=”complete”>

<xp:this.action>

<xp:actionGroup>

<xp:confirm

message=”Are you sure you want to delete this document?”>

</xp:confirm>

<xp:deleteDocument name=”/AllCars.xsp”>

</xp:deleteDocument>

</xp:actionGroup>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Create Response Document
The create response document simple action creates a response document and opens the specified
page to edit it.

Tag:

xp:createResponse

Properties:

• name: The name of the XPage to open to create the response. This is a required property.

• parentId: The document ID of the parent document for the new response. This is a
required property.

Sample:
Listing 6.11 shows the create response simple action being used to create a response with

the current document as its parent and the CarDetails.xsp page being used to edit the new
response.

Listing 6.11 Create Response Document

<xp:button value=”Add Car Details” id=”button5”>

<xp:eventHandler

event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:createResponse

name=”/CarDetails.xsp”

parentId=”#{javascript:currentDocument.getNoteID()}”>

</xp:createResponse>

</xp:this.action>

Simple Actions 171

</xp:eventHandler>

</xp:button>

Delete Document
The delete document simple action, as the name implies, deletes a document and then opens the
specified page. By default, the current document will be deleted.

Tag:

xp:deleteDocument

Properties:

• message: An optional message displayed to the user before the specified document is
deleted. This is a localizable property.

• var: The variable name that references the document to be deleted, if not specified. this
defaults to currentDocument (closest available Domino Document).

• name: The name or symbolic identifier of the XPage to be opened after the specified
document has been deleted. This is a required property.

The name can be set to the name of an XPage or one of the following symbolic identifiers:

• $$PreviousPage: The previously opened page.

• $$HomePage: The launch page, as specified in the application properties.

Sample:
Listing 6.12 shows the delete document being used to delete the document, including

allowing the user to confirm that the document should be deleted. If the document is deleted, nav-
igation proceeds to the previous page. The Delete button is not displayed if the current document
is new and has not yet been saved because there is nothing to delete in this case.

Listing 6.12 Delete the Current Document and Navigate to the Previous Page

<xp:button value=”Delete” id=”button4”

rendered=”#{javascript:!currentDocument.isNewNote()}”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:deleteDocument name=”$$PreviousPage”

message=”Are you sure you want to delete this document?”>

</xp:deleteDocument>

</xp:this.action>

</xp:eventHandler>

</xp:button>

172 Chapter 6 Building XPages Business Logic

Delete Selected Documents
The delete selected documents simple action deletes the documents selected in a view after first
prompting the user to confirm this action.

Tag:

xp:deleteSelectedDocuments

Properties:

• message: A message displayed to the user before the specified documents are deleted.
This is a localizable property.

• noFilesSelectedMessage: A message that will be displayed if no documents are
selected in the specified view. This is a localizable property.

• view: The variable name of the view from which the selected documents will be
deleted. This is a required property.

Sample:
Listing 6.13 shows a sample action that deletes documents from a view and the message that

is displayed to the user before the documents are deleted and the message to use if no documents
are selected.

TIP For this simple action, the convention is to use the column display properties to dis-
play a checkbox in the first column of the specified view when you want users to be able to
delete selected documents from that view.

Listing 6.13 Delete the Documents Selected in a View

<xp:button value=”Delete Cars” id=”button2”>

<xp:eventHandler

event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:deleteSelectedDocuments view=”viewPanel1”

message=”Are you sure you want to delete this documents?”

noFilesSelectedMessage=”No documents are currently selected”>

</xp:deleteSelectedDocuments>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Simple Actions 173

Execute Client Script
The execute client script simple action executes a client-side JavaScript. This is a client simple
action.

Tag:

xp:executeClientScript

Properties:

• script: The client script to be executed. This is a required property.

Sample:
Listing 6.14 shows the execute client script simple action being used to display an alert

message to the end user. Note that the event handler tag is configured with submit set to false
so that clicking the button does not cause the page to be submitted.

Listing 6.14 Executing a Client Script

<xp:button value=”Execute Client Script” id=”button1”>

<xp:eventHandler

event=”onclick” submit=”false” refreshMode=”complete”>

<xp:this.script>

<xp:executeClientScript script=”alert(‘Hello World’)”>

</xp:executeClientScript>

</xp:this.script>

</xp:eventHandler>

</xp:button>

Execute Script
The execute script simple action executes a server-side JavaScript expression.

Tag:

xp:executeScript

Properties:

• script: The server script to be executed. This is a required property.

Sample:
Listing 6.15 shows the execute script simple action being used to display a message in the

log file.

174 Chapter 6 Building XPages Business Logic

Listing 6.15 Executing a Server Script

<xp:button value=”Execute Script” id=”button1”>

<xp:eventHandler

event=”onclick” submit=”true” refreshMode=”complete”>

<xp:this.action>

<xp:executeScript>

<xp:this.script>

<![CDATA[#{javascript:print(“Hello World”)}]]>

</xp:this.script>

</xp:executeScript>

</xp:this.action>

</xp:eventHandler>

</xp:button>

Modify Field
The modify field simple action modifies a field in the specified document or the current document
if none is specified.

Tag:

xp:modifyField

Properties:

• var: The variable name that references the document to be modified, if not specified this
defaults to currentDocument (closest available Domino Document).

• name: The name of the field to be modified. This is a required property.

• value: The new value to be set in the specified field. This property is required and
localizable.

Sample:
Listing 6.16 shows how to use the modify field action to set a value in the current document

after the page has loaded.

Listing 6.16 Modify Field Being Invoked After Page Has Loaded

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”dominoDocument1”

formName=”CarDetails”>

</xp:dominoDocument>

</xp:this.data>

Simple Actions 175

<xp:this.afterPageLoad>

<xp:modifyField name=”carDescription”>

<xp:this.value>

<![CDATA[<Enter the car description here>]]>

</xp:this.value>

</xp:modifyField>

</xp:this.afterPageLoad>

...

Open Page
The open page simple action navigates to a specific page; you can set the document ID of an
existing document that can be opened for reading/editing or you can cause the creation of a new
document.

Tag:

xp:openPage

Properties:

• var: The variable name that references a document whose ID is passed to the page
about to be opened. This value is used if no document ID has been specified using the
documentId parameter.

• documentId: A document ID that is passed to the page about to be opened.

• parameters: A collection of user defined parameters, name/value pairs, which is
passed to the page that is about to be opened.

• name: The name of the page to be opened. This is a required property.

• target: The new value to be set in the specified field.

The target property can be set to one of the following values:

• openDocument: Used to when you want to open a page to read a document.

• editDocument: Used to when you want to open a page to edit a document.

• newDocument: Used to when you want to open a page to create a new document.

Sample:
Listing 6.17 shows how to use the open page action to open a specific document for editing.

Listing 6.17 Open Page Being Used to Open a Document for Editing

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoView var=”allCars” viewName=”All Cars”>

176 Chapter 6 Building XPages Business Logic

</xp:dominoView>

</xp:this.data>

<xp:repeat id=”repeat1” rows=”30” var=”car” value=”#{allCars}”>

<xp:button value=”#{javascript:car}” id=”button3”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:openPage

name=”/Car.xsp”

target=”editDocument”

documentId=”#{javascript:car.getUniversalID()}”>

</xp:openPage>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:repeat>

</xp:view>

Publish Component Property
The publish component property simple action publishes the value for a component event. This is
a client simple action.

Tag:

xp:publishValue

Properties:

• name: The name of the property to be published. This is a required property.

• value: The value of the property to be published. This is a required property.

• type: The type of the value being published. The default value is text.

The type property can be set to one of the following values:

• string: Used to when the component value is a string.

• boolean: Used to when the component value is a boolean.

• number: Used to when the component value is a number.

• json: Used to when the component value is a JavaScript Object Notation (JSON)
object. JSON is covered in more detail in Chapter 11.

Sample:
Listing 6.18 shows how to use the publish component property action to publish a value

from a column value.

Simple Actions 177

Listing 6.18 Publishing a Column Value as a Component Property

<?xml version="1.0" encoding="UTF-8"?>

<xp:view xmlns:xp="http://www.ibm.com/xsp/core">

<xp:this.data>

<xp:dominoView var="allCars” viewName=”All Cars”>

</xp:dominoView>

</xp:this.data>

<xp:repeat id=”repeat1” rows=”30” var=”car” value=”#{allCars}”>

<xp:button value=”#{javascript:car.getColumnValue(‘model’)}”

id=”button3”>

<xp:eventHandler

event=”onclick” submit=”true” refreshMode=”complete”>

<xp:this.script>

<xp:publishValue

name=”model”

value=”#{javascript:car.getColumnValue(‘model’)}”

type=”string”>

</xp:publishValue>

</xp:this.script>

</xp:eventHandler>

</xp:button>

</xp:repeat>

</xp:view>

TIP Further examples of publishing component data are explored in the section,
“XPages and Composite Applications” in Chapter 13.

Publish View Column
The publish view column simple action publishes the value of a view column as a component event.

Tag:

xp:publishViewColumn

Properties:

• name: The name of the property to be published. This is a required property.

• columnName: The name of the column whose value is used. This is a required property.

• type: The new value to be set in the specified field. The default value is text.

178 Chapter 6 Building XPages Business Logic

The type property can be set to one of the following values:

• string: Used to when the component value is a string.

• boolean: Used to when the component value is a boolean.

• number: Used to when the component value is a number.

• json: Used to when the component value is a JSON object.

Sample:
Listing 6.19 shows how to use the publish view column action to publish a value from a

view column.

Listing 6.19 Publishing a Column Value as a Component Property

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:viewPanel rows=”30” id=”viewPanel1” viewStyle=”width:100%”>

<xp:this.data>

<xp:dominoView var=”allCars” viewName=”All Cars”>

</xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”Make” id=”viewColumn1”>

<xp:viewColumnHeader

value=”Make” id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn

columnName=”Model” id=”viewColumn2” displayAs=”link”>

<xp:viewColumnHeader

value=”Model” id=”viewColumnHeader2”>

</xp:viewColumnHeader>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.script>

<xp:publishViewColumn

name=”model” columnName=”Model”

type=”string”>

</xp:publishViewColumn>

</xp:this.script>

</xp:eventHandler>

</xp:viewColumn>

</xp:viewPanel>

</xp:view>

Simple Actions 179

Save Data Sources
The save data sources simple action saves all the data sources in the current page and optionally
navigates to another page.

Tag:

xp:save

Properties:

• name: The name of the page to navigate to after the save operation has completed. The
symbolic names $$PreviousPage and $$HomePage can also be used.

Sample:
Listing 6.20 shows how to use the save data sources action to save a Domino Document and

navigate to another page with a view so you can see that the documents have been saved. The fol-
lowing page contains two panels, each of which has an associated Domino Document data source
and edit controls that allow you to enter in values. Each Domino Document is updated by the cor-
responding edit controls and, when you click the Save All button, both documents are saved.

Listing 6.20 Saving Two Documents at the Same Time

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:panel>

<xp:this.data>

<xp:dominoDocument var=”document1” formName=”Car”>

</xp:dominoDocument>

</xp:this.data>

<xp:label value=”First car make:” for=”carMake1”>

</xp:label>

<xp:inputText value=”#{document1.carMake}” id=”carMake1”>

</xp:inputText>

<xp:label value=”First car model:” for=”carModel1”>

</xp:label>

<xp:inputText value=”#{document1.carModel}” id=”carModel1”>

</xp:inputText>

<xp:br></xp:br>

</xp:panel>

<xp:panel>

<xp:this.data>

<xp:dominoDocument var=”document2” formName=”Car”>

</xp:dominoDocument>

</xp:this.data>

<xp:label value=”Second car make:” for=”carMake2”>

180 Chapter 6 Building XPages Business Logic

</xp:label>

<xp:inputText value=”#{document2.carMake}” id=”carMake2”>

</xp:inputText>

<xp:label value=”Second car model:” for=”carModel2”>

</xp:label>

<xp:inputText value=”#{document2.carModel}” id=”carModel2”>

</xp:inputText>

</xp:panel>

<xp:button value=”Save All” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:save name=”/AllCars.xsp”></xp:save>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Save Document
The save document simple action saves the specified document or the current document if none is
specified.

Tag:

xp:saveDocument

Properties:

• var: The variable name that references the document to be saved, if not specified this
defaults to currentDocument (closest available Domino Document).

Sample:
Listing 6.21 shows how to use the save document action to save one of the Domino Docu-

ments on a page. The following page contains two panels, each of which has an associated Domino
Document data source, edit controls, which allow you to enter in values and a button to save the
corresponding document. The page also contains a view control so you can see what gets saved
when you click each button.

Listing 6.21 Save Documents One at a Time

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:panel>

<xp:this.data>

Simple Actions 181

<xp:dominoDocument var=”document1” formName=”Car”>

</xp:dominoDocument>

</xp:this.data>

<xp:label value=”First car make:” for=”carMake1”>

</xp:label>

<xp:inputText value=”#{document1.carMake}” id=”carMake1”>

</xp:inputText>

<xp:label value=”First car model:” for=”carModel1”>

</xp:label>

<xp:inputText value=”#{document1.carModel}” id=”carModel1”>

</xp:inputText>

<xp:button value=”Save First” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:saveDocument>

</xp:saveDocument>

</xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:br></xp:br>

</xp:panel>

<xp:panel>

<xp:this.data>

<xp:dominoDocument var=”document2” formName=”Car”>

</xp:dominoDocument>

</xp:this.data>

<xp:label value=”Second car make:” for=”carMake2”>

</xp:label>

<xp:inputText value=”#{document2.carMake}” id=”carMake2”>

</xp:inputText>

<xp:label value=”Second car model:” for=”carModel2”>

</xp:label>

<xp:inputText value=”#{document2.carModel}” id=”carModel2”>

</xp:inputText>

<xp:button value=”Save Second” id=”button2”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:saveDocument>

</xp:saveDocument>

182 Chapter 6 Building XPages Business Logic

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:panel>

<xp:viewPanel rows=”30” id=”viewPanel1” viewStyle=”width:100%”>

<xp:this.data>

<xp:dominoView var=”allCars” viewName=”All Cars”>

</xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”Make” id=”viewColumn1”

showCheckbox=”true”>

<xp:viewColumnHeader

value=”Make” id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”Model” id=”viewColumn2”

displayAs=”link” openDocAsReadonly=”true”>

<xp:viewColumnHeader

value=”Model” id=”viewColumnHeader2”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

</xp:view>

Set Component Mode
The set component mode simple action changes the mode of a component to view, edit, or help
mode.

Tag:

xp:setComponentMode

Properties:

• cancel: Indicates whether the mode can be closed through a cancel button.

• mode: The new mode. The mode property can be set to one of the following values:

• view: Used to set the component in view mode.

• edit: Used to set the component in edit mode.

• help: Used to set the component in help mode.

Simple Actions 183

Sample:
Listing 6.22 shows examples of using the set component mode action to set the mode to edit

mode and to view mode.

Listing 6.22 Change Component Mode to Edit and View Mode

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:button value=”Edit Mode” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:setComponentMode cancel=”false” mode=”edit”>

</xp:setComponentMode>

</xp:this.action>

</xp:eventHandler>

</xp:button>

<xp:button value=”View Mode” id=”button2”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:setComponentMode cancel=”false” mode=”view”>

</xp:setComponentMode>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Set Value
The set value simple action sets the value of a computed expression.

Tag:

xp:setValue

Properties:

• binding: A computed expression that points to the data to be updated. This is a
required property.

• value: The value to be set. This is a required property.

184 Chapter 6 Building XPages Business Logic

Sample:
Listing 6.23 demonstrates how to use the set value action to set a value in View Scope after

the page loads. This value is then accessed using a Computed Field in the page.

Listing 6.23 Setting a Value into the viewScope

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<xp:setValue

binding=”#{viewScope.afterPageLoadTime}”

value=”#{javascript:new Date()}”>

</xp:setValue>

</xp:this.afterPageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.afterPageLoadTime}”>

<xp:this.converter>

<xp:convertDateTime

type=”time” timeStyle=”medium”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:view>

Action Group
The action group simple action is used to execute multiple simple actions. Each action in the
group is executed in turn until all actions are executed or one of the actions causes a response to
be returned.

Tag:

xp:actionGroup

Properties:

• actions: A list of simple actions to be executed when this group is invoked. This is a
required property.

• condition: A boolean value that must be set to true for the group of actions to be
invoked. By default this value is true.

Sample:
Listing 6.24 shows how to use action groups to conditionally execute other simple actions. In

this example, there are two radio buttons and, depending on which one is selected, a different set
value action executes.

Simple Actions 185

Listing 6.24 Using Action Groups to Conditionally Execute Simple Actions

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:radio text=”Group 1” id=”radio1” groupName=”actionGroup”

defaultSelected=”true” value=”#{viewScope.actionGroup}”

selectedValue=”group1”>

</xp:radio>

<xp:radio text=”Group 2” id=”radio2” groupName=”actionGroup”

value=”#{viewScope.actionGroup}” selectedValue=”group2”>

</xp:radio>

<xp:br></xp:br>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.executed}”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Execute Selected Group” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:actionGroup>

<xp:actionGroup>

<xp:this.condition>

<![CDATA[#{javascript:viewScope.actionGroup == “group1”}]]>

</xp:this.condition>

<xp:setValue

binding=”#{viewScope.executed}”

value=”Execute Action Group 1”>

</xp:setValue>

</xp:actionGroup>

<xp:actionGroup>

<xp:this.condition>

<![CDATA[#{javascript:viewScope.actionGroup == “group2”}]]>

</xp:this.condition>

<xp:setValue

binding=”#{viewScope.executed}”

value=”Execute Action Group 2”>

</xp:setValue>

</xp:actionGroup>

</xp:actionGroup>

186 Chapter 6 Building XPages Business Logic

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Using JavaScript with XPages
XPages also allows you to use JavaScript to add your own logic to an application. This can be
JavaScript that executes within the client (in the browser itself). Alternatively, this can be
JavaScript that executes on the backend (executed in the Domino server or within Notes embed-
ded web container). So, the first piece of good news is that a single programming language can be
used for developing your client and server-side logic. The second piece of good news is that if
you have experience developing client-side JavaScript for web applications, you need to learn
only a few things to apply those skills to XPages. If you are not familiar with JavaScript, you will
likely find it an easy language to learn, and many excellent resources are available on the web to
help you. Depending on where the JavaScript executes, the following are different:

• Object model: Model used to represent the XPage

• Global objects: Implicit objects that can be referenced

• System libraries: Libraries of available classes that can be used

Server-Side JavaScript
In this section, you learn about the following topics:

• XPages object model

• Global objects and system libraries

XPages Object Model

The first thing you need to learn is that XPages provides its own object model for server-side
JavaScript. This object model is a combination of the JavaServer Faces object model, the Domino
object model, and some new objects that XPages provides to make the application developer’s life
easier. Using server-side JavaScript, you can

• Manipulate the elements of the XPage; that is, you can programmatically modify the
component tree of your application.

• Read information about the current request such as parameters, current user, user’s
locale, and so on.

• Interact with the runtime state, such as determining if the response has been rendered.

Using JavaScript with XPages 187

• Get information about the current application state, such as associated database.

• Use the Domino backend classes to access the application data, such as Domino docu-
ments and views.

Scripting the Component Tree When you create an XPage and add controls, you are
actually defining a hierarchical component tree. Each tag in an XPage corresponds to one or more
components, and these components can be accessed programmatically and manipulated using
JavaScript. Listing 6.25 shows one of the simplest XPages you can create: the “Hello World”
sample. From looking at this, you might assume that the component tree consists of an object to
represent the xp:view tag and another to represent the Hello World text. This is a good guess, but
it doesn’t tell the full story.

Listing 6.25 Hello World XPage

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

Hello World

</xp:view>

To help with the examination of the component trees in this section, the accompanying
sample database includes a Custom Control called ViewInspector. Custom Controls are cov-
ered in Chapter 10, “Custom Controls.” For now, it’s enough to know that this Custom Control
contains a Computed Field that displays a simple string representation of the component tree and
can be reused in multiple places within this application. Figure 6.3 shows a preview of the Hello
World page that includes the view inspector Custom Control. You can see a basic outline that
shows all the components in the current page. For each component, the class name of the Java
implementation is displayed along with the component ID and client ID (if these are available).
The component ID is the identifier for the control in the XPage and the client ID is the identifier
for the control in then generated markup. Client IDs are examined in more detail in the section on
Client JavaScript. Notice that there are some unexpected components in the tree and the pass-
through text is represented by a component. The Custom Control that displays the component
tree is also not included in the outline but this is because the code to generate the outline explic-
itly ignores this component.

Figure 6.3 Hello World and View Inspector

188 Chapter 6 Building XPages Business Logic

The script collector and the form components in the hierarchy were automatically included
by the component represented by the xp:view tag. The script collector’s job is to aggregate all the
client JavaScript that needs to be emitted as part of the HTML rendering and to emit it together at
the end of the rendered page (this is done to optimize the generation of the client-side JavaScript).
The form component is responsible for emitting an HTML form in the rendered page. In this case,
an HTML form is not required because this page is never submitted. If you ever want to omit the
form from the component tree, set the createForm property on the xp:view tag to false using
the All Properties tab. Try this yourself and see that the component tree changes. You might want
to do this to optimize XPages that are only ever used for presenting data and do not support enter-
ing or modifying data.

Listing 6.26 shows the JavaScript code that generates this component tree outline.

Listing 6.26 ViewUtils Script Library

function getViewAsString(exclude:string) {

var retStr = “<hr/>Component Tree<pre>”;

retStr += getComponentAsString(view, 0, exclude);

retStr += “</pre>”;

return retStr;

}

function getComponentAsString(component:javax.faces.component.UIComponent,
level:int, exclude:string) {

var retStr = ““;

var id = component.getId();

if (id == exclude) {

return retStr;

}

for (i=0; i<level; i++) {

retStr += “ ”;

}

if (level > 0) {

var filePath = database.getFilePath();

retStr += “”;

}

retStr += component.getClass().getName();

if (id != null) {

retStr += “ [id:” + id;

retStr += “ clientId:” + getClientId(id);

Using JavaScript with XPages 189

retStr += “]”;

}

retStr += “
”

var children = component.getChildren();

retStr += getComponentsAsString(children, level + 1, exclude);

return retStr;

}

function getComponentsAsString(components:java.util.List, level:int,

exclude:string) {

var retStr = ““;

for (component in components) {

retStr += getComponentAsString(component, level, exclude)

}

return retStr;

}

The script library contains the following three methods:

• getViewAsString(exclude): This function is passed the ID of a control to be
excluded from the outline. It uses the view global object (explained in the section on
global objects) as the starting point for creating the outline and adds a title and horizon-
tal rule to the string that is generated. The string is treated as HTML and is emitted as is
by the Computed Field in the ViewInspector Custom Control.

• getComponentAsString(component, level, exclude): This function is passed
the component to generate the outline for the level the component appears in the tree,
and the ID of a component to exclude. If the current component is the component to
exclude, the function just returns an empty string. Otherwise, it indents the text for this
component using non breaking space characters; displays the descend image if the
level is greater then zero; and adds the components class name, ID, and client ID to the
outline. Finally, this method adds any children of the current component to the outline.
Note children are added at a level higher in the outline.

• getComponentsAsString(components, level, exclude): This function is
passed a list of components to generate the outline for the level the components appears
in the tree and the ID of a component to exclude. This function simply calls
getComponentAsString for each component in the list and adds all the outlines
together.

190 Chapter 6 Building XPages Business Logic

TIP The view inspector Custom Control contains a Computed Field that calls the
getViewAsString method and passes the ID of its parent (which is the Custom Control).
To get the ID of its parent, the computed expression uses this.getParent().getId().
Here, this refers to the Computed Field component. This variable is automatically available
for any of the component’s properties that are computed expressions and it refers to the
component itself.

This script library shows a good example of reading the elements in the component tree;
however, you can also write logic that manipulates these elements. All the components in the tree
extend the JSF defined component interface, javax.faces.component.UIComponent. If you
want to see what methods are available for the specific component classes, refer to the XPages
Extensibility API Documentation, which is available on the Lotus Notes and Domino Application
Development wiki (www-10.lotus.com/ldd/ddwiki.nsf).

Embedding Java in JavaScript The previous example demonstrated an example of
using Java classes from within JavaScript. Any Java classes that are available as a shared
library on the server (or within Domino Designer) can be used from within your JavaScript.
The use of Java with XPages is covered in Chapter 12, “XPages Extensibility.”

Control Declaration Snippets New in Domino Designer 8.5.2 is the ability to insert
control declaration snippets into your server-side JavaScript. For example, if you have a
page that contains a button (with control ID set to “button1”), you can insert a control
declaration snippet that provides a typed variable to access that control, such as
var button1:com.ibm.xsp.component.xp.XspCommandButton = getComponent
(“button1”);
To do this, use the Reference > Libraries > Control Declaration Snippets option in the
Script Editor. This lists all the controls on the current XPage. By double-clicking a control, the
appropriate declaration snippet is inserted for you. S pecifying the type for the variable
allows the Script Editor to provide the correct type-ahead options and improves your pro-
ductivity.

From looking at the outline of the Hello World sample, there is a pass-through component
with the ID of _id2 and the class name of com.ibm.xsp.component.UIPassThroughText.
By referring to the API documentation, you see that this class has methods to get and set the text
for the component. So, you can write some server JavaScript that retrieves this component and
changes the text. Listing 6.27 shows a sample XPage that does just that. There is a button on the
page that, when clicked, invokes some server JavaScript that gets the pass-through component
and changes the text.

Using JavaScript with XPages 191

Listing 6.27 Changing Pass-Through Text

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”
xmlns:xc=”http://www.ibm.com/xsp/custom”>

Hello World

<xp:br></xp:br>

<xp:button value=”Deutsch” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<![CDATA[#{javascript:getComponent(“_id2”).setText(“Hallo Welt”);}]]>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>v

Figure 6.4 shows the output for a page that includes a view panel control and the view
inspector Custom Control. Notice that the pager doesn’t appear in the view hierarchy. Looking at
the source for the page shows you why this is the case, the pager is added as a facet of the view
panel. Facets are used when the parent component has some predefined areas within it that can be
used to position children. In this case, the pager is added into the headerPager position within
the view panel.

Figure 6.4 Hello World and View Inspector

Displaying facets in the view inspector outline requires some small changes to the
JavaScript library as demonstrated in Listing 6.28, with some walk-though explanation in the list
following.

192 Chapter 6 Building XPages Business Logic

Listing 6.28 Including Facets in the View Inspector Outline

22. if (id != null) {

23. retStr += “ [id:” + id;

24. try {

25. retStr += “ clientId:” + getClientId(id);

26. }

27. catch (e) {

28. }

29. retStr += “]”;

30. }

31. retStr += “
”

32.

33. var facetsAndChildren = component.getFacetsAndChildren();

34. retStr += getComponentsAsString(facetsAndChildren, level + 1, exclude);

35.

36. return retStr;

37. }

38.

39. function getComponentsAsString(children:java.util.Iterator, level:int,
exclude:string) {

40. var retStr = ““;

41. while (facetsAndChildren.hasNext()) {

42. retStr += getComponentAsString(facetsAndChildren.next(), level,
exclude)

43. }

44. return retStr;

45. }

• Lines 24–28: The method getClientId is a built-in function that returns the client ID
for the specified component (explained more in section on Global Objects and Func-
tions). A try-catch block is placed around the call to get the client ID. This is because
calling this method for a facet causes an exception to be thrown.

• Lines 33–24: The method getFacetsAndChildren is a standard JSF method that
returns all the child and fact components for the specified component. Call the method
getFacetsAndChildren to include the facets in the outline. This method returns an
instance of java.util.Iterator.

• Lines 39–42: Handle the iterator to access the facets and children rather than just the list
of children. The code calls methods on the iterator to iterate over all the facet and child
components.

Using JavaScript with XPages 193

Global Objects and System Libraries

The Reference tab in the JavaScript editor, shown in Figure 6.5, provides access to the list of
available global objects and methods plus the system libraries. By default, most classes and meth-
ods are displayed; however, you can select the Show advanced JavaScript option to display the
complete list. You can also double-click any entry to add that element to your script.

List of global objects, methods, and system libraries

Double-click to add a
class or method to your script

Select this to get complete
list of classes and methods

Figure 6.5 JavaScript editor Reference tab

The remainder of this section introduces the different groups of classes and methods and
provides some guidance on their usage.

Global Objects and Functions The global objects and functions are available to all
server-side JavaScript and provide a way to easily get access to the application objects and to per-
form common actions. This section overviews these objects and functions and provides examples
of their use.

Global Object Maps requestScope, applicationScope, sessionScope and
viewScope are maps of objects, each of which has its own well-defined lifetime. Objects in the
requestScope map last for the duration of a single request. Objects in the viewScope map last
for the duration of the page, until the page is discarded by the server. Objects in the

194 Chapter 6 Building XPages Business Logic

sessionScope map last for the duration of the user’s session, until the user session timeout or
the user logs out. Objects in the applicationScope map last for the duration of the application.
Listing 6.29 uses some server JavaScript to populate a variable in each scope. It also includes
Computed Fields to display each of the variables. You can use this sample to learn when vari-
ables in each scope become unavailable.

Listing 6.29 Scope Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad><![CDATA[#{javascript:var now = new Date();

if (!requestScope.containsKey(“requestVar”)) {

requestScope.put(“requestVar”, “Request scope variable added: “+now);

}

if (!viewScope.containsKey(“viewVar”)) {

viewScope.put(“viewVar”, “View scope variable added: “+now);

}

if (!sessionScope.containsKey(“sessionVar”)) {

sessionScope.put(“sessionVar”, “Session scope variable added: “+now);

}

if (!applicationScope.containsKey(“applicationVar”)) {

applicationScope.put(“applicationVar”, “Application scope variable
added: “+now);

}}]]></xp:this.afterPageLoad>

<xp:table>

<xp:tr>

<xp:td>Request scope variable:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”#{requestScope.requestVar}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>View scope variable:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”#{viewScope.viewVar}”>

</xp:text>

</xp:td>

</xp:tr>

Using JavaScript with XPages 195

<xp:tr>

<xp:td>Session scope variable:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField3”

value=”#{sessionScope.sessionVar}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Application scope variable:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField4”

value=”#{applicationScope.applicationVar}”>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

<xp:button value=”Refresh” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false” save=”true”>

</xp:eventHandler>

</xp:button>

<xp:button value=”Reload” id=”button2”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<![CDATA[#{javascript:context.reloadPage()}]]>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

The requestScope variable becomes unavailable when you click the Refresh button; the
typical use of request scope variables is to pass parameters from one page to another. The
viewScope variable becomes unavailable when you click the reload button or reload the web page
in your browser. The requestScope and viewScope variables are useful when you want to com-
pute a value once and then make it available to use in multiple places within a page. The
sessionScope variable becomes unavailable when the user session expires (if you are previewing
you can restart the browser, the typical use is to store some information about a user). The
applicationScope is still there and unmodified. To get rid of it, you need to restart Domino

196 Chapter 6 Building XPages Business Logic

Designer or, if your application is running on a server, you need to restart the server. Application
scope variables are for things you need to compute once and share across the entire application; all
users see the value, so be careful about the security and multithreading implications of using these
variables. For example, because application scope variables are visible to all users, avoid storing
information that is sensitive for a single user in this scope. Also, because application scope is glob-
ally visible and could be updated by multiple users, you need to be careful about using it to store data
that could be modified by multiple users at the same time. As a general rule, application scope
should be used to store information that applicable for all users and doesn’t need to be modified
often.

Context Global Object The context global object is an instance of com.ibm.xsp.
designer.context.XSPContext and represents the XPages runtime. Using this object, you
can get and set the state of the runtime and also perform some useful operations such as

• Reloading the current XPage (context.reloadPage())

• Redirecting to another XPage, such as the application home page, the previous page, or
a specified page, like context.redirectToPage(pageName)

• Accessing the current user (context.getUser())

Session and Database Global Objects The session and database objects provide
access to the user’s NotesSession and the application’s NotesDatabase, respectively. These
provide a way to perform Domino-related operations, and you see some examples in the next sec-
tion on Domino classes.

View Global Object The view object provides access to the root of the component tree.
You saw an example of how you can use this to access any component from the current XPage
earlier. You can also use this object to change the state of the view (change the page orientation).

Many global functions are also provided for use within your server-side JavaScript. These
global functions provide a convenient way to perform common operations and thereby simplify
the code you need to write. The following global functions are provided:

• getComponent(id): This allows you to retrieve the component with the specified ID.
The origin of the starting point is either the view root or the component where the com-
puted expression is being called from.

• getForm(): This method returns the UIForm instance that contains the component
where the computed expression is being called from if one exists; otherwise, it returns
null.

• getLabelFor(component): Returns the label component associated with the speci-
fied component if one exists; otherwise, it returns null.

• getView(): Returns the view root component associated with the component where
the computed expression is being called from.

Using JavaScript with XPages 197

• getClientId(id): Returns the client ID for the specified component if it can be found;
otherwise, it throws an exception with the message “Invalid component name.” The client
ID is the identifier for that component in the generated HTML.

• save(): Saves all data sources in the current page.

Domino This library provides access to the Domino backend classes. There are currently
more than 50 classes in this library; however, if you are already familiar with the standard Notes
Java or LotusScript classes, this script library represents a JavaScript interface to the same back-
end classes.

Listing 6.30 shows you how to use a profile document to store the date a user last visited
your application and also how to display the number of days since they last visited.

Listing 6.30 User Profile Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad><![CDATA[#{javascript:var userName =
context.getUser().getDistinguishedName();

var profileDoc = database.getProfileDocument(“UserProfile”, userName);

var currentDate = new java.util.Date();

if (!profileDoc.hasItem(“lastVisit”)) {

viewScope.put(“newUser”, true);

viewScope.put(“elapsedDays”, 0);

}

else {

var lastVisit = profileDoc.getItemValueDateTimeArray(“lastVisit”);

var lastVisitDateTime = lastVisit.get(0);

var lastVisitDate = lastVisitDateTime.toJavaDate();

var elapsedMillis = currentDate.getTime() –

lastVisitDate.getTime();

var elapsedDays = elapsedMillis / 8640000;

viewScope.put(“elapsedDays”, elapsedDays);

viewScope.put(“newUser”, false);

}

viewScope.put(“lastVisit”, currentDate);

var dateTime = session.createDateTime(currentDate);

profileDoc.replaceItemValue(“lastVisit”, dateTime);

profileDoc.save();}]]></xp:this.afterPageLoad>

<xp:table>

<xp:tr>

<xp:td>New user:</xp:td>

<xp:td>

198 Chapter 6 Building XPages Business Logic

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.newUser}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Elapsed days:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”#{viewScope.elapsedDays}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Last visit:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField3”

value=”#{viewScope.lastVisit}”>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

The JavaScript is invoked after the page first loads. The JavaScript code retrieves a user-
specific profile document from the database and checks if it contains a field with the date of the
user’s last visit. If this field does not exist, the code assumes it’s the user’s first visit, and it puts a
flag indicating a new user into the view scope map. If the field exists, the code reads the value and
calculates the number of elapsed days and puts this value into the view scope map. Finally, the
code updates the user’s profile document with the current date and save the document. Figure 6.6
shows how the page displays the first time it is previewed. Note the user is flagged as a new user
and the elapsed days are set to zero. On the second preview, as shown in Figure 6.7, the user is
now recognized as a returning user and the elapsed days is updated to reflect the time since the
last visit.

Runtime The runtime script library provides access to three classes:

• I18n

• Locale

• Timezone

Using JavaScript with XPages 199

The I18n class provides utility methods that help you with the internationalization of your
application. This class is discussed further in Chapter 15. The XPage shown in Listing 6.31
shows an example usage of the Locale and Timezone classes. These classes are standard Java
classes, java.util.Locale and java.util.TimeZone.

Listing 6.31 Locale and TimeZone Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table>

<xp:tr>

<xp:td colspan=”2” style=”font-weight:bold”>

Locale </xp:td>

</xp:tr>

<xp:tr>

<xp:td>Country:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:context.getLocale()

.getDisplayCountry()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Language:</xp:td>

Figure 6.6 First preview of the user profile sample

Figure 6.7 Second preview of the user profile sample

200 Chapter 6 Building XPages Business Logic

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”#{javascript:context.getLocale()

.getDisplayLanguage()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td colspan=”2” style=”font-weight:bold”>

Time Zone

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Name:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField3”

value=”#{javascript:context.getTimeZone().getDisplayName()}”>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

Figure 6.8 shows a preview of the results from Listing 6.31 and what you see is the locale
and time zone information for the current user being displayed in the page.

Figure 6.8 Preview of the Locale and TimeZone sample

Standard The standard library lists the classes that are provided as part of standard
JavaScript. The JavaScript language elements are based on the ECMAScript Language Specifica-
tion Standard ECMA-262 (see www.ecma-international.org/publications/standards/Ecma-262.
htm). This library is available for both client-side and server-side JavaScript. The standard script
library provides access to these classes:

Using JavaScript with XPages 201

• Array: Used when working with arrays

• Boolean: Used when working with boolean values

• Date: Used when working with date and time values

• Math: Provides some common mathematical values and functions

• Number: Used when working with numeric values

• Object: Provides common methods that are available in all classes

• RegExp: Provides properties and functions that can be used when working with regular
expressions

• String: Used when working with string values

XSP The XSP script library provides access to some XPages-specific runtime objects.
These classes provide access to information and allow manipulation of the runtime context. Addi-
tionally, these classes wrap some commonly used objects and provide additional/simpler access.
This library includes the following classes:

• DirectoryUser: Represents a user entry in the server directory.

• NotesXspDocument: Represents a Notes document in the XPages runtime. This class
provides methods to simplify access to a Notes document.

• NotesXspViewEntry: Represents an entry from a Notes view in the XPages runtime.
This class provides methods to simplify access to a Notes view entry.

• XSPContext: The XPages runtime context object.

• XSPUrl: Represents a URL.

• XSPUserAgent: Represents the User-Agent request header field of the HTTP request
sent from the browser.

The XPage shown in Listing 6.32 shows some sample usage of the DirectoryUser,
XSPUrl, and XSPUserAgent classes to perform the following operations:

1. Get the distinguished name of the current user by using context.getUser() to
retrieve a DirectoryUser instance for the current user and then using
getDistingushedName().

2. Check if the current user is anonymous by using context.getUser() to retrieve a
DirectoryUser instance for the current user and then using isAnonymous().

3. Get the URL of the current page by using context.getUrl().

4. Get the browser name by using context.getUserAgent() to retrieve a
XSPuserAgent instance and then using getBrowser().

5. Get the browser version by using context.getUserAgent() to retrieve a
XSPuserAgent instance and then using getBrowserVersion().

202 Chapter 6 Building XPages Business Logic

Listing 6.32 DirectoryUser, XSPUrl, and XSPUserAgent Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table>

<xp:tr>

<xp:td colspan=”2” style=”font-weight:bold”>

DirectoryUser

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Distingushed Name:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:context.getUser().getDistinguishedName()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Anonymous:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”#{javascript:context.getUser().isAnonymous()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td colspan=”2” style=”font-weight:bold”>

XSPUrl

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Url:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField3”

value=”#{javascript:context.getUrl()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

Using JavaScript with XPages 203

<xp:td colspan=”2” style=”font-weight:bold”>

XSPUserAgent

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Browser:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField4”

value=”#{javascript:context.getUserAgent().getBrowser()}”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>Browser Version:</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField5”

value=”#{javascript:context.getUserAgent().getBrowserVersion()}”>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

Figure 6.9 shows a preview of the results from Listing 6.32. The distinguished name for the
current user and a flag indicating whether they are anonymous is displayed. The preview in
Figure 6.9 is using the browser so the user is anonymous; however, in Figure 6.10, a Notes client
is used so the user’s Notes distinguished name is displayed. The URL for the page also differs
between the browser and Notes preview, you can see that, in the Notes case, there is a request
parameter that indicates XPages is running in a Notes context, xspRunningContext is set to the
value Notes. The user agent information is really only useful when you are running in the
Browser context.

Earlier, you saw an example of how to use the NotesDocument class to read a date/time
value from a profile document. It took three lines of code to do this. Using the
NotesXspDocument simplifies the coding even further. The XPage shown in Listing 6.33
includes a computed expression that retrieves a date value from a Domino document data source.
The Domino document data source makes the document available using the specified variable
name, but also the default variable name currentDocument, which references a
NotesXspDocument instance. The JavaScript in Listing 6.33 makes a call to the current docu-
ment to get the date value and it returns an instance of java.util.Date directly.

204 Chapter 6 Building XPages Business Logic

Listing 6.33 NotesXspDocument Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.data>

<xp:dominoDocument var=”dominoDocument1” formName=”UserProfile”

action=”openDocument”>

<xp:this.documentId>

<![CDATA[#{javascript:var userName =
context.getUser().getDistinguishedName();

var profileDoc = database.getProfileDocument(“UserProfile”, userName);

return profileDoc.getUniversalID();}]]>

</xp:this.documentId>

</xp:dominoDocument>

</xp:this.data>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value>

<![CDATA[#{javascript:currentDocument.getItemValueDate

(“lastVisit”)}]]>

</xp:this.value>

<xp:this.converter>

<xp:convertDateTime type=”both”></xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:view>

Figure 6.9 Browser preview of the DirectoryUser, XSPUrl, and XSPUserAgent sample

Figure 6.10 Notes preview of the DirectoryUser, XSPUrl, and XSPUserAgent sample

Using JavaScript with XPages 205

@Functions This library contains a collection of JavaScript methods emulates the Lotus
Notes @Functions. The @Functions provide a way for you to perform common Notes-related
operations, like return the names of the authors for the current document or perform some string
manipulation operations. For readers who are familiar with the traditional Notes programming
model, this allows you to apply your existing knowledge to XPages. You need to be aware of
some syntax differences: The JavaScript @Function method names are case sensitive and use
commas as parameter separators, and not semicolons. The use of these methods is discussed in
Chapter 11.

DOM This library contains a collection of classes that can be used to create and manipu-
late an XML document. The XPage shown in Listing 6.34 uses the DOM script library to dynam-
ically create an XML document.

Listing 6.34 DOM Sample

1. <?xml version=”1.0” encoding=”UTF-8”?>

2. <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

3. <xp:this.beforePageLoad><![CDATA[#{javascript:

4. var document = DOMUtil.createDocument();

5. var person = document.createElement(“person”);

6. document.appendChild(person);

7. var firstName = document.createElement(“firstName”);

8. firstName.setStringValue(“Joe”);

9. person.appendChild(firstName);

10. var lastName = document.createElement(“lastName”);

11. person.appendChild(lastName);

12. lastName.setStringValue(“Bloggs”);

13. requestScope.put(“document”, document);

14. }]]></xp:this.beforePageLoad>

15. <xp:text escape=”true” id=”computedField1”

16. value=”${xpath:document:/person/firstName}”>

17. </xp:text>

18. <xp:text escape=”true” id=”computedField2”

19. value=”${xpath:document:/person/lastName}”>

20. </xp:text>

21. </xp:view>

• Lines 4–13: This server script creates an XML document with a root element named
person, which has two child elements named firstName and lastName, respectively.
Each child element contains a string value, such as Joe and Bloggs, respectively. Finally
the XML document is placed in the requestScope map.

206 Chapter 6 Building XPages Business Logic

• Lines 15–20: Two Computed Fields use an XPath value binding to display the values
from the XML document. XPath, the XML Path Language, is a query language that
allows you to select nodes from an XML document. Here, it is being used to extract val-
ues from the XML document that was created before the page was loaded and made
available using the document variable.

Client JavaScript
In general, developing client JavaScript in XPages is the same as developing client JavaScript for
a web application; however, you need to consider some factors:

• Control IDs versus client IDs

• Including server data in your client JavaScript

• Adding client and server logic to the same event

• Using the XSP client script library

Control IDs Versus Client IDs

The ID you specify in the XPage markup is not the same as the ID that is used on the correspon-
ding element in the HTML DOM. This is because the JSF engine creates different IDs for use in
the generated markup. You can use the view inspector Custom Control mentioned earlier to see
the client IDs that are assigned to the controls in your XPage. The XPage shown in Listing 6.35
includes three button controls. The first button is added directly to the page. The second button is
nested inside a Repeat control, which repeat twice. The third button is nested inside a Repeat con-
trol, which creates its contents three times.

Listing 6.35 Client ID Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xc=”http://www.ibm.com/xsp/custom”>

<xp:button value=”Button1” id=”button1”>

</xp:button>

<xp:repeat id=”repeat1” value=”2”>

<xp:button value=”Button2” id=”button2”>

</xp:button>

</xp:repeat>

<xp:repeat id=”repeat2” value=”3”

repeatControls=”true”>

<xp:button value=”Button3” id=”button3”>

</xp:button>

</xp:repeat>

Using JavaScript with XPages 207

<xc:ViewInspector></xc:ViewInspector>

</xp:view>

Figure 6.11 shows a browser preview of this client IDs sample. You can see the control ID
and client ID of each button because the view inspector is included on the page. The reason that
the client ID is not the same as the control ID is because of a behavior defined as part of
JavaServer Faces. Certain JSF components provide a namespace for the IDs of their child compo-
nents. These components are instances of javax.faces.component.NamingContainer,
which is the interface that identifies that this component provides a new namespace. In JSF, com-
ponent ID uniqueness is only required between all children of a NamingContainer. XPages
enforces control ID unique for the entire page, which is more restrictive than JSF requires, but
this helps avoid logic errors in your applications. This NamingContainer behavior is important
for Custom Controls and when including XPages within XPages. In a Custom Control, there is no
100 percent reliable way to guarantee uniqueness, so the component used to include a Custom
Control is a NamingContainer and, hence, provides a new namespace. Other controls in
XPages also include this behavior, and you can check which ones do by referring to the API doc-
umentation. So, the client ID for the first button in the sample is view:_id1:button1, and you
can see that this is made up of the control ID prefixed with the control IDs of the
NamingContainer ascendants of the button control. Moving a control within the page—such as
inside a repeat—changes the client ID. The repeat includes the row index in each client ID, so the
client ID is unique for each iteration of the repeat. Also, changing the properties of a repeat
changes the client ID. So, you can see that hard-coding these client IDs is a recipe for constantly
tweaking your client script and constant heartache.

Figure 6.11 Browser preview of client ID sample

208 Chapter 6 Building XPages Business Logic

Thankfully, there are a couple of ways to compute the client ID. The Custom Control that
generates the client ID uses the getClientId() global function, which is ideal when using server
JavaScript.You can also use an ID computed expression when you are writing client JavaScript, as
shown in Listing 6.36. If you preview this sample and click the button, an alert box is displayed
containing the button’s client ID.

Listing 6.36 Using an ID Computed Expression to Compute a Control’s Client ID

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:button value=”What is my Client Id?” id=”button1”>

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.script>

<![CDATA[alert(“#{id:button1}”)]]>

</xp:this.script>

</xp:eventHandler>

</xp:button>

</xp:view>

Including Server Data in Your Client JavaScript

You just saw how to use an ID value binding to dynamically compute a control’s client ID, and
this is the first example of how to use the results of a server computation in your client script.
Listing 6.37 shows an XPage that displays some data returned from a server JavaScript. You can
see that a JavaScript computed expression is included in the client JavaScript. This works because
a computed expression can be made up of static and dynamic parts. In this example, the com-
puted expression is made up of the following three parts:

• alert(“

• #{javascript:getDatabaseDetails()

• ”)

When this expression gets evaluated, it returns the following alert(“<string
returned by getDatabaseDetails >”), and this is what is included in the generated
markup.

Listing 6.37 Using Output from a JavaScript-Computed Expression in Client JavaScript

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:script src=”/DatabaseDetails.jss” clientSide=”false”>

Using JavaScript with XPages 209

</xp:script>

</xp:this.resources>

<xp:button value=”Show Database Details” id=”button1”>

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.script>

<![CDATA[alert(“#{javascript:getDatabaseDetails()}”)]]>

</xp:this.script>

</xp:eventHandler>

</xp:button>

</xp:view>

For completeness, Listing 6.38 provides the server JavaScript used in Listing 6.37.

Listing 6.38 Server JavaScript to Return Some Database Details

function getDatabaseDetails() {

var serverName = session.getServerName();

var onServer = session.isOnServer();

var filePath = database.getFilePath();

var creationDate = database.getCreated().toJavaDate();

var managers = database.getManagers();

var retStr = “Server name: “+serverName;

retStr += “ On server:”+onServer;

retStr += “ Database file path:”+filePath;

retStr += “ Creation date:”+creationDate;

retStr += “ Managers:”;

for (manager in managers) {

retStr += manager + “;”;

}

return retStr;

}

Adding Client and Server Logic to the Same Event

You can add client and server logic that is triggered by the same event, such as a button click, as
shown in Listing 6.39. Here, the user is asked for confirmation before the execution of the server
logic associated with a button click. If you run the sample, you are asked if you are sure you want
to refresh the page, and clicking Cancel prevents the page from being submitted and updated.

210 Chapter 6 Building XPages Business Logic

Listing 6.39 Confirming Execution of the Server Logic by Prompting the User

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<![CDATA[#{javascript:viewScope.put(“currentTime”,
java.lang.System.currentTimeMillis())}]]>

</xp:this.afterPageLoad>

<xp:text escape=”true” id=”computedField1”

value=”#{viewScope.currentTime}”

style=”font-size:12pt;font-weight:bold”>

</xp:text>

<xp:br></xp:br>

<xp:button value=”Refresh” id=”button1”>

<xp:eventHandler event=”onclick” submit=”true”>

<xp:this.script>

<![CDATA[if(window.confirm(“Are you sure you want to refresh this page?”)
!= true) return false;]]>

</xp:this.script>

<xp:this.action>

<![CDATA[#{javascript:viewScope.put(“currentTime”,
java.lang.System.currentTimeMillis())}]]>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:view>

Using the XSP Client Script Library

XPages provides a client JavaScript library that you can reference from within your client logic.
Useful XSP Properties The following three properties are the most useful of the avail-

able properties in the XSP client script library:

• validateAllFields: Normally, when submitting a page, the input values are vali-
dated, but the validation processes after the first failure. When the first validation failure
occurs, the function validationError is invoked and, by default, this displays a mes-
sage to the user containing the reason validation failed. This behavior of stopping after
the first validation failure is controlled by the validateAllFields property, which
has the default value of false. You can override the validationError function if
desired and, if you want to validate all values irrespective of failures, you can change the
validateAllFields property to true.

Using JavaScript with XPages 211

• lastSubmit: The property contains the timestamp of the last time this page was sub-
mitted. This property set when the method XSP.canSubmit() is invoked prior to sub-
mitting the page. It is recommended you use XSP.canSubmit() rather than modifying
this value directly.

• submitLatency: This property contains the minimum number of milliseconds allowed
between page submissions. The default value is 20,000 (20 seconds).

Useful XSP Functions The following functions are the most useful of the available
properties in the XSP client script library:

• alert, error, confirm, prompt: When running in a browser, these methods simply
wrap the standard JavaScript methods for invoking pop-up boxes. So, to display a mes-
sage to the user, you can use XSP.alert(“Hello”). When running in the Notes client,
the implementation changes to display a native Notes dialog. It is recommended you use
these methods if your application is going to be used from the Notes client.

• partialRefreshGet, partialRefreshPost: Used to invoke an AJAX GET or
POST request to refresh part of the current page. Sample uses of these methods are pro-
vided in Chapter 11.

• publishEvent: Publishes a component event when running in the Notes client. Again,
a sample usage of this method is provided in Chapter 13.

• showSection: Shows/hides a section of the current page.

• findForm, findParentByTag, getElementById: These useful DOM functions can
find elements in the current page.

• trim, startsWith, endsWith: These useful string utility methods can help with
string manipulation.

• log: Creates a logging message that is displayed in the JavaScript console.

Conclusion
This concludes the first chapter of dealing with creating your own business logic within XPages.
You learned the basic concepts that enable you to use simple actions, server, and client
JavaScript. In Chapter 11, you learn advanced topics, such as AJAX, partial refresh, Dojo integra-
tion, and more.

Another great source of information is the introduction to the JavaScript and XPages refer-
ence that is part of the Notes/Domino Infocenter. The current version is available at
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/

com.ibm.designer.domino.api.doc/r_wpdr_intro_c.html

This page intentionally left blank

213

PART III

Data Binding

7 Working with Domino Documents 215

8 Working with Domino Views 243

9 Beyond the View Basics 273

This page intentionally left blank

215

Notes/Domino is often referred to as a distributed document-centric database system. Some-
times, this description is used as a convenient means of defining what Notes is not—as in, it is not
a relational or object database, without actually attempting to identify what its key characteristics
really are, so it might be useful to do so quickly here.

A Notes application or database is manifested on disk as a Notes Storage File (NSF). All
information stored within an NSF is contained in a collection of data documents or design docu-
ments. Each document in turn contains fields or items (these terms can be used interchangeably)
of different data types, from simple scalar types to multivalue fields and ultimately to rich text
content. Documents are created based on a design element called a form, but do not require a
strict schema per se. This loose and less formalized structure facilitates the quick and easy con-
struction of collaborative applications and is at the heart of what makes Notes a leader in this
space. Notes provide many other core features that further underpin this document-centric collab-
orative system, like full-text indexing, document-level access control, and field-level data replica-
tion. In fact, the very name of product, “Notes,” can also be thought of as reference to a collection
of documents! In the Notes/Domino world, the terms “note” and “document” are used inter-
changeably. (Note ID is synonymous with document ID, and so on.)

Suffice to say, therefore, that if you are to get very far with XPages development, you need to
have a firm grasp of how XPages works with Notes documents. This is the focus of this chapter.
Because the document as an entity is so central to everything Notes is and does, some document-
related topics are given more expansive treatment in later chapters, and so forward references are
included here as appropriate. In any case, the logical place to start is with a discussion of how
XPages accesses and uses Notes documents—via the Domino document data source. You need a
sample application to work through the examples covered in this chapter, so download
Chapter7.nsf from the following website www.ibmpressbooks.com/title/9780132486316
and open it in Domino Designer before getting started.

C H A P T E R 7

Working with
Domino Documents

216 Chapter 7 Working with Domino Documents

Domino Document Data Source
Chapter 3, “Building Your First XPages Application,” introduced the concept of the data source,
and you used a Domino document data source in the process of building a simple sample applica-
tion, albeit in a basic manner. The document data source enables XPages controls to bind to the
underlying Notes/Domino document data. There are four ways to create a document data source
in Domino Designer:

• From the New XPage dialog box when creating a new XPage

• Through the Data property sheet options for most XPages controls

• Through the Define Data Source option in the Data palette combo box

• By creating the <xp:dominoDocument> tag directly in the XSP markup via the
Designer Source window

The inclusion of the Add data source to the page option to the New XPage dialog in ver-
sion 8.5.2 was a smart move because, as a general rule of thumb, any XPage that needs to work
with Notes data requires a data source component. Thus, the convenience factor associated with
this UI change is significant. This option is also useful to have on the New Custom Control dia-
log, as these mini-XPages can just as easily contain the application data access logic. (See
Chapter 10, “Custom Controls,” for the full skinny on the Custom Control design element.) In
fact, a cursory inspection of the 21 Custom Controls contained in the Discussion template indi-
cates that just under half of them, 10 to be precise, contain a data source component—curious
readers can verify this by looking through the XSP markup for occurrences of the <this.data>
tags, which wrap the document and view data sources. On the other hand, none of the XPage
design elements contain any data components! This is because all the XPages acquire their data
sources through the aggregation of the aforementioned Custom Controls. In any case, the point
here is that data source components, just like visual XPages controls, can be homed equally well
in XPages or Custom Controls.

The user interface for creating a document data source contains the same options whether
launched through the New XPage dialog box or any where else in Domino Designer. Figure 7.1
shows the UI options as laid out in the New XPage dialog.

Regardless of method, creating a document data source results in the creation of an
<xp:dominoDocument> tag. For example, clicking the OK button in the dialog shown in Figure
7.1 generates the XSP markup shown in Listing 7.1, not including the comment!

Domino Document Data Source 217

Figure 7.1 Creating a Domino document data source using the New XPage dialog

Listing 7.1 Basic Document Data Source Markup

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<!— this data source is available to any control on the XPage —>

<xp:this.data>

<xp:dominoDocument formName=”Main Topic” var=”document1”/>

</xp:this.data>

</xp:view>

In this example, the data source lists just two properties. The form specified as the
formName makes any fields defined on that form (including those defined in its subforms) avail-
able for data binding on this XPage, which effectively means that the nominated form is the data
schema for the XPage. The var property is the only mandatory document data source property,
and without it, there would be no way for XPages controls to refer to the data source component!
In other words, the var value is the reference variable used by controls elsewhere on the XPage
to access the data source object. Table 7.1 gives the complete list of all Domino document data
source properties along with a brief description of each one.

Some of these properties need further explanation. Others are best understood through the
application of practical examples. In terms of examples, it is best to pick up where you left off in
Chapter 3. To help you with this, the two XPages that you built there, myView.xsp and
myTopic.xsp, have been copied into the sample application for this chapter, Chapter7.nsf.
Okay, they have been tidied up just a wee bit!

218 Chapter 7 Working with Domino Documents

Table 7.1 Domino Document Data Source Definition

Name Description

action The action to execute on the document, newDocument or
editDocument.

allowDeletedDocs Allows soft deleted documents to be accessed and opened.

computeDocument Code applied to this property is called on document create, edit,
and save events.

computeWithForm A flag that controls when and if form logic on the associated doc-
ument should be executed. Valid settings are onload, onsave,
and both

concurrencyMode A flag that controls how concurrent updates are handled when the
document is updated by more than one user at the same time. The
four applicable flag settings are createResponse, fail,
exception, and force.

databaseName Name of the database containing the form, if not the current data-
base.

documentId A note ID or UNID used to uniquely identify the target document.

formName The form name (or alias) containing the design definition for the
document.

ignoreRequestParams Ignores the value provided for any property in this list if specified
as a URL parameter.

loaded A boolean property that indicates whether the data source should
be loaded.

parentId A note ID or UNID used to uniquely identify the document’s
parent document.

postNewDocument Any code applied to this event is called just after the document is
created.

postOpenDocument Any code applied to this event is called just after the document is
opened.

postSaveDocument Any code applied to this event is called just after the document is
saved.

queryNewDocument Any code applied to this event is called just before the document
is created.

Domino Document Data Source 219

Table 7.1 Domino Document Data Source Definition

Name Description

queryOpenDocument Any code applied to this event is called just before the document
is opened.

querySaveDocument Any code applied to this event is called just before the document
is saved.

requestParamPrefix A string prepended to parameters to distinguish one data source
instance from another.

saveLinksAs The URL format used when links are saved in a document—that
is, Notes or Domino format.

scope request, view, session, or application scope applied
to the data source.

var Variable name that identifies the data source to other controls on
the XPage.

Creating and Editing Documents
If you inspect these two pages, you observe that myTopic.xsp has a document data source identi-
cal to that shown in Listing 7.2. When creating myView.xsp, you added a simple action to create
a new topic, and also configured one of the View control columns to display links in order to
enable end users to open any listed document. Reload myView.xsp in a web browser and click
the New Topic button. The following URL appears in the browser’s navigation bar (substitute
your server home for local host, if appropriate):

http://localhost/Chapter7.nsf/myTopic.xsp?action=newDocument

Here, the action=newDocument URL parameter is passed to myTopic.xsp and the
XPages runtime dynamically applies it to any document data sources found on that page. If you
were to imagine this behavior in terms of XSP markup, it would be as shown in Listing 7.2.

Listing 7.2 Hard-Wired Document Data Source Markup for Creating New Discussion Topics

<xp:this.data>

<xp:dominoDocument formName=”Main Topic” var=”document1”

action=”newDocument” />

</xp:this.data>

Thus, myTopic.xsp opens a new document based on Main Topic when this action com-
pletes. Perhaps more interesting for you to observe is that document data source properties can be
specified directly in the XSP tag markup, passed in as URL parameters, or as you see in the next

220 Chapter 7 Working with Domino Documents

example, computed programmatically using JavaScript. This combination of options allows you
to create flexible and dynamic applications!

So, to take this example further, return to myView.xsp and click one of the links in the Topic
column. The URL generated on this occasion looks something like this:

http://localhost/Chapter7.nsf/myTopic.xsp?documentId=13C0E4DC6FEBA
DC180257791007D7AE2&action=editDocument

Because the link is designed to allow an end user to open an existing document then
myTopic.xsp needs a different action parameter, editDocument rather than newDocument, and
then some means of identifying the document to open, which is provided by the documentId
parameter. The 32-character hexadecimal ID, known as the document unique ID (UNID) is auto-
matically obtained for you by the XPages View Panel runtime logic and is guaranteed to uniquely
identify the target document. The note ID or document ID (the shorter hexadecimal ID string) can
also be used as a data source documentId property value—the note ID, however, is not guaran-
teed to be unique across database replica instances. In any case, these two simple examples show
how the both the action and documentId properties can be put to work when creating and
opening Notes documents.

Controlling URL Parameter Usage
It might occur to you that, as flexible as these URL parameters are, they could potentially open up
your application in ways you had not intended. If, for any such reason, you want to disable this
feature, you can simply set the ignoreRequestParams=”true” on the document data source
for any given XPage. For example, if you make this modification in MyTopic.xsp and then click
a view column link in myView.xsp in the browser, you see that the selected document is not
loaded—the editDocument action and documentId parameters are ignored. You can, of
course, invent your own document parameters and add code to handle them, and these are not
affected by the ignoreRequestParams setting.

Apart from security considerations, this feature can also help ensure graceful handling of
bookmarks. For example, take the use case where an end user uses the web browser to bookmark
an XPage and the resulting URL contains a document ID. Suppose that, by the time the user uses
the bookmark again, the document has been deleted. This would inevitably end up in an error
page in the browser when XPages fails to load the document. You can configure the application to
disregard such bookmark parameters and avoid the failure using the ignoreRequestParams
property. I’m sure you can think of many more use cases also!

Creating Response Documents
Now that you have learned how to create and open regular top-level documents, the next most
logical follow-up is to learn how to create response documents. The example used to demonstrate
this adds a simple extension to myView.xsp, and the required steps are described in the following
exercise:

Domino Document Data Source 221

1. In myView.xsp, append a new column to the end of the View Panel using the View >
Append Column main menu.

2. Add var=”rowData” to the <xp:viewPanel> tag in the Designer Source pane.

3. Drag-and-drop a button control from the palette on to the XPage. You cannot drop this
directly into the new View column, but it can be relocated there indirectly in the next step.

4. Activate the Outline view and drag-and-drop the new button over the newly added col-
umn, viewColumn3.

5. Select the button control in the Outline view, activate the Events panel, and click the
Add Action button to define a new simple action.

6. In the Add Simple Action dialog, select the Document > Create Response Document
simple action and choose myTopic as the XPage to open, as shown in Figure 7.2.

7. For the Parent ID field, click the little blue diamond adjacent to the text box, select
Compute value, and simply enter rowData.getUniversalID() in the Script Editor.
Click OK when done.

8. For aesthetics, while the button is still activated, select the Properties tab and change
the label to Respond.

9. Similarly, if you select the new view column’s header in Designer, you should change its
label (or value if using the All Properties sheet) to the word Action.

10. Save myView.xsp and reload it in a web browser.

Figure 7.2 Simple action Create Response Document dialog

222 Chapter 7 Working with Domino Documents

Figure 7.3 Creating a response document using simple actions and the document data source

Although most of these steps are hopefully somewhat intuitive, it might also be challenging
for a couple of reasons, explained as follows.

First, because you cannot drag-and-drop directly into a view column, the Designer WYSI-
WYG editor does not visually reflect all of your changes in the design-time rendering of the View
control. You must simply take it on trust that the controls are rendered correctly at runtime.

Second, steps 2 and 7 dabble just a little in server-side JavaScript and use concepts and
objects that you might not be familiar with as yet; however, the JavaScript code is fairly trivial
and can be explained right here. The <xp:viewPanel> rowData property defined in step 2
gives programmatic access to the each row in the view as the View control is being populated.
The rowData property makes available a JavaScript NotesXspViewEntry object that exposes
various API functions, one of which is getUniversalID(). Thus, for any given row, the action
button can create a response document and retrieve the UNID of the current entry for use as the
parentId of that new reply. The result of this becomes obvious when you click the Respond
button in the updated XPage and view the URL that is generated in the browser navigation bar:

http://localhost/Chapter7.nsf/myTopic.xsp?action=newDocument&paren
tId=13C0E4DC6FEBADC180257791007D7AE2

For myTopic.xsp, the URL action again instructs to create a newDocument, but a
parentId is also specified—the XPages runtime thus knows to save the document as a response
to the top-level document identified by the UNID. Figure 7.3 shows a sample response being
composed, and Figure 7.4 shows this document displayed as a response in the myView.xsp.

Domino Document Data Source 223

This exercise has been completed for you and saved in myViewExt.xsp in Chapter7.nsf.
Listing 7.3 outlines the full XSP markup along with comments.

Listing 7.3 View Panel: Complete Source for Response Document Extension

<xp:viewPanel rows=”10” id=”viewPanel1”

pageName=”/myTopic.xsp”

var=”rowData”>

<!— rowData property value set above on viewPanel —>

<xp:this.facets>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”view1”

viewName=”($All)”>

</xp:dominoView>

</xp:this.data>

<xp:viewColumn columnName=”$106” id=”viewColumn1”

showCheckbox=”true”>

<xp:viewColumnHeader value=”Date”

Parent Document Response Document

Figure 7.4 New Response document displayed in the View Panel

224 Chapter 7 Working with Domino Documents

id=”viewColumnHeader1”></xp:viewColumnHeader>

</xp:viewColumn>

<!— indentResponses added to make response doc obvious —>

<xp:viewColumn columnName=”$120” id=”viewColumn2”

displayAs=”link” indentResponses=”true”>

<xp:viewColumnHeader value=”Topic”

id=”viewColumnHeader2”>

</xp:viewColumnHeader>

</xp:viewColumn>

<!— New Column —>

<!— See how the Respond button is contained as a child —>

<xp:viewColumn id=”viewColumn3” value=” “>

<!— “Action” header label —>

<xp:this.facets>

<xp:viewColumnHeader xp:key=”header”

id=”viewColumnHeader3” value=”Action”>

</xp:viewColumnHeader>

</xp:this.facets>

<!— Respond button with simple action & JS code —>

<xp:button value=”Respond” id=”button3”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action>

<xp:createResponse name=”/myTopic.xsp”

parentId=”#{javascript:rowData.getUniversalID()}”>

</xp:createResponse>

</xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:viewColumn>

</xp:viewPanel>

Executing Form Logic
As well as providing all the metadata information for the documents you want to work with,
the data source form can also contain business logic (LotusScript code, @Commands, and so
on) that is executed at various times in the Notes document lifecycle, such as when a document
is created, opened, saved, and so forth. This invariably holds true if you are building XPages
functionality into a preexisting Notes application. If you are creating a new XPages application

Domino Document Data Source 225

from scratch, on the other hand, it is recommended that you only create form and view ele-
ments to define your metadata and not add any business logic to these elements. With the first
use case, however, it might be beneficial and expedient to hook into the any preexisting form
logic and leverage this code rather than reimplement it all using the equivalent XPages devel-
opment technologies. The computeWithForm data source property can help you achieve this.

Refer to Figure 7.1, and look at the Run form validation control that is expanded at the
bottom of the New XPage dialog. This UI control on the dialog box maps directly to the
computeWithForm runtime property. Choosing On document load means that any underlying
form logic designed to execute when the document is opened is executed when the document is
opened by this XPage. Similarly, On document save causes any built-in form save logic to exe-
cute when the document is saved using this XPage, and there are no prizes for guessing what the
Both option means! Although the underlying form logic is typically used to perform document
validation, as the UI infers, it can obviously be completely arbitrary in nature. Because the Dis-
cussion template existed long before the advent of XPages, it is easy to find a suitable example
within that application to further illustrate the point, as you now see!

Start by creating a new random topic from myView.xsp and save it with some data in all
three fields. If you view the document fields using the infobox in Notes, you see a short listing
like what’s shown in Figure 7.5.

Three fields explicitly
created by the XPage

Figure 7.5 Infobox displaying document fields created using myTopic.xsp

Now, open myTopic.xsp in Designer and remove or comment out the top row of the
table—specifically, the cells containing the From controls. The XPages inputText control is
bound to the From field in the Main Topic form and had an XPages default value generated
using the @UserName() @Function so that new documents are assigned an author once saved.
Typically, this field would be hidden on an XPage so that the user would not see and could not
change this value (for example, by assigning a display:none CSS rule to the control’s style
property). A simpler solution is available, however, by just using the computeWithForm prop-
erty! To begin to understand this alternative, open the Main Topic form in Designer and peruse
all the hidden fields contained in the table at the top of the form, as shown in Figure 7.6.

226 Chapter 7 Working with Domino Documents

Figure 7.6 Hidden fields in the Main Topic form

Figure 7.7 Infobox displaying document fields after computeWithForm=both is added to
myTopic.xsp

A couple of interesting points arise. First, many of these hidden fields are automatically
assigned values through Notes Formula Language or LotusScript code. This includes the From
field, which is assigned a value using @UserName command. Thus, XPages does not have to
compute the From value at all if the existing form logic is simply allowed to execute! To prove
this out, return to myTopic.xsp and assign a value of both to the computeWithForm property
either in the Source pane or All Properties sheet. Save the XPage and create a new document
from myView.xsp, again entering data in all three fields. As shown in Figure 7.7, the From field
is still created in the new document, although it is the form logic that has performed the task on
this occasion rather than XPages itself—because the data field is no longer accessed directly from
the XPage itself as a result of commenting out the From control tags.

Domino Document Data Source 227

Also note that lots more fields have been created than was the case with the previous ver-
sion of the XPage. This ensures that any data needed by other functional parts of the application
is created, which means that any new XPages documents retain compatibility with the original
runtime environment—which might or might not be important for you, depending on your
project requirements.

TIP To comment out XSP markup in the source pane, simply highlight the block of tags
you want to disable and type Ctrl-Shift-C. This is a toggle command, so typing Ctrl-Shift-
C also uncomments code if it is already commented out.

Managing Concurrent Document Updates
In a collaborative environment where information and document sharing is the name of the game,
it is to be expected that save conflicts inevitably occur when two or more users attempt to update
the same document around the same time. If one user attempts to save changes to a document
when another user is also editing its contents, who wins? The document data source has a
concurrencyMode property that can control behavior in this situation in accordance with your
own preferences. The property offers four settings:

• createResponse means that the first user to perform the save writes their changes to
the original document and any others that follow have their changes saved as response
documents. This is the default behavior.

• force, on the other hand, means the last user to save wins. Any changes made prior to
that final concurrent save are simply lost!

• fail simply means that the save operation is not performed at all for any user involved in
the document contention, and each is shown a warning message when attempting to save:

”Document has been saved by another user - Save has not been
performed”

• exception also means that the save is not performed, but a Java exception is thrown
instead. This results in an error stack being displayed by default in the browser page, but
gives the application developer the flexibility of providing their own handler for this par-
ticular exception.

Figure 7.8 shows an example of what happens when two simultaneous efforts were made to
append information to the Difference between clear and colored glass? note, when the docu-
ment data source in myTopic.xsp has concurrencyMode =”createResponse”. Notice that a
response document of the same subject exists, and the only difference between both is the trailing
text shown in the abstract “watch this space!” versus “more info coming soon.”

228 Chapter 7 Working with Domino Documents

1st Document Saved

Conflict Document

Figure 7.8 Response documents used to avoid data loss due to concurrent document updates

TIP Apart altogether from multiuser document conflict scenarios, there are other use
cases to account for when considering potential data loss scenarios. Chapter 13, “XPages
in the Notes Client,” has a section, “Introducing enableModifiedFlag and disableModified-
Flag.” These properties were introduced in 8.5.1 to give the application developer granular
control over what document data is saved and what document data may be thrown away.
The implementation of these properties is more fully featured in an XPages client environ-
ment, but most of the details are applied to XPages on the web. It might be a good idea to
read that section in conjunction with this material.

Multiple Document Data Sources
At this stage, it is apparent that a single XPage is not restricted to one document data source. Sev-
eral document data sources can be included in an XPage and, thus, controls within an XPage can
be bound to metadata defined in many forms. For example, an XPage in the Discussion template
could include a data source that points to the Main Topic form and another that points to the
Author Profile form. It might be desirable to do this in order to enable a contributor to update

Domino Document Data Source 229

profile information while composing a discussion topic. More generally, an XPage might contain
two data sources pointing to, say, a purchase order form and a supplier form—and these forms
can even be located in different databases. Again, this allows supplier details to be displayed
and/or edited on an XPage while an order entry is in progress. Although all this is eminently
doable, it can require some careful stewarding to make sure that the separate data sources are cor-
rectly managed.

In the earlier section, “Creating and Editing Documents,” you saw how URL parameters
can be used to drive application behavior, such as passing a document ID as part of the URL to
identify the document to edit. What happens in this scenario if the page contains more than one
document data source? Which data source should the documentId parameter be applied to? The
first one, all data sources, or none? The answer is that a documentId parameter would be applied
to all document data sources on a given page, although if your page contains multiple data
sources, this is probably not what you want!

The requestParamPrefix property is designed to manage URL parameters when mul-
tiple data sources exist. The concept is simple: You assign a prefix to each data source on the page
and then prepend any URL parameters with this prefix to identify the target data source. To help
demonstrate how this works, a new XPage has been created for you in Chapter7.nsf, namely
myTopicX2.xsp. If you inspect this XPage, you see that it is really like two myTopic XPages
rolled into one—hence, the name! The document data source has been duplicated except for the
var and requestParamPrefix properties (see Listing 7.4), and the input controls have been
copied so that two documents can be edited at once—a purely academic exercise to help illustrate
the workings of this feature.

Listing 7.4 Data Source Snippet from myTopicX2.xsp

<!— two data sources pointing to the same form —>

<xp:this.data>

<!— only requestParamPrefix and var properties differ —>

<xp:dominoDocument var=”document1” formName=”MainTopic”

computeWithForm=”both” action=”editDocument”

requestParamPrefix=”first”>

</xp:dominoDocument>

</xp:this.data>

<xp:this.data>

<xp:dominoDocument var=”document2” formName=”MainTopic”

computeWithForm=”both” action=”editDocument”

requestParamPrefix=”second”>

</xp:dominoDocument>

</xp:this.data>

230 Chapter 7 Working with Domino Documents

In the regular client, you can use the infobox control to find the note IDs of the documents
edited in the previous section, the updated “Difference between clear and colored glass?” note
and the conflict document created as a response to it. Then, enter these note IDs as URL parame-
ters to myTopicX2.xsp in the following fashion to edit both documents at once:

http://localhost/Chapter7.nsf/myTopicX2.xsp?firstdocumentId=9F2&se
conddocumentId=96a

Basically, the documendId parameters has been prefixed with the requestParamPrefix
properties specified for each data source on the page. This distinguishes which document ID is
intended for which data source. Figure 7.9 shows the results in the browser—simple!

Figure 7.9 XPage editing two documents using requestParamPrefix

You could, of course, just assign a single requestParamPrefix to one of the data
sources in this example, and then the nonprefixed data source would read the regular (nonpre-
fixed) parameter arguments. Thus, if you only applied the “second” prefix parameter, the preced-
ing URL could be rewritten like this:

http://localhost/Chapter7.nsf/myTopicX2.xsp?documentId=9F2&secondd
ocumentId=96a

The point is clear that, in order to address n document data sources, you need at least n – 1
prefix parameters.

Domino Document Data Source 231

Document Data Source Events
Table 7.1 includes seven events that can be used to hook into the document lifecycle and execute
code to perform tasks such as data initialization and validation. Three events can be hooked for a
document data source: creating, opening, and saving a document. For each of these, a query event
is called just before the event takes place and a post event that is fired immediately after the event
occurs. Also, a single computeDocument event is fired for all three events. You can verify the
timing of these events by inserting JavaScript print statements as the event handlers. Figure
7.10 shows how to access the data source events in Designer and a sample print statement for
queryOpenDocument.

Figure 7.10 Document data source events in Domino Designer

When running on the web, JavaScript print statements are sent to the Domino server con-
sole, while on the Notes client, they are output to the trace log, which is viewable via Help > Sup-
port > View Trace menu. The myTopic XPage contains has such print statement, but they have
been commented out. Performing the following exercise helps you understand how and when
these events are called:

1. Uncomment the data source event code in myTopic.xsp.

2. Create a new document from myView.xsp.

3. Enter some arbitrary data and save the document.

4. Open the new document again from myView.xsp.

5. Review the trace log or server console as appropriate.

232 Chapter 7 Working with Domino Documents

Listing 7.5 shows the output you see when run on the web. Hopefully, the order of event
execution is what you were expecting!

Listing 7.5 Output of Document Data Source Events on Domino Server Console

22:39:25 HTTP JVM: queryNewDocument event notification

22:39:25 HTTP JVM: postNewDocument event notification

22:39:25 HTTP JVM: computeDocument event notification

22:39:56 HTTP JVM: querySaveDocument event notification

22:39:56 HTTP JVM: postSaveDocument event notification

22:39:56 HTTP JVM: computeDocument event notification

22:40:20 HTTP JVM: queryOpenDocument event notification

22:40:20 HTTP JVM: postOpenDocument event notification

22:40:20 HTTP JVM: computeDocument event notification

Although this trivial example simply serves to show you how to access the events and ver-
ify the order in which they are executed, the Discussion template itself contains many examples
of how these events are used to accomplish real application-development tasks. A good self-con-
tained example can be seen in the response.xsp Custom Control. Open this design element and
view the postNewDocument event in the JavaScript editor. A snippet of the code is shown in
Listing 7.6.

Listing 7.6 postNewDocument Snippet from response.xsp

<!— response docs do not automatically inherit data from parent doc —>

<xp:this.postNewDocument><![CDATA[#{javascript:

var parent:NotesDocument =

database.getDocumentByID(responseDoc.getParentId());

var isResponse:boolean = parent.isResponse();

// Make subject and categories available to whole page as viewScope vars

viewScope.parentSubject = parent.getItemValue(“Subject”);

viewScope.parentTags = parent.getItemValue(“Categories”);

// inherit these items from the parent doc into the response doc

responseDoc.setValue(“MainID”, parent.getItemValue(“MainID”));

responseDoc.setValue(“ParentSubject”, parent.getItemValue(“Subject”));

responseDoc.setValue(“Readers”, parent.getItemValue(“Readers”));

responseDoc.setValue(“ParentForm”, parent.getItemValue(“Form”));

responseDoc.setValue(“ThreadId”, parent.getItemValue(“ThreadId”));

responseDoc.setValue(“ExpireDate”, parent.getItemValue(“ExpireDate”));

Domino Document Data Source 233

responseDoc.setValue(“Categories”, parent.getItemValue(“Categories”));

responseDoc.setValue(“ImmediateParentSubject”,

parent.getItemValue(“Subject”));

// this item below depends on the type of parent...

if (isResponse == false) {

responseDoc.setValue(“OriginalSubject”,

parent.getItemValue(“Subject”));

} else {

responseDoc.setValue(“OriginalSubject”,

parent.getItemValue(“OriginalSubject”));

}

}]]>

</xp:this.postNewDocument>

Although you won’t deep dive on programmability topics until Part III, this example is
fairly accessible to the uninitiated, because it is really performing a simple task. It can be
explained as follows:

1. response.xsp is the XPage used to create a response document.

2. The postNewDocument is event is fired after the response document is created.

3. responseDoc is the var value assigned to the document data source, and this makes
the response document available programmatically as an instance of standard
Notes/Domino Java Document class. This Java class is wrapped by XPages and made
available to JavaScript.

4. Standard Document class methods are used to read fields from the parent document and
create fields of the same name and value in the response document.

5. It also makes the Subject and Categories field values from the parent available to the
JavaScript elsewhere on the XPage by storing them as view scope variables.

This example provides a good insight into what’s possible programmatically by hooking
the document data source events. For example, the querySaveDocument and
postSaveDocument events are commonly used in combination with the Document class to per-
form data validation when documents are being saved.

Common Data Source Properties
The document data source and the view data source share some common properties, namely
databaseName, ignoreRequestParams, loaded, parentId, requestParamPrefix,
scope, and var. The properties ignoreRequestParams, parentId, requestParamPrefix

234 Chapter 7 Working with Domino Documents

and var have already been explained. The others are straightforward and briefly discussed in the
following paragraphs.

The databaseName property allows you to specify a form that is not contained in the cur-
rent database. The property value, in its simplest form, can just be the name of another database,
or it can include a server name, full path, or replica ID. In Chapter 8, “Working with Domino
Views,” a section titled, “The databaseName Property,” gives examples of all such usage, and all
those examples are valid when applied to the document data source.

This leaves the loaded and scope properties. The former is a boolean property that deter-
mines whether or not to load the source document, and the latter simply dictates the scope in
which any loaded document data is stored. Chapter 8 also contains a “Go Fetch! Or Maybe
Not...” section, which briefly ruminates over some issues to consider when using these properties.
Again, those points are equally valid in the context of the document data source, and you need to
refer to them as necessary.

Miscellaneous Data Source Properties
The only two data source properties that have not been covered at this stage are saveLinksAs
and allowDeletedDocs.

The saveLinksAs flag dictates the format to use when links (document, view, or database
links) are saved in documents—Notes URL format, or Domino URL format. The property is
designed to minimize any document incompatibility issues that can arise when documents are
modified on different platforms. In Chapter 13, this property and broader compatibility topics are
dealt with extensively in a section titled, “Notes Links Versus Domino Links.” Refer to that sec-
tion for details on saveLinksAs.

The allowDeletedDocs property determines whether soft deleted documents can be
accessed and opened in XPages. This property is of interest to any developer who wants to
undelete or restore documents that an end user has flagged for deletion, but which, as yet, have
not been physically removed from the NSF. If your application offers a document trash folder
feature, for example, allowDeletedDocs, could be useful in managing that. Soft deletions, of
course, must be supported at the NSF layer itself, and this feature is enabled via another applica-
tion level property, as shown in Figure 7.11.

This concludes the discussion of document data source properties and events.

Working with Domino Documents—Programmatically! 235

Working with Domino Documents—Programmatically!
Almost all the use cases examined up to now involved manipulating the values of data source
properties to invoke some particular runtime behavior. Dynamic access to these properties is gen-
erally achieved programmatically, typically using simple actions or server-side JavaScript. This
section examines some of the specific tools at your disposal.

Simple Actions
The idea of simple actions is to automate everyday common actions without requiring any cod-
ing. “Simple” is the operative word in the title! These actions are designed to be dialog-driven so
that the developer must merely choose a particular action from a menu and then pick any param-
eter values from helper controls. There are scenarios, of course, where parameter values must be
computed to solve a particular problem. For example, in the section, “Creating Response Docu-
ments,” you needed to enter a line of JavaScript to compute the parent ID for the new response
document, but generally, convenience and simplicity are the order of the day.

Table 7.2 summarizes the simple actions that you are most likely to need when working
with Domino documents and data sources.

Enable Soft Deletions Option

Figure 7.11 Allow Soft Deletions application property

236 Chapter 7 Working with Domino Documents

One or more examples of all these simple actions are available in Chapter 6, “Building
XPages Business Logic.”

JavaScript
If you already have experience with the Notes/Domino LotusScript or Java backend classes, you
will no doubt be familiar with the Document class. A full description of all properties and meth-
ods along with examples is provided in the Domino Designer help pages, Lotus Domino
Designer Basic User Guide and Reference > Java/CORBA Classes > Classes A – Z > Docu-
ment Class. There is also an XPages JavaScript class named NotesXspDocument that wraps
the Document class, and an instance of this class is made available whenever you programmati-
cally access a Notes document via the Domino document data source. The NotesXspDocument
wrapper class is necessary so that XPages can keep track of any changes made to the actual doc-
ument, cache and save its data, and so forth. NotesXspDocument exposes a reduced set of API
methods, and this is the official XPages document scripting interface. However, the wrapped
Document object is still available from the NotesXspDocument by simply calling its
getDocument() method.

Table 7.2 Domino Document Data Source Definition

Action Description

Change Document Mode Changes document between from edit and read mode and
vice versa.

Create Response Document Creates a document that is a child of another document;
refer to the section “Creating Response Documents” and
Figure 7.2.

Delete Document Deletes a particular document from the NSF—the current
document by default.

Delete Selected Documents Deletes one or more documents from a view control.

Modify Field Changes the value of a nominated field in a document.

Open Page Navigates to another XPage, optionally opening one or
more documents in the process.

Save Data Sources Saves the document data source(s) on a given page. View
data sources are read-only.

Save Document Saves a specified document; uses the current document if
no document is specified.

Working with Domino Documents—Programmatically! 237

It is obviously important to know how to gain access to the document object when you
want to apply some JavaScript logic to your page. Typically, as you have seen in the JavaScript
examples in this chapter, the object reference is obtained from the var property defined on the
data source—for example, var=”document1”. For your convenience, the XPages runtime also
provides an implicit global variable called currentDocument, which is always available and
returns the document instance for the nearest document data source on the page. Remember, an
XPage can have more than one data source! Data sources can be attached to the page itself or to
container controls within the page. For example, if you are creating some JavaScript for a button
within a panel on an XPage, and both the panel and the root XPage have declared a document
data source, the currentDocument object uses the document instance associated with the panel,
the closest data source in its document hierarchy path.

A document object can also be obtained programmatically from other classes. For
example, in the section, “Creating Response Documents,” you learned to extend a View control
so that a response document could be created for any row entry. The <xp:viewPanel> var
entry (“rowData” in your example) makes the current row available as an instance of the
NotesXspViewEntry class. This enables you to call rowData.getUniversalID() on any
row to pass the parent note ID to the Create Response simple action. If you needed access to
the document itself, you could simply have called rowData.getDocument() and worked with
that object as needed. Similarly, the Database class can return a document instance via the
getDocumentByID() method, as shown back in Listing 7.6. You are also granted easy access to
Database object by the way, via another XPages global variable called currentDatabase.

So, with all these access routes available, it should not be a problem to get your hands on a
document instance and start experimenting with the extensive API it provides. Domino Designer
puts all the API methods at your finger tips via the class browser and type-ahead facilities avail-
able in the JavaScript editor. Figure 7.12 shows an example of both these utilities.

Figure 7.12 Document methods exposed using the JavaScript editor

238 Chapter 7 Working with Domino Documents

Note that type ahead works on the doc1 variable in Figure 7.12 because its class type is
defined when it is declared in the first line. No type-ahead suggestions would be provided if this
was not done; for example, if the declaration was simply

var doc1 = currentDocument;

In something of an anomaly, the global currentDocument variable is not automatically
expandable via JavaScript type ahead, but document data source variables (like “document1”
and such) are—not sure why!

TIP A pertinent article titled, “XPages Straight Up,” was contributed to the IBM develop-
erWorks site in January 2010. One of its sections focuses on creating and updating
Domino documents without using XPages document sources at all, but just pure
JavaScript code. If you want to deep dive on script access to Domino documents, the URL
is www.ibm.com/developerworks/lotus/library/domdes-xpages/index.html.

Rich Documents
Sooner or later, any discussion of Notes documents turns to the subject of rich text content! In
Notes/Domino version 8.5.2, XPages made the CKEditor available as its default rich text control
for the first time. Before that release, rich text fields within documents had been surfaced using
the Dojo rich text editor, but the switch was made to the CKEditor as it provided a more expan-
sive end-user feature set and was being adopted as a de facto standard across other products in the
IBM Lotus software portfolio.

Apart from all the usual HTML text formatting options that one takes for granted with a
modern rich text editor, CKEditor makes it easy to add tables, links, and emoticons to a rich text
field, and to directly embed inline images—the latter in particular means that the 8.5.2 release
represents a big step forward for the both the Domino and XPages rich text experience!

Assuming that you are using Notes/Domino 8.5.2, the myTopic XPage that you built fea-
tures a CKEditor control! Open this page in Designer and activate the control to take a closer
look. The XSP markup for the rich text control is surprisingly minimal, as Listing 7.7 illustrates.

Listing 7.7 XSP Markup for Rich Text Control

<xp:inputRichText value=”#{document1.Body}”

id=”body1”>

</xp:inputRichText>

The control is highly configurable, however, so you can readily change its look and feel by
defining more properties. The toolbar is often the first place people start with customizations. The
CKEditor has three standard toolbar definitions, namely Slim, Medium, and Large, although
these names don’t do a lot in terms of describing functionality! However, the toolbars shown in
Figure 7.13 might be more instructive.

Rich Documents 239

The Medium toolbar is the default setting, but if you want to change to another standard
option, you can do so via the Dojo property sheet. Note that the CKEditor is not part of the Dojo
library, but a completely separate JavaScript component. It is, however, integrated into XPages
via a Dojo wrapper, and this allows XPages to maintain full compatibility with any historic XSP
rich text markup generated in 8.5 or 8.5.1, when the Dojo rich text editor was the default. In fact,
in the unlikely event that you want to revert to the Dojo rich text editor, you simply have to set the
dojoType property value to ibm.xsp.widget.layout.RichText in the All Properties
sheet—but that’s a slight aside! In any event, as Figure 7.14 shows, you can apply an alternative
CKEditor standard toolbar setting by adding a toolbarType attribute to the Dojo property sheet
and assigning a value of Slim or Large—note that these arguments are case sensitive.

Slim

Medium

Large

Figure 7.13 CKEditor slim, medium, and large toolbars

Figure 7.14 Defining an alternative standard toolbar

240 Chapter 7 Working with Domino Documents

If none of these toolbars are exactly what you want, you can define your own customized
toolbar using server-side JavaScript and a toolbar (as opposed to toolbarType) Dojo attrib-
ute. Add the toolbar attribute in the same way you added toolbarType and compute its value
using a code snippet like Listing 7.8.

Listing 7.8 JavaScript Snippet for a Customized Toolbar

var myToolbar = “[[‘Font’,’FontSize’], \n”

+”[‘Preview’, ‘Bold’,’TextColor’,’BGColor’], \n”

+”[‘Italic’,’Underline’,’Strike’,’-’,’Subscript’,’Superscript’]]”;

return myToolbar;

The resulting toolbar is populated only with the actions listed in the array. Note of course
that a customized toolbar can also be an empty toolbar! This is achieved in Listing 7.8 by return-
ing an empty myToolbar array (var myToolbar = “[]”;). Sometimes, this is desirable when
an application has limited screen real estate and the area that can be afforded to the rich text con-
trol is much reduced. Removing the toolbar can free up a lot of pixel space, and users are still free
to format rich content using the standard CKEditor hotkeys.

Examples of other customization properties that can be applied like using this same pattern
are as follows:

• language defines the user interface language to use for translatable CKEditor UI arti-
facts using standard language codes like, en, fr, pt, and so on.

• contentsLangDirection defines the language orientation in the editor, such as RTL,
LTR. This is just like the dir property exposed via JSF on other XPages controls.

• enterMode defines the behavior of the enter key and how it is recorded in the underly-
ing HTML (for example, whether <p>,
, or <div> tags are used).

• skin is the name of a custom skin that can be provided here (as the CKEditor is a
skinnable control).

Applying a custom skin is a nontrivial undertaking, but there are some patterns to follow.
The 8.5.2 release comes with three skins: the Lotus skin that you see in XPages and two other
sample skins. The sample skins are indeed just that—samples, not officially supported, but
nonetheless a useful reference point if you are interested in providing your own skin. You can find
the three skin implementations in the <data_folder>/domino/html/ckeditor/skins directory on
both the Notes client and Domino server. The CKEditor developer’s guide also provides useful
information on building skins at this location:

http://docs.cksource.com/FCKeditor_2.x/Developers_Guide/Customizat
ion/Skins

Table 7.3 summarizes some of the other key features of the CKEditor.

Rich Documents 241

A sample rich text document has been created for you in Chapter7.nsf using many of these
features—see Sample Rich Text Doc, as shown in Figure 7.15.

Table 7.3 CKEditor Key Features

Action Description

Maximize Allows the editor area to be expanded to the full container window. This is par-
ticularly useful when creating and editing large documents.

Link Provides a URL Link dialog that allows you to insert URLs into the document
body.

Insert Image Provides a dialog that allows you to browse your file system to select an image
to insert into the current document. Alternatively, you can enter a URL to a
remote image on the Image Information tab.

Insert Table Provides a dialog that allows you to insert a table into the document. You can
specify various table properties, such as number of rows, number of columns,
width, height, and so on.

Insert Emoticons Provides a dialog that gives numerous emoticons that you can select to insert
into your document.

Paste Provides a range of pasting options, including Paste Notes Document Link.

Inline image

Figure 7.15 Rich text composed in the CKEditor

242 Chapter 7 Working with Domino Documents

Experiment with the features and get an understanding of what can be achieved with rich
text content in 8.5.2.

Other CKEditor resources you may find useful are as follows:

http://docs.cksource.com/CKEditor_3.x/Developers_Guide

http://docs.cksource.com/ckeditor_api/

A final note regarding the creation of rich text and application security: It is theoretically
possible to insert potentially malicious content into a rich text field by inserting inline executable
script code. Chapter 17, “Security,” contains a section titled “Active Content Filtering,” which
explains how to deal with that issue.

Conclusion
This chapter explored every property of the Domino document data source and how to manipu-
late them dynamically using URL parameters, simple actions, and Java Script. You have also
been introduced to the CKEditor for creating and editing rich text content. Working with docu-
ments is a pervasive topic and you will find examples sprinkled throughout this book. Hopefully,
this chapter provided a good grounding for you going forward.

243

This chapter looks at the Domino view data source. You already worked briefly with the view data
source in Chapter 3 when you built a simple view panel, and Chapter 4 provided some further
summary-level information. Now, it is time to explore the minutiae and learn all there is to know
on this topic!

Before you dive in, download Chapter8.nsf and open it in Domino Designer so that you
have all the examples and exercises that are covered here. As usual, the sample application is
available from this website: www.ibmpressbooks.com/title/9780132486316

If you search Chapter8.nsf for the <xp:dominoView> tag, you will find many matches
spread across various XPages and custom controls. For those of you wanting to jump right in,
perform these steps:

1. Select the sample application in the Designer navigator panel.

2. Type Control-H to invoke the Search dialog.

3. Enter xp:dominoView in the Containing Text field.

4. Enter *.xsp as the file name pattern.

5. Click Enclosing Project to fix the search scope to just this application.

6. Click the Search button.

Results are listed in a Search tab located by default in the bottom pane of Designer, and
you can double-click any matching tag to open the containing .xsp file. Then, moving to the
Properties > All Properties panel, you will see a list of 20 view data source properties for the
<xp:dominoView> tag, just like those listed and briefly described in Table 8.1.

C H A P T E R 8

Working with
Domino Views

244 Chapter 8 Working with Domino Views

Table 8.1 Developer Data Definition

Name Description

categoryFilter Identifies a category value in a categorized view and returns only the col-
lection of documents found in that category.

databaseName Name of the database containing the view, if not the current database.

dataCache Identifier that controls how view data is cached between requests.

expandLevel The depth of the document hierarchy to display in for hierarchical
collections.

ignoreRequestPara

ms

Boolean property that, if set to true, indicates that any value provided for
any property in this list should be ignored when specified as a URL
parameter.

keys One or more lookup values that are applied to the corresponding view
columns, starting with the first column. Only matching documents are
returned in the document collection.

keysExactMatch Boolean property that indicates whether the full or partial key matches
should be applied.

loaded Boolean property that indicates whether the data source should be loaded.

parentId Include only the children of the document identified by this document ID
or UNID.

postOpenView Code applied to this property is called after the view is opened.

queryOpenView Code applied to this property is called before the view is opened.

requestParameterP

refix

A string prepended to parameters to distinguish one data source instance
from another.

scope request, view, session, or application scope applied to the data
source.

search Text string used as a full text search query on the view. Only matching
documents are returned in the document collection.

searchMaxDocs Constraint value applied to the search parameter (that is, include no
more than this number of documents in the returned collection).

sortColumn The document collection is sorted by the identified column, assuming the
underlying Notes view column has this sorting capability.

databaseName Property 245

It is common to find just two properties in use with a typical <xp:dominoView> tag,
namely viewName and var. The former is obviously required to identify which Notes view to
target, while the latter is required as a reference so that other controls can bind to the data source.
Thus, these are mandatory properties, and Designer will report an error if you do not include both
in your view data source tag. You will now learn how to put all the others to good use through
practical examples.

databaseName Property
The Notes view targeted by the view data source need not be in the current database. It can be in
any other NSF that is locally accessible or in a database on a completely different server. If the
databaseName property is not present or has a blank value (such as databaseName=””), the
view is assumed to be in the current database. To specify a view in another database on the same
server or local to your Notes client, just provide the name of the NSF, as Listing 8.1 demonstrates.

Listing 8.1 Simple DatabaseName Property

<xp:dominoView var=”view1”

databaseName=”OtherDb.nsf”

viewName=”By Category”>

</xp:dominoView>

To specify another server, you need to use the same syntax as used in the Notes/Domino
programming APIs: server_name!!database_name.nsf (see Listing 8.2).

Listing 8.2 Simple DatabaseName Property with Server Identifier

<xp:dominoView var=”view1”

databaseName=”bigiron!!OtherDb.nsf”

viewName=”By Category”>

</xp:dominoView>

Table 8.1 Developer Data Definition

Name Description

sortOrder The order in which to sort the sortColumn (for example, ascending,
descending, or toggle). Again, assuming the underlying view column
has such capability.

startKeys Start the document collection at the document identified by this key.

var Variable name used to identify the view source elsewhere on the XPage.

viewName The name or alias of the Notes view to use as the view data source.

246 Chapter 8 Working with Domino Views

If the database is located in a path relative to the data folder, simply enter the relative path
as part of the databaseName value (such as databaseName=”subfolder\OtherDb.nsf”).
Absolute paths, such as databaseName=”C:\tmp\OtherDb.nsf”, can be applied on the
client.

It is also possible to use the database replica ID as the database name, and the replica ID
can include or exclude the middle colon character (for example, databaseName=”bigiron!!
8025775A:003A5264”). Note, however, that you must not mix replica IDs with path informa-
tion. It is up to the Domino server or Notes client to resolve the replica ID and locate the NSF, so
combining any path information with the ID is invalid.

TIP From Domino Designer version 8.5 onwards, you can simply copy/paste a data-
base’s replica ID from the Basics property panel. A strange boast, but it was previously not
poss ble to copy/paste these 16 character IDs because they were embedded in an infobox
dialog that was not clipboard-enabled. For any reader on an older version of Notes, if
XPages itself does not make you want to upgrade, maybe this will. ☺

View Data Source Filters
To date, any examples we have worked with have typically involved negligible volumes of data
(for example, a dozen or so documents). With such small amounts of data, there is no real need
to be concerned with filtering the result set by pruning the document collection returned by the
data source. With real-world enterprise deployments, however, it is not uncommon for Domino
applications to have views that contain tens of thousands of documents. For XPages applications
to scale to the enterprise level and maintain performance, it is essential that the view data source
be chopped and shaped according to various criteria that size the document collection into man-
ageable proportions. Not just this, but having the ability to granularly refine the contents of any
given view obviates the need to create specialized views for every query variation, and thus
helps prevent the proliferation of view design elements in your application. A subset of the prop-
erties listed in Table 8.1 can be employed for this purpose—in particular, categoryFilter,
search, parentId, and keys.

categoryFilter Property
The categoryFilter property is as good a place to start. Categorization is a traditional
Domino mechanism for organizing data into logical groupings for interpretive analysis. Figure
8.1 shows an infobox definition for a selected column in a Notes/Domino view. Essentially, a cat-
egorized view is a view that contains one or more categorized columns.

View Data Source Filters 247

In the presentation of the actual view data, you can see various categories, such as Tips and
Tools, the contents of which can be expanded or collapsed using a “twistie” control (the little tri-
angle that can be flipped, or “twisted,” to open or close a category). The categories here corre-
spond exactly with the elements shown in the tag cloud in the bottom-left corner of Figure 8.2.
The tag cloud elements are simply sized in proportion to the number of documents found in each
category, so categories containing a large number of documents are displayed in a bigger font
than those with a lesser number. When you click an element in the tag cloud, you essentially filter
a Notes categorized view so that just the content of the nominated category is displayed. In fact,
when you open Chapter8.nsf in Designer and preview it in a web browser, notice that, when you
click the largest tag cloud entry (Tips), the browser URL changes from

http://server/chapter8.nsf/allDocuments.xsp

to

http://server/chapter8.nsf/byTag.xsp?categoryFilter=Tips

What exactly is happening? The answer is simple: Clicking the Tips tag entry link navi-
gates to the byTag.xsp XPage, and the tag value is added as a categoryFilter parameter to

Categorized Column

Categorized Column Type

Categories

Figure 8.1 ($xpCategorized) view in Discussion template

248 Chapter 8 Working with Domino Views

the navigation URL, which is generated by the tag cloud. The categoryFilter parameter
value is then applied to the view data source on the byTag.xsp XPage. This XPage includes a
byTagView.xsp custom control, which in turn has a Domino view data source pointing to the
($xpCategorized) view. The view data source reads the categoryFilter parameter and
returns a reduced document collection consisting of just those documents in the Tips category,
as shown in Figure 8.2.

The ability to retrieve selective subsets of view data in this way is enormously beneficial in
the context of scalability. In a hypothetical situation where a view has ten categories, each with a
thousand documents, clearly the ability to request a small fraction of the entire data set (1/10th for
those of you nodding off!) is quite efficient. Thus, if you structure your database views wisely and
make good use of categorization, the categoryFilter property can help build efficient queries
to populate your XPages view controls. If you are familiar with the Notes Java APIs, the results
generated using the categoryFilter property is consistent with the view createView
NavFromCategory() method, as this is what is ultimately used by the XPages runtime to gener-
ate the result set. Experienced Domino developers might be aware of the Show Single Cate-
gory formula that can be applied to an embedded view on a Notes form, which is basically the
same concept. Similarly, with classic Domino web apps, the RestrictToCategory parameter
is used on the ?OpenView URL command to achieve the same results.

Figure 8.2 View category filtering using the tag cloud

View Data Source Filters 249

As you learned in Chaper 7, many data source property values can be included as parame-
ters as part of the XPages URL command that is entered in the browser. For example, any of the
filter properties listed in Table 8.1 can be specified as URL parameters values in the way just
demonstrated. This is an enormously powerful feature, and you will use this technique in this
chapter’s remaining examples. Incidentally, the instruction to preview these pages using a web
browser rather than the Notes client was not an arbitrary one. Although the end results are the
same, the Notes client does not display the URL address bar and, thus, you cannot see or modify
the parameters.

TIP In version 8.5.2, a long-standing issue was resolved in the Java API so that subcate-
gories are properly supported. That is, if your Notes view is organized with multiple cate-
gories, you can now specify a subcategory as the categoryFilter value, such as
“Europe\Ireland,” “USA\MA,” and so on. In other words, append the subcategory value to
the category value and use the backslash character (\) as the argument delimiter. Although
this has been a documented feature for many years, it did not work properly in previous
releases because of shortcomings in the programming interfaces.

search, searchMaxDocs Properties
Next in the view filtering line is the search property, which allows you to perform full text
searches on the associated view. Needless to say, your sample database needs to be full text
indexed before proceeding with the next examples. You can verify this at a glance with the
XPages discussion sample, because the Search toolbar does not display if the database is not
indexed. (The Search toolbar is explicitly identified in the top-right corner of Figure 8.3.) If not,
you can create a full text index in Designer, as follows:

1. Select the database itself in the Designer navigator panel.

2. Activate the Index property panel, located by default in the bottom pane of Designer.

3. Click the Create Index button.

On the client, the full text index is created pretty much right away, whereas the request is
put in a queue on the Domino server (executed every hour by default). If you have administration
privileges on your server, you can force the indexer to kick in by using this command:

load Updall Chapter8.nsf –x

If you omit the NSF name, all databases are updated at once. To get all the options available
on this command, enter the following:

load Updall -?

250 Chapter 8 Working with Domino Views

You may well wonder why the parameter you see in the search URL is searchValue
instead of just a plain search parameter. This is because the actual string value provided is also
used for purposes besides just executing the full text search on the data source (for example, you
can see that it is used as part of the title of the search results page). Thus, the text string is stored in
a searchValue variable to cater for its various other uses, but for the view filter, it must ulti-
mately be assigned to the search property, as so it is—seek out the snippet in Listing 8.3 in

Search BoxSearch Page Title

Six Hits

Figure 8.3 Results of a full text search

All these tasks assume that you are operating with your own development server, and are
definitely not recommended practices to be carried out willy nilly in a production environment. In
any case, assuming your database is ready, willing, and able to be searched, you can begin play-
ing with the search property. The XPages implementation is straightforward, meaning that if a
value is specified for the search property, it is applied as the full text query on the view and any
matching documents are returned as the collection. The Discussion template includes a search
box in its toolbar and, if you type “paper” as a query on the allDocument.xsp main page, six
matching documents are returned as the result set, as shown in Figure 8.3.

View Data Source Filters 251

allDocumentsView.xsp. Note that this listing is the actual markup extracted from the applica-
tion, so it contains other properties that are not covered yet, but will be shortly. For the purposes of
this example, properties like dataCache can be safely ignored for now, because they are
described later.

Listing 8.3 Search Property Assigned the Value of the SearchValue Parameter

<xp:dominoView var=”dominoView” viewName=”xpAllDocuments”

search=”#{javascript:param.searchValue}”

dataCache=”full”>

<!— etc —>

</xp:dominoView>

You could, therefore, modify the search URL shown previously in Figure 8.3 to just use the
search property directly and get the same results, minus the page title update, of course:

http://server/chapter8.nsf/allDocuments.xsp?search=paper

To restrict the result set to a maximum number of documents, you can apply the
searchMaxDocs property to the full text search query. Simply assign whatever number you want
to use as the constraint:

http://<...ditto...>/allDocuments.xsp?search=paper&searchMaxDocs=3

You will find that the result set of six hits is reduced to just three hits after this extra URL
parameter is applied.

parentId Property
The parentId is an equally simple filter. A simple note ID or full UNID can be used as the
parentId value. If a document with this ID is found in the view, all of its descendants, if any, are
returned as the document collection. For example, the document titled “Meeting Minutes” has
three response documents and a note ID of 95A, as shown in Figure 8.4. You can also look ahead
to Figure 8.11 to see the “Meeting Minutes” document thread outlined in full.

As you have come to expect at this stage, you can generate a filter URL that returns just the
three documents in the response hierarchy, as follows:

http://server/chapter8.nsf/allDocuments.xsp?parentId=95A

252 Chapter 8 Working with Domino Views

The results generated using the parentId filter are consistent with the createViewNav
FromDescendants() method in the backend Java View class.

Incidentally, if you have concerns that savvy users (sometimes referred to as hackers) could
use URL parameters like these in an undesirable way on the web, the feature can be disabled by
setting ignoreRequestParams = “true” on the view data source.

ignoreRequestParams Property
To prove this point, open the byTagView.xsp custom control in Designer and add
ignoreRequestParams=”true” to the view data source tag, as shown in Listing 8.4.

Listing 8.4 Domino view data source XSP snippet with ignoreRequestParams Property Added

View Data Source Snippet with ignoreRequestParams added to
byTagView.xsp

<xp:dominoView var=”xpCategorized”

viewName=”xpCategorized” expandLevel=”1” dataCache=”id”

ignoreRequestParams=”true”>

</xp:dominoView>

Save the custom control, preview the allDocuments.xsp again, and repeat the previous
exercise. Note that the parentId parameter value now has absolutely no effect, as Figure 8.5
illustrates! You should undo this change before continuing.

Note ID value

Three descendant documents

Figure 8.4 Response hierarchy to “Meeting Minutes” document

View Data Source Filters 253

keys, keysExactMatch Properties
The final search filter to discuss is the keys property, which is a little trickier to use, because you
must first understand some ground rules. A key is a search value applied to a column in a view. As
the keys property name implies, this property value can be a single object, such as a text string or
date, or a collection of such objects. When a single object is used as a key, it is applied as a lookup
value against the first column of the Notes view, and that first column must be a sorted column. If
a collection of two objects is provided as keys, the first object is used to search the first view col-
umn, and the second object is used to search the second view column. Again, both columns in the
Notes view must be sorted. Ultimately, if a collection of n objects are provided as keys, they are
applied against the first n columns of the Notes view, and all n columns must be sorted. If any of
the n Notes view columns are not sorted, the key lookup fails.

The cumbersome nature of this filter means that it is less widely used than those discussed
previously. The Discussion template, for example, does not employ any keys filters; it uses the
categoryFilter and search properties instead. In fact, none of the views in the Discussion
template are particularly suitable for keys filtering, so a new one has been added to
Chapter8.nsf for your convenience, namely keyView, as shown in Figure 8.6.

Note ID value

All documents displayed

Figure 8.5 Disabling view filters using ignoreRequestParams

254 Chapter 8 Working with Domino Views

To build a keys filter example, create a new XPage, called byKeys.xsp, and drag-and-drop
a view control onto it. Bind this View control to the new keyView design element and include
both columns (Topic and By) in the View control. Save the page and preview it in a web browser.
Your page content should look like what’s shown in Figure 8.7.

Now, simply add the keys properties as URL parameters, like this:

http://server/chapter8.nsf/byKeys.xsp?keys=thanks&keysExactMatch=false

Sorted First Column

New view element

Figure 8.6 keyView featuring two sorted columns

View Data Source Filters 255

Figure 8.8 shows the results.

Figure 8.7 XPage with unfiltered keyView view content

Figure 8.8 XPage using single key filtering

The example in Figure 8.8 applies a simple single string key lookup value (“thanks”) to the
first view column, and two documents are found because loose matching is requested via the
keysExactMatch=false parameter. Applying a collection of objects is not possible using URL
parameters, but Listing 8.5 presents a simple example using some JavaScript code.

256 Chapter 8 Working with Domino Views

Figure 8.9 XPage multiple key filter results

Listing 8.5 Filtering in JavaScript Using a Collection of Keys

<xp:dominoView var=”view1” viewName=”keyView” keysExactMatch=”false”>

<xp:this.keys>

<![CDATA[#{javascript:

var v:java.util.Vector = new java.util.Vector();

v.addElement(“Ride share”);

v.addElement(“Jasmine”);

return v;}

]]>

</xp:this.keys>

</xp:dominoView>

A Java Vector (a Java utility class designed to store a collection of arbitrary objects) is cre-
ated to hold two key string objects, “Ride share” and “Jasmine” respectively, which are loosely
applied to the first and second columns of keyViews. Because both columns are sorted and
because one entry matches the keys, a single document is returned in the filtered document col-
lection, as shown in Figure 8.9. A new XPage containing this code (byManyKeys.xsp) has been
added to Chapter8.nsf for your convenience.

The keys property runtime implementation uses the getAllEntriesByKey() method in
the backend Java View class, so results are consistent with that API.

Other View Content Modifiers
This section describes some other properties, which, although not filters per se, can be used to
alter the content of a view.

startKeys Property
The startKeys property does not parse the content of the view, filtering out documents that do
not match certain criteria, but it sets a starting point in the view index, and the data collection is
made up of all documents after that point.

Other View Content Modifiers 257

A simple example can be shown by simply applying startKeys=nice!~ as a URL
parameter to the byKeys.xsp page provided in the sample application, as follows:

http://server/chapter8.nsf/byKeys.xsp?startKeys=nice!~

Compare the results shown in Figure 8.10 to Figure 8.7. As you can see, the document col-
lection starts at the topic titled “nice!~” and continues to the end of the view. If you try imprecise
matches, like startKeys=ride or startKeys=phone!~, notice that these also work. (In other
words, the startKeys property uses loose matching automatically, and it is not related to the
keysExactMatch property used earlier with the keys property.)

Figure 8.10 byKey view with startKeys property applied

You can also use a collection of objects for multiple startKeys, just like the JavaScript
example shown in Listing 8.5. The startKeys property was first introduced in the version 8.5.2
release of Notes/Domino and uses the createViewNavFrom(viewEntry) method defined in
the backend Java View class.

expandLevel Property
Another property that gives fine-grained control over the set of documents obtained from the
view data source is the expandLevel property. This property can only be applied to hierarchical
document collections, such as categorized views or views containing response document chains.
If you apply this property to a “flat” view, is it simply ignored. The expandLevel setting deter-
mines the maximum depth of document hierarchy in the target view. A setting of 1 means only
top-level documents are included in the document collection retrieved from the data source, such
as top-level categories in the case of categorized views or root documents for non-categorized

258 Chapter 8 Working with Domino Views

views (no responses). This property is widely used in the Discussion template—if you navigate
the main views of the sample application in a web browser at runtime, you notice how all the
entries in the All Documents, By Tag, and By Author pages are displayed in a collapsed fashion,
whereas the documents in the By Most Recent page are expanded. The application design uses
the expandLevel property to drive this behavior. Listing 8.6 shows the expandLevel property
setting used in the in byTagView.xsp.

Listing 8.6 byTagView.xsp expandLevel Setting Ensures Entries Are Displayed in a
Collapsed State

<xp:dominoView

var=”xpCategorized”

viewName=”xpCategorized”

expandLevel=”1”

dataCache=”id”>

</xp:dominoView>

On any of the aforementioned pages, you can experiment with the expandLevel setting
by passing in an integer value as a URL parameter. Figure 8.11 shows the All Documents page
with an expandLevel set to 3.

Level 1 Level 2Level 3

Figure 8.11 All Documents with a maximum document hierarchy depth set to 3 levels

A Page with Two Views 259

If you reset the expandLevel value to 2 in the browser URL, the “phone number inside”
entry highlighted in Figure 8.11 promptly disappears. The maximum expandLevel value is 30,
although it is unlikely that typical real-world document hierarchies would get anywhere near that
depth.

A Page with Two Views
Because there is no restriction on the number of controls that can be contained within an XPage,
and because each control obtains its data via an independently defined data source, there is noth-
ing to stop you from placing two or more views in a single page. An example of this is provided
with the sample application for this chapter in the aptly named twoViews.xsp. The
xpCategorized view and the ($All) views are the chosen ones. There is no magic associated with
this, so if you want to create a similar page of your own, drag-and-drop some views onto an
XPage and bind them to different Notes views as you go.

The rows property of the view control was set to 5 to help display the contents of both
views more clearly within the confines of a single page. Figure 8.12 shows how it looks at run-
time in a web browser. Note that the rows value does not discriminate between entry types, inso-
far as only the first five rows are displayed regardless of whether they are categories, documents,
or responses.

Figure 8.12 Two views in a single XPage

260 Chapter 8 Working with Domino Views

You can navigate both views separately by using the respective pagers and so forth. An
interesting question, however, is this: What happens to any view data source parameters that you
might pass into this page via the browser URL? By default, any property value is applied to all
data sources in a given XPage, which may or may not be the behavior you require!

Suppose, for example, that you want all the entries in the categorized view to be collapsed,
but all the entries in the second view to be expanded. How can this be achieved? Essentially, you
need a way to address each data source separately so that the different settings can be applied
individually. The mechanism for doing this is the requestParamPrefix property.

requestParamPrefix Property
If you open twoViews.xsp and inspect the markup, you see that both view data sources have the
requestParamPrefix property applied. Listing 8.7 shows the relevant snippets.

Listing 8.7 View Data Source Snippets from twoViews.xsp Featuring requestParamPrefix
Settings

<!— Data Source for Categorized View —>

<xp:dominoView

var=”xpCategorized”

viewName=”xpCategorized”

requestParamPrefix=”cat”>

</xp:dominoView>

<!— ... —>

<!— Data Source for Categorized View —>

<xp:dominoView

var=”all”

viewName=”($All)”

requestParamPrefix=”all”>

</xp:dominoView>

The value specified as the requestParamPrefix property must be prepended to any
parameter that is intended to be applied to that data source. Thus, the following URL sets differ-
ent expand/collapse states for each view:

http://server/Chapter8.nsf/twoViews.xsp?catexpandLevel=1&allexpand
Level=2

Figure 8.13 shows the results of this request.
Passing in a regular expandLevel parameter now has no effect, because the data sources

are primed to only accept values from prefixed parameters.

When Is a View Not a View? 261

When Is a View Not a View?
Why, when it’s a folder, of course! Although a view’s contents are defined by a selection formula,
a folder’s contents are determined by whatever documents are arbitrarily placed in it by the end
user. From a data source standpoint, however, a view and a folder are essentially the same thing.
You can provide a folder name as the value for the viewName property and its contents are
retrieved as if it were a view. The sample application for this chapter contains a Follow Up folder
that is populated with some documents. Figure 8.14 show this folder previewed in the client from
Designer.

If you drag-and-drop a View control to an XPage, the binding dialog presents both the
views and the folders in its view list. You can select the columns in the usual way and then save
and preview the XPage. Figure 8.15 shows an XPage called folder.xsp, which has been con-
structed just as described and is included in Chapter8.nsf. Note that Figures 8.14 and 8.15 are
identical in terms of content.

Expanded to 2nd level

Level 1 = collapsed

Figure 8.13 Two views in a single XPage with different expandLevel states applied

262 Chapter 8 Working with Domino Views

Figure 8.14 Contents of a Follow Up folder previewed in Notes

Go Fetch! Or Maybe Not...
Retrieving the document collection for a folder or a view obviously comes at a cost. Depending
on the volume of data stored in the view and the complexity of the query, fetching the document
collection can be an expensive proposition. The mere presence of one or more data sources on an
XPage causes the data retrieval process to automatically kick in when the page loads and, in the
vast majority of use cases, this is the desired behavior. It is easy to imagine alternative situations,
however, where loading documents from the data source should only occur as a consequence of
an explicit request, such as where automatic loading may have a detrimental effect on perfor-
mance, where the user needs to identify a particular data source from a selection of views, and so
on. In this scenario, you can simply instruct the view data source(s) on the XPage to defer loading
any data via the loaded property.

Figure 8.15 XPage displaying the contents of the Follow Up folder

Go Fetch! Or Maybe Not... 263

loaded, scope Properties
By way of example, take any of the XPages you have worked with to date in this chapter—say
folder.xsp, because this is the most recent. Add loaded=”false” to the data source declaration
in the markup and reopen the page in the browser. It comes as no surprise that the View control is
empty. Toggling the property value (loaded=”true”) or simply removing it altogether restores
the automatic data load behavior. For a real application, the loaded boolean value would most
likely be set programmatically using JavaScript in response to a user event or action. Think of an
XPage that features a Tabbed Panel control, where each tab reveals different content when
selected by the user at runtime. The data content of each tab could well emanate from a different
data source, and it might be advantageous to load the required data only when and if a given tab is
actually selected. After all, although there can be an arbitrary number of tabs, each with its own
distinct data source, they are all on a single XPage and, by default, all data sources are loaded
when the XPage is loaded, regardless of whether a tab’s contents are ever viewed by the end user.
To support this use case, the loaded property can initially only be set to ”true” for the data
source of the default tab, and ”false” for the other inactive tabs. Accordingly, as other tabs on
the XPage are clicked, the selection action can programmatically set the associated data source’s
loaded property to ”true” so that the required data is then retrieved on demand. I’m sure you
can think of many other relevant use cases!

After the data is loaded by an action, it is stored in view scope, meaning that it is no longer
available after the page containing the data source(s) has been rendered. The scope variable
allows you to select one of the other standard scopes instead, such as application, session,
view, and request. The section, “Caching View Data,” looks at how view data is managed.

postOpenView, queryOpenView Properties
Two other events are associated with the loading of the view data source: postOpenView and
queryOpenView. If, for example, you want some logic to be executed just after the view is
opened, you should attach this code to the postOpenView property. An example might be that
you may want to capture the number of documents contained in the view and store that number
for use elsewhere in the XPage. In the All Properties view, if you elect to compute the
postOpenView property, you are automatically presented with the JavaScript editor. Listing 8.8
presents some sample code to store the total document count in a viewScope variable.

Listing 8.8 postOpenView Server-Side JavaScript Code

<xp:dominoView

var=”all”

viewName=”Follow Up”>

<xp:this.postOpenView><![CDATA[#{javascript:

viewScope.count = all.getAllEntries().getCount();

print(viewScope.count);

}]]></xp:this.postOpenView>

</xp:dominoView>

264 Chapter 8 Working with Domino Views

The var property gives you an instance of the Notes/Domino View Java class, and you can
call any of its methods in XPages via JavaScript. viewScope.count is assigned a value as soon
as the view is opened and then other controls on the XPage can make use of that data.

TIP For more information on the View class, look in Designer Help under the Lotus
Domino Designer Basic User Guide and Reference section. Select the Java/CORBA
Classes > Java Classes A – Z > View entry. All the available methods are described there,
along with coding examples.

Any code applied to the queryOpenView property, on the other hand, is called just before
the data source is opened. Perhaps the more logical property name is preOpenView, but
queryOpenView is consistent with the traditional naming conventions used with the other
design elements. Note that the View class is not available to you in the queryOpenView property
because the var property is not yet in scope—the view is not yet open! Attempting to do some-
thing like print(all.getAllEntries().getCount()) results in a runtime error, as shown
in Figure 8.16.

Figure 8.16 Runtime error reported for queryOpenView code

The preceding code samples just illustrate an example of how to code the view data source
events. Be aware that getting the view entry count of a large hierarchical view is an expensive oper-
ation, because the entire view needs to be navigated to calculate the count. In a real-world applica-
tion, you need to consider the performance implications of using this method.

Caching View Data 265

Caching View Data
No doubt, the dataCache property has caught your eye in some of the previous XSP markup
illustrations, because it is used extensively in the Discussion template data sources. Having just
discussed some of the properties associated with loading view data, now is an opportune time to
examine what the dataCache property has to offer.

In simple terms, a view can be thought of as a collection of documents. Each document
occupies a row in the view and the row in turn is made up of a collection of summary fields
known as columns. When loading the data source, the XPages runtime iterates through each row
within a selected range of entries and reads its data. The data associated with each row is not
just the column values displayed in the control, but it includes other items, such as its position
in the view, the note ID of the underlying document, its sibling count, descendant count, and so
on.

After the view data is read and presented to the end user, the Notes view must be closed as
the request/response cycle is completed. The problem is that users often want to perform actions
on the data that is presented in the View control, such as open an entry, make a further calculation
on a column value, and so on. Such actions often do not cause a new page to be displayed, but
instead request that the current page be restored, albeit perhaps with some new details on dis-
play—this is called a postback request. For the current page to be restored and the action to suc-
ceed, the data that is presented to the user the first time around must be cached until the Invoke
Application phase of the next request is completed; otherwise, the actions fail, because the
required data is effectively gone. Refer to Chapter 5, “XPages and JavaServer Faces,” for a
refresher of the phases of the JSF request processing lifecycle.

Caching view information requires some careful thought for reasons of performance and
scalability. Many of the properties associated with a view entry are scalar values (such as view
position, indent level, child count, and so on) and are, therefore, not costly to maintain. On the
other hand, the column values of a given row are arbitrarily large, and caching all the rows all
the time just in case a user might want to perform a postback request could often be unneces-
sarily inefficient. Because it is the application developer who decides whether postback
actions are provided on the page by virtue of designing and building it in the first place, the
developer is the one who needs a way to configure the workings of the cache for each individ-
ual case. And that, in a nutshell, is why a view data source has a dataCache property—so the
application developer can optimize the performance/scalability of the page based on the exact
use case.

266 Chapter 8 Working with Domino Views

An example helps drive this point home. You will amend the byTagView custom control in
Designer, add a postback request, and see how the different dataCache settings impact applica-
tion behavior. To do this, follow these steps:

1. Drag-and-drop a Computed Field to the byTagView XPage (for example just below the
view). Listing 8.9 has a snippet of the required markup.

2. Append a new fifth column to the viewByTag view.

3. Set its header label (column title) to “Abstract”.

4. In the View Column > Data property sheet, select Computed value.

5. Add the following line of code via the JavaScript editor (where tagRow is the var prop-
erty value defined on the view control):

return “[Get Entry “ + tagRow.getPosition() + “]”;

The tagRow object is an instance of the NotesXspViewEntry JavaScript class and it
provides full programmatic access to each view entry as it is being rendered in the View
control. It is discussed more fully in Chapter 9, “Beyond the View Basics,” in the section,
“Working with Categories.” The getPosition() method returns the position of the
entry in the view hierarchy as a string (for example, “2.3” for the third document of the
second category).

6. On the Events panel, select the onclick event and add this snippet of server-side
JavaScript:

var abs = tagRow.getColumnValue(“Abstract”);

if (abs != null && abs != ““ && abs != viewScope.abs) {

viewScope.abs = abs;

}

7. Define the onclick as a Partial Update event and select the Computed Field as the tar-
get, as shown in Figure 8.17.

8. Select the Value tab on the computed field and add viewScope.abs, the data binding
expression via the JavaScript editor.

9. Optionally, add some inline CSS as the style property value on the All Properties sheet
for this control. The CSS used here is shown in Listing 8.9.

10. Find the <xp:dominoView> tag on the page and change the ”dataCache” value from
“id” to “full.”

With this ten-step program, you have added a new column called “Abstract”. It displays its
view row position as a link for each noncategory row, and following the link fetches the Abstract
column value from the Notes view and displays it in the computed field using AJAX partial refresh.

Caching View Data 267

Listing 8.9 Markup for the Computed Field Added to byTagView.xsp

<xp:table style=”width:100%”>

<xp:tr>

<xp:td style=”width:20%”></xp:td>

<xp:td>

<xp:text escape=”true”

id=”computedField1”

style=”fontsize:14pt;color:rgb(255,128,255)”

value=”#{javascript:viewScope.abs;}”>

</xp:text>

</xp:td>

<xp:td style=”width:20%”></xp:td>

</xp:tr>

</xp:table>

Server-sde JavaScript code to get Abstract column value

Use AJAX partial refresh

Component Picker for Partial Update

Figure 8.17 Updated byTagView custom control in Designer

268 Chapter 8 Working with Domino Views

If the markup for the Computed Field looks overly verbose, it is only because the field is
wrapped in a three-column table to center it under the view control. This is purely for aesthetics
and has no bearing on the functional aspect of this dataCache example. To insert the Computed
Field under the View control, place this markup between the closing View control tag
(</xp:viewPanel>) and the Panel control that houses it (</xp:panel>). A copy of the
revised byTagView.xsp has been provided with this Chapter8.nsf, so refer to
byTagViewAbstract.xsp if you have any problems recreating this example.

If you inspect the data source view in Designer, you see that it contains an Abstract column
that is not displayed in byTagView.xsp by default. The Abstract column value can be up to 300
characters in length for any given row entry, so the decision to exclude it from the View control was
probably driven by performance and scalability considerations. What you have done here is enable
the user to fetch the Abstract column value on demand, but not routinely retrieve it for every row
in the view.

Reload or preview the custom control’s parent XPage (byTag.xsp) to view the content and
behavior of your new creation. Figure 8.18 shows the page after expanding the first category and
clicking the [Get Entry 1.1] link.

Computed field populated with Abstract column value

Link making postback request

Figure 8.18 Updated byTagView custom control at runtime

Caching View Data 269

The onclick event of the Abstract column is an example of a postback request men-
tioned a little earlier—the user can perform an action based on the data presented in the view, and
the XPage is effectively posted back to itself. In this instance, clicking the link calls
getColumnValue() for the Abstract column. Given that the view instance used to retrieve the
data was recycled after the original XPage was rendered, it is not possible to compute column
values as part of the next request, unless, of course, those column values are cached temporarily
to accommodate such requests. When the dataCache value is set to full, this is exactly what
happens—all the column values are cached between the render phase of the first request/response
and the post phase of the follow on request. After that phase is complete, the row entry data is dis-
carded. If no dataCache value is specified, full is the default setting.

The original byTagView.xsp did not have any postback requests, so it is more efficient to
set the dataCache property value to id, as is done in the default template. This means that col-
umn values are not maintained after the page is rendered, but the scalar IDs are. This ID data is
cheap to maintain, and it means that simple postback requests automatically work. The third
dataCache property value is nodata, which, as its name implies, does not cache any view data
between requests at all.

Now, go back to Designer, reset the dataCache value to id, and reload the page. The
result of clicking the first Abstract column entry is shown in Figure 8.19. The error you see is, of
course, the result of attempting to access data (in particular, the column values, which are only
cached in full mode) that has not been cached and is, therefore, not available to the JavaScript
code.

Figure 8.19 Result of a postback action attempting to use getColumnValues() with
dataCache=”id”

This topic is explored further in Chapter 16, “Application Performance and Scalability,” but
its salient points were covered here.

270 Chapter 8 Working with Domino Views

Sorting Columns
A new view, keyView, was introduced to the sample application to support examples that demon-
strated the keys and startKeys properties. The first column of this view is defined as sortable
in both ascending and descending order (refer to Figure 8.6).

Thus, the byKeys.xsp XPage built earlier can be leveraged here to show how the
sortColumn and sortOrder properties work. Reload the page in a browser and pass
sortColumn=Topic and sortOrder=descending as parameters in the URL, as shown in
Figure 8.20. The order of documents displayed in the view is reversed. If you then change the sec-
ond parameter value to sortOrder=ascending and reload the page, the original document
order is restored.

These URL parameter values are ultimately used to feed the following backend JavaAPI call:

View.resort(String columnName, boolean ascending);

This method was introduced in Notes/Domino version 8.5 to support user-driven column
sorting. The view control offers user-driven columns via the sortable property on the view col-
umn header. You see that in action in the next chapter.

Figure 8.20 keyView documents sorted in descending order

Conclusion 271

Conclusion
This chapter explored every property of the view data source and put them through their paces
using either URL parameters or JavaScript code samples. Hopefully, you learned how view data
is extracted from Notes/Domino views and how the resulting document collections can be fil-
tered, shaped, and sized to meet your application needs.

This page intentionally left blank

273

Because the preceding chapter concentrated exclusively on the gory details of data retrieval from
Domino views, it’s only fitting that this chapter focuses on the fine art of presenting view data in
XPages. Once again, a modified version of the Discussion template is used as the sample applica-
tion. In fact, for this chapter, you need two samples, namely Chapter9.nsf and Chapter9a.nsf. You
need to download these resources now from the following website and load them up in Domino
Designer so that you can work through all the examples provided: www.ibmpressbooks.com/
title/9780132486316.

You will see how this standard template uses the View and Repeat controls to best effect
when displaying view data, and extra XPages have been added to show off some new tips and
tricks. You will also learn how to extend and modify the behaviors of the view controls using
JavaScript, Cascading Style Sheets (CSS), and so on. If you work through all the examples as you
read along, you will have consummate expertise on this topic by the end of this chapter!

XPages provides three standard controls for presenting Domino view data, namely the
View, Repeat control and Data Table. You will find all three on the Container Controls section of
the palette in Designer. You have already done some work with these controls, mostly with the
View control, although you have only used the basic properties up until now. You will see here
how to put some of the lesser known properties to good use to solve some more advanced use
cases. Perhaps it is best to start, however, with an explanation of why there are three different
view presentation controls in the first place!

Pick a View Control, Any View Control
When it comes to presenting view data, we all have our individual preferences! For some use
cases, a view with a strictly tabular format where rows and columns crisscross to form a rigidly

C H A P T E R 9

Beyond the View
Basics

274 Chapter 9 Beyond the View Basics

ordered grid layout is what’s required. In other scenarios, a more free-form view layout of sum-
mary information that allows end users to dynamically dive deeper into the underlying data is the
order of the day. In terms of providing off-the-shelf controls to meet these demands, no one-size-
fits-all solution exists. In other words, separate specialized renderers are required to handle what
are wildly different layout requirements, and each renderer has its own unique set of properties
and behaviors that cater to those particular use cases.

Rather than simply describing various alternative view layouts, it is useful for you to see
real-world use cases firsthand. As usual, the sample application can be readily called upon to
demonstrate different view presentation examples. For example, explore the All Documents
view on the main page of the application, and then compare its look and feel to one of the other
views in the main navigator, such as By Tag, By Author, By Most Recent, and so on. Some key
differences should come to your attention immediately. Chief among these is the interesting
capability of the All Documents view to dynamically expand and collapse row content inline.
That is, as you hover over any particular row, you are presented with More and Hide links,
depending on the current state of the row content. If the row is collapsed, clicking the More
option effectively injects an extra row of detail into your view, showing an abstract of the under-
lying document and presenting options to compose a reply or to switch to a view of documents
that contain the same tags. Figure 9.1 summarizes this feature.

Dynamic Row Expansion

Figure 9.1 Sample Discussion application using repeat control to render all documents view

Pick a View Control, Any View Control 275

The other views do not have this capability and instead display content on a strict one-doc-
ument-per-row basis. The data in these views is typically organized according to a specific crite-
rion, say by category, author, or date, and feature the standard document link navigators for some
of the columns in each row. You will no doubt recognize these behaviors as built-in properties of
the View control, and you have already implemented a view sample similar to these in Chapter 3,
“Building Your First XPages Application.” That first sample demonstrated that you could build
simple views using a View control in a matter of minutes. Although it also is possible to build
sophisticated view renderings with the View control (as you’ll soon see), there are some things it
is simply not designed to do—dynamic inline row insertion/deletion being a case in point.

The fancy dynamics shown in Figure 9.1 are achieved using a Repeat control. This con-
tainer control iterates or “repeats” over every row in the view data source to which it is bound.
Any control that is added to the Repeat container (by default it is empty) can be bound to a col-
umn in the backend view. The iterative read cycle that occurs at runtime then ensures that all con-
tained controls display the appropriate column value once for every row in the view. Thus, you
have a totally free-form means of laying out view data, where nothing is predefined but anything
is possible. The presentation content is totally dependent on the controls you choose to add to the
Repeat container. It is not required to be structured within an HTML table for example—some-
thing you are stuck with when using the View control or Data Table controls whether you like it
or not. Also, Repeat controls can be nested within each other, meaning that different data sources
can be navigated as part of one overall view presentation.

All this, of course, means the Repeat control is an incredibly powerful and flexible tool for
displaying view data—that’s the upside! The downside is that you must define all the content and
layout data yourself; in other words, it can be a lot of work depending on what you want to
achieve. The View control, on the other hand, is somewhere toward the other end of the scale—a
View control can be built quickly using easy point-and-click operations, but the end result is more
restrictive than is the case with a Repeat control. Again, depending on what you want to achieve,
the View control may be the correct instrument to use—a simple case of choosing the right tool
for the right job!

To see how the various view controls have been employed in the Discussion template, you
can search the Discussion template for the tags xp:viewPanel, xp:repeat and
xp:dataTable (in Designer, type Ctrl-H and specify the literal tags in the File Search tab, as
shown in the previous chapter). The View control is used in all the aforementioned XPages (By
Tag, By Author, By Most Recent) and in AuthorProfileView.xsp. If a user has registered a pro-
file in the application, the Author Profile custom control is one of three views displayed when
the user’s name is picked from the author cloud. The Repeat control is used for the All Docu-
ments page, the presentation of both the tag and author clouds (as shown in Figure 9.1), and to
build the response document chain displayed when editing a document that is contained in a
hierarchy.

276 Chapter 9 Beyond the View Basics

Interestingly, although perhaps not surprisingly, the search for xp:dataTable results in
no hits—at least this is true in the out-of-the-box template; however, you can find matches in
Chapter9.nsf because a Data Table example has been added for your convenience. The absence
of the xp:dataTable tag from the Discussion template and from most other real-world applica-
tion (at least in this author’s experience) is because it offers neither the convenience of a View
control nor the flexibility of a Repeat control. In essence, it is like a limited version of both con-
trols and, thus, tends to be left out in the cold when it comes to more sophisticated application
development scenarios. It is, however, useful for prototyping and for simple use cases, and we
examine a sample Data Table later in this chapter. First, however, it’s time to take a closer look at
the intricacies of the View control.

The View Control: Up Close and Personal
In this book, the View control is commonly referred to as the View Panel. This reference emanates
from the markup tag used for the View control, i.e. <xp:viewPanel>, and it comes in handy
when its necessary to disambiguate the view control from the backend Domino view that serves
as its data source. In any case, the terms “View control” and “View Panel” can be used inter-
changeably and refer to the visual control that renders the view data.

The View Panel is a rich control with an abundance of properties and subordinate elements,
such as pagers, columns, data sources, converters, and so on. Some of its properties are generic
insofar as they are also shared by other controls in the XPages library to support common features
like accessibility, internationalization, and so forth. For the most part, this chapter concentrates
on the other properties as they are more directly relevant to view presentation, while the generic
properties are addressed separately in other chapters.

In any case, the View Panel properties used in the examples up to now have been few in
number and basic in nature. The upcoming examples start to pull in more and more properties in
order to tweak the look and feel of your views. As usual, you learn these by way of example, but
before you dive in, it is useful to summarize the View Panel features that have already been cov-
ered and provide the necessary reference points should you need to recap. The forthcoming mate-
rial assumes that you are proficient with the topics listed in Table 9.1, although more detailed
information may be provided going forward.

The View Control: Up Close and Personal 277

Column Data Like You’ve Never Seen Before
So, start the next leg of this View Panel journey of discovery by creating a new XPage, say
myView.xsp. Drop a View Panel from the control palette to view and bind it to the All Docu-
ments view when the helper dialog appears. Deselect all but three columns of the backend
view—retain $106, $116, and $120. These are the programmatic names that have been assigned
to the view columns; XPages allows you to use either the column’s programmatic name or the
view column title to identify the column you want to include in the View control. Not all view
columns have titles, however! Click OK to create the View Panel.

When you preview this raw XPage, you see the Date and Topic fields as expected, along
with what can best be described as some gobbledygook wedged in between those columns, as
shown in Figure 9.2.

Table 9.1 viewPanel Features Previously Discussed

Feature Chapter Reference:
Section

Description

viewPanel

Designer: Drag & Drop

Chapter 3: Building an
XPages View

Creating a View control from controls
palette

Working with the view binding dialog

viewColumn

property: displayAs

Chapter 3: Building an
XPages View

Linking View control entries to underlying
Notes/Domino documents

viewColumn

property:
showCheckBox

Chapter 3: Completing
the CRUD

Making view entries selectable for exe-
cutable actions

viewPanel

<xp:pager>

Chapter 4: View Basic description of View control with
pager information

viewPanel

property: facets

Chapter 4: Facets General introduction to facets, including
simple examples using view pagers

viewPanel

Designer: appending
columns

Chapter 8: Caching
View Data

Adding a new column to a View control and
computing its value using server-side
JavaScript

278 Chapter 9 Beyond the View Basics

It is not unreasonable to question what exactly this $116 column represents. The formula
behind the column in the backend view looks like this:

@If(!@IsResponseDoc;@DocDescendants(""; "%"; "%");"")

In the regular Notes client, this column displays the number of descendant documents for all
root level documents. To decipher the code, the @DocDescendants function is only applied when
!@IsResponseDoc evaluates to true, meaning when the current document is not a response docu-
ment, or in other words, for top-level documents only. The ”%” within the parameter strings are
replaced with the actual number of descendant documents at runtime. According to the Help docu-
mentation, @DocDescendants is among a class of @Functions that are restricted in their applica-
bility and cannot be run from web applications. The function is described as returning “special
text,” which is computed for client display only, not actually stored in the view, cannot be converted
to a number, and so on. Other @Functions, such as @DocNumber and @DocChildren, present the
same issues (you can find a more complete list in the Designer help pages). Designer itself attempts
to preclude such columns from selection in the View Panel binding dialog, and the Java API
getColumnValues() method, which is used to populate the View Panel row data, also tries to
“null out” any autogenerated values that are contained in a row. However, these @Functions can be
embedded in conditional logic and thus can be difficult to detect in advance. As a result, you might
occasionally see spurious results like this appearing in views you are working on. So, what to do?

Because you cannot always work with all types of data contained in Domino views, you
might need to create a modified version of a view in order to match your design criteria. Remem-
ber that the root of this problem is that the data defined in such columns is not actually contained

Figure 9.2 Columns from All Documents view displayed in a View Panel

The View Control: Up Close and Personal 279

in the backend view, but it is possible that the underlying documents have fields that hold the
required information or perhaps the information you need can be deduced using one or more
fields. Thus, you could modify the backend view or create a new version that contains the column
values you require based on fetching or computing the information by alternative means.

In the more immediate short term, however, you need to remove the offending column from
the View Panel. This can be done in Designer in a number of different ways. You can highlight the
column in the Outline panel or in the WYSIWYG editor and use the right-mouse Delete menu to
remove the column—you appended a new column back in Chapter 8, “Working with Domino
Views,” in much the same way. Alternatively, you can find the <xp:viewColumn> tag that is
bound to $116 in the source pane and delete the markup directly from there.

Simple View Panel Make Over
Many presentational issues can be taken care of directly at the XPages level without any modifi-
cations to underlying the Domino view! For example, you are not restricted to the column order
defined in the Domino view. You can reorder the columns in a View Panel by simply cutting and
pasting the <xp:viewColumn> tags in the source pane—try this now in myView.xsp. Also, the
date format of what is now or soon to be the second column can be modified in the XPages layer
using a component known as a converter—this is the same component you used in Chapter 4,
“Anatomy of an XPage,” when working with the Date Time Picker examples. To do this, click the
Date ($106) column in the WYSIWYG editor, select the Data property sheet, and change the
Display type from “String” to “Date/Time.” Then, change the Date style from “default” to “full,”
as shown in Figure 9.3.

Figure 9.3 Applying a date converter in the View Panel

280 Chapter 9 Beyond the View Basics

Listing 9.1 shows the markup generated from the cut/paste operation and the addition of
the date converter.

Listing 9.1 viewPanel Markup with Reordered Columns and Alternative Date Formatting

<xp:viewPanel rows=”30” id=”viewPanel1”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView

var=”view1”

viewName=”($All)”>

</xp:dominoView>

</xp:this.data>

<!— Reordered columns so that Topic is first —>

<xp:viewColumn columnName=”$120” id=”viewColumn7”>

<xp:viewColumnHeader value=”Topic” id=”viewColumnHeader7”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”$106” id=”viewColumn1”>

<!— Present full date like “Thursday, August 26, 2010” —>

<xp:this.converter>

<xp:convertDateTime type=”date” dateStyle=”full”>

</xp:convertDateTime>

</xp:this.converter>

<xp:viewColumnHeader value=”Date” id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

Now that you’ve turned the view presentation on its head, you might as well look at its run-
time rendition. All going well, you see a View Panel like the one shown in Figure 9.4.

You’re not done yet, however! Albeit a simple View Panel, it is still possible to dress this
puppy up a little further and add some extra behaviors.

The View Control: Up Close and Personal 281

The World Is Flat???

An obvious limitation of the View Panel shown in Figure 9.4 is that the document hierarchy is not
shown. The Topic column is just a flat list of entries that does not reflect their interrelationships in
any way. To show the various threads in this view, all you need to do is click the Topic column in
Designer, select the Display property sheet, and check the Indent Responses control. Reload the
page after doing this, and you find that all parent documents now have “twistie” controls that can
be used to expand or collapse its own particular part of the document tree. If you don’t like the
standard blue twisties, feel free to add your own! Some extra images have been added as image
resource elements to Chapter9.nsf, so if you want to try this feature out, you can simply assign
minus.gif and plus.gif from the list of image resources in the application as the alternative
twisties, as shown in Figure 9.5, although I’m sure you can come up with more interesting ones
than these! Whatever alternative images are specified in this property sheet would also be applied
to the twistie controls used for expanding and collapsing category rows, if you were working with
a categorized view. Category views are discussed in the section, “Working with Categories.”

Linking the View Panel to its Documents

In Chapter 3, you learned to use the Check box feature shown in Figure 9.5 to enable row selec-
tion by the end user. You also learned to display the contents of the Topic column as links and to
bridge it to myTopic.xsp by explicitly nominating that XPage as pageName property for the
View Panel itself. Select the Show values in this column as links feature for Topic column again
now, but omit nominating myTopic.xsp as the target XPage on this occasion. Preview the page
and click any link—do you know just why this happens to magically work?

Figure 9.4 An alternative XPages view of All Documents

282 Chapter 9 Beyond the View Basics

The clue is in the View Panel’s default link navigation option shown in Figure 9.6. When no
page is explicitly nominated, XPages looks in the form used to create the underlying documents
for a hint as to what XPage it should use. The form in question in this scenario is Main Topic and,
if you open it in Designer and inspect its properties, you see a couple of interesting options, as
highlighted in Figure 9.7.

Custom TwistiesDisplay column content
as HTML link

Figure 9.5 View Column Display Property sheet

XPage To Use When View Entry Is Opened

Figure 9.6 View Panel Basic Property panel

You can basically choose to override the form associated with a document on the web and
on the client by opting to substitute an XPage instead in either or both environments. For the pur-
poses of this chapter only, Main Topic has been updated to use myTopic.xsp as an alternative on
both platforms, and thus, it is resolved as the go-to XPage when a column is clicked in the View
Panel.

The View Control: Up Close and Personal 283

Client Option

Web Option

Figure 9.7 Form Properties Infobox: Display XPage Instead property

TIP Display XPage instead can be used to incrementally phase in XPages application
implementations. If you are migrating an application to XPages, it might be possible to
replace subsets of functionality that have been encapsulated in forms with XPages code,
and then use pull these blocks into your application on a piecemeal basis using this feature.

There was originally just one Display XPage instead property. Since XPages was first
made available on the web before being released on the Notes client, many customers converted
their application’s web implementation to XPages, but still had the original client application in
place. When running the application natively on the client, they did not want to suddenly start
seeing XPages appearing in place of forms! This feature was revamped in 8.5.2 to allow XPages
and non-XPages implementations of an application to run harmoniously on separate platforms.

Although Display XPage instead certainly has its uses, the more common practice in the
app dev community would appear to favor having an explicit XPage pageName navigation set-
ting on the View Panel itself.

There is, in fact, a third strategy that can be employed to resolve what XPage is used when
opening a document, and it is perhaps the simplest of them all! If you give the XPage the same
name as the form used to create the document, it is chosen as a last resort if the other two options
come up blank. This can be a useful approach if you are closely mimicking the original applica-
tion implementation in XPages and if the application is simple enough to support such one-to-one
design element mappings.

284 Chapter 9 Beyond the View Basics

But, what of the remaining features in Figure 9.5? You just learned a second way to handle
the Show values in this column as links option, and the Check box feature was already
explored in Chapter 3. The Display column values checkbox merely serves to hide the column
value retrieved from the view. This is potentially useful if you want to retrieve the column value
but display something else based on what’s actually contained in the column. In my experience,
this property is not widely used as there are other (perhaps easier) ways of computing column
values. We work through some examples of this shortly in the course of this View Panel
makeover. On the other hand, if you simply want to conceal a column, you need to deselect the
Visible checkbox in its property sheet, which sets rendered=”false” in the underlying
<xp:viewColumn> tag.

This just leaves the Icon and Content type in the view column Display panel, so you can
learn now how to further enhance this simple makeover by putting those properties to work.

Decorating Your Columns with Images

Any column in a View Panel can display an image as well as its column value. To add an image to
a view column, you can simply check the Icon control (refer to Figure 9.5 to find the control, if
needed) and type the name of the image resource or use the image browser dialog to locate it. It is
good practice to enter some alternative text in case the image cannot be resolved at runtime and to
facilitate screen readers and so on. The view column properties behind these two Designer
choices are called iconSrc and iconAlt, respectively. You can implement a simple example as
follows:

1. Insert a new column before the first column in the View Panel. You can use the View >
Insert Column main menu when the Topic column is selected.

2. Check the Icon checkbox in the Display property sheet and add /hash.gif as the
nominated image resource (you can also browse for this image resource). This image
has already been added to Chapter9.nsf for your convenience.

3. Add Index as the alternative text.

4. Add indexVar=”rowIndex” to the <xp:viewPanel> tag in the Source pane. You
can also do this via the View Panel’s Data category in the All Properties sheet.

5. Add the following server-side JavaScript snippet to compute the column’s value:

var i:Number = parseInt(rowIndex + 1);

return i.toPrecision(0);

In summary, you added an image to the new column and along with some alternative text.
The indexVar property keeps a count of the rows in the View Panel as it is being populated. The
indexVar property is used here as a simple row number to display in the UI. The JavaScript
applied in step 5 simply increments each row index by 1 (it is a zero-based index) and ensures
that no decimal places are displayed. Finally, to give the new column a title, click the view col-
umn header in the WYSIWYG editor and enter some text, say Row, as the label. Now, you can

The View Control: Up Close and Personal 285

preview or reload the page to see the results (all this has been done for you in myViewExt.xsp, if
you want to look at the final creation), which should closely match Figure 9.8.

Figure 9.8 Computed View Panel column using iconSrc, iconAlt and indexVar properties

This is all well and good except that the icon displayed is static in nature; observe that it is
the same for each row (the hash symbol gif). Although it is a computable property, iconSrc does
not have access to the View Panel var or indexVar properties, so it difficult to do something
dynamic with it, such as select the image resource based on a particular row column value for
example. This might be addressed in a future release.

But fear not, as a dynamic solution can still be provided by using the Content type option
on the same Display panel. To implement an example of applying images based on row content,
work through the following instructions:

1. Append a new column to the end of the View Panel using the View > Append Column
main menu.

2. In the Display panel set the Content type to HTML.

3. In the Source pane, add var=”rowData” to the <xp:viewPanel> tag to gain access to
the current row via server-side JavaScript while the View Panel is being populated.

4. On the Data property sheet, add the following server-side JavaScript snippet to compute
the column’s value property:

var i:number = rowData.getDescendantCount();

if (i < 10) {

return (“<img src=\”/Chapter9.nsf/” + i

+ “.gif\””+”>”);

} else {

return (“”);

}

286 Chapter 9 Beyond the View Basics

5. Move to the Events tab for this column and for the only defined event, onclick, add
another server-side JavaScript snippet:

if (rowData.getDescendantCount() > 0) {

rowData.toggleExpanded();

}

As you can see, the column value is set using server-side JavaScript in step 4. An HTML
image tag is returned with the src value determined by the number of documents in the row’s
document hierarchy, 1 descendant document means “1.gif” is used, 5 descendant documents
means “5.gif” is used, and so on. Because you set the column’s content type to HTML, the image
tag is simply passed through to the browser as is. Moreover, the image is clickable (unlike the
image added via the iconSrc property) and fires an expand/collapse event for any non-leaf
entry, such as when the entry has any responses, thanks to the code you added in step 5.

The column header label should be set to Responses, and the content of the column can be
quickly centered using the Alignment button on the column Font property panel. Reload the
page and see the new runtime behavior for yourself. The rendering of this column is also shown
in Figure 9.9. Note that the expandLevel=1 data source setting discussed in the previous chap-
ter was used here (via a URL parameter) to initially collapse all rows. Some were then expanded
to create a good example.

Figure 9.9 Computed View Panel column using computed pass-through HTML content

The View Control: Up Close and Personal 287

So, this time, the image resource in the Responses column indeed varies depending on the
response count for each row entry. It might not be too evident in the printed screen shot, but the
color of the images darken and increase in pixel size as the numbers increase. Thus, the rows with
more responses get more emphasis in the UI (similar in concept to the tag cloud rendering) on the
basis that they represent busier discussion threads and are, therefore, likely to be of more interest
to forum participants. If the number of response documents exceeds nine, an ellipses image
(n.gif) is shown instead. Add more documents yourself and create deep hierarchies to see how
this View Panel rendering works in practice—interesting all the same to see what can be achieved
by tweaking a few properties and adding some simple lines of JavaScript code!

Some Final Touches

Before completing our sample rendering of the All Documents view, there are some final miscel-
laneous features to apply and some other behaviors to observe. First, when used in native client
mode, the backend All Documents view can be sorted by clicking the Date column. This sorting
facility is not in evidence as yet in the XPages View Panel, so you must learn how to enable it.

The first thing to understand is that it is the backend view itself that performs the sorting. It is
not performed client-side in XPages itself, and any attempt to do so is invariably inefficient and per-
forms poorly as applications scale. Don’t go there—leave the sorting operation to the view itself.

To enable the sort feature in the View Panel, you need to select the required view column
header in the WYSIWYG editor and activate its property sheet. You see a Sort column checkbox
that you need to check. If this is disabled, it means that the column as defined in the backend view
does not have any sorting capability; Designer looks up the column design properties and enables
or disables this option appropriately. Figure 9.10 shows the view column property that defines
sorting capability.

If the column you want to sort in XPages is not defined, as shown in Figure 9.10, you need
to either update the view design or create a new modified copy of the view to work with going
forward. After the backend sort property and the XPages sort property are enabled, the View
Panel displays a sort icon in the header and performs the sort operation when clicked by the user.
Figure 9.11 shows the All Documents view after being resorted via the View Panel (oldest docu-
ments are now first).

TIP A view can lose its sorting capability after certain filters are applied. For example, if
you perform a full-text search on a view, the resulting document collection is not sortable.
In 8.5.2, the View Panel sort icons are removed when it displays the results of a full text
search. In previous releases, the icons remained enabled, thus implying that the result set
was sortable when, in fact, it was not. This is a commonly requested feature, however, and
might be addressed in a future release.

288 Chapter 9 Beyond the View Basics

Column can be sorted by user

Figure 9.10 View Column infobox with sorting capability enabled

Now complete this particular make over by selecting the View Panel and selecting its
Display property sheet. Check the Show title and Show unread marks controls, and change the
number of maximum number of rows from the default of 30 to 10. Figure 9.12 shows the property
sheet with these changes applied.

Clicking Show title places a View Title component into the header of the View Panel. You
can then click this component directly in the WYSIWYG editor and then set its label and other
properties via the component’s property sheet. This results in a <xp:viewTitle> tag being
inserted into the View Panel facets definition; for example:

<xp:viewTitle xp:key=”viewTitle” id=”viewTitle1”

value=”All Documents - Make Over Complete!”>

</xp:viewTitle>

The View Panel also has a title property defined on the <xp:viewPanel> tag. This is
merely exposing the title attribute of the underlying HTML table element that is used to con-
struct the View Panel when rendered at runtime. If you enter a value for this property, it is passed
through to the browser as part of the <table> HTML markup. For a visible view title, you need
to use the Show title property and not this title property.

The View Control: Up Close and Personal 289

Sort Icon

Smaller icon for lesser number

Larger icon for bigger number

Click image to expand/collapse the row entry

Figure 9.11 View Panel with all documents resorted by date in ascending order

Page row count limited to ten rows

Unread icon

View Title

Figure 9.12 View Panel with title, unread marks, and a row count of ten documents

290 Chapter 9 Beyond the View Basics

Secondly, if your unread view entries are not displayed as unread (no unread icon is dis-
played), this is most likely because the Domino server is not maintaining unread marks for the
application—keeping track of read/unread documents is optional. You can ascertain the status of
this feature in Designer via the Application Properties > Advanced property sheet. Look for the
Maintain unread marks checkbox in the top-left corner.

The rows property that controls the maximum number of entries displayed in a view at any
one time (set to 10) is exposed directly in the regular Discussion template UI. For example, the
footer of the All Documents, By Tag, and By Author views conveniently lets the user choose the
number of entries to display, as shown in Figure 9.13.

Listing 9.2 provides the entire View Panel markup, along with comments in case you had
difficulty applying any of the many and varied features discussed in this section. It is also
included in Chapter9.nsf in the myViewExt.xsp XPage.

Listing 9.2 View Panel: Complete Source for Make-Over Exercise

<xp:viewPanel rows=”10” id=”viewPanel1” var=”rowData”

indexVar=”rowIndex” showUnreadMarks=”true”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

Rows property value exposed to user

Figure 9.13 Rows property exposed as user option in view footer

The View Control: Up Close and Personal 291

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

<!— View Panel Title —>

<xp:viewTitle xp:key=”viewTitle” id=”viewTitle1”

value=”All Documents - Made Over!”>

</xp:viewTitle>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”view1” viewName=”($All)”>

</xp:dominoView>

</xp:this.data>

<!— Static Column Image # —>

<xp:viewColumn id=”viewColumn3”

iconSrc=”/hash.gif”

iconAlt=”Row Number Symbol”>

<xp:this.facets>

<xp:viewColumnHeader xp:key=”header”

id=”viewColumnHeader3” value=”Row”>

</xp:viewColumnHeader>

</xp:this.facets>

<!— Compute Row Number —>

<xp:this.value><![CDATA[#{javascript:

var i:Number = parseInt(rowIndex + 1);

return i.toPrecision(0);}]]>

</xp:this.value>

</xp:viewColumn>

<!— Reordered columns so that Topic is before Date —>

<!— Use custom twistie images for expand/collapse —>

<xp:viewColumn columnName=”$120” id=”viewColumn7”

indentResponses=”true”

collapsedImage=”/plus.gif”

expandedImage=”/minus.gif”>

<xp:viewColumnHeader value=”Topic”

id=”viewColumnHeader7”>

</xp:viewColumnHeader>

</xp:viewColumn>

<!— Present full date like “Thursday, August 26, 2010” —>

<xp:viewColumn columnName=”$106” id=”viewColumn1”>

<xp:this.converter>

292 Chapter 9 Beyond the View Basics

<xp:convertDateTime type=”date” dateStyle=”full”>

</xp:convertDateTime>

</xp:this.converter>

<xp:viewColumnHeader value=”Date”

id=”viewColumnHeader1”

sortable=”true”>

</xp:viewColumnHeader>

</xp:viewColumn>

<!— Dynamic Column Images – 1.gif thru 9.gif —>

<!— inline CSS to center img —>

<xp:viewColumn id=”viewColumn2”

contentType=”HTML”

style=”text-align:center”>

<xp:this.facets>

<xp:viewColumnHeader xp:key=”header”

id=”viewColumnHeader2” value=”Responses”>

</xp:viewColumnHeader>

</xp:this.facets>

<!— Compute image name based on response count —>

<xp:this.value><![CDATA[#{javascript:

var i:number = rowData.getDescendantCount();

if (i < 9) {

return (“<img class=\”xspImageViewColumn\”
src=\”/Chapter9.nsf/” + i + “.gif\””+”>”);

} else {

return (“<img class=\”xspImageViewColumn\”
src=\”/Chapter9.nsf/n.gif\””+”>”);

}

}]]></xp:this.value>

<!— Do collapse/expand for docs with responses —>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” id=”eventHandler1”>

<xp:this.action><![CDATA[#{javascript:

if (rowData.getDescendantCount() > 0) {

rowData.toggleExpanded();

}

}]]></xp:this.action>

</xp:eventHandler>

</xp:viewColumn>

</xp:viewPanel>

The View Control: Up Close and Personal 293

Working with Categories
Just like sorting, categorization is handled by the backend view itself and not by XPages. For a
column to be treated as a category, the column type must be set to Categorized in the view col-
umn properties infobox; refer to the Type radio button option show in Figure 9.10, which allows
columns to be defined as Standard or Categorized.

The View Panel merely presents category rows and columns and renders them so they can
be expanded and collapsed as required. The expansion and contraction of category rows works
the same as it does for indented responses. Note also that the state of both category rows and doc-
ument hierarchies is maintained as you navigate through the view data. For example, as part of
the final make over, you restricted the number of rows presented in the View Panel to ten elements
(remember rows=”10”). This caused more pages to be displayed in the view pager contained in
the header. If you expand and collapse some categories or response hierarchies on any given View
Panel page and then navigate forward and backward via the pager, you find that the display state
of these rows is maintained and then redisplayed on your return exactly as you had left them. This
statefulness is a great built-in feature of XPages and something often lacking in other web appli-
cations...try the same view navigation exercises using the classic Domino web engine.

In any case, categorization becomes more interesting when two or more category columns
are in a view. To provide some working examples of this, a modified form and view were added to
Chapter9.nsf, namely the Main Topic2 form and the subCats view. A small number of docu-
ments with multiple categories have also been created in the sample application so that examples
can be quickly constructed. You do not see these documents in the All Documents view because
the view selection formula on the ($All) view only displays documents created using the Main
Topic form, and thus excludes those created using Main Topic2. Figure 9.14 shows the sample
multicategory documents when the subCats view is previewed in the client.

Figure 9.14 Domino view with subcategories

294 Chapter 9 Beyond the View Basics

Figure 9.15 shows an XPage named subCat1.xsp, which is a default rendering of the
subCats view. By “default rendering,” I mean that a View Panel control was simply dropped on
an XPage and all the columns in the subCats view were accepted for inclusion—nothing more
than that.

If you experiment with the XPages View Panel and the Notes view, you find that the pres-
entation and behavior of both are identical. The category columns are automatically rendered as
action links with twistie icons, both of which serve to expand and collapse the category row.
Apart from this specialized behavior, all the regular column properties described thus far can also
be applied to category columns, they can be reordered within the View Panel so they are not con-
tiguous, and so on.

Although adding two or more categorized columns to a view is one way of implementing
subcategorization, an alternative method seems to be a common practice. That is, instead of hav-
ing multiple categorized columns in the view, which map to fields in the underlying form, the
view has just one category column but it can support multiple categories through the use of a “cat-
egory\subcategory” data-format notation. Thus, if a user enters something like “Government” as
a category value, this is interpreted as a top-level category. However, if “Government\Recycling”
is entered by the user into the Categories field when creating a document, the document is catego-
rized in a “Recycling” subcategory within the top-level “Government” category.

Figure 9.15 View Panel with subcategories

The View Control: Up Close and Personal 295

Observe that the Notes client view indents the new subcategories tucked in under the main
categories. You have little or no control over this particular rendering because it is built-in view
behavior. However, if you repeat the exercise described for Figure 9.15 and create an XPages
View Panel to do a default rendering of this view, you notice a problem (refer to subCatsA.xsp in
Chapter9a.nsf for convenience). As shown in Figure 9.17, XPages recognizes the entries as cat-
egory columns, but the subcategories are not indented. The next section describes how to address
this.

Embedded SubCategories Embedded SubCategories

Figure 9.16 Category field containing hierarchical categories

To provide an example of this, an alternative sample NSF is provided for this chapter,
namely Chapter9a.nsf. Some of the sample documents contained in Chapter9.nsf have been
recategorized in the manner just described (which is why you need a separate database). Figure
9.16 shows an example of a redefined category field as inspected in a Notes infobox and how
these updated documents are displayed in the Notes client.

296 Chapter 9 Beyond the View Basics

Making It Look Like Notes!

Building an XPage to emulate the Notes client rendering can be achieved in the following eight
steps:

1. Create a new XPage called subCatsB.xsp and add a View Panel from the palette.

2. Bind to the By Category view but only include the Topic column.

3. As shown earlier, insert a new column before the Topic column and give it a title of
“Categories” by updating the view column header.

4. In the Display panel set the Content type to HTML.

5. Add var=”rowData” to the <xp:viewPanel> tag to gain access to the current row via
server-side JavaScript while the View Panel is being populated.

6. Add the following server-side JavaScript snippet to compute the column’s value:

if (rowData.isCategory()) {

// Use the standard twistie icons

var src =

“/xsp/.ibmxspres/global/theme/common/images/expand.gif”;

Embedded
SubCategory
Not Indented

Figure 9.17 XPages View Panel default rendering of embedded subcategories

The View Control: Up Close and Personal 297

// Get the value of the Categories column

var colValue = rowData.getColumnValue(“Categories”);

// Return “Not Categorized” for null or undefined data

if (typeof colValue == ‘undefined’ ||

colValue == null) {

colValue = “Not Categorized”;

}

// Invert the twistie depending on row state

if (rowData.isExpanded()) {

src =

“/xsp/.ibmxspres/global/theme/common/images/collapse.gif”;

}

// return the tag including the twistie & value

return “<img src=’” +

src + “‘ alt=’’ class=’xspImageViewColumn’/>” +

colValue + “”;

}

7. Add the following server-side JavaScript snippet to compute the column’s style prop-
erty, i.e. All Properties > Styling > Style > Compute value:

if (rowData.isCategory()) {

// This API tells us if a category column is indented

var indent = rowData.getColumnIndentLevel();

// Insert padding for each indent level

if (indent == null || indent == 0) {

return “padding-left:0px”;

} else {

return “padding-left:10px”;

} // continue if deeper category levels exist ...

};

8. Move to the Events tab for this column and for the only defined event, onclick, add
another server-side JavaScript snippet:

rowData.toggleExpanded();

The subCatsB.xsp XPage has already been created for you in Chapter9a.nsf, so you can
load this or preview your own creation if you have worked through the steps above. In either case
the results you see should match those shown in Figure 9.18.

298 Chapter 9 Beyond the View Basics

The key pieces to the customized category column shown in Figure 9.18 are achieved using
server-side JavaScript. Obviously, the NotesXspViewEntry class exposed via the rowData
object is critical when working on view customizations as it gives full programmatic access to
each view row as it is rendered. This JavaScript class is a pseudo class for the
DominoViewEntry Java class defined in the XPages runtime, which, in turn, wraps the
ViewEntry class defined in Notes Java API. JavaScript pseudo classes such as this one allow you
to access the associated Java class without having to enter the entire package name, and have an
automatic built-in type-ahead facility for method names when used in the JavaScript editor. In
this example, for each row it allows you to

• Check if the row is a category: rowData.isCategory()

• Get the column value: rowData.getColumnValue(“Categories”)

• Check the expand/collapse state of the row: rowData.isExpanded()

• Check for embedded categories: rowData.getColumnIndentLevel()

• Toggle the expand/collapse state of the row: rowData.toggleExpanded()

Indented Embedded SubCategory

Figure 9.18 XPages View Panel displaying inline subcategories

The View Control: Up Close and Personal 299

Appendix A, “XSP Programming Reference,” includes documentation resources that pro-
vide a full outline of the DominoViewEntry XPages class, which NotesXspViewEntry uses
under the covers. It is worthwhile to study this class in more detail to get to know the full set of
tools you have at your disposal when working on view customizations. You can also resolve the
mappings for any JavaScript/Java classes using a handy tool on the Domino Designer wiki:

www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_Object_Map_8.5.2
The other interesting tidbit from this example is that it exposes the internal URLs used to

locate embedded runtime resources like images, style sheets, and so on. The following URL, for
example, points to the standard row expansion twistie that is part of the XPages runtime:

”/xsp/.ibmxspres/global/theme/common/images/expand.gif”

You see URLs just like this one whenever you view the source of a rendered XPage in a
browser, and you can use these URLs as has been done in this example as part of your own cus-
tomizations.

TIP Prior to the Notes/Domino 8.5.2 release, it was not possible to dynamically compute
the column style property, as is done here. This issue has been addressed; however, if you
are using an older version, you can still achieve the same result by computing the
styleClass property. It just means that you must return class names instead of inline
CSS, and you need a style rule defined in a CSS resource for each name returned. A tad
more awkward, but it’s no big deal...although it’s another good reason to move to 8.5.2 if
you have not already upgraded!

Incidentally, a similar technique can be used to render category view columns inline like
this, even when they are managed as separate category columns, i.e. as was the case with the
subCats view used in Chapter9.nsf, shown in Figure 9.14. A subCats2.xsp XPage has been
included in that sample application to illustrate how to reformat the column category display. In
essence, however, it is only the server-side JavaScript code outlined previously in steps 6 and 7
that has been modified. Listing 9.3 shows the revised code that computes the column value and
the style property.

Listing 9.3 Server-Side JavaScript for View Column value and style Properties

<xp:this.value>

<![CDATA[#{javascript:if (rowData.isCategory()) {

// Use the standard twistie icons

var src = “/xsp/.ibmxspres/global/theme/common/images/expand.gif”;

// Look for the deepest subcategory first

var colValue = rowData.getColumnValue(“SubCategories”)

// If not found, keep looking back until back to top level cat

if (colValue == null) {

colValue = rowData.getColumnValue(“Categories”);

300 Chapter 9 Beyond the View Basics

}

// Return “Not Categorized” for null or undefined data

if (typeof colValue == ‘undefined’ || colValue == null) {

colValue = “Not Categorized”;

}

// Invert the twistie depending on row state

if (rowData.isExpanded()) {

src = “/xsp/.ibmxspres/global/theme/common/images/collapse.gif”;

}

// return the tag including the twistie & value

return “<img src=’” + src +

“‘ alt=’’ class=’xspImageViewColumn’/>” + colValue +

“”;

}}]]>

</xp:this.value>

<xp:this.style>

<![CDATA[#{javascript:

if (rowData.isCategory()) {

// Start at the deepest subcategory and work back to root

var colValue = rowData.getColumnValue(“SubCategories”);

// Insert padding for 10 pixel padding for 2nd column

if (colValue != null && colValue != ““) {

return “padding-left:10px”;

// Insert more padding if needed back to the top level

} else {

return “padding-left:0px”;

}

}}]]>

</xp:this.style>

As you can see from the code, the principle is exactly the same as previously, but the means
of detecting the category columns has changed. No longer are the column values embedded in the
Category\Subcategory fashion, so the rowData.getColumnIndentLevel()API is of no use
here. Instead, the indentation is determined based on the structure of the backend view—the
deepest subcategory columns are sought first, rewinding to the top level if no value is found. Load
the subCats2.xsp page and compare the results to Figure 9.15.

This tucked-in form of category styling seems popular in the community based on various
Notes app dev forum postings and other customer feedback, so hopefully this section clarified
how to achieve the Notes client look and feel in XPages. It might become a standard View Panel
property in a future release.

The View Control: Up Close and Personal 301

View Properties and View Panel Properties
When working with views, any features to do with data structure and content are defined at the
backend in the view design element itself—you have just seen with this with the sorting and cate-
gorization examples, insofar as these capabilities needed to be enabled in the view. The view
design element also contains properties that are purely related to presentation within the Notes
client or classic web engine and, as such, do not apply to the XPages view controls. For example,
the Type option in Figure 9.10 defines whether a categorization data is maintained for a particu-
lar column in the view, but the twistie options contained in the adjacent tab (see Figure 9.19) only
apply to native Notes rendering and not to XPages.

Notes UI feature

Figure 9.19 View Column Presentation properties

It is important to be able to distinguish the native view rendering features from the XPages
View control presentation properties. In Chapter9.nsf a new version of the ($xpByAuthor)
view, namely ($xpByAuthorExt), has been provided for use in an example that helps clarify this
area. The extended view contains an extra column that totals the byte size of the documents for
each category. These totals are shown in the Notes client for each category only, but can be dis-
played for each individual row entry if so desired. The hide/show nature of this data is determined
using the Hide Detail Rows checkbox shown in Figure 9.20.

302 Chapter 9 Beyond the View Basics

If you toggle the Hide Detail Rows checkbox value and refresh the view data from within
Designer, you see the document byte size displayed for each entry. An agent has also been sup-
plied in the sample application, which prints the column values for each view row entry using the
Java API. The agent (getViewEntryData) details are shown in Listing 9.4.

Listing 9.4 Java Agent to Print View Column Data

import lotus.domino.*;

public class JavaAgent extends AgentBase {

public void NotesMain() {

try {

// Standard agent code to get session & context objects

Session session = getSession();

AgentContext agentContext = session.getAgentContext();

// get the current db and the new ($xpByAuthorExt) view

Database db = session.getCurrentDatabase();

View view = db.getView(“($xpByAuthorExt)”);

// iterate over each view entry and print the Topic & Size

ViewEntryCollection vec = view.getAllEntries();

if (vec != null) {

Request Totals Totals By Category Only

Totals

Figure 9.20 ($xpByAuthorExt) with document size totals for each category

The View Control: Up Close and Personal 303

for (int i = 0; i < vec.getCount(); i++) {

ViewEntry ve = vec.getNthEntry(i);

if (ve != null)

// just get the 3rd & 4th column values

// ViewEntry index is zero-based!

System.out.println(

ve.getColumnValues().get(2)

+ “ “ +

ve.getColumnValues().get(3));

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

}

Listing 9.5 shows some sample output generated when the ($xpByAuthorExt) view is
configured to hide detail rows. To run the agent yourself in Designer, you first launch the Java
debug console (Tools > Show Java Debug Console), right-click getViewEntryData in the
agent view, and select the Run menu. All the println output then appears in the Java console.
As you can see, the detail totals rows are all included in the data returned by the
getColumnValues() API call regardless of Hide Details Rows property setting.

Listing 9.5 Snippet of Java Agent Output

...

if you can rip it, you can recycle it (re: It’s just paper) 573.0

It’s just paper 618.0

Using post-consumer recycled paper 1045.0

who’t this? (re: Meeting Minutes) 629.0

phone number inside (re: Meeting Minutes) 631.0

Difference between clear and colored glass? 927.0

...

Because XPages depends on the Java API to populate its View control, the detail rows
appear in any XPages View control that includes the Size column. The Hide Detail Rows prop-
erty is really just used in the core view rendering code and not honored in the programmability
layer. Given the view customization tips and tricks you have learned thus far, you are now be in a
position to figure out how to emulate Notes Hide Detail Rows view display property in XPages!
All you really need to do is not show the Size column value when the row is not a category. This

304 Chapter 9 Beyond the View Basics

is done for you in hideDetails.xsp page in Chapter9.nsf, which contains a View Panel with four
standard columns (Name, Date, Topic, Size) plus a computed column. The server-side
JavaScript used to compute the column value is trivial, as demonstrated in Listing 9.6.

Listing 9.6 Server-Side JavaScript Snippet to Emulate Hide Detail Rows in a View Panel

<xp:this.value>

<![CDATA[#{javascript:

// Only show the Total column value for category rows

if (rowData.isCategory()) {

return rowData.getColumnValue(“Size”);

}}]]></xp:this.value>

<!— Also include a converter to display whole numbers only —>

<xp:this.converter>

<xp:convertNumber type=”number”

integerOnly=”true”>

</xp:convertNumber>

</xp:this.converter>

The converter just used was added via the same Data property panel used to add the
JavaScript code in Designer. Simply set the Display type to Number and check the Integer only
control to eliminate the decimal points you see printed in the raw data in Listing 9.5. When loaded
or previewed, the hideDetails XPage looks like Figure 9.21.

Detail Row Totals

Totals by Category Only

Figure 9.21 XPage with totals for detail and category-only rows

Data Table 305

The discussion thus far covered all the main View Panel properties and dived into examples
of how to customize View Panels using server-side JavaScript and other tools. The next most log-
ical focus area for the View Panel would be styling. No doubt, as you have examined the View
Panel properties, you noticed a slew of specialized style class properties (rowClass,
columnClass, viewClass, and so on), which can modify its appearance. Rather than do that
here in this chapter, it is covered in the section, “Working with Extended styleClass and Style
Properties,” in Chapter 14, “XPages Theming.” The discussion here instead shifts to the Data
Table container control.

Data Table
The Data Table uses a simple table structure to display content. The table is configured to contain
three row elements, such as a header, a content row, and a footer. The header and footer typically
contain static elements, such as column titles, pagers, or just arbitrary one-off control instances.
The content row usually contain a collection of individual controls that are bound to elements of
a data source, and this row is then rendered repeatedly for each entry in the data source (once for
every row in a view) when the Data Table is invoked as part of a live application.

Unlike a View Panel, however, all the controls contained in the Data Table must be added
and bound manually, and certain other capabilities are simply not available, e.g. categorization.
In essence, it is like a dumbed-down View Panel control, but it can be useful if you need to dis-
play simple nonhierarchical data in a customized fashion. You see an example of a good use case
in this section.

To start with, try to present a regular view using a Data Table to get familiar with its fea-
tures and behaviors. You should create a new XPage, say myDataTable.xsp, and drag-and-drop a
Data Table control from the palette. Compared to the View Panel drag-and-drop experience, you
might be underwhelmed with results. Basically, a shell of a table is created, and it’s pretty much
up to you to populate it with controls and bind these in a meaningful way.

Designer prompts you that a data source needs to be created if one does not already exist on
the page, so for the purposes of this example, you should create a view data source targeting the
xpAllDocuments view. This can be done in a number of ways, such as from the Data property
panel on the XPage itself or using the Define Data Source combo box entry on the Data palette
data source picker. Whatever your preferred route might be, simply pick the aforementioned view
as the data source. Even though you now have a page containing a Data Table and a view data
source, they are not connected and know nothing about each other. You can wire these together
using the main Data Table property panel, as shown in Figure 9.22.

306 Chapter 9 Beyond the View Basics

With the Data Table entry selected in the Outline view, pick the newly created view data
source instance (“viewAll”) using the Data source combo box, and you also need to enter a
Collection name. The collection name, “rowData” in this example, is used as the object to gain
programmatic access to each row entry as it is being rendered—just as it was in the View Panel
examples earlier. Rather than use server-side JavaScript in this case, however, you could just use
simple Expression Language (EL) bindings. First, however, you need some controls to display
the row data, so drag-and-drop a Computed Field from the Core Controls palette to the first cell
in the middle row and then repeat the process for the adjacent table cell. These Computed Field
instances can be selected and bound using EL expressions—or Simple data binding, as it is
described in Designer’s Value property panel and displayed in Figure 9.23. Bind the first field to
the _MainTopicsDate column and the second field to the _Topics column.

The EL data binding markup generated by Designer has the following form. The name of
the column is provided as a key to the row data entry:

#{rowData[‘_MainTopicsDate’]}

TIP You can use EL expressions or server-side JavaScript for data binding. The EL
expression rowData[‘_MainTopicsDate’] produces the same result as rowData.
getColumnValue(“_MainTopicsDate”) in JavaScript. Some column names, however,
are incompatible with the EL expression language and thus cannot be used at all. For
example, many column names in the standard Domino templates begin with a dollar symbol,
such as $126, $150, and so on. An EL expression like rowData[‘$126’] would be
expanded to a Java bean expression like rowData.get$126(), which is illegal in the Java
language. It was precisely for this reason that this example uses the xpAllDocuments view
rather than the ($All) view. The former is essentially the same view as the latter, but with col-
umn names that are EL friendly. In this sense, JavaScript binding can be less problematical
than EL binding, especially if you happen to have no control over the names of the data
source elements.

View Data Source Reference

Row Pointer

Figure 9.22 Connecting a Data Table to a view data source in Designer

Data Table 307

You should also drop two Label controls from the palette directly into the two cells in the
top row of the Data Table and change their values to Date and Topic, respectively. You can also
assign the Data Table a width of 600 pixels for quick aesthetics using the Width and Units con-
trols shown in Figure 9.22. After you complete this step, you are ready to preview or load this
Data Table. The results should be just like the page you see displayed in Figure 9.24.

Computed Field Control Data Field

Figure 9.23 Binding a Computed Field to a view data source element in Designer

Figure 9.24 Data Table displaying data from xpAllDocuments view

308 Chapter 9 Beyond the View Basics

The Data Table could do with a pager to split the rows into manageable chunks. The first
step is to set the rows property of the Data Table to smaller number than its default value of 30
(for example, 10). Interestingly, the pager you have worked with up to now in the View Panel is
not an intrinsic part of that control, but an independent entity that can be used with any of the
view controls. The View Panel just happens to include a pager instance by default. To add a pager
to the Data Table, look for the Pager control in the Core Controls palette and drag it into one of
the footer cells. Then, activate the Pager property panel and attach it to the Data Table by picking
the ID of the Data Table from the Attach to combo box—where Designer kindly enumerates a
list of eligible candidate controls for you! At the same time, turn on partial refresh so that pag-
ing updates are performed using AJAX. The various property panel selections are shown in
Figure 9.25.

AJAX enabled

View Data Source Reference

Canned layout

Figure 9.25 Pager property panel

Because the Pager is capable of working with any view control, you must nominate a target
container. The Partial refresh checkbox selection instructs XPages to update just the targeted
view control via an AJAX request when a pager action is executed. This means that only the view
data in the Data Table is refreshed when the end user navigates from one page to the next, which
is obviously more efficient than refreshing the entire page every time.

The only problem with the pager right now is that it resides in the wrong place. It has been
dropped into the footer cell of a column when it really needs to be in the footer of the Data Table
itself. Unfortunately, the footer of the Data Table is not an identifiable drag-and-drop target in
Designer, so you must go to the Source pane move the markup manually. Simply cut and paste
the entire <xp:pager> tag from its current location so that it is a direct child of the Data Table. It
should also be wrapped in a <xp:this.facets> tag—see the final markup in Listing 9.7.

To best illustrate the effect of the AJAX partial refresh, however, it is worthwhile adding
two more Computed Fields to the XPage. Place the first Computed Field in one of the Data Table

Data Table 309

footer cells and then the second control can be dropped anywhere else on the page as long as it is
outside the Data Table. Then, add the following server-side JavaScript as the computed value for
both fields:

@Now().getMilliseconds();

Domino developers no doubt are familiar with the @Now() function, which returns the cur-
rent data and time. The getMilliseconds() call expresses the time in milliseconds when the
page is loaded. When you load or preview the page, both fields should display the same number.
If you start navigating through the view data using the navigator, you notice that the Computed
Field within the Data Table is updated with the current time milliseconds value while the field
external to the Data Table is not. This demonstrates the efficient behavior of the partial refresh
feature.

Figure 9.26 shows the updated XPage in action. The full markup is done for you in the
dataTable.xsp XPage in Chapter9.nsf and is printed in Listing 9.7.

Navigate to Page 2 Outer Time Unchanged

Inner Time Unchanged

Figure 9.26 Data Table with partial refresh paging enabled

Listing 9.7 XSP Markup for SampleData Table

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<!— The data source defined at root level —>

<xp:this.data>

310 Chapter 9 Beyond the View Basics

<xp:dominoView var=”viewAll”

viewName=”xpAllDocuments”></xp:dominoView>

</xp:this.data>

<!— The data table finds the data source using value prop —>

<xp:dataTable id=”dataTable1” rows=”10” var=”rowData”

value=”#{viewAll}” style=”width:600px”>

<xp:column id=”column1”>

<!— column header and footer entries —>

<xp:this.facets>

<xp:label value=”Date” id=”label1”

xp:key=”header”></xp:label>

<xp:label value=”Internal Time Value”

id=”label3” xp:key=”footer”></xp:label>

</xp:this.facets>

<!— Bound to the date field using EL —>

<xp:text escape=”true” id=”computedField1”

value=”#{rowData[‘_MainTopicsDate’]}”>

</xp:text>

</xp:column>

<xp:column id=”column2” style=”width:300px”>

<xp:this.facets>

<!— column header and footer entries —>

<xp:text escape=”true” id=”computedField3”

xp:key=”footer”

value=”#{javascript:@Now().getMilliseconds();}”>

</xp:text>

<xp:label value=”Topic” id=”label2”

xp:key=”header”></xp:label>

</xp:this.facets>

<!— Bound to the Topic field using EL —>

<xp:text escape=”true” id=”computedField2”

value=”#{rowData._Topic}”>

</xp:text>

</xp:column>

<xp:this.facets>

<xp:pager layout=”Previous Group Next” id=”pager1”

for=”dataTable1”

xp:key=”footer”

panelPosition=”left”

partialRefresh=”true”>

Data Table 311

</xp:pager>

</xp:this.facets>

</xp:dataTable>

<!— Table only used for layout alignment —>

<xp:table style=”width:600px;text-align:left”>

<xp:tr><xp:td>

<xp:label value=”External Time Value”

id=”label4”>

</xp:label></xp:td>

<!— external computed field —>

<xp:td style=”width:300px; text-align:left”>

<xp:text escape=”true” id=”computedField4”

value=”#{javascript:@Now().getMilliseconds();}”

style=”text-align:left”></xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

Although working with the Data Table may be vaguely interesting, it must occur to you that
what you have just built could be achieved using a View Panel control in a fraction of the time
with just a few point-and-click operations. So, why bother with the Data Panel at all? The answer
is that the Data Panel can be useful when you want to build a small bare bones tabular view with a
highly customized user interface. Perhaps these use cases are not commonplace but they do
occur. The next exercise serves as a good example.

Building a Mini Embedded Profile View using a Data Table
Carry out the following steps, drawing on what you learned in the current section up to this point:

1. Create a new XPage called dtProfile.xsp and add a Data Table from the palette.

2. Create a view data source targeting the xpAuthorProfiles view.

3. Connect the Data Table to the data source and set its Collection name to ”rowData” in
the Data Table property sheet. This should result in a var=”rowData” attribute being
created in the underlying <xp:dataTable> tag.

4. Append two new columns to the Data Table using the right mouse menu.

5. Add a Computed Field to the 1st content cell; that is, first column, middle row.

6. Bind this field to the From column in the data source using JavaScript:

rowData.getColumnValue(“From”)

7. Add a link control for the palette to both the 2nd and 3rd cells in the content row.

312 Chapter 9 Beyond the View Basics

8. For the first link, activate the Link property panel and set the Label and Link type
fields. For the label, enter “email” in the edit box, and then for the latter, add some
server-side JavaScript to compute a URL. This is a mailto URL, created by simply
concatenating a ”mailto:” to the Email column value, as follows:

”mailto:” + rowData.getColumnValue(“Email”)

9. Set the label for the second link to “Download” and compute its type in the same way as
before, this time building a Domino resource image URL like this:

”/” + rowData.getUniversalID() + “/$FILE/” +
rowData.getColumnValue(“FileUpFilename”)

10. Drag-and-drop an image control to the fourth and final content row cell, using the Use an
image placeholder radio button for now so that you can compute the image reference.

11. In the Image property panel, compute the Image source using exactly the same server-
side JavaScript as previously shown.

12. For presentation purposes, select the All > Style cell in the property panel for each Data
Table column and set this CSS rule:

text-align:center; vertical-align:middle

13. In the same way, set the All > Style property for the Data Table itself to this:

width:400px;

You already practiced most of the 13 steps in one way or another when working through
View Panel or Data Table examples, so only a few steps need any further explanation.

Step 6 simply returns the name of the author of the document. This is in Notes canonical
form, so it would be more natural to present the common user name in this column instead. Expe-
rienced Domino developers instinctively know to do this using the @Name @Function, which can
reformat Notes names in a number of ways. Although @Functions and other traditional building
blocks are covered in more detail in Chapter 11, “Advanced Scripting,” in the section, “Working
with @Functions, @Commands, and Formula Language,” it is no harm to start dabbling with
some simple use cases at this stage according as the need arises. To do this, simply wrap the
JavaScript binding command in with an @Name() call:

@Name(“[CN]”, rowData.getColumnValue(“From”));

Step 9 uses JavaScript to build a Domino resource URL. The generic form of this URL is

/UNID/$FILE/filename

where the first part is an ID to identify the document to use, the second part indicates that
the URL represents a file attachment resource, and the third part is the name of the attachment.
This form of URL has been used in classic Domino web development for a long time. Back in
Chapter 3, you learned about special IDs that Notes maintains to manage its databases and
documents. The universal ID (UNID) is a 32-character hexadecimal representation that uniquely

Data Table 313

identifies a document. The profile documents in the Discussion template each contain a single
image (or placeholder image) of the author and the name of this image file can be obtained from
the FileUpFilename column in the xpAuthorProfiles view. Thus, a resource URL can be
dynamically constructed for all registered users and this URL resolves the image and retrieves it
from the profile documents for display in the Data Table. An example of a real live resource URL
is highlighted in the status bar of the browser in Figure 9.27.

You are now ready to preview or load the new XPage. Chapter 9.nsf contains some sample
profile documents, so you see these listed in the Data Table. The actual intention, however, is to
display this Data Table as an embedded view in the My Profile page. To do this, you need to open
the authorProfileForm custom control and copy/paste the markup from dtProfile.xsp to the bot-
tom of the XPage, just before the final </xp:view> tag. Naturally, you do not copy the
<xp:view> tag from dtProfile.xsp but just the Data Table and data source markup—everything
you see in Listing 9.8. Figure 9.27 shows a snapshot of a My Profile page from Chapter9.nsf.

Image link URL Embedded Data
Table for Author Profiles

Figure 9.27 My Profile Page with Embedded Data Table

TIP The next chapter introduces the XPage custom control and discusses all of its fea-
tures in great detail. Suffice to say, at this stage that, it would have been a better design
approach to create dtProfile.xsp as a custom control and drop it into
authorProfileForm.xsp rather than copying and pasting the actual code. If you are already
familiar with custom controls, it is trivial to rework this example accordingly. If not, perhaps
it is worth revising this example to use a custom control after you read Chapter 10.

314 Chapter 9 Beyond the View Basics

Listing 9.8 Data Table Displaying Profile Data

<xp:this.data>

<xp:dominoView var=”view1” viewName=”xpAuthorProfiles”>

</xp:dominoView>

</xp:this.data>

<xp:dataTable id=”dataTable1” rows=”30” value=”#{view1}”

var=”rowData” style=”width:400px”>

<!— style each column like this —>

<xp:column id=”column1”

style=”text-align:center; vertical-align:middle”>

<!— get the common user name —>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:

@Name(“[CN]”, rowData.getColumnValue(“From”));

}]]></xp:this.value>

</xp:text>

</xp:column>

<xp:column id=”column2”

style=”text-align:center;vertical-align:middle”>

<!— return a mailto link —>

<xp:link escape=”true” text=”e-mail ...” id=”link2”>

<xp:this.value><![CDATA[#{javascript:”mailto:” +

rowData.getColumnValue(“Email”);}]]></xp:this.value>

</xp:link>

</xp:column>

<xp:column id=”column3”

style=”text-align:center; vertical-align:middle”>

<!— return Domino resource URL —>

<xp:link escape=”true” text=”download...” id=”link1”>

<xp:this.value><![CDATA[#{javascript:

“/” + rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.value>

</xp:link>

</xp:column>

<xp:column id=”column4”

style=”text-align:center; vertical-align:middle”>

<!— use the same Domino resource URL for the image —>

<xp:image id=”image2” style=”height:50px;width:50.0px”>

Data Table 315

<xp:this.url><![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.url>

</xp:image>

</xp:column>

</xp:dataTable>

Had you used a View Panel for this particular use case, you would have had to undo a lot of
the features it gives you for free, such as pagers, column headers, and so on. You would also have
had to customize the columns to display HTML and then return link and image HTML elements
for three of the four columns. The Data Table actually simplifies the process by allowing you to
drag-and-drop and arbitrary control into any content row cell and then just compute its value.

Another good example of Data Table usage is the File Download control. This out-of-the-
box control is really a Data Table that has been adapted by the XPages runtime to display a simple
table of any attachments contained in a nominated rich text field. Figure 9.28 shows the File
Download control displaying some attachments in the Discussion application—it should be easy
to see how this was built, given what you have just done to implement the embedded profile Data
Table.

That is the Data Table, all done and dusted!

File Download Control

Figure 9.28 Example of the File Download control in the Discussion application

316 Chapter 9 Beyond the View Basics

Repeat Control
The Repeat control is similar to the Data Table. The Repeat control does not have a table struc-
ture, but just like the Data Table, it can contain arbitrary controls that can be bound to elements of
a collection object (like a Domino view or Java array). When the Repeat control is rendered, all
child controls are repeated for each entry in the data source.

In fact, to prove just how similar the two controls are, do a quick exercise that involves
rebuilding the previous Data Table as a Repeat. The steps are

1. In the Designer Navigator, copy and paste the dtProfile.xsp XPage.

2. Rename the new copy from dtProfile_1 to repeatProfile and open it in Designer (the
Designer right-mouse menu has a Rename option).

3. Use the Find/Replace dialog (Ctrl-F) to replace all occurrences of dataTable with
repeat.

4. In the Source pane, delete all the <xp:column ...> and </xp:column> tags from
repeatProfile.xsp.

5. Just before the closing repeat tag, </xp:repeat>, insert a line break using these tags
<xp:br></xp:br>.

6. Move to the WYSIWYG editor and manually insert some spaces between the child con-
trols so they are not touching each other.

Reload or preview the page and presto! Your new page is now working just as the Data
Table page did, although the individual elements do not align as neatly as they would when
placed in a table. If you executed the six steps correctly, your repeatProfile.xsp should contain
the same markup as Listing 9.9.

Listing 9.9 Displaying Profile Data Using a Repeat Control

<!— data source has not changed. —>

<xp:this.data>

<xp:dominoView var=”view1” viewName=”xpAuthorProfiles”>

</xp:dominoView>

</xp:this.data>

<!— dataTable tag changed to repeat —>

<xp:repeat id=”repeat1” rows=”30”

var=”rowData” style=”width:400px” value=”#{view1}”>

<!— removed columns but kept controls exactly as they were —>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:

@Name(“[CN]”, rowData.getColumnValue(“From”));}]]>

</xp:this.value>

</xp:text>

Repeat Control 317

<!— spaces represented as HTML entities in markup: —>

<xp:link escape=”true” text=”e-mail ...” id=”link1”>

<xp:this.value><![CDATA[#{javascript:”mailto:” +

rowData.getColumnValue(“Email”);}]]></xp:this.value>

</xp:link>

<xp:link escape=”true” text=”download ...” id=”link2”>

<xp:this.value>

<![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.value>

</xp:link>

<xp:image id=”image1” style=”height:50px;width:50.0px”>

<xp:this.url>

<![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.url>

</xp:image>

<xp:br></xp:br>

</xp:repeat>

This exercise shows that the bulk of the properties are shared across both controls and that
the containment relationships are compatible—otherwise, your page would not build in Designer,
let alone actually work at runtime.

A Repeat Control Design Pattern
Just because the Repeat control is not contained within a table does not mean it cannot use a tab-
ular layout scheme. The All Documents page in the Discussion template provides a great pattern
for Repeat usage. If you go back to Figure 9.1, which illustrates all the fancy features of the
Repeat control, you see the page does have a tabular structure. The top of the view has a set of
Collapse All | Expand All links and a pager—effectively, this is a header. The bottom of the view
has a page size picker on the left side and a pager on the other—effectively, this is a footer. The
data rows are repeated in between the header and footer using a Repeat control and make use of
many other advanced features to generate dynamic content. Figure 9.29 features an outline view
of the relevant parts of the page, tagged with pointers identifying various recognizable land-
marks.

318 Chapter 9 Beyond the View Basics

As you can see, the header and footer are encapsulated as HTML tables. This content is
static, so an HTML table works fine for containment and layout. The middle section, which com-
prises all the data rows, is also contained in a HTML table, although this may not be immediately
obvious. Note that the Repeat has a header facet, which emits an HTML <table ...> tag, and a
footer facet, which closes the table tag with </table>. Again, header and footer facets are not
repeated but just rendered once, so this sets up a middle table for the data rows. A table row is
then repeated for each entry in the data source (xpAllDocuments) and the various table cells are
populated with controls, and then bound, formatted, and scripted as required. The only element to
be iterated over and repeated, therefore, is the HTML table row tags (<tr>), which makes the
entire process efficient but, at the same time, well structured. This Table | Repeat | Table
pattern is a recommended as a best practice for complex views of this nature.

Nested Repeats
Some of the tricks used in the data rows are definitely worth exploring. For example, when it was
stated earlier that the Repeat control can contain arbitrary child controls, this does not exclude
other Repeat control instances. There is a good example in the allDocumentsView custom con-
trol of a nested Repeat being put to smart use. The particular snippet of XSP markup is displayed
in Listing 9.10, with some comments added in bold script.

Header table

 oRepeat Control

Header Pager

Header links

 a eFooter table

Data Row - Image

Data Row - DateFooter Page Size Control

Data Row - Author

Figure 9.29 Outline structure of the all documents view

Repeat Control 319

Listing 9.10 Nested Repeat Control Bound to a JavaScript Array

<!— Nested Repeat control – note removeRepeat=”true” —>

<xp:repeat id=”repeatTags” rows=”30” var=”tagData”

first=”0” indexVar=”tagIndex” repeatControls=”false”

removeRepeat=”true”

themeId=”Repeat.Tags”>

<!— Repeat is not bound to a View but to a Java array! —>

<xp:this.value><![CDATA[#{javascript:

// Category can be a single string or multi-text item

var obj = rowData.getColumnValue(“_Categories”);

var size = 0;

var array = null;

// must return an array regardless!

if(typeof obj == “string”){

var str = obj.toString();

if(str != null){

array = new Array();

array[0] = str;

size = 1;

}

}else if(typeof obj == “java.util.Vector”){

array = obj.toArray();

size = array.length;

}

return array;}]]>

</xp:this.value>

<!— create a link for each item in the tagData array! —>

<xp:link escape=”true” id=”link2” themeId=”Link.person”

text=”#{javascript:tagData}” value=”/byTag.xsp”>

<!— set the ?categoryFilter param to the array item —>

<xp:this.parameters>

<xp:parameter value=”#{javascript:tagData;}”

name=”categoryFilter”>

</xp:parameter>

</xp:this.parameters>

</xp:link>

<!— only include a comma if multiple array items exist —>

<xp:label value=”,” id=”label5”

themeId=”Text.commaSeparator”>

<xp:this.rendered><![CDATA[#{javascript:

size > 1 && tagIndex < size - 1}]]>

320 Chapter 9 Beyond the View Basics

</xp:this.rendered>

</xp:label>

</xp:repeat>

This nested Repeat control is created on the fly, along with some other sibling controls,
whenever the end-user expands a top level row using the More link. The Repeat control’s value
property does not in fact point to a view data source, as has been the norm up to now, but to a Java
array that contains one or more tags, i.e. tags are the contents of the _Categories multivalue field.
Within this nested Repeat, a Link control is created for each category found in the tag array. The
link text is set to the tag text and the link value (URL) is set to the byTag.xsp XPage plus a
categoryFilter parameter, which is also set to the tag text (for example, /byTag.
xsp?categoryFilter=Government). After all the links are generated, the Repeat removes
itself from the component tree (removeRepeat=”true”), because it is no longer required. Play
with the sample application and see this feature in action. You can probably think of use cases for
your own applications that would be well served using dynamic nested Repeats in this way.

The Rich Get Richer
One little amendment you could make to further enhance the rich nature of the Repeat control
content is to insert the actual rich text into the dynamic row when the More link is clicked. Right
now, it is the plain text stored in the Abstract column of the xpAllDocuments view that is dis-
played, but if you locate that value binding in the custom control (search all DocumentsView.
xsp for "cfAbstract"), you could replace it, as shown in Listing 9.11.

Listing 9.11 Server-Side JavaScript Code to Extract HTML from Rich Text Fields Saved in
MIME Format

// search for “Abstract” and comment out this next line of code

// return rowData.getColumnValue(“Abstract”);

// get the Notes document and body rich text field

var nd:NotesDocument = rowData.getDocument();

var mime = nd.getMIMEEntity(“body”);

// if it is MIME then you can passthrough as HTML

if (mime != null) {

return mime.getContentAsText();

}

// Otherwise just return the plain text

else {

return nd.getItemValueString(“body”);

}

Some Fun with the Pager 321

You need to configure the cfAbstract Computed Field to have a content type of HTML.
This has been done for you in the allDocumentsView custom control, but the code is commented
out. If you would like to see this feature in action, simply enable the code in Designer. Figure
9.30 shows some sample rich content expanded in the Repeated rows.

Obviously, it is not efficient to open documents when building views, although this only
occurs when the user clicks the More link, so the expense is only incurred on request and not for
every repeated item. This example concludes our discussion of the Repeat Control.

Some Fun with the Pager
After all the hard work done in this chapter, you might as well finish on a light note. The common
view pager that you have worked with in various examples is actually a highly configurable con-
trol, even though it has only been used in its default state thus far. The next exercise shows how to
transform the look and feel of your pager.

You should start by revisiting the dataTable.xsp XPage and making a new copy of this, called
dataTableExt.xsp. In the new XPage, activate the Source pane and find the facets tag for the Data

Rich text content “in view”

Dynamic Nested Repeat Tags

Figure 9.30 Expanded Rich Text Content in Repeat Control

322 Chapter 9 Beyond the View Basics

Table—careful not to accidentally pick the facets tag for one of the columns! Copy and paste the
existing <xp:pager> tag that’s already defined in the Data Table facets and then set
xp:key=”header” and panelPosition=”right” on one of them. After completing this task,
the Data Table should have two pagers: one on the right hand side of the header and one on the left
hand side of the footer. Select the header pager in the Outline view and activate the WYSIWYG
editor and Pager property panel.

The first thing you can do is apply different pager styles to the header pager (for example,
Sample 1 through Sample 7), and preview or reload the XPage to see what features are exposed in
the different canned styles. What’s more interesting, however, is to play around with a custom
layout. For this example, select the footer pager in the Outline view and change the Pager style
combo box style to Custom. This causes a new list of controls to be displayed in the Property
panel—select the ones shown in Figure 9.31.

Three child controls: “Lo”, “ooooo”, and “tus” images

Custom Pager

Chosen Pager Elements

Footer Pager

Header Pager

Figure 9.31 Working with a custom pager in Designer

In the Outline view, select each of the newly created three child controls in turn and assign
images to them. The Previous control should be assigned “/Lo.gif”, the Group control (Page
Selector) should be assigned “/oooooo.gif”, and the Next control should be assigned “/tus.gif”.
These image resources have been already added to Chapter9.nsf for your convenience. In fact, a

Some Fun with the Pager 323

dataTableExt.xsp XPage is also included if you do not feel like building this example—it’s been
a long chapter! The updated markup for the Data Table facets tag should now look like Listing
9.12.

Listing 9.12 Custom Pager Definitions

<xp:this.facets>

<xp:pager id=”pager2” for=”dataTable1” xp:key=”header”

panelPosition=”right” partialRefresh=”true”>

</xp:pager>

<xp:pager xp:key=”footer” id=”pager1” for=”dataTable1”

partialRefresh=”true” disableTheme=”true”>

<xp:pagerControl id=”pagerControl1” type=”Previous”

image=”/Lo.gif”>

</xp:pagerControl>

<xp:pagerControl id=”pagerControl3” type=”Group”

image=”/oooooo.gif”>

</xp:pagerControl>

<xp:pagerControl id=”pagerControl2” type=”Next”

image=”/tus.gif”>

</xp:pagerControl>

</xp:pager>

</xp:this.facets>

With this markup in place, preview the page. In Figure 9.32, observe that navigating on
the footer pager updates the header pager state—as you would expect! So, even though the
header and footer pagers no longer bear any visual resemblance to each other, their behaviors are
identical.

TIP A new pager property was introduced in 8.5.2 called alwaysCalculateLast. Calculat-
ing the entry count in large categorized and/or hierarchical views can be expensive
because the code has to navigate each view path to figure out the total count. Thus, the
Last pager control was not always enabled in the Pager due to the cost associated with the
calculation. If having a Last pager option is more important to you that any performance
hits incurred as a result of calculating it, you should set alwaysCalculateLast=”true”
on the Pager control; you can find this property in the basics category of the All Properties
sheet. This means that you always can jump to the end of the view no matter what!

324 Chapter 9 Beyond the View Basics

Conclusion
This chapter extensively covered the three view container controls: the View Panel, Data Table,
and Repeat control. You learned how to apply the lesser-used control properties, when to use one
control over another, and how to customize the look and behavior of all three. Hopefully, this
material will help you build cool, slick, and efficient views that satisfy your own unique use
cases. Go forth and view!

Custom Pager

Figure 9.32 Custom Loooooootus Pager

325

10 Custom Controls 327

11 Advanced Scripting 367

12 XPages Extensibility 421

13 XPages in the Notes Client 495

PART IV

Programmability

This page intentionally left blank

327

So far, you have been using the XPage design element as a container for all of your controls and
other associated resources. In this chapter, you learn to refine this practice by using a slightly
more specialized XPage design element—namely, the Custom Control. This chapter explains
how to use Custom Controls effectively within your XPages applications and, as a result, save on
development time by leveraging the reusable parts of your design.

Common design patterns can be identified in any strand of application development,
regardless of the programming language, tool, or technology used to construct them. XPages
application development is no different! As applications grow in size and complexity, develop-
ment artifacts are often hurriedly duplicated or rehashed from one application to another. Custom
Control helps eliminate such inefficient practices by promoting the encapsulation of common
development assets into reusable components.

The concept underlying Custom Controls is by no means new! If you are a Domino devel-
oper, you are already familiar with the Domino form and subform design elements and how they
work together. That is, reusable pieces of forms can be abstracted as subforms. and these little
building blocks can then be reassembled in different ways to build many other forms and, thus,
reduce bloat and increase maintainability in your application design. XPages and Custom Con-
trols have a similar relationship, although it is not confined to simple containment.

If you are a Java developer, you can relate to similar concepts in various other Java devel-
opment frameworks. For example, JSF actually extends the JavaServer Pages (JSP) framework,
which allows developers to create application artifacts known as tag libraries. Such artifacts typi-
cally contain one or more tag declarations along with their constituent attribute declarations and
associated Java classes—where the classes provide the implementation of the tag. Within JSP
markup, this tag can be reused within a page or in any number of pages and across applications,
depending on the deployment of the tag library. Custom Controls provide the same degree of

C H A P T E R 1 0

Custom Controls

328 Chapter 10 Custom Controls

reusability for XPages application, but do so in a more discrete manner (for example, the applica-
tion developer does not need to know anything about tag libraries or Java programming). In fact,
the process of creating a Custom Control is done within Designer using the same WYSIWYG
facilities used to create an XPage!

Perhaps the first question to explore is what exactly does a Custom Control provide that
cannot be achieved directly with an XPage? The explanation will undoubtedly change the way
you design and implement your XPages applications going forward. I say this based on my own
personal experience of various web application-development technologies. As a fledging
“XPager,” I started by assembling numerous XPages and linking with them with some other
resources to build my application. But then, I quickly discovered a degree of duplication and
complexity was creeping into my early creations, making them difficult to maintain. When I
learned about Custom Controls, I was able to redefine the structure of my XPages applications.
Pretty quickly, just by looking at a screen mockup or whiteboard, I found myself zoning off areas
of the design and designating them as Custom Control candidates. Life was never the same again!

Divide and Conquer
Simply put, Custom Controls allow you to design an application by dividing it up into little build-
ing blocks. By considering the “look and feel” elements of an application, you can quickly create
numerous Custom Controls to represent these building blocks. The most beneficial characteristic
of a Custom Control is the ability to use it in several places within the same XPage, across several
XPages, or applications. This design element certainly lends itself well to modular design and
implementation techniques in a team-based environment, where an entire application can be
farmed out for development across the team in a loosely coupled manner. This team-based effort
should, of course, be supported by a design specification from a User Interface design team. Such
a specification would describe the inputs and outputs of the Custom Control as a form of contract
similar to function or method specifications seen in several programming languages today.

The scoping rules for Custom Controls embodied within the XPages runtime are another
powerful feature. Each time you include a Custom Control on an XPage, it is instantiated as a
unique instance, and its constituent controls and scripting logic are sandboxed within that
instance. This allows multiple instances of the same Custom Control to live on the same XPage at
runtime without corrupting data or colliding with named controls within the Custom Control. You
learn more on how these features can be exercised in the upcoming sections, “Using Property
Definitions,” and “Using the compositeData Object.”

Before starting with some Custom Controls examples, it is important to understand that this
design element can be used for two distinctly different purposes within an application. It is
imperative to explain this early on to establish two distinct best practice design patterns that
should be applied rigorously when creating Custom Controls in your applications:

• A Custom Control can be used as an “aggregate container” for the purpose of special-
ized control composition (such as bringing together several XPages controls into
one place for a defined purpose). This allows assets to be developed once and reused

Getting Started with Custom Controls 329

extensively within an application or across applications. Production examples that I
have seen include Tag Clouds, Menus, Search controls, and so on—the opportunities for
encapsulation of generically reusable controls and business logic is endless and one of
the biggest reasons to use Custom Controls in the first place! You learn more on this sub-
ject in the section “Aggregate Container Pattern.”

• A Custom Control can be used as a “layout container” wherein structural elements such
as TABLE, SPAN, or DIV elements and associated CSS style classes are defined. Includ-
ing Editable Areas within this structure allows the addition of other arbitrary con-
trols in this layout container at a later time. This function is highly reusable, and can
save a lot of time in actually putting together the wire-frame of an application. You learn
more on this subject in the section, “Layout Container Pattern.”

Both of these best practice design patterns can benefit you in developing and maintaining
an application. By clearly defining the purpose of a Custom Control and segregating “look” ver-
sus “feel” aspects into appropriate Custom Controls, your applications become highly reusable
and easily maintained.

Getting Started with Custom Controls
Before you start, download the Chapter10.nsf application provided online for this book to run
through the exercises throughout this chapter. You can access this file at www.ibmpressbooks.
com/title/9780132486316. Now, create an XPage in Designer within the Chapter10.nsf
application, name it foo, and save it. For now, leave this empty and open within Designer. In the
Applications navigator, select the Custom Controls navigator entry—this is the next direct sib-
ling to the XPages design element. Right-click the Custom Controls design element and choose
the New Custom Control option from the context menu. This invokes a dialog that allows you to
name the Custom Control, as shown in Figure 10.1. Simply give it the name bar and click the OK
button. (Note: The Comment field is optional, and the current database is already specified as a
default.) After this is created, save it and leave it open in Designer.

Figure 10.1 Create new Custom Control dialog for bar in Designer

330 Chapter 10 Custom Controls

As you can see in Designer, a Custom Control is presented using the same WYSIWYG edi-
tor as provided for the XPage. A Custom Control does, in fact, share the same file extension
under-the-hood as an XPage (.xsp extension). But, many key differences exist between an XPage
and Custom Control for good reasons. One major difference is that, although both elements share
the same file extension, a Custom Control cannot be viewed directly on the web or on the client in
the same manner as a standalone XPage. As Figure 10.2 shows, by simply selecting the newly
created bar Custom Control in the application navigator, the preview buttons become disabled
within the main Designer toolbar. Note that hitting a Custom Control in a browser directly using
an XSP URL also does not work—only a security exception is raised!. Therefore, to preview a
Custom Control, it must be embedded within an XPage. This holds true regardless of whether you
are using a local preview server or deploying to a full-scale server.

Properties panel same as an XPage

Disabled preview options
Custom Control’s own

WYSIWYG editor

Figure 10.2 New bar Custom Control with WYSIWYG and disabled preview options in
Designer

So, the next objective is to preview the bar Custom Control by using Designer’s preview-
ing capabilities. To do this, first of all, give focus to the foo XPage in Designer by clicking in the
editor. Now, you find a reference to bar within the Custom Control category in the control
palette, as shown in Figure 10.3.

Getting Started with Custom Controls 331

Simply drag-and-drop the bar entry from the control palette to the foo XPage, and it is
automatically inserted into the XPage. With the bar instance focused within the foo XPage, you
see that the property sheet below the editor now contains properties associated with the newly
created bar instance. The name property is blank by default, so for this example, specify one,
such as bar1. As described in Chapter 3, “Building Your First XPages Application,” the Source
editor in Designer allows you to view the underlying XSP source markup—note that this is also
the case for Custom Controls. If you activate the Source editor, you see a tag for bar inserted in
the markup, as shown in Listing 10.1. (Note how the name is inserted as the id within the
markup.)

Listing 10.1 XSP Markup of the foo XPage with the Bar Custom Control Tag Inserted

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xc=”http://www.ibm.com/xsp/custom”>

<xc:bar id=”bar1”></xc:bar>

</xp:view>

bar Custom Control in the Control Palette

Figure 10.3 Bar Custom Control within the Custom Controls category in the control palette

332 Chapter 10 Custom Controls

Another important aspect of the Custom Control markup is the declaration of two differ-
ent XML namespaces on the <xp:view> tag, as shown in Listing 10.1. Prior to creating the
instance of the bar Custom Control, there was only one XML namespace defined on the XPage:

xmlns:xp=”http://www.ibm.com/xsp/core”

This default namespace declares the tag prefix xp: that you see before each XPage tag (for
example, <xp:view>). Note, however, that the bar Custom Control tag now has its own distinct
tag prefix of xc: (ie: <xc:bar>), and the namespace URI is different than that of the xp: prefix.
It has also been automatically inserted onto the <xp:view> tag for you when you dropped the
Custom Control on your XPage. These namespace declarations are a scoping mechanism of the
underlying XML language to ensure that different tag definitions can be mixed within the same
XPage without duplication. The benefit, therefore, is that different Custom Control tag declara-
tions can coexist within the same XPage.

The independence that is granted to Custom Controls by this namespace feature is vital.
Suppose that you develop a reusable Custom Control that you make publicly available for con-
sumption within any XPages application. The name you assign to this control was Gizmo, and
the prefix and namespace look like this:

xmlns:fb=”http://www.foobar.com/gizmo”

Now, suppose that another XPages developer creates a different Custom Control, makes it
publicly available, and names it the Gizmo...do you see a potential problem? If the two Custom
Controls are ever included within the same application design, how can they be distinguished?
The naming conflict is averted by specifying a unique prefix and namespace. For example, if the
second Custom Control comes from the imaginatively named XYZ Corporation, and that name is
used to scope the Custom Control, the tag definition should look like this:

xmlns:xyz=”http://www.xyz.com/customcontrols”

In this example, an XPage application can reliably use both Custom Controls because of
the uniqueness of the tag definitions. The resultant XPage markup is shown in Listing 10.2.

Listing 10.2 XPage Using Two Unique Versions of Custom Controls Named Gizmo

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:fb=”http://www.foobar.com/gizmo”

xmlns:xyz=”http://www.xyz.com/customcontrols”>

<fb:Gizmo id=”gizmo1”></fb:Gizmo>

<xyz:Gizmo id=”gizmo2”></xyz:Gizmo>

</xp:view>

Getting Started with Custom Controls 333

When you create a Custom Control, Designer automatically applies the default prefix and
namespace URI to your control, as shown in Figure 10.4. If you want to change these to your own
settings, do so by specifying the values within the Custom Control property sheet, as shown in
Figure 10.4.

TIP When specifying your own prefix and namespace URI values, try to make the prefix
an acronym of your company name, the associated Custom Control, or a combination of
both. Also, for the namespace URI, it is a recognized industry standard to always specify
this value to be your company’s Internet address. Categories beneath this can, of course,
be represented by one or more trailing forward slashes to maintain uniqueness within your
own Custom Control libraries. Note that this value only needs to be unique within the con-
text of the application using it—it does not need to be resolvable on the Internet!

Moving on from this, before previewing the foo and bar example, it is useful to do a couple
of extra things. First, add a text label to bar so that it is visible when previewed; otherwise, you
will see a blank page! Click the Editor tab for the bar Custom Control to give it focus, and then
drag-and-drop a Label control from the Core Controls category of the control palette. Within
the Properties view below the editor, assign Name and Label values, say label1 and Hello
World!, respectively (see Figure 10.5).

Figure 10.4 Custom Control property sheet, where you can apply a unique prefix and
namespace URI

334 Chapter 10 Custom Controls

Figure 10.5 Applying the Label name and Label value within the Properties view in Designer

You should also apply the following style definition to the style property of the
<xp:view> tag by clicking the tag and selecting All Properties > Styling > Style from the prop-
erties panel:

margin:10px;padding:10px;border:1px solid black;width:300px;text-
align:center;

Also, apply the following style definition to the style property of the Label you just
dropped:

font-weight:bold;font-style:italic;font-size:14pt;

Having saved your changes, you should have something similar to the XSP markup shown
in Listing 10.3.

Listing 10.3 XSP Markup for Bar with the Label Name, Value, and Style, and View Style
Applied

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

style=”margin:10px;padding:10px;border:1px solid black;width:300px;text-

align:center;”>

<xp:label value=”Hello World!”

id=”titleLabel”

Getting Started with Custom Controls 335

style=”font-weight:bold;font-style:italic;color:rgb(0,0,255);font-
size:14pt”>

</xp:label>

</xp:view>

Next, reselect the foo XPage and drag-and-drop a second instance of the bar Custom Con-
trol onto the XPage—aim for just after the first instance with a couple of new lines in between.
Name this instance bar2 and save your changes. You can now preview foo as an XPage in its
entirety within Designer. The key point in previewing now is the fact that the foo XPage now
includes two instances of the bar Custom Control, as shown in Figure 10.6.

Two instances of bar appearing

Figure 10.6 Previewing the foo XPage with two instances of the bar Custom Control

It is interesting to explore the emitted HTML markup for the foo XPage to gain an under-
standing of how the XPages runtime actually handles the naming of elements. Select the View
page source option within the browser or client, and you should see something similar to Listing
10.4. Note that the id attributes emitted in the markup are expanded with fully namespaced iden-
tifiers. That is to say, for a given element, its id is resolvable from the root element through to
itself. In this example, the root element has an id with the value view:_id1. This is then prefixed
to all the child element id values. Nested children also maintain this convention of prefixing the

336 Chapter 10 Custom Controls

parent id value. Therefore, the two instances of a Custom Control embedded in any XPage have
unique, resolvable id attributes, as shown in Listing 10.4. This is an important feature of Custom
Controls, and it ensures that an instance of any given Custom Control and its contained controls
have unique identifiers. This is also especially important for HTML DOM programming using
client-side JavaScript.

Listing 10.4 Browser Source Snippet for foo XPage with bar1 and bar2 in the Markup

<html>

...

<body ...>

<form id=”view:_id1” method=”post” ...>

<div id=”view:_id1:bar1”>

<span id=”view:_id1:bar1:titleLabel”

class=”xspTextLabel” style=...>Hello World!

</div>

<div id=”view:_id1:bar2”>

<span id=”view:_id1:bar2:titleLabel”

class=”xspTextLabel” style=...>Hello World!

</div>

...

</form>

</body>

</html>

To complete the definition of bar, a few more steps are required. The objective is to pro-
duce an example that carries through to the next sections of this chapter and helps illustrate other
important Custom Control features.

With the bar Custom Control focused within the editor, click the Label you placed on the
Custom Control earlier and use the right-arrow key to move to the right-hand side of it. Now, hit
Enter a few times to create two new line breaks. Drag-and-drop a Computed Field from the
Core Controls category in the control palette. Repeat the same activity for the Label and give
this control the name messageField. Again, create two new line breaks after this control and drag-
and-drop an Edit Box at the current position after the line breaks. Give this control the name
messageText. Again, create a few new line breaks, drag-and-drop a Button, and name this
replyButton. After saving your additions, you end up with a bar Custom Control that’s similar to
Figure 10.7.

Using Property Definitions 337

Figure 10.7 Bar Custom Control in Designer with additional controls added

Upon completion of this exercise, you have created a Custom Control and added controls to
it. You have worked with Custom Controls using both the WYSIWYG editor and the underlying
source editor, and you have also added two instances of a Custom Control to an XPage. You have
previewed the aggregated result and examined the emitted source code. ID resolution, tag pre-
fixes, and namespaces have also been explained. Thus, you are now ready to explore some of the
more advanced aspects of Custom Controls. Taking the example that you just constructed, you
now learn how a Custom Control can be made into a configurable runtime object with its own tag
properties using Property Definitions and how you can access these in JavaScript by using the
compositeData object. You also learn how scripting objects and variables are protected from
data corruption and object collisions.

Using Property Definitions
Property Definitions enhance the power of Custom Controls. They provide a means of assigning
custom values and behaviors to individual Custom Control instances. In terms of design-time
support, Designer allows you to manage Property Definitions through the Properties view, and it
provides a range of specialized property editors that help you pick everything from time-zone val-
ues to style classes.You can also configure the design-time metadata of your Property Definitions
so that the assignment of property values is restricted to the precise specification of the metadata
definition. From a runtime perspective, you can use server-side JavaScript to dynamically man-
age the exposed properties on any given Custom Control. Scripting provides a communication
mechanism across Custom Controls and establishes the need for the scoping rules mentioned ear-
lier to protect and encapsulate data and objects within an instance of a Custom Control.

To begin an exploration of these concepts, open the bar Custom Control you created earlier
within Designer (if it is not already open). Ensure that the <xp:view> tag is the current context
within the Properties view. You can use the Outline view to give focus to this tag by expanding
the hierarchy of the Custom Control within the view and clicking the Custom Control node, as
shown in Figure 10.8.

338 Chapter 10 Custom Controls

Using the Outline to focus the view root

Figure 10.8 Using the Outline view to select and give focus to the <xp:view> tag in bar

TIP The Properties view is context-sensitive to whatever XPage markup tag is currently
selected within the Outline view or the actual XPage source editor. The same applies to the
WYSIWYG editor.

The Properties view is now populated with the supported properties of the Custom Control
(or the <xp:view> tag, also referred to as the root tag). One of the property panels displayed
within the Properties view is the Property Definition panel, and you should now click this panel.
This UI element is unique to Custom Controls and allows you to manage any specialized proper-
ties associated with the control. These extended properties are an extra set supported by the Cus-
tom Control, above and beyond the standard properties that you can see in the All Properties
panel and other panels, such as the Data and Style panels.

Every control and action on an XPage has a predefined and published set of properties, so
this notion of being able to extend the runtime interface of your XPages application is a powerful
one and one of the greatest application-development tools you can find within the XPages tool-
box! Having clicked the Property Definition panel, you are presented with numerous actions to
manage custom properties, some of which are disabled when no extended properties have been
defined. The two actions of interest here are the New Property and New Group actions. The
former enables you to specify a new property that is supported by the Custom Control (fairly
obvious, based on its caption); however, the latter deserves more explanation.

Using Property Definitions 339

The notion of custom properties is not only bound to simple properties with single
instances, but in fact, allows the definition of simple and complex custom properties with single
or multiple instances. The New Group action allows you to define a new group that contains one
or more custom properties. Essentially, this action enables you to create a named group with sev-
eral constituent subproperties and possibly more subgroups of properties. Within the XPages run-
time, a property group is held within a com.ibm.xsp.binding.PropertyMap instance. Use
cases for this type of property can be many-fold, where the most obvious uses are in defining
options to drive the contents within a menu and submenus contained within the associated Cus-
tom Control, for example.

If you click the New Property action, the editor loads a new blank property for which you
need to define a name and other attributes. The name defaults to property_1, but change this to the
name title within the name field. Note this must be a single-string value and no special characters
can be used; in fact, Designer does not allow you to input any illegal characters into this particu-
lar field! Repeat this action two more times so you have three new properties declared on the bar
Custom Control. Change the names of the last two you created to message and senderId, respec-
tively. All three properties are now defined with the default type of string and without any other
metadata set at this point, as shown in Figure 10.9.

Property Definition tab

Three new property definitions

Figure 10.9 Three new properties defined on bar using the Property Definition panel

340 Chapter 10 Custom Controls

Leaving the example in its current state, take a close look at the Property Definition panel
to gain a better understanding of what it actually enables you to do. As Figure 10.10 illustrates,
you can configure various design-time metadata for a custom property by using the Property
Definition panel under the Property tab. Two other types of design-time metadata can also be set
under the Validation and Visible tabs within the Property Definition panel. The Property tab
manages the type-centric metadata. The Validation tab contains the rules for constraining the
property value and requisite need of a property within Designer at design-time. The Visible tab
contains the settings that control exposure of the property within the Designer editors at design-
time, based on a given precondition within the XSP markup. Essentially, these three different cat-
egories of design-time metadata all manage the configuration of a custom property within the
Designer editors before an XPage or Custom Control even gets compiled. The following sections
describe these three tabs for managing metadata in detail.

Property Tab
As shown in Figure 10.10, the Property tab contains a variety of settings applicable to a custom
property. The Name field, as you have already learned, specifies a meaningful name for your
property and must be declared as a single-string value with no special characters. The Display
name is different in that it is only used to bubble a text value into the caption for the property in
the All Properties panel for the Custom Control. You are free to give this a multivalued string
value that can contain special characters. The Type field is where things get interesting. When
you try to set a custom property on a Custom Control instance with a static value, the type of the
static value is evaluated by Designer to ensure that you are applying a value compatible with the
data type specified in its Property Definition metadata. Setting a static value that does not suc-
cessfully typecast to the data type specified for a property type results in the XPage or Custom

Figure 10.10 Property tab within the Property Definition panel

Using Property Definitions 341

Computed values do not get handled in this way as the computed expression typically con-
tains logic that is evaluated on the server side when the application is running. (The value cannot
be determined at design time and thus cannot be validated by Designer.) Such computed values
result in the successful design time compilation of the XPage or Custom Control, even if the
result of the expression does not typecast to the specified custom property data type. Therefore,
the onus is on you, as the developer of the business logic, to properly handle the result of such
expressions within the context of the runtime environment.

The Editor field is typically used in conjunction with the Type and Parameters fields to
specify the appropriate editor to use when choosing a value for a property of that type. For
example, if you specify the Type of a property to be boolean and the Editor to be a boolean
checkbox, when you set the value of this property on an instance of the Custom Control, you are
presented with a checkbox control to assist you, as shown in Figure 10.12.

Error indicated within XSP markup

Error also logged in Problems view

Figure 10.11 Incorrectly set static boolean value applied to a custom property with a data type
of string

Control not being compiled by Designer and an error being raised within the Problems view
indicating the error, as shown in Figure 10.11.

342 Chapter 10 Custom Controls

Likewise, if you set the type to be int, and the Editor to be a comboBox, the Parameters
field becomes enabled. If you then specify a multiline list of values for the Parameters, such as
0, 1, 2, 3... and so on, these will populate the combobox editor at design time, as shown in
Figure 10.13.

One interesting type/editor combination that you can also leverage is the
java.lang.Object type and the Method Binding editor. This combination enables you to
assign the server-side JavaScript editor to the custom property as its design-time editor. You can
then specify a server-side JavaScript expression for the property, or more importantly, use it to
pass objects through the custom property compositeData object. A good example of using this
approach is when you’re working with a NotesDocument or NotesView object. Essentially,
you can pass (pass-by-reference, in fact) an instance of either of these two classes into your Cus-
tom Control. Then, within the Custom Control, you can access the referenced object, as shown in
Listing 10.5.

Boolean checkbox editor

Figure 10.12 Custom boolean property with its boolean checkbox editor displayed

Parameters list appearing in editor

Figure 10.13 Custom int property with its combobox editor displayed with the Parameters list

Using Property Definitions 343

Listing 10.5 Accessing the Pass-By-Reference NotesView Instance Inside a Custom Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.afterPageLoad>

<![CDATA[#{javascript:// get the pass-by-reference view...

if(null != compositeData.myView){

var ndc = compositeData.myView.getAllEntries();

if(null != ndc){

print(“Count: “ + ndc.getCount());

}

}

}]]>

</xp:this.afterPageLoad>

</xp:view>

This same behavior follows through for any editor you select for a custom property. The
important thing is to select an appropriate editor to correspond with the expected property type.
The Editor and Parameters options are simply a specification for the type of assistance and are
made available in Designer when trying to set any custom properties on a Custom Control.

The Default Value field is self-explanatory and holds no secrets—the useful thing about it
is its capability to be dynamically computed at runtime.

The Allow multiple instances option enables many instances of a custom property to be
specified on its associated Custom Control. Within the XPages runtime, multiple instances of a
custom property are held within a java.lang.ArrayList instance.

Finally, on this tab, the Description field is used in conjunction with the Display Name
field described earlier to bubble information into the caption within the All Properties panel. You
can specify an unrestricted multivalued string value for this field.

Validation Tab
Figure 10.14 shows the Validation tab contents applicable to a custom property. As described
earlier, you can specify a requirement clause and validation rule on a custom property that is eval-
uated at design time within Designer. The Required field checkbox within this tab enables you to
specify the requirement clause. If this is checked, the custom property becomes a mandatory
attribute that must be declared on the Custom Control tag, and a value must be applied or the con-
taining XPage is not compiled. The default behavior is that custom properties are not required.

344 Chapter 10 Custom Controls

Just below this is an editor that allows a Pseudo-Java language expression formulated to
validate the design-time value of the custom property. This is a powerful feature of custom prop-
erties, because it gives a few ways to either check the value of the current property, any of its sib-
lings, or parent properties of a property group within the design-time XSP markup. It is for these
reasons that the value and parent object references exist in the Reference viewer, as shown in
Figure 10.15. For example, a property named serialCode, of type string, is mandatory and
needs to be exactly 20-characters long when specified. The design-time validation can use the
value reference or, alternatively, use the property name directly within the validation expression
to check the length, as shown in Figure 10.15.

Note that the parent reference is only applicable while working within a property group,
because it dereferences the property group parent tag. This is typically the actual Custom Control
tag, but it can also be used to reference another property group and access a property of interest.

Figure 10.14 Validation tab within the Property Definition panel

Figure 10.15 Using the property name directly within a Validation expression

Using Property Definitions 345

As an example, assume that one custom property named key exists on a Custom Control tag along
with one property group that allows multiple instances of another custom property named code.
The premise here is that the key and any one of the given code property values are used together in
some server-side business logic function. The key is of a restricted format, and the code is a com-
bination of the key value as a prefix followed by a number. The validation cases hence require that
the key has a validation expression checking its format; this can be done using the same technique
explained in the previous example. (The value reference or direct use of the property name is
used in the validation expression on the key property itself.) The code can check that the key exists
on the parent tag by using the parent reference in the validation expression, as shown in Figure
10.16. Note that the parent and direct property name references are used in tandem to derefer-
ence the key value.

Visible Tab
The last of the three design-time metadata categories is contained within the Visible tab, as
shown in Figure 10.17. The term visible in this context literally means to make the custom prop-
erty appear or not, as the case may be, within the Properties view for the Custom Control based
on some precondition that’s specified in the Visible expression. In Figure 10.17, the value and
parent references are available to you when creating Visible expressions. Furthermore, the
same semantics explained for Validation expressions using the value and parent references
are applicable here. It is easy to imagine taking the previous key and code example and applying a
Visible condition to the code custom property to hide it from the Designer editors when the par-
ent key custom property is not correctly specified.

Figure 10.16 Using the parent and direct property name references within a group Validation
expression

346 Chapter 10 Custom Controls

Property Definitions Summary
You have seen the mechanisms available to manage the design-time data type, validation, inclusion,
and exposure of the custom properties within the XSP markup before it even gets compiled into a
runtime executable XPage! By applying these mechanisms when creating Custom Controls, you
help other developers that reuse or need to maintain your Custom Controls to adhere to the expected
format at design time in Designer. Another benefit is that any supporting business logic requires less
“policing” as the incoming runtime values are of the expected type, format, and so on, thus making
your application a better performer.

Before leaving this section on Property Definitions, apply your new knowledge on custom
properties to the previous example by modifying a couple of the custom properties on the
ccBar.xsp. Remember that you created three new properties—title, message, and senderId—all
of type string. Make the title and senderId properties mandatory by checking the Required
field checkbox on the Validation tab for each of these two properties, but leave the message field
with the default setting of nonmandatory. Also, set a Visible expression on the message property
to always hide it in Designer—simply add the keyword false into the expression editor and save
all of your changes. The reason for setting this visibility expression becomes apparent in the next
section.

TIP Interested in knowing where all this design-time metadata is stored? Look inside the
CustomControls folder within the current application under the Java Perspective in
Designer. You will find that every Custom Control in this folder is saved with an .xsp exten-
sion, but each also has a corresponding .xsp-config file. Inside this file, you find the meta-
data settings stored in XML format.

Using the compositeData Object
So far, you created the bar Custom Control, added numerous controls within it, and declared
three custom properties. Now, the question is this: How can you use these properties? The answer
lies with the compositeData object—a scripting class that XPages automatically provides that

Figure 10.17 Visible tab within the Property Definition panel

Using the compositeData Object 347

enables you to manipulate the properties of a Custom Control at runtime. Among other things, a
Custom Control exposes its custom properties through getter and setter methods to its underlying
custom property map. You learn about both of these in this section.

Sticking with the running example, on the bar Custom Control, select the titleLabel con-
trol within the editor or within the Outline view to make the Properties panel switch context to
this control’s properties. Earlier, you specified the label value to be Hello World! or something of
your own choosing. Now, change this to be a computed value by clicking the blue diamond next
to the Label field in the Properties view and selecting the Compute value option from the pop-up
menu. This launches the Script Editor. Within the Reference viewer in the Script Editor, you
now see a compositeData entry in the list of object references. If you expand this reference,
you see three properties supported by this object—do you recognize them? Yes, here are the three
custom properties that you specified on the bar Custom Control earlier. Double-click the
compositeData.title reference, and this is automatically added into the Script Editor window
as a line of code, as shown in Figure 10.18. Click OK to close the Script Editor and save your
changes.

Computed label value

compositeData object

Figure 10.18 titleLabel computed label with the compositeData object and title property
selected

348 Chapter 10 Custom Controls

In essence, you just bound value property of the titleLabel control to the title custom
property by way of the compositeData object using server-side JavaScript. The same holds true
for the messageField. The compositeData object is simply the bridge between the Custom
Control properties and the server-side JavaScript context for the Custom Control. You learn more
on this later, but for now, just complete this titleLabel example. Reopen the foo XPage and select
the first of the two instances of bar, namely bar1 so that the Properties view switches context to
this control’s properties. Within the Properties view, select the Custom Properties panel where
you see the title and senderId properties listed in the editor. Remember, of course, that you
set visible to false for the message property, hence its absence within this list in Designer,
even though it exists and you just used it in the computed value for the messageField—be
patient, because you’re getting close to finding out why! Now, enter a textual value for the title
property and repeat the same steps on the second instance of bar, namely bar2, so that both

Computed value for messageField

compositeData object

Figure 10.19 messageField’s value computed using the compositeData.message property

With the previous steps fresh in your mind, also give the messageField control a computed
JavaScript value using the compositeData object, but this time, select the message property
reference, as shown in Figure 10.19. As this is a Computed Field control, select the Value tab of
the Properties panel to apply the value expression. In the Script Editor, type compositeData.
and examine the content assist choices. Again, after setting this property, save your changes.

Using the compositeData Object 349

Your natural instinct at this point is to save your changes, and this is always a wise thing to
do! But, on this occasion, you find that the foo XPage, although correctly saved, has caused two
new errors to appear within the Problems view. You can see more on this by switching to the
Source editor for foo, whereupon you see the errors highlighted within the XSP markup, as
shown in Figure 10.21.

As you probably already figured out, these errors are caused by the mandatory condition
you set on the senderId property earlier when you checked the Required field on this prop-
erty’s Validation tab. This is a good example of Designer actually enforcing the design-time
metadata and throwing an error that indicates the cause. So, this requires two simple steps to rec-
tify the errors—the purpose of the senderId property becomes apparent when you come to
apply the logic on the replyButton. You can use the Custom Properties panel for each of the
two bar instances and set the senderId to be the name of the other bar instance in each case.
Therefore, for bar1, the senderId property should be the value bar2 and, for bar2, the
senderId property value should be bar1, as shown in Listing 10.6.

instances of this Custom Control have their respective title properties configured with a static
value, as shown in Figure 10.20.

Setting the title custom property

Figure 10.20 Title property with its value set within the Custom Properties panel on the foo
XPage

350 Chapter 10 Custom Controls

Listing 10.6 Correctly Configured senderId and title Custom Properties

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:xc=”http://www.ibm.com/xsp/custom”>

<xc:bar id=”bar1” title=”bar1 Custom Control”

senderId=”bar2”>

</xc:bar>

<xp:br></xp:br>

<xp:br></xp:br>

<xc:bar id=”bar2” title=”bar2 Custom Control”

senderId=”bar1”>

</xc:bar>

</xp:view>

Having applied these values, resave your changes. The previous two errors now disappear
from the Problems view and the underlying Source editor for foo. The worked example
now passes design-time validation so, if you once again preview the foo XPage, you should see

Required status indicated as error

Figure 10.21 SenderId “required” errors within the Problems view and Source editor of the
foo XPage

Using the compositeData Object 351

The title values you see are a direct consequence of the binding you set up earlier by using
the compositeData.title reference. The XPages runtime has evaluated this binding by tak-
ing the custom property values you set within Designer on each of the two bar instances and
pushed these into an instance of a compositeData object for each of the two Custom Control
instances. If you are familiar with Java development, XPages essentially assigns a property map
to each instance, and this object then contains a collection of name value pairs that represent the
custom properties for that Custom Control instance. This map then becomes available within the
context of the Custom Control instance, thus enabling the declared binding expression to be
resolved:

compositeData.get(“title”) == compositeData.title

Note that every instance of any given Custom Control is instantiated with its own copy of a
custom property map that is accessible in server-side JavaScript by using the compositeData
reference. This map is also held within a private scope for its owning Custom Control to avoid
data corruption across instances of any given Custom Control.

This is a useful mechanism for getting property values from the compositeData object,
but it also enables you to set property values on the object using server-side JavaScript. This, of

something similar to that shown in Figure 10.22, where the title for each instance of bar is actu-
ally displayed by the titleLabel control.

Figure 10.22 Previewing foo XPage with the title value coming through from the titleLabel
binding

352 Chapter 10 Custom Controls

course, is all well and good within the context of the owning Custom Control, but what if you
need to programmatically interact with other external Custom Controls’ custom properties? This
is achieved by obtaining the property map from that Custom Control directly and then using the
getter/setter methods on the map to read and write the constituent custom properties. You see an
example of this shortly with the replyButton logic.

The intent of the sample you’ve been building is to show that the two instances of the bar
Custom Control should be able to communicate with one another in a send/receive manner. Essen-
tially, when a user fills in a message within the messageText edit box and clicks the replyButton,
the message should be sent to the other instance of the bar Custom Control on the foo XPage. To
do this, you must have everything you need in the compositeData object and the getter/setter
methods of the property map.

Send and You Shall Receive
To build this final part of the example, ensure that the bar Custom Control is open within
Designer, and then click the replyButton control within the WYSIWYG editor to prime the
Properties view for this control. This time around, you do not need to set any properties sup-
ported by the replyButton, but you should click the Events view tab located beside the
Properties view, as shown in Figure 10.23.

Events view found beside Properties view

Figure 10.23 Events view for the replyButton control

Send and You Shall Receive 353

You need to set an onclick server event for the replyButton, so ensure that the onclick
event is selected within the Events list and then click the Open Script Dialog button to launch
the Script Editor. Within the Script Editor, you can simply copy the fragment of server-side
JavaScript (see Listing 10.7).

Listing 10.7 Fragment of Server-Side JavaScript for the replyButton onclick Event

1 if(null != compositeData.senderId){

2 var senderComponent = getComponent(compositeData.senderId);

3 var senderProps = senderComponent.getPropertyMap();

4 if(null != senderProps){

5 var messageText = getComponent(“messageText”);

6 if(null != messageText){

7 var message = messageText.getValue();

8 senderProps.setProperty(“message”, message);

9 compositeData.message = null;

10 }

11 }

12 }

The code you just copied into the Script Editor does many interesting things involving the
compositeData object and property map. Here is a line-by-line explanation:

1. On line 1, the existence of a senderId property value is checked, as this is crucial in
enabling any outbound communication to the other Custom Control. That is why you
were asked to specify the other bar instance’s name value.

2. If this property exists, line 2 uses it in the getComponent() global function to retrieve a
reference to that control. Here, you obtain a reference to the other bar Custom Control
instance within the XPages runtime on the server side.

3. Line 3 asks the other bar instance for its property map, which contains its own copy of
custom properties.

4. Line 4 simply ensures that the property map has been successfully retrieved.

5. Line 5 uses the getComponent() global method to retrieve the instance of the
messageText control that lives within this same instance of the bar Custom Control.

6. It is considered best practice to always check dynamically retrieved objects for non-null
values before attempting to use them.

7. Remember that the messageText field is an Editbox control and is not actually bound
to any compositeData property, so its text value can simply be directly accessed here.

354 Chapter 10 Custom Controls

8. The retrieved value forms the outgoing message to be relayed to the other instance of the
bar Custom Control, and it is explicitly set on its message custom property using the
setter method on the other Custom Control’s property map reference. After all this wait-
ing, you can now understand why you made the message custom property’s Visible
metadata always false. This simply prevents it being set at design time in Designer’s
editors, as it is only set programmatically through the setter method on the property
map—a small example of controlling what your Custom Control exposes within the
Designer editors based on what the underlying business logic is expected to do.

9. Line 9 nulls the current instance of the bar Custom Control’s custom message property
so that when the XPage redisplays after clicking the replyButton, the sending bar
instance’s messageField is cleared of any value.

Ensure that you saved all of your changes and then preview the foo XPage again. If every-
thing has been correctly configured, after you press the first Reply button and type something into
the second edit box, you see something similar to Figure 10.24.

Figure 10.24 Completed foo XPage in preview mode in the Notes client

This time, when previewing, you should be able to type a message within the edit box and
click the Reply button. The message should appear within the other bar Custom Control
instance. Likewise, doing the same within the other bar Custom Control instance relays the
message back to the first instance. If something does not appear to be working as expected, you

Send and You Shall Receive 355

can find the complete worked example within the Chapter10.nsf application under the foo
XPage and the bar Custom Control design elements.

Take a moment to review how all these scripting objects interact with each other in the
replyButton logic and the compositeData bindings you have built. Think about the way in
which the getComponent() global function returns the other Custom Control reference using
the senderId—this is a relatively straightforward case, as the senderId explicitly refers to the
other control, but then consider how the second call of this method on line 5 is only given the lit-
eral messageText ID as its parameter...the XPages runtime is still able to resolve this control with-
out inconsistently returning an instance from the other Custom Control instance. Also, think
about the fact that the messageText control and its value remain uncorrupted during the course of
a message relay from one Custom Control to the other. Finally, consider the fact that the nullifica-
tion of the compositeData.message property on line 9 affects only the current Custom
Control’s instance of that property. This firmly demonstrates that the private-scoping mechanism
keeps the instance data and scripting objects safe during the execution of your XPages
application.

Multiple Instances and Property Groups
Having used the compositeData object to access single instance custom properties of a Custom
Control within your server-side JavaScript code, what about custom properties that are specified
in the design-time metadata as Allow multiple instances or even property groups specified with
the New Group action? The good news is that these are just as straightforward to deal with using
the compositeData object.

First, if a custom property has its Allow multiple instances option checked, the editor
within the Custom Properties panel enables you to add or subtract from a list of property
instances for that particular custom property, as shown in Figure 10.25, where a custom property
named options is shown. Note how instances of this property are actually written into the XSP
markup as child nodes of the parent Custom Control tag. The same procedure is used to work
with a property group, whereby the editor in the All Properties panel allows you to add a group
and specify the custom properties within that group. Again Figure 10.25 shows a group named
payload that has two custom properties specified within that group: username and
timestamp. You should, once again, study the way such a group is written into the XSP markup
as a subordinate complex property of the parent Custom Control tag.

The compositeData object can dereference these forms of custom properties, but you
need to know the base type of each. Earlier, it was explained that a multiple instance custom
property gets held within a java.lang.ArrayList instance and that a group of custom proper-
ties gets held within a com.ibm.xsp.binding.PropertyMap instance. Therefore, this estab-
lishes the basis handling for both, i.e. the multiple instance case provides collection behavior
where its elements can be iterated over, while the group case provides map behavior in that its
elements are accessible by key name. For example, study the fragment of XSP markup shown in
Listing 10.8, which relates to the custom property configuration shown in Figure 10.25.

356 Chapter 10 Custom Controls

Listing 10.8 Dealing with a Multiple Instance and a Group Custom Property Using the
compositeData Object

<!— iterate over the options multiple instance property —>

<xp:repeat id=”optionsRepeat” rows=”30”

var=”currentOption”

value=”#{javascript:compositeData.options}”>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:currentOption}”>

</xp:text>

</xp:repeat>

<!— key into the payload group properties —>

<xp:text escape=”true” id=”timestamp”

value=”#{javascript:compositeData.payload.timestamp}”>

</xp:text>

<xp:text escape=”true” id=”username”

value=”#{javascript:compositeData.payload.username}”>

</xp:text>

Figure 10.25 Options multiple instance and payload group custom properties shown in
Designer

Custom Control Design Patterns 357

It’s a matter of using the compositeData object in the most suitable way for each case.
For multiple instances of custom properties, a <xp:repeat> tag is a basic way to iterate over a
collection, hence it is a suitable choice. For a single group of custom properties, you can simply
dereference the group’s properties directly, as shown in Listing 10.8. Remember, a property
group can also be configured in its design-time metadata to allow multiple instances. Again, you
are then simply dealing with a collection of property maps and can use the <xp:repeat> tag to
iterate over the collection of groups.

This concludes this section on using the compositeData object. Up to this point, you’ve
learned a lot about the capabilities and mechanics of the Custom Control design element at both
design time and runtime. With this knowledge in hand, you are now ready to gain an understand-
ing about the more holistic uses of Custom Controls.

Custom Control Design Patterns
Hopefully, you already see potential use cases for Custom Controls in your own application
designs. Before beginning any conquests, there are some further things to consider before under-
taking any application rework. It is one thing to understand how the mechanics of a certain fea-
ture works, but it is another to effectively apply the feature within a broader design. Thus, this
section teaches you about best practice Custom Control design patterns.

Aggregate Container Pattern
The most typical approach to leveraging Custom Controls most likely focuses on generalizing
functional parts of an application. An example might be taking a piece of code that is being used
repeatedly to do something useful in numerous different places and separating it into a self-
contained Custom Control. If you are thinking this way, you are already well on your way to
becoming a skilled XPages developer! The Aggregate Container design pattern is the basis of this
process—evaluating the viability of decomposing some part of an application into a loosely
coupled reusable artifact based on the specialized task that it performs.

An aggregate container is a Custom Control that’s comprised of several parts that perform a
well-defined task. Ideally, this container can be reused across different XPages or XPages applica-
tions in a loosely coupled manner with a minimum amount of integration. In fact, when you use
Designer to copy and paste a Custom Control from one application to another, Designer automati-
cally copies the corresponding *.xsp-config file for you (that’s the metadata file managed in
the background by Designer for each Custom Control). This goes some way toward helping you
easily reuse a Custom Control, but you need to manage other dependencies yourself, such as
images, CSS, and JavaScript files, when performing the migration from one application to another.

Depending on your application architecture, you might want to leverage templates to inherit
Custom Controls and their dependencies into multiple applications. Do this by setting up an inher-
itance chain. These are essentially deployment-related issues; however, the focus of this section is
about the use of design patterns. For now, just keep in mind the fact that architecture exists within
XPages to support a Custom Control reuse model.

358 Chapter 10 Custom Controls

You already learned about custom properties and their importance. Custom Controls would
be of much less value without this feature, because they would be nonconfigurable within
Designer and equally difficult to interact with programmatically. Therefore, when considering
the design of an aggregate container, give careful consideration as to what properties should be
exposed to maximize the flexibility of a control. Always try to maintain a clean separation
between external artifacts and those that are internally resident within the control. Ideally, aim to
create aggregate containers that function as standalone objects (assuming some degree of custom
property configuration) and, therefore, can be dropped into any XPage or application and made
readily useable immediately. One highly productive and quality-oriented practice to adopt is
using test harness XPages when developing and testing your aggregate containers. Simply drop-
ping your Custom Control onto a blank XPage and configuring its custom properties within this
context gives you a sanitized environment with the ability to quickly preview and test that control
without actually embedding it within a fully blown and potentially complex XPage.

Also, try to establish a clear separation between resources used by an aggregate container,
especially if you intend to make it publicly available. This is important and easy to achieve:
Important because it reduces redundancy in that your control does not have logic embedded
within a common JavaScript or CSS file that must be served down in any request for supporting
resources. It’s easy to achieve insofar as the corresponding CSS and JavaScript files for the con-
trol can be created in isolation, and only logic pertinent to that control should be kept within these
resources. A straightforward naming convention that can be easily applied and followed is prefix-
ing the name of a Custom Control itself across any dependencies for that Custom Control (for
example, ccBar.xsp, ccBar.jss, ccBar.js, ccBar.css, and so forth). That way, when you actually
copy or export such a control, it is easier to identify the artifacts on which it depends.

One other thing to bear in mind is the fact that nesting Custom Controls is supported and a
useful thing to do, in some cases. It is really a matter of how many layers of decomposition can be
represented by a functional part of an application. For example, if you want to represent some-
thing similar to an outline using Custom Controls, it is natural to conceptualize a single parent
Custom Control used as the outline container, and then use one other Custom Control to represent
the many child outline entries that may be needed. Therefore, a degree of Custom Control nesting
is required. In the next section, you learn about editable areas within Custom Controls. These
provide a different way to effectively achieve nesting of Custom Controls for a slightly different
purpose.

Layout Container Pattern
The Layout Container design pattern complements the Aggregate Container design pattern by
helping reduce duplication and redundancy across your XPages applications.

One control that is only available when working within the context of a Custom Control is
the Editable Area control. This appears within the control palette under the Core Controls cate-
gory, right at the bottom of the list, and note that it disappears when you switch over to work
within an XPage! So, what is the reason for this phantom control? It all has to do with efficiency
of presentation!

Custom Control Design Patterns 359

One of the biggest areas of duplication and redundancy within the code of any web-based
application is in the presentation logic, regardless of the underpinning technology used to
develop the application. XPages, albeit a client technology and a web technology, is driven by a
web-based paradigm. Consequently, a typical application is constructed with artifacts, such as
CSS, graphical images, JavaScript, and boilerplate HTML constructs sprinkled across many
XPages. An interesting aspect of this is when an application’s design demands several XPages to
be used for navigation; there is inevitably a degree of duplication involved to try to achieve the
same look and layout across all these XPages.

In this scenario, the developer typically creates an initial XPage that contains all the neces-
sary code to define the structure of the XPage and includes any aggregate containers within this
skeletal framework. It is then simply a matter of copying this boilerplate XPage code into any
other required XPages and tweaking the resultant XPages independently of one another to suit
the application design. At first glance, you might think that is not a bad strategy, and maybe it is
expedient, but nonetheless, it actually introduces a costly flaw into the design of the application.

Consider the ramifications of the last step when it comes to making a change that must be
reflected across the entire application. However small or large that change might be, every XPage
spawned from the initial boilerplate code needs to be identified and modified on an individual
basis, and then retested in the hope that no regressive behavior has been introduced. The same sit-
uation can occur to a greater extent if the application look or layout needs to be updated with new
colors, images, or maybe even a complete change of positional placement of functional parts. The
pain level here depends on what degree of externalization the CSS, images, and other resources
have from the underlying source markup. If poorly implemented, a major application rewrite
could be the only way forward; otherwise, it’s a case of every single XPage needing costly rework!

The Editable Area control exists to facilitate the reduction of duplication and redundancy
within an XPages application when using Custom Controls. The scenario described in the pre-
ceding paragraph highlights that a major flaw can easily creep into an application’s design, either
through bad planning or bad development practices. This situation can be averted by applying a
simple technique—creating a Custom Control that contains the boilerplate look and layout code,
plus one or more specially designated areas as placeholders or landing zones for the aggregate
container Custom Controls. These specially designated areas are the Editable Areas of the Cus-
tom Control. In essence, the application implementation described in the example would be dif-
ferent in that there would still be the same number of XPages, but the boilerplate code would not
be duplicated across all of them. Thus, a Custom Control containing all the boilerplate code and
one or more Editable Area would be dropped onto each XPage. Each XPage can then be config-
ured independently to use whatever aggregate containers are required on that XPage—by simply
dragging and dropping aggregate containers’ Custom Controls onto any given Editable Area.
The biggest benefit of applying this technique is that it is now extremely easy to modify the boil-
erplate code by changing the code of one single Custom Control. The changes are immediately
reflected across the entire set of XPages that use the layout container Custom Control—without
even having to open those XPages in Designer!

360 Chapter 10 Custom Controls

A working example of this can be found within the supporting Chapter10.nsf application.
Open this application in Designer. Then, open the alpha, beta, and omega XPages and, finally,
open the layoutContainer Custom Control. Having opened each of these, turn to the Source edi-
tor for each. As a starting point to fully understanding how the layout container pattern has been
applied in this example, study the XSP markup of the alpha XPage, as shown in Listing 10.9.

Listing 10.9 XSP Markup of the Alpha XPage

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

3 xmlns:xc=”http://www.ibm.com/xsp/custom”>

4 <xc:layoutContainer showLeftColumn=”true” showRightColumn=”true”>

5 <xp:this.facets>

6 <xp:panel id=”panel1” xp:key=”leftColumnAreaFacet”>

7 <xp:label value=”Alpha: Left Column Area”

8 id=”label2”></xp:label>

9 <xp:br></xp:br>

10 <xp:link escape=”true” text=”Beta” id=”link2”

11 value=”/beta.xsp”>

12 </xp:link>

13 <xp:br></xp:br>

14 <xp:link escape=”true” text=”Omega” id=”link3”

15 value=”/omega.xsp”>

16 </xp:link>

17 </xp:panel>

18 <xp:label id=”label1” xp:key=”contentAreaFacet”

19 value=”Alpha: Content Area”>

20 </xp:label>

21 </xp:this.facets>

22 </xc:layoutContainer>

23 </xp:view>

As you can see, there is a single declaration for the layoutContainer Custom Control
within this XPage. This Custom Control has two custom properties configured, namely
showLeftColumn and showRightColumn, both boolean types respectively with default val-
ues of true. There is a declaration referring to <xp:this.facets>, for which you need to study
the XSP markup of the layoutContainer Custom Control to understand what this complex tag is
doing. Listing 10.10 shows the XSP markup for this Custom Control. On lines 11 and 18, there
are two instances of an <xp:callback> tag, each having an attribute called facetName set.
Effectively, the complex tag <xp:this.facets>, shown in Listing 10.9 for the alpha XPage,
refers to a collection of such <xp:callback>, or facets, that might exist on a Custom Control.

Custom Control Design Patterns 361

In this particular case for the layoutContainer Custom Control, there are two facets:
leftColumnAreaFacet and contentAreaFacet, respectively.

Listing 10.10 XSP Markup of the layoutContainer Custom Control

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

3 xmlns:xc=”http://www.ibm.com/xsp/custom”>

4 <xp:panel id=”frame” styleClass=”xspPanelFrame”>

5 <xc:banner id=”banner”></xc:banner>

6 <xc:titleBar id=”titleBar”></xc:titleBar>

7 <xp:panel id=”body” styleClass=”xspPanelMain”>

8 <xp:panel id=”columnLeft”
styleClass=”xspPanelColumnLeft”

9 loaded=

10 “${javascript:compositeData.showLeftColumn}”>

11 <xp:callback id=”leftColumnAreaFacet”

12 facetName=”leftColumnAreaFacet”>

13 </xp:callback>

14 </xp:panel>

15 <xp:panel id=”content” styleClass=”xspPanelContent”

16 loaded=

17 “${javascript:compositeData.showRightColumn}”>

18 <xp:callback id=”contentAreaFacet”

19 facetName=”contentAreaFacet”>

20 </xp:callback>

21 </xp:panel>

22 </xp:panel>

23 <xc:footer id=”footer”></xc:footer>

24 </xp:panel>

25 </xp:view>

Note that the <xp:callback> tag represents the Editable Area control described earlier
in this section. This control is effectively a drop zone, or injection point, for other controls at
design time in that the layout container exposes one or more of these Editable Area controls, and
each one accepts any other content to be included in that area. Note that an Editable Area can be
used on any XPage or Custom Control under any context, not just for use as an enabler of a Lay-
out Container. It also only accepts one control as its root content—this can be a single button con-
trol or even a Panel with lots of nested child controls inside of it. Typically, such content is
provided by a Custom Control that contains several other controls, such as an aggregate con-
tainer, or can simply be other core controls from the control palette. This is the case shown in

362 Chapter 10 Custom Controls

Listing 10.9, where both label1 and panel1 are standard controls dropped into the two differ-
ent Editable Area controls: leftColumnAreaFacet and contentAreaFacet. The facet/con-
trol association has been made using the special prefix and attribute xp:key:

<xp:label id=”label1” xp:key=”contentAreaFacet”...

<xp:panel id=”panel1” xp:key=”leftColumnAreaFacet”...

The value of this attribute must be the name of the target Editable Area exposed by the
underlying layout container and, for both of these cases, shown in Listing 10.10:

<xp:callback id=”leftColumnAreaFacet”
facetName=”leftColumnAreaFacet”...

<xp:callback id=”contentAreaFacet” facetName=”contentAreaFacet”...

Editable Areas on a Custom Control surface themselves at design time in the WYSIWYG
editor of Designer as gray-shaded rectangular areas when used within an XPage. You can then
drag-and-drop other Custom Controls or standard controls onto these areas. In Figure 10.26, the
alpha XPage is shown at design time with the Editable Areas exposed by the layoutContainer,
which is also visible.

Setting the two custom properties

Facets appear as gray areas where you can drop other controls

Figure 10.26 Alpha XPage at design time in Designer showing the leftColumnAreaFacet and
contentAreaFacet

Custom Control Design Patterns 363

The beta and omega XPages also use the same layoutContainer Custom Control for their
contents. A couple of key differences can be examined in how they each use this Custom Control;
first, the setting of the showLeftColumn and showRightColumn custom properties is different
on each XPage. Second, the contents associated with each facet are different. Study the XSP
markup of both these XPages to identify these differences. Listing 10.11 details the XSP markup
for the beta XPage, and Listing 10.12 details the same for the omega XPage.

Listing 10.11 XSP Markup of the beta XPage

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

3 xmlns:xc=”http://www.ibm.com/xsp/custom”>

4 <xc:layoutContainer showLeftColumn=”true” showRightColumn=”false”>

5 <xp:this.facets>

6 <xp:panel id=”panel1” xp:key=”leftColumnAreaFacet”>

7 <xp:label value=”Beta: Left Column Area”

8 id=”label2”></xp:label>

9 <xp:br></xp:br>

10 <xp:link escape=”true” text=”Alpha” id=”link2”

11 value=”/alpha.xsp”>

12 </xp:link>

13 <xp:br></xp:br>

14 <xp:link escape=”true” text=”Omega” id=”link3”

15 value=”/omega.xsp”>

16 </xp:link>

17 </xp:panel>

18 <xp:label id=”label1” xp:key=”contentAreaFacet”

19 value=”Beta: Content Area”>

20 </xp:label>

21 </xp:this.facets>

22 </xc:layoutContainer>

23 </xp:view>

Listing 10.12 XSP Markup of the omega XPage

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

3 xmlns:xc=”http://www.ibm.com/xsp/custom”>

4 <xc:layoutContainer showLeftColumn=”false” showRightColumn=”true”>

5 <xp:this.facets>

(continues)

364 Chapter 10 Custom Controls

6 <xp:label id=”label1” xp:key=”leftColumnAreaFacet”

7 value=”Omega: Left Column Area”>

8 </xp:label>

9 <xp:panel id=”panel1” xp:key=”contentAreaFacet”>

10 <xp:label value=”Omega: Content Area”

11 id=”label2”></xp:label>

12 <xp:br></xp:br>

13 <xp:link escape=”true” text=”Alpha” id=”link2”

14 value=”/alpha.xsp”>

15 </xp:link>

16 <xp:br></xp:br>

17 <xp:link escape=”true” text=”Beta” id=”link3”

18 value=”/beta.xsp”>

19 </xp:link>

20 </xp:panel>

21 </xp:this.facets>

22 </xc:layoutContainer>

23 </xp:view>

Now, take the opportunity to preview the alpha, beta, and omega XPages. Select the alpha
XPage in Designer and choose to preview it either on the client or in a web browser. When
opened, you see the XPage displays the label1 and panel1 controls in the leftColumnAreaFacet
and contentAreaFacet—also shown in Figure 10.27.

You can use the links to navigate to the beta and omega XPages. For each XPage, you see
that the layoutContainer is correctly displaying the left column and content area, as per the set-
tings of the showLeftColumn and showRightColumn custom properties.

This example outlines the fundamentals of the layout container design pattern. Basically,
when you create a layout container, try to isolate all the commonly used structural layout ele-
ments, such as Panels, Divs, Tables, and even other nested Custom Controls. These are typically
used to represent such things as title bars, action bars, and header/footer areas within an applica-
tion. All can be abstracted into reusable artifacts. The more you can reduce the amount of dupli-
cated code, the more you reduce the level of redundancy within your application, and this has a
positive impact not only on maintenance tasks, but on the amount of memory used by your appli-
cation on the server side within the XPages runtime—another way to make your application scale
and perform better!

The other point to keep in mind is that a layout container can be made configurable by
using custom properties, as you have seen here with the showLeftColumn and
showRightColumn properties on the layoutContainer Custom Control. Consider the fact that a

Listing 10.12 (Continued)

Conclusion 365

layout container might be used across several XPages, each requiring different values or items to
appear within a title bar or menu bar for example. By exposing appropriate custom properties on
the layout container, you can configure those on each XPage as required and further sustain the
low maintenance cost objective within your XPages application.

label1panel1

eftColumnAreaFaceleftColumnAreaFacet

contentAreaFacet

Figure 10.27 Alpha XPage showing label1 and panel1 controls within the left column facet and
content area facet

Conclusion
This concludes your lesson on Custom Controls. In Chapter 11, “Advanced Scripting,” you learn
about the capabilities that XPages gives you for programming on both the client-side and server-
side of your application. This is a natural follow-up topic to Custom Controls and builds on the
application customization techniques that you learned here.

This page intentionally left blank

367

This chapter builds on what you learned in Chapter 6, “Building XPages Business Logic,” and
Chapter 10, “Custom Controls.” In those chapters, you learned about some of the fundamental
principles of scripting in XPages. With this new knowledge safely under your belt, you are ready
to learn how you can leverage advanced scripting techniques to further enhance your XPages
applications. In this chapter, you improve your core skills by developing expertise in the follow-
ing areas:

• AJAX and partial refresh

• Dojo integration

• Traditional Notes/Domino building blocks

• Managed beans

Before starting on the exercises within this chapter, download the supporting
Chapter11.nsf application from www.ibmpressbooks.com/title/9780132486316. Now,
a brief summary of some fundamental underpinnings of the XPages runtime is required, some of
which you will have already learned in Chapter 5, “XPages and JavaServer Faces,” but nonethe-
less, a quick recap benefits your understanding of this chapter.

Application Frameworks
Some web application frameworks provide a stateless runtime environment. Effectively, this
means that no information is maintained by the framework when a request is sent via a browser to
the application; the request is simply processed and the resultant response is sent back to the user.
In effect, each request is treated as a standalone stateless transaction. Other frameworks, such as
JavaServer Faces (JSF), however, do support a stateful environment where special variables or

C H A P T E R 1 1

Advanced Scripting

368 Chapter 11 Advanced Scripting

buffers maintain session or environment details for the current application, request, or user. Thus,
XPages is an example of a stateful application framework.

XPages maintains in-depth runtime state information so that you, the application devel-
oper, can exercise fine-grained granular control over the behavior of your apps. For any given
XPage viewed in the browser, an in-memory, or serialized representation of that XPage, is
maintained on the server-side. Of course, this can be a good thing or a bad thing, depending on
the application scale and workload, but XPages provides features to control and tune the over-
head associated with maintaining such a state. You learn about this in Chapter 16, “Application
Performance and Scalability.” For now, just think about the power you have at your scripting
fingertips with the XPages framework—not only can you script for the client-side of an applica-
tion (as you would naturally assume), but you can script for the server-side stateful representa-
tion of it!

There are two interesting observations to make:

• XPages uses the JavaScript language as the default scripting language for both client-
side and server-side programming. This benefits you, as the developer, in that you only
need to know one language to script an application.

• There is direct correlation between what is emitted to the browser and what is main-
tained within the XPages runtime. Therefore, you need versatile ways to script functions
on both the client-side and server-side of an application, and hence have a requirement
for intermingling client-side and server-side code.

In summary, as a developer, you benefit not only from just needing to know about one lan-
guage, but you can combine client-side and server-side code when you need to in order to get the
job done!

Again, as you learned previously, one of the most fundamental characteristics of XPages is
that it always ensures the uniqueness of component identifiers on both the client-side and server-
side of an application. This guarantees that the elements within the client-side HTML DOM tree
map to the server-side component tree, thus assisting the XPages runtime in maintaining a con-
sistent current state of an application at all times. The XPages runtime then provides the
getComponent(), getClientId() methods, and the #{id:} resolution operator, not only to
resolve component identifiers, but to also intermingle client-side and server-side JavaScript code.
All this makes for a powerful application-development platform using one common scripting
language.

But, what about scripting with programmability paradigms, such as Asynchronous
JavaScript and XML (AJAX) or dojo? Or what about interoperability with established Notes/
Domino building blocks such as @Functions or agents? Not to worry, XPages provides you with
all the programmability tooling you need to work with these features, and you learn about these
in the upcoming sections.

AJAX and Partial Refresh 369

AJAX and Partial Refresh
Partial refresh is the straightforward term that XPages uses to describe its AJAX interoperability
feature. In essence, a partial refresh operation loads some designated part of an XPage in the
browser without reloading the entire browser page. Unfortunately, if you were to implement
AJAX directly in your XPages applications, you would need to develop a lot of infrastructural
code before writing any business logic. XPages takes care of the AJAX infrastructure on your
behalf and allows you to concentrate entirely on the application business logic.

TIP For more general information on AJAX and partial refresh, do some background
reading at websites such as http://en.wikipedia.org/wiki/Ajax_(programming) and www.
w3schools.com/Ajax/Default.Asp.

Partial Refresh: Out-of-the-Box Style!
Introducing partial refresh into your application is as simple as checking a radio button option
and selecting a target component identifier from a list—all the supporting client-side framework
code, resolution of client-side identifiers, and so forth is then automatically generated for you!

To see a worked example of this, open the allDocumentsView Custom Control within the
Chapter11.nsf application. Once opened, select the moreLink control within the WYSIWYG
editor to give it focus. Then, select the Events view below the WYSIWYG editor, as shown in
Figure 11.1.

As you already learned in Chapter 6, the Events view provides all the necessary settings
and options that allow you to configure control events. One of the options that you have not yet
learned about is Server Options. In Figure 11.1, this options group is shown on the right side of
the Events panel and is only relevant to server-side events. This group is basically split into three
distinct sections:

1. An update option section allows you to specify how an event updates the current XPage
when triggered. The default for this option is Full Update. This means that the XPage
will be entirely updated upon event invocation—in other words, the XPage is submitted
and an entire reload occurs. On the other hand, the Partial Update option enables the
event to be invoked, but subsequently only update a specified target element on the
XPage when the response is received. The No Update option allows the server-side
event to be invoked through a partial refresh call, but absolutely no refresh of the XPage
occurs thereafter—this can be useful for certain application-specific use cases, such as
sniffing information on events happening in the browser page. (For example, a user
enters a value into an Edit Box and the value is sent to the server without reloading any
of the browser page.) That value can then be processed on the server side. The No Sub-
mission option is more relevant to client-side events in that when this option is set, only

370 Chapter 11 Advanced Scripting

Partial Update option set

moreLink

Figure 11.1 Selecting the Events view for the moreLink control

client-side events can be invoked—no submission of the XPage is made regardless of
whether associated server-side event code is specified on the event handler.

2. A validation and processing section allows you to configure two things: first, how an
event submits data to participate within the validation phase of the XPages request life-
cycle. (You learned about the XPages request lifecycle in Chapter 5.) This is configured
using a mutually exclusive combination of the Do not update or validate data check-
box and the Process data without validation checkbox. You learn more on the ways
you can configure validation later in this chapter. Second, by using the Set partial exe-
cution mode checkbox, you can control what degree of server-side component tree pro-
cessing should occur when an event is invoked. By default, when a server-side event is
invoked, the entire component tree of its parent XPage executes. When checked, this set-
ting limits the processing of the component tree to only this event handler. There is also
an additional execId property supported by an event handler that is not exposed in the
Designer UI editors but only in XSP markup, which allows you to specify an execution

AJAX and Partial Refresh 371

target within the component tree. These settings are used to optimize an application and
are not covered in this chapter. Instead, you learn more on the topic of partial execution
in Chapter 16.

3. An event parameters section allows you to configure event specific parameters. These
can be preset or computed when the event is invoked, and then subsequently read within
the event-handling code on the server side. This provides a flexible mechanism whereby
you can pass dynamic parameter values into your event logic. You learn more on this in
the section, “Event Parameters.”

Reverting to Figure 11.1 (alternatively, you can also view the Events view in the open
application within Designer), you see that the update option is set to Partial Update in this case,
and an element id of rowDataPanel is also specified. If you are in Designer, click the Select Ele-
ment button. This opens a dialog that allows you to select a predefined element on the current
XPage, or alternatively, you can specify statically, or by computing, an element id, as shown in
Figure 11.2.

rowDataPanel selected in this case

Figure 11.2 Select Element to Update dialog with the rowDataPanel element selected

372 Chapter 11 Advanced Scripting

In this case, the rowDataPanel element is already selected from the list of predefined ele-
ments within the current XPage (scroll down the list to find it). At this point, you should get an
inkling as to what is actually happening with this example. In summary, the moreLink is setup
with an onclick server-side event. That event is configured to use the Partial Update option
and has the rowDataPanel element specified as its update target. All of this results in a link that,
when clicked, invokes its server-side event code and only updates the specified target within the
XPage. You saw a similar example in Chapter 8, “Working with Domino Views.” Preview the All
Documents XPage from Designer on the web or client—your choice! Once launched, mouse
over the rows within the All Documents view, where you see a link appearing with the text
More—this is the moreLink. If you click one of these links, a partial refresh request is made, and
the row expands to display further details on the row entry—this is the rowDataPanel being dis-
played. This is highlighted in Figure 11.3.

In essence, this is an example of XPages enabling you to use AJAX capabilities without
having to write a single line of AJAX-related code—the only code you should be concerned with
is your application business logic code! By simply creating a server-side event and setting it to
use the Partial Update option, all the AJAX code is automatically managed by the XPages run-
time, saving you precious development time.

The moreLink control doing partial refresh of a row

Figure 11.3 MoreLink and rowDataPanel working in tandem using partial refresh

AJAX and Partial Refresh 373

Before exploring other ways of doing partial refresh, open the partialRefresh XPage
within Designer. You can find this XPage within the Chapter11.nsf application. Once opened,
you see four button controls in the WYSIWYG editor for this XPage, as shown in Figure 11.4.

The first of these button controls is labeled Partial Refresh and is another example of
doing a partial refresh without writing any supporting AJAX code. If you inspect the Events view
for this button, you see that it has a server-side onclick event that is configured to partially
refresh the partialRefreshField Computed Field control. It also contains one line of busi-
ness logic code that simply assigns the system nanotime to the viewScope.nanoTime variable.
If you now inspect the partialRefreshField Computed Field control’s value panel, you see
that it is bound to that particular variable, as shown in Figure 11.5.

TIP For the examples of this section on partial refresh, you benefit most by previewing
using an up-to-date version of the Firefox browser that also has the popular and cost-free
Firebug plug-in installed. Alternatively, any HTTP-sniffing application will suffice. This
allows you to examine the partialRefresh XPage HTTP traffic that is transmitted over the
network during partial refresh requests. Don’t worry if you don’t have Firefox or a HTTP-
sniffing application installed, however—you can still proceed through this section.

Now, preview this XPage using the Preview in Web Browser option in Designer. If you have
Firefox installed, select it from the drop-down list of browser options, as shown in Figure 11.6.

Figure 11.4 Four button controls on the partialRefresh XPage

374 Chapter 11 Advanced Scripting

viewScope.nanoTime binding

Figure 11.5 PartialRefreshField value bound to the viewScope.nanoTime variable

Can also be launched from here

Figure 11.6 Preview in a web browser using Firefox option in Designer

AJAX and Partial Refresh 375

After the XPage loads in the browser, enable Firebug or your HTTP-sniffing application
and click the Partial Refresh button. This causes a request to be submitted to the XPages run-
time that executes the associated server-side event handler. The result is the assignment of the
system nanotime into the viewScope.nanoTime variable. Because this is a partial refresh
request targeted at the partialRefreshField control, you now see the value of the
viewScope.nanoTime variable within this control. Note the fact that the entire XPage does not
reload when you click the Partial Refresh button. Also, at this point, examine the
request/response data in debug utility program. As you will see, a POST-based request will have
been sent from the browser, containing several important pieces of information.

First, the request querystring parameters contain a parameter named $$ajaxid with the
client-side ID of the partialRefreshField control. XPages runtime uses this $$ajaxid as
the target of the partial refresh request. This can be seen using Firebug in Figure 11.7.

Second, the POST body parameters also contain a parameter called $$xspsubmitid. The
value of this parameter is the ID of the server-side event handler for the XPages runtime to exe-
cute. Again, this is shown using Firebug in Figure 11.8.

$$ajaxid in the querystring parameters

Figure 11.7 Request querystring parameters with the $$ajaxid parameter

376 Chapter 11 Advanced Scripting

$$xspsubmitid in the POST body parameters

Figure 11.8 POST body parameters with the $$xspsubmitid parameter

If you examine the response data, you see a fragment of HTML markup, which represents
the partialRefreshField. Remember that it is a Computed Field control with its value
bound to the viewScope.nanoTime variable. When this is rendered by the XPages runtime, it is
done so as a HTML span element. The result can be seen in Figure 11.9.

This simple example demonstrates just how powerful XPages partial refresh feature really
is, and how it ultimately saves you a lot of development time without having to write any AJAX-
related code!

Partial Refresh: Doing-It-My-Way Style!
As with just about everything else in XPages, you are also free to perform partial refresh manu-
ally using script. As you learned in Chapter 6, the client-side XSP scripting object exposes numer-
ous XPages framework and utility functions. Two of these utility functions are detailed in Listing
11.1 and are used for partial refresh scripting.

TIP Go to www.w3.org/2001/tag/doc/whenToUseGet.html for more information on
GET- versus POST-based HTTP requests.

AJAX and Partial Refresh 377

The updated HTML response for the partialUpdateField

Figure 11.9 Response data containing the partialRefreshField HTML span element

Listing 11.1 Partial Refresh Utility Functions on the Client-Side XSP Object

XSP.partialRefreshGet(

/*mandatory*/ refreshId,

/*optional*/ options

)

XSP.partialRefreshPost(

/*mandatory*/ refreshId,

/*optional*/ options

)

partialRefreshGet Utility Function

The first of these two functions, partialRefreshGet(), is used to issue a GET-based AJAX
call. It uses the mandatory refreshId parameter as the target element identifier within the
HTML DOM tree for the partial refresh. The optional options parameter typically specifies
additional parameters to send with the AJAX request through a params property, but it can also

378 Chapter 11 Advanced Scripting

include up to three other function references for onStart, onError, and onComplete events. If
supplied in the options parameter, these are triggered during the execution lifecycle of the asso-
ciated partial refresh request, as shown in Listing 11.2.

Listing 11.2 Partial Refresh GET Example with Optional options Parameter

function prOnStart(){console.log(“Started”);}

function prOnError(){console.log(“Error”);}

function prOnComplete(){console.log(“Completed”);}

var prOptions = {“x” : 123.45, “y” : 678.90};

XSP.partialRefreshGet(“#{id:prTargetId}”,

{

params : prOptions,

onStart : prOnStart,

onError : prOnError,

onComplete : prOnComplete

}

);

You find a fully worked example of this on the partialRefresh XPage within the
Chapter11.nsf application. Focus on the second of the four button controls labeled
XSP.partialRefreshGet in the WYSIWYG editor and look at the Client tab under Events view, as
shown in Figure 11.10.

Remember that this is client-side JavaScript code. The only exception to this is the inclu-
sion of the server-side client identifier binding #{id:} to resolve the fully expanded client-side
identifier of the partialRefreshGetField target control. Basically, the call to
XSP.partialRefreshGet() is given the target HTML DOM tree element identifier as its first
parameter, and the second parameter is encapsulated within a JavaScript object notation (JSON)
anonymous instance.

TIP Learn about JSON at www.json.org and http://en.wikipedia.org/wiki/JSON.

This second parameter contains the params, onStart, onError, and onComplete prop-
erties—the first pointing at the partialRefreshOptions JSON object, and the rest using the
declared function references.

When this fragment of code is invoked, a background request is made by the platform
(browser or client) using the underlying AJAX handler of that platform. This is typically the
XMLHttpRequest object in Mozilla-based browsers and the XMLHTTP ActiveX® control in

AJAX and Partial Refresh 379

Remember to use the Client event tab in this case

Figure 11.10 Client-side onclick code of the second button using XSP.partialRefreshGet

Microsoft-based browsers. Either way, XPages hides the complexities of the platform by bridg-
ing AJAX requests through the dojo.xhr API and exposing only the things you need via the XSP
client-side object.

TIP Learn about Dojo and dojo.xhr at www.dojotoolkit.org and www.dojotoolkit.org/
reference-guide/dojo/xhr.html.

Therefore, by decorating the dojo.xhr API using the XSP client-side object, you get
exactly what you need in terms of cross-platform interoperability and XPages integration for
AJAX programmability. So, the background request in this example is channeled down to the
underlying AJAX handler for the platform before being sent to the XPages runtime. Once
received within the XPages runtime, the request must be processed and a response handed back
to the AJAX handler. This is where the beauty lies within AJAX—the response is handled inline
without reloading the entire XPage! Only the target element (and any of its child elements) spec-
ified by the refreshId get replaced with the response data.

So, at this point, you might be asking yourself about the options parameter, particularly
around the params property and the JSON object assigned to it. Remember that the options

380 Chapter 11 Advanced Scripting

Figure 11.11 partialRefreshGetField value expression using the param object

parameter is optional, but is typically used to send additional parameters with the partial refresh
request—so this example is doing exactly that! Under the hood, the params property actually
gets expanded, encoded, and appended to the GET request URI that is invoked by the underlying
AJAX handler. Therefore, you can retrieve whatever has been specified on the params property
using the server-side JavaScript param object. So, for example, if you want to retrieve and con-
catenate the x and y property values from the params property on the server-side, simply access
them as follows:

#{javascript:param.x + ‘ ‘ + param.y}

A fully worked example of this is shown in Figure 11.11 for the partialRefreshGet
Field Computed Field control of the partialRefresh XPage.

In this example, the partialRefreshGetField Computed Field is the target of the
XSP.partialRefreshGet() request shown in Figure 11.10. Once invoked by the partial
refresh request, it evaluates its value using the server-side expression shown in Figure 11.11. As
you can see, this uses the param object to access the secs and milliSecs properties that are
available from the request data.

If you have not already done so, take this opportunity to click the XSP.partialRefreshGet
button and, with your favorite debugging utility, examine the request/response data for this partial
refresh request. Unlike the first Partial Refresh button example that sent a POST-based request

AJAX and Partial Refresh 381

when clicked, this request is GET based. Therefore, one key difference that you will see in the
request data is the lack of a POST body section; therefore, no $$xspsubmitid parameter is
required because no server-side event handler is needed this time. Also, notice that the param
property is expanded into separate request querystring parameters. Therefore, the secs and
milliSecs parameters appear on the GET URL, as shown using Firebug in Figure 11.12.

In this example, the response data carries the same HTML SPAN construct as shown in the
first button example. This is the rendered markup that represents the evaluated partialRefresh
GetField Computed Field control.

partialRefreshPost Utility Function

The second of the two utility functions in Listing 11.1, partialRefreshPost(), issues a
POST-based AJAX call. The function signature is identical to its GET-based sibling in that it has
a mandatory refreshId parameter and an optional options parameter. One key difference
exists, however: The options parameter can be configured differently to the GET-based version
with two additional properties being supported: the immediate and execId properties. The
immediate property enables you to control whether the partial refresh request participates in the
validation phase of the XPage request lifecycle. The default for all server-side submitting event

The milliSecs and secs option params in the querystring parameters

Figure 11.12 XSP.partialRefreshGet request data seen using Firebug

382 Chapter 11 Advanced Scripting

handlers is to participate in this phase. Setting this script property, in fact, replicates checking or
unchecking the Do not validate or update data checkbox within the Server Options group on
the Events view within Designer—only here, you do it programmatically! The execId property
is, as you might have guessed, related to the Partial Execution mode topic, and you learn about
this in Chapter 16. For now, suffice it to say that you have the opportunity to control this feature
programmatically. Listing 11.3 provides an example of using the XSP.partialRefresh
Post() function.

Listing 11.3 Partial Refresh POST Example with Options Parameter, Including immediate
Property

var prOptions = {“x” : 123.45, “z” : 678.90};

XSP.partialRefreshPost(“#{id:prTargetId}”,

{params : prOptions,

immediate : true}

);

As you can see, this example is similar to Listing 11.1, although it does not pass any func-
tion references for the onStart, onError, and onComplete events. Note, however, that this
feature is also supported by this POST-based version of the utility function.

Again, a fully worked example of using the XSP.partialRefreshPost() function can
be found on the partialRefresh XPage. Now, focus the third button control, labelled
XSP.partialRefreshPost in the WYSIWYG editor, and examine the Client tab under the Events
view, as shown in Figure 11.13.

Again, take the opportunity to click this button and use a debug utility program to examine
the request/response data. In this XSP.partialRefreshPost() example, you see that the
options param property also gets expanded, but unlike its GET-based sibling function, the
items become POST body parameters, as shown in Figure 11.14.

Partial Refresh: A Low-Cost Performance Improvement

Appropriate use of the partial refresh capabilities provided by XPages can undoubtedly reap ben-
efits for the performance and responsiveness of your applications. Applied correctly, it can
improve the performance of an application by reducing the amount of HTML markup that must
be processed and emitted as responses back to the client or browser. Hence, the application server
uses less CPU cycles. This has a knock-on effect in that the responsiveness of an application is
improved due to less network bandwidth being used to relay the response. Combine this with the
fact that the client or browser is not actually reloading an entire XPage—only a part of it. This
radically reduces the refresh time and gives a more satisfying visual display because of the lack
of screen flicker seen during a full browser page reload. Chapter 16 provides more detail on par-
tial refresh. In particular, you learn how a partial refresh request is processed against the compo-
nent tree and a way in which you can further optimize this process.

AJAX and Partial Refresh 383

Figure 11.13 Client-side onclick code of the third button using XSP.partialRefreshPost

The mins, secs, and milliSecs options params in the POST body data

Figure 11.14 XSP.partialRefreshPost POST body parameters

384 Chapter 11 Advanced Scripting

Click here to launch the Event Parameters editor

Figure 11.15 Event Parameters editor

Event Parameters
A feature related to event handling that is also useful to understand is Event Parameters. This
feature is not only applicable to partial refresh events, but it can also be used for standard full-
page refresh events. This feature allows you to define parameters that can be used directly within
the server-side JavaScript business logic of an event. Essentially, you have the ability to create
parameterized event handlers.

To configure event parameters, you must use the same Events view used for the other par-
tial refresh examples of this chapter. If it is closed, reopen the partialRefresh XPage within
Designer. Once opened within the WYSIWYG editor, click the button control labeled Event
Parameter. Now, click the Events view below the WYSIWYG editor to inspect the event han-
dler for this button control. Within the Events view, click the Edit Event Parameters button, and
a dialog appears. Within this dialog, you can manage a list of one or more event parameter names
and values, both of which can be computed when necessary. In the example shown in Figure
11.15 for this particular button control event handler, two event parameters are defined. Each one
has a static name and a dynamically computed value.

Event Parameters 385

The first event parameter computes the system nanotime, and the second computes the mil-
liseconds time. Both are named accordingly as nanoTimeParameter and milliSecs
Parameter. Listing 11.4 is a shortened version of the fragment of markup taken from the
partialRefresh XPage related to the Event Parameters button.

Listing 11.4 Event Parameters Button and Related Code

<xp:table id=”eventParametersTable”>

<xp:tr><xp:td>

<xp:button value=”Event Parameters”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”partial”

refreshId=”eventParametersTable”>

<xp:this.parameters>

<xp:parameter

name=”nanoTimeParameter”

value=”#{javascript:java.lang.System.nanoTime()}”>

</xp:parameter>

<xp:parameter

name=”millisecsParameter”

value=”#{javascript:// millisecs

java.lang.System.currentTimeMillis()}”>

</xp:parameter>

</xp:this.parameters>

<xp:this.action><![CDATA[#{javascript:

viewScope.nanoTimeParameter = nanoTimeParameter;

viewScope.millisecsParameter = millisecsParameter;

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:td><xp:td>

<xp:text escape=”true” id=”nanoTimeParameterField”>

<xp:this.value><![CDATA[#{javascript:

if(null != viewScope.nanoTimeParameter){

return viewScope.nanoTimeParameter + “ : “ +

viewScope.millisecsParameter;

}

}]]></xp:this.value>

</xp:text>

</xp:td></xp:tr>

</xp:table>

386 Chapter 11 Advanced Scripting

When an event handler is not configured for partial refresh, any associated event parame-
ters are recomputed each time the event handler is reinvoked. Essentially, this means that any
event parameters on an event handler will have their computed expressions reevaluated each time
the parent XPage is reloaded in the browser or client. On the other hand, when an event handler is
configured for partial refresh, any associated event parameters will only be computed when the
entire XPage loads. This effectively means that, although the event handler will be executing a
partial refresh request against a target element, the event parameters will not be recomputed dur-
ing the partial refresh request. If you do require them to be recomputed, you must ensure that the
event handler is included within the target partial refresh area of the component tree. This is
shown in Listing 11.4, where refreshId for the Event Parameters button’s event handler
points at the enclosing eventParametersTable control. This table control actually encloses
the button, its event handler, and the Computed Field that displays the event parameter values—
therefore ensuring that the event handler is part of the partial refresh area of the component tree.
If you try clicking this button in the browser, you see that the Computed Field does redisplay the
recomputed nanoTimeParameter and milliSecsParameter time values.

In Listing 11.4, notice that the declared event parameters are accessed within the server-
side JavaScript code directly by name. This makes it easy for you to work with event parameters
within your code.

Dojo Integration
XPages supports the well-proven Dojo Toolkit as its JavaScript user interface library. If you are
not familiar with Dojo, prime yourself by visiting www.dojotoolkit.org and www.dojocampus.
org. The Dojo Toolkit is an open source project supported by many industry leading companies,
including IBM. In a nutshell, Dojo makes it easier to create dynamic, interactive, and cross-plat-
form JavaScript-based web application user interfaces.

As previously mentioned, the XSP client-side JavaScript object actually decorates some of
the Dojo API to provide a seamless integration between XPages and the Dojo Toolkit API. This is
one of the great things about using XPages: You don’t necessarily need to care about Dojo at all.
The XPages runtime provides your applications with all the required Dojo resources without you
writing a single line of code! Examples of XPages transparently providing and managing Dojo
for you include the Date Time Picker and the TypeAhead controls. You simply drag-and-drop
these to your XPage in Designer without providing any extra Dojo-related configuration or cod-
ing steps thereafter.

But, as always, some developers need to do special things with their applications—and
Dojo integration does not get left out here. XPages provides a Dojo-integration mechanism that
allows the standard library of XPages controls to be extended with Dojo widgets—both standard
toolkit and custom-coded varieties for the die-hard Dojo developer. This can result in much richer
user interfaces using Dojo widgets that still maintain the relationship between XPage control and
server-side component tree.

Dojo Integration 387

If you include any of the Dojo-based XPages controls. such as the Date Time Picker or
TypeAhead, on an XPage, a couple of steps take place behind the scenes when you view that
XPage in a browser or client. First, the XPages runtime is notified by the control that it is a Dojo-
based control. This means that the emitted markup for the XPage must include supporting Dojo
code and resources for the control to initialize and render correctly as a Dojo widget. Therefore,
as a second step, the Dojo Theme resources, the Dojo API resources, the Dojo Module resource,
and Dojo Parser directive are included in the emitted XPage markup. The end result is an XPage
in the browser or client with the Dojo-based control correctly loaded for you.

This is an example of XPages managing Dojo for you, but what about situations where you
need to manage Dojo yourself? For this case, XPages provides you with a set of Dojo-related
configuration properties and a resource tag.

dojoTheme and dojoParseOnLoad Properties
Both an XPage and a Custom Control support the dojoTheme and dojoParseOnLoad proper-
ties. Both properties can be set using the All Properties panel under the Properties view in
Designer. Both are of boolean data type, so accept a true or false value. Note that the default
for both is implicitly set to false.

When the dojoParseOnLoad property is set to true, the emitted HTML markup for the
XPage includes a directive within the djConfig attribute instructing Dojo to parse the markup
when loaded in the browser—this is the parseOnLoad: true directive shown in Listing 11.5.
The Dojo Parser module is also included in the markup—the dojo.require(‘dojo.parser’)
script, which is also shown in Listing 11.5. The Dojo Parser ensures that Dojo widgets get initial-
ized and rendered; without it, any widgets on the XPage would simply be broken.

When the dojoTheme property is set to true, the XPages runtime ensures that the Dojo
Theme-related resources are emitted in the HTML markup. This is shown in Listing 11.5, where
the link to ’.../tundra.css is included, but the style class tundra is appended to the body
tag’s style class attribute.

Listing 11.5 Dojo Parser and Theme Resources Being Included in the Emitted HTML Markup

<head>

...

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/dojo/dojo.js”

djConfig=”locale: ‘en-gb’, parseOnLoad: true”></script>

...

<script type=”text/javascript”>dojo.require(‘dojo.parser’)</script>

...

<link rel=”stylesheet” type=”text/css”

href=”/domjs/dojo-1.4.3/dijit/themes/tundra/tundra.css”>

...
(continues)

388 Chapter 11 Advanced Scripting

<body class=”xspView tundra”>

...

</body>

dojoModule Resource
An XPage and Custom Control both support the dojoModule resource. For the automatically
managed controls, such as the Rich Text Editor, the associated Dojo Module resource required
expression is emitted to the browser or client for you. This is shown in Listing 11.6 where the
dojo.require(‘ibm.xsp.widget.layout.xspCKEditor’) script is included. This
ensures that the required source code is loaded into the browser or client for that particular control.

Listing 11.6 dojo.require() Statement Being Emitted Based on the dojoModule Resources

<head>

...

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/dojo/dojo.js”

djConfig=”locale: ‘en-gb’, parseOnLoad: true”></script>

...

<script type=”text/javascript”>dojo.require(‘dojo.parser’)</script>

<script

type=”text/javascript”>dojo.require(‘ibm.xsp.widget.layout.xspCKEditor’)</
script>

<script

type=”text/javascript”>dojo.require(‘dijit.form.Button’)</script>

...

<link rel=”stylesheet” type=”text/css”

href=”/domjs/dojo-1.4.3/dijit/themes/tundra/tundra.css”>

...

<body class=”xspView tundra”>

...

</body>

On the other hand, Listing 11.6 also shows a second instance of the dojo.require() state-
ment in the dojo.require(‘dijit.form.Button’) script. This instance is occurring in the
emitted HTML markup, as it has been manually added to the XPage using the Resources panel
under the Properties view in Designer. It has been added as required by the XPages button control
that is being extended to leverage the Dojo dijit.form.Button widget, as shown in Listing 11.7.

Listing 11.5 (Continued)

Dojo Integration 389

Listing 11.7 XPage Markup Showing Extended Button Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core” dojoParseOnLoad=”true”

dojoTheme=”true”>

<xp:this.resources>

<xp:dojoModule name=”dijit.form.Button”></xp:dojoModule>

</xp:this.resources>

<xp:inputRichText id=”inputRichText1”></xp:inputRichText>

<xp:br></xp:br>

<xp:button value=”Cut” id=”button2” dojoType=”dijit.form.Button”>

<xp:this.dojoAttributes>

<xp:dojoAttribute name=”iconClass”

value=”dijitEditorIcon dijitEditorIconCut”>

</xp:dojoAttribute>

<xp:dojoAttribute name=”showLabel” value=”false”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

</xp:button>

</xp:view>

Note that the dojoModule resource tag supports the inclusion of a client-side conditional
expression. This allows you to control the loading of a Dojo Module within the browser or client
based on some client-side condition (such as checking the browser version number or checking for a
specific locale). Therefore, by using the dojoModule resource, you can manage any Dojo Module
source files required by your widgets or extended XPages controls with full control and flexibility.

dojoType and dojoAttributes Properties
You can see in Listing 11.7 that the extended button control makes use of the dojoType and
dojoAttributes properties. The dojoType property declares the type of the widget, and this
must match the associated dojoModule resource. You can use the dojoAttributes property to
define a list of one or more special attributes supported by the widget. In the button example in
Listing 11.7, the button iconClass and showLabel widget attributes are being managed using
the dojoAttributes property. Both the name and value properties of a dojoAttribute can
be computed when necessary.

On quick examination of the XPages controls, you see that most of the controls support the
dojoType and dojoAttributes properties. This ensures that the Dojo integration mechanism
can be leveraged across all the supporting XPages controls. Furthermore, you also find these
Dojo-specific properties exposed on the Dojo Property panel within Designer to make it all the
easier to manage.

390 Chapter 11 Advanced Scripting

Note the draggable border widget splitter

Figure 11.16 dojoIntegration XPage loaded in the browser

Integrating Dojo Widgets and Extending the Dojo Class Path
In the Chapter11.nsf application, find an XPage called dojoIntegration and open this in
Designer. This XPage does several interesting things using Dojo to create a lightweight user
interface that allows you to preview the body field of documents within this application. Preview
this XPage using the Firefox browser option, because it is purposely designed to work with Fire-
fox and not to work on the Notes client—an explanation why soon follows. Once launched, you
see something like Figure 11.16.

If you click any of the tree nodes within the left-side of the XPage, the contents of the target
documents body field gets displayed in the right-side of the XPage, as shown in Figure 11.17.

Effectively, you are looking at an XPage composed of four Dojo widgets. First, there is a
combination of two custom written widgets, one named mxpd.ui.ViewTree that extends the
dijit.Tree widget. This provides the hierarchal tree of document IDs seen on the left side of
the dojoIntegration XPage in Figure 11.16. The other one has been named mxpd.data.
ViewReadStore and extends dojo.data.ItemFileReadStore. It provides the data for the
tree widget by sending a partial refresh request against the Notes/Domino ReadViewEntries
URL command—this is why this example only works against the in-built Domino preview

Dojo Integration 391

Click an entry to obtain that document’s rich text Body preview

Figure 11.17 Body field content being displayed after clicking a tree node

server in your client or against a fully fledged Domino server, as a number of the classic
Domino URL commands are not currently supported by XPages running in the client. This
URL command returns all the view entries in the ($xpAllDocuments) view. Second, there is
another combination of a dijit.layout.ContentPane and dijit.layout.BorderPane
to provide a resizable, framed window.

When all this is put together, you are presented with an XPage that is a Dojo-based widget
user interface. When you click the tree nodes in the left side, the contents of the related docu-
ments’Body field are displayed using partial refresh on the right side of the user interface.You are
also able to drag the splitter pane. An examination of how this has been achieved is now in order.

Using Standard Dojo Widgets

As previously described, this XPage makes use of a combination of standard Dojo widgets and
custom written widgets. In the case of standard Dojo widgets, all that is necessary to integrate
these into an XPage is the declaration of the particular dojoModule and setting the dojoType
on the bound control. Note/Domino 8.5.2 ships with the Dojo Toolkit, so any required standard
widget modules are already available to your application without you needing to perform any
other deployment steps. Listing 11.8 is a fragment taken from the dojoIntegration XPage. It
highlights the important things that enable the dijit.layout.ContentPane and dijit.
layout.BorderPane to work correctly.

392 Chapter 11 Advanced Scripting

Listing 11.8 dojoIntegration XSP Markup Highlighting ContentPane and BorderPane Elements

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

dojoParseOnLoad=”true”

dojoTheme=”true” ...>

<xp:this.resources>

...

<xp:dojoModule

name=”dijit.layout.BorderContainer”></xp:dojoModule>

<xp:dojoModule

name=”dijit.layout.ContentPane”></xp:dojoModule>

</xp:this.resources>

<xp:div id=”body” dojoType=”dijit.layout.BorderContainer” ...>

<xp:this.dojoAttributes>

<xp:dojoAttribute

name=”persist”

value=”false”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”gutters”

value=”false”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

<xp:div id=”left” dojoType=”dijit.layout.ContentPane” ...>

<xp:this.dojoAttributes>

<xp:dojoAttribute

name=”region”

value=”left”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”splitter”

value=”true”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

...

</xp:div>

<xp:div id=”center” dojoType=”dijit.layout.ContentPane” ...>

<xp:this.dojoAttributes>

<xp:dojoAttribute

name=”region”

Dojo Integration 393

value=”center”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

</xp:div>

</xp:div>

</xp:view>

First, note the use of dojoTheme and dojoParseOnLoad on the XPage root tag. Because
this example uses both standard toolkit and custom written Dojo widgets, the Dojo Theme and
Dojo Parser must be made available. Remember that, for the automatically managed XPages con-
trols, this step is done for you, but in a case like this, setting both of these properties to true is a
configuration step that the developer must perform.

Second, note the inclusion of the two dojoModule resources, which point at the
dijit.layout.ContentPane and dijit.layout.BorderPane, respectively. This is all that
is required to ensure the underlying Dojo widget resources are included in the emitted XPage. As
mentioned earlier, the actual Dojo standard toolkit widget resources are shipped with
Notes/Domino 8.5, 8.5.1, and 8.5.2.

Finally, note the use of the dojoType and dojoAbbributes properties on the <xp:div>
control tag. Essentially, this creates a binding between the HTML DIV tag and the Dojo widget
instance when the Dojo Parser parses the emitted XPage in the browser or client.

Using Custom Dojo Widgets

As explained for the example in the previous section, the Dojo modules and other supporting
resources are already deployed with Notes/Domino 8.5.2, so no further deployment steps are
required to use these resources. The case for your own custom-coded widgets is slightly different
in that you must ensure the widget source code files are deployed and available to your applica-
tion. But, you must also ensure that the path to your widget code is registered with the Dojo
framework. This allows Dojo to resolve any dojoModule references to your custom widget code.

It is important to explain the fact that the approach described in this section is one of several
to integrate custom Dojo widgets within an XPage. It is a lightweight approach that involves
deploying the custom widget source files from within the actual .NSF application file. Further opti-
mizations could be employed to deploy from a global server location instead. The XPages Extensi-
bility API is a separate XPages initiative that provides an extension and deployment mechanism
for custom Dojo widgets. The approach used by that extension API is the best practice approach
for production application use. The lightweight approach described in this example, however,
teaches you the fundamentals of working with custom Dojo widgets in your XPages applications.

Listing 11.9 is a fragment taken from the dojoIntegration XPage, and it highlights the key
elements of including custom-coded Dojo widgets in an XPage.

394 Chapter 11 Advanced Scripting

Listing 11.9 dojoIntegration XSP Markup Highlighting Key Custom Dojo Widget Elements

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

3 dojoParseOnLoad=”true”

4 dojoTheme=”true” ...>

5 <xp:this.resources>

6 <xp:script src=”/pathUtil.jss” clientSide=”false”></xp:script>

7 <xp:script clientSide=”true”>

8 <xp:this.contents><![CDATA[

9 var path = “ ${javascript:getDatabasePath()} “.trim();

10 dojo.registerModulePath(“mxpd.ui”, path+”mxpd/ui”);

11 dojo.registerModulePath(“mxpd.data”, path+”mxpd/data”);

12]]></xp:this.contents>

13 </xp:script>

14 <xp:dojoModule name=”mxpd.ui.ViewTree”></xp:dojoModule>

15 <xp:dojoModule

16 name=”mxpd.data.ViewReadStore”>

17 </xp:dojoModule>

18 </xp:this.resources>

19 <xp:div ...>

20 <xp:div id=”viewStore” style=”visibility:hidden”

21 dojoType=”mxpd.data.ViewReadStore”>

22 <xp:this.dojoAttributes>

23 <xp:dojoAttribute name=”jsId”

24 value=”allDocumentsReadStore”>

25 </xp:dojoAttribute>

26 <xp:dojoAttribute name=”url”>

27 <xp:this.value>

28 <![CDATA[${javascript:

29 getDatabasePath() + “($xpAllDocuments)”

30 }]]>

31 </xp:this.value>

32 </xp:dojoAttribute>

33 </xp:this.dojoAttributes>

34 </xp:div>

35 <xp:div id=”viewTree” dojoType=”mxpd.ui.ViewTree”>

36 <xp:this.dojoAttributes>

37 <xp:dojoAttribute name=”store”

38 value=”allDocumentsReadStore”>

39 </xp:dojoAttribute>

40 <xp:dojoAttribute name=”refreshId”

Dojo Integration 395

41 value=”#{id:previewContainer}”>

42 </xp:dojoAttribute>

43 <xp:dojoAttribute name=”url”

44 value=”${javascript:getDatabasePath()}”>

45 </xp:dojoAttribute>

46 <xp:dojoAttribute name=”persist”

47 value=”false”>

48 </xp:dojoAttribute>

49 </xp:this.dojoAttributes>

50 </xp:div>

51 </xp:div>

52 ...

53 </xp:view>

To fully explain this markup, you also need to study Listing 11.10, which shows the code
for the server-side getDatabasePath() function being using in Listing 11.9 on line 9. This
function is held within the server-side JavaScript library, called pathUtil.jss, as declared in
the resources for this XPage on line 6.

Listing 11.10 getDatabasePath() Function in the pathUtil.jss Server-Side JavaScript Library

function getDatabasePath(){

var value = facesContext.getApplication()

.getViewHandler().getResourceURL(facesContext, “/”);

value = facesContext.getExternalContext().encodeResourceURL(value);

if(!value.endsWith(“/”)){

value += “/”;

}

return value;

}

As shown in Listing 11.9, for the XPage markup, the pathUtil.jss server-side
JavaScript library is included in the resources for the XPage. A second resource, which is a client-
side piece of JavaScript, is coded directly within the resource declaration on line 7. This is done
this way to allow the server-side getDatabasePath() call to be preprocessed before the XPage
starts to emit HTML markup to the browser or client. This is one way to find out the full path to
an .NSF application file, and it’s demonstrated for you in this manner to simply highlight the
intermingling of both server-side and client-side JavaScript. Therefore, this line of code gets pre-
processed before delivery to the browser or client:

var path = “ ${javascript:getDatabasePath()} “.trim();

396 Chapter 11 Advanced Scripting

It ends up looking like this when delivered to the browser or client:

var path = “ /Chapter11.nsf/ “.trim();

Lines 10 and 11, shown here, are where the actual paths to the custom-coded Dojo widget
resources become registered with the Dojo framework:

dojo.registerModulePath(“mxpd.ui”, path + “mxpd/ui”);

dojo.registerModulePath(“mxpd.data”, path + “mxpd/data”);

The call to dojo.registerModulePath() is given two parameters. The first parameter
is a Dojo package identifier. This is used as a prefix identifier to the widget class name, therefore
resulting in the dojoType name for that widget. The second parameter is a physical path to the
widget source code files. This enables the Dojo framework to resolve the Dojo package part of a
dojoType attribute and dojoModule resource tag when initializing a rendered XPage. This reg-
istration step therefore allows the Dojo framework to load and initialize the module into the
framework itself by using the special package/class name instead of using a URL based path
name. So, in this particular example, two custom-coded Dojo modules are registered with the
Dojo framework:

• mxpd.ui is resolvable at the location “/Chapter11.nsf/mxpd/ui”.

• mxpd.data is resolvable at the location “/Chapter11.nsf/mxpd/data”. This of
course implies that this subdirectory structure actually exists within the Chapter11.nsf
application. You can see that it does by examining the application using the Package
Explorer view in Designer. To enable this view, select Window > Show Eclipse Views
> Other. A dialog appears to assist you in selecting another view. Type the Package
Explorer into the filter, as shown in Figure 11.18.

The Package Explorer view appears along the right side of Designer. It allows you to view
an .NSF file as an Eclipse virtual file system. This means you can view the contents of the differ-
ent design element folders within the .NSF file, but you can also manage content within the vir-
tual file system. Now, expand the Chapter11.nsf application within the Package Explorer.
Among the virtual folders is a WebContent folder. Fully expand this folder and all of its subdi-
rectories. This reveals numerous folders, including the mxpd/ui and mxpd/data subdirectories
that contain the custom Dojo widget source files required by the dojoIntegration XPage, as
shown in Figure11.19.

You should be starting to understand how everything is tied together to integrate the cus-
tom Dojo widgets mxpd.ui.ViewTree and mxpd.data.ViewReadStore into the
dojoPartialRefresh XPage. In Listing 11.9, you see two XPage DIV controls, both declaring
the dojoType property. The first <xp:div> tag on line 21 points to the ViewReadStore
widget:

<xp:div id=”viewStore” ... dojoType=”mxpd.data.ViewReadStore”>

The second <xp:div> tag on line 35 points at the ViewTree widget:

<xp:div id=”viewTree” ... dojoType=”mxpd.ui.ViewTree”>

Dojo Integration 397

Window > Show Eclipse Views > Other…

Figure 11.18 Enabling the Package Explorer view in Designer

Now, double-click each custom-coded Dojo widget source file—ViewTree.js and
ViewReadStore.js—within the Package Explorer to open them in Designer. Listing 11.11
shows the key pieces of code for the ViewReadStore widget. As you can see, the widget gets its
full name from a combination of the registered module name and the filename of the actual
JavaScript class. Hence, the ViewReadStore widget is formally declared and identified within
the Dojo framework as mxpd.data.ViewReadStore. This same naming convention applies to
the ViewTree widget, whereby it is formally declared and identified as the mxpd.ui.ViewTree
widget.

Listing 11.11 Key Pieces of Code for the mxpd.data.ViewReadStore Custom Widget

dojo.provide(“mxpd.data.ViewReadStore”);

dojo.require(“dojo.data.ItemFileReadStore”);

dojo.declare(“mxpd.data.ViewReadStore”, [dojo.data.ItemFileReadStore],

{

...

constructor: function ctor(keywordParameters){

if(this._jsonFileUrl &&

this._jsonFileUrl.indexOf(“Expand”) == -1){

this._jsonFileUrl +=

((this._jsonFileUrl.indexOf(“?”) == -1) ?
(continues)

398 Chapter 11 Advanced Scripting

Package Explorer

WebContent virtual folder inside the .nsf

Figure 11.19 Examining the contents of the custom Dojo Module folders in the Package
Explorer

“?” : “&”) +

“ReadViewEntries&OutputFormat=JSON&ExpandView”;

}

},

_getItemsFromLoadedData: function gifld(dataObject){

...

}

});

The key to achieving successful integration of a custom Dojo widget is to ensure that the
dojoType and dojoModule package and class name match the declared widget package and
class name and that the physical path to the widget source files is resolvable and registered with
the Dojo framework using the dojo.registerModulePath() function.

Listing 11.11 (Continued)

Dojo Integration 399

When Is an XPage Not an XPage?

Moving on from the integration topic, it is now worth explaining how this example actually
retrieves the Body field contents. So, first, the interesting thing about the mxpd.

data.ViewReadStore widget, as shown in Listing 11.11, is that it generates a URL in its
constructor code. As previously described, this widget issues requests against the
ReadViewEntries Notes/Domino URL command to retrieve view entry information. This
information is parsed and reconstructed into a structure compatible for use by the
mxpd.ui.ViewTree widget. This widget then displays this structure as a hierarchical tree.
Listing 11.12 shows the key pieces of code for the mxpd.ui.ViewTree widget.

Listing 11.12 Key Pieces of Code for the mxpd.ui.ViewTree Custom Widget

dojo.provide(“mxpd.ui.ViewTree”);

dojo.require(“dijit.Tree”);

dojo.declare(“mxpd.ui.ViewTree”, [dijit.Tree],

{

refreshId: ““,

url: ““,

loadHandler: function lh(response, ioArgs){

var previewContainer = dojo.byId(this.refreshId);

if(null != previewContainer){

previewContainer.innerHTML = response;

}

return response;

},

onClick: function oc(item, node) {

...

var position = this.store.getValue(item, “@position”);

...

var unid = this.store.getValue(item, “@unid”);

var loc = document.location.href;

var actionURL = this.url +

“previewHandler.xsp?” +

“action=openDocument&documentId=” + unid;

dojo.xhrGet({

url: actionURL,

handleAs: “text”,

load: dojo.hitch(this, this.loadHandler)

(continues)

400 Chapter 11 Advanced Scripting

});

...

},

...

});

Essentially, this widget renders itself as a hierarchal tree of document UNID nodes. On
clicking a tree node, the contents of the target document’s Body field is displayed using partial
refresh. This is achieved via an AJAX GET-based request using the dojo.xhrGet() function, as
shown in the onClick function in Listing 11.12. The target URL of this AJAX call is actually
issued against another XPage, along with action and documentId querystring parameters.
That target XPage is also inside the Chapter11.nsf application and is named previewHandler.
You can open this XPage in Designer and view its source code in the WYSIWYG editor. Listing
11.13 also details the XSP markup.

Listing 11.13 XSP Markup for the previewHandler XPage

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

rendered=”false”>

<xp:this.afterRenderResponse>

<![CDATA[#{javascript:

var response = facesContext.getExternalContext().getResponse();

var writer = facesContext.getResponseWriter();

var unid = context.getUrlParameter(“documentId”);

var responseContent = “Document UNID is missing”;

if(null != unid && unid.length > 0){

var document = database.getDocumentByUNID(unid);

var mimeEntity = document.getMIMEEntity(“Body”);

if(null != mimeEntity){

responseContent = mimeEntity.getContentAsText();

}else{

responseContent = document.getItemValueString(“Body”);

}

if(responseContent.equals(““)){

responseContent = “No preview content available”;

}

}

Listing 11.12 (Continued)

Working with Traditional Notes/Domino Building Blocks 401

response.setContentType(“text/html”);

writer.write(responseContent);

writer.endDocument();}]]>

</xp:this.afterRenderResponse>

</xp:view>

This is an example of using an XPage to generate a custom response. An XPage typically
goes through the XPages execution lifecycle and finish by rendering a response to a browser or
client. That response contains all the required HTML constructs, CSS, Dojo, and JavaScript
resources to makeup the emitted XPage based on its XSP markup design. But as an alternative,
you can also configure an XPage not to render by setting the render property on the <xp:view>
tag to false. By then leveraging the afterRenderResponse XPage event as seen in Listing
11.13, you can access the XPages runtime Response and ResponseWriter objects to emit a
custom response. In this particular example, the custom response is the content of the Body field
within the target Notes Document. This content can be either MIME or CD record format, but
either way this is written out as the response content when this XPage is requested. So, in this
example, when you click a mxpd.ui.ViewTree node, this XPage is requested via an AJAX call.
The response is then sent back to the AJAX handler, and the mxpd.ui.ViewTree partially
updates the right-side of the XPage by assigning the response content to the innerHTML property
of the previewContainer element shown in Listing 11.12.

The approach used here to retrieve a custom response is a very useful one. By using it, you
can leverage the stateful XPages runtime of your application. You benefit from being able to
access the XPages context and server-side API, but also in executing through the same security
model as any other XPage. It is an approach that is not unlike using WebAgents written in either
Java or LotusScript to return a custom response. The key difference is that WebAgents typically
incur a large initialization time of up to 1.5 seconds when they are first requested. Whereas using
an XPage in the manner described here, is several times faster to initialize and respond making it
a better performing solution.

You have now learned a lot about XPages use of Dojo, but also about integrating your own
custom Dojo widgets with XPages. And it is on this final topic about agents that you will learn
more about, but also on working with other traditional Notes/Domino building blocks, such as
@Functions, and formula language in the next section of this chapter.

Working with Traditional Notes/Domino Building Blocks
Experienced Domino web-application developers undoubtedly assume certain things about
XPages. That is, you most likely have an expectation that the way you did things for classical
Domino web-application development can still be done that way for the most part using XPages.
The answer here is no for a few reasons—either XPages has a better way of doing it and the older
way has been deprecated. Or, in some cases, it simply has not been implemented in XPages yet.
(And we’re working on it!)

402 Chapter 11 Advanced Scripting

Select the @Functions library from the dropdown list

Figure 11.20 @Functions library within the Script Editor

The good news is that XPages, from Notes/Domino 8.5 onward, provides you with ways to
work directly with @Functions in your server-side JavaScript code. You are also able to evaluate
formula language and work with the scalar result directly in server-side JavaScript code. Of course,
Java and LotusScript WebAgents can also be executed using server-side JavaScript code. New in
Notes/Domino 8.5.2, you can supply the current document context, or in-memory document, when
running a WebAgent. This is in addition to the approach that has been there since Notes/Domino
8.5 of providing a parameter document ID.You learn more on these topics in the next three sections.

Working with @Functions, @Commands, and Formula Language
XPages provides you with 127 @Functions. These are available through the server-side

JavaScript @Function library, as shown in Figure 11.20. They are analogous to their Notes/
Domino formula language siblings and make low-level calls on the same underlying backend
@Function API.

Note that the same restrictions apply to the XPages implementation of these functions as
those of their formula language siblings. (Refer to the in-built Lotus Domino Designer Help
Index for details on Formula language restrictions.) One omission, for obvious reasons, is the
@Command function. The @Command function cannot be run using a web application—its purpose
is to execute Notes UI workspace actions. Leading on from this, certain other @Functions are not

Working with Traditional Notes/Domino Building Blocks 403

suitable for execution in the context of a web application, either. Of the 127 @Functions provided
by XPages, the majority of these share functional parity with their formula language siblings. A
small number that are available in the classic formula language version have not been imple-
mented in XPages, because there is another way to obtain the same information in the server-side
JavaScript API, or they are candidates for future inclusion. The most notable examples that are
not available in XPages are @BrowserInfo, @URLOpen, @WebDbName, and @DbCommand.

If you are already familiar with formula language @Functions, you may notice two key dif-
ferences in the syntax used to invoke server-side JavaScript @Functions—basically, you must
use parentheses at the end of the @Function, and you must use a comma to separate parameters,
not a semicolon.

You can study several examples of server-side JavaScript @Functions at work within the
Discussion template that ships with Notes/Domino 8.5.2. The Chapter11.nsf application is
based on this template, so if you can run a search in Designer for instances of @ within this appli-
cation, you can find many examples. One such worked example, shown in Listing 11.14, is for
the tagField input control used by the mainTopic Custom Control. This control is configured to
perform a type-ahead search for entries in a target dataset, matching the word you are typing. In
this example, the @DbColumn function provides the xp:typeAhead control with the column val-
ues from the first column in the xpCategoryCloud view.

Listing 11.14 tagField XSP Markup from the mainTopic Custom Control Using @DbColumn()

<xp:inputText id=”tagField”

value=”#{dominoDoc.WebCategories}”

multipleSeparator=”,”>

<xp:typeAhead mode=”partial” ignoreCase=”true”

minChars=”1” id=”typeAhead1”

valueListSeparator=”,” tokens=”,”>

<xp:this.valueList>

<![CDATA[#{javascript:

@DbColumn(@DbName(), “xpCategoryCloud”, 1)

}]]>

</xp:this.valueList>

</xp:typeAhead>

</xp:inputText>

To study a second example, open the buildingBlocks XPage found within the
Chapter11.nsf application. You use this XPage for the remainder of this section, because it con-
tains not only examples of working with @Functions, but examples of working with agents and
evaluating formula language.

With the buildingBlocks XPage open in Designer, focus the button control labeled Create
in the WYSIWYG editor. Using the Events view, open the Script Editor for this button’s

404 Chapter 11 Advanced Scripting

onclick server-side event. Listing 11.15 shows the key lines of code that use an @Function in
this onclick server-side event.

Listing 11.15 onclick Server-Side Event Code for the Create Button Using @Random()

var document = database.createDocument();

if(null != document){

document.appendItemValue(“type”, “jAgentDoc”);

document.appendItemValue(“param1”, @Random());

document.appendItemValue(“param2”, @Random());

...

...

In this example, the @Random() function generates a randomized double number—note
the use of the parenthesis! The returned random value is then appended as an item within the
newly created document.

Moving onto another example within the buildingBlocks XPage, you should now select the
link control labeled subtract within the WYSIWYG editor. Again, using the Events view, open
the onclick server-side event in using the Script Editor. Listing 11.16 shows the key lines of
code that make use of a @Function, but does so through an evaluated formula language expression.

Listing 11.16 onclick Event Code for the Subtract Link Using session.evaluate() and Formula

...

var result = session.evaluate(“result - @Random”, jAgentDoc);

if(!result.isEmpty()){

jAgentDoc.replaceItemValue(“result”, result.firstElement());

jAgentDoc.save();

}

...

In this case, the global session object is being used to evaluate a formula language
expression using the session.evaluate() method. There are two variants of this method:

java.util.Vector session.evaluate(“formula”)

java.util.Vector session.evaluate(“formula”, document)

As you can see, both take a formula language expression as the first parameter. When a
document object is supplied as the second parameter, the formula language parameter is executed
under the context of that document. This allows you to run the given formula against a field
within that document for instance. Both variants of this method return a java.util.Vector
object. The first element in this vector contains a scalar result from the evaluation of the formula

Working with Traditional Notes/Domino Building Blocks 405

language expression. Note that you cannot make changes to the supplied document; you can only
run an expression that returns a scalar result expression.

In Listing 11.16, you see that the two parameter version of session.evaluate() is
being used. The first parameter, “result - @Random”, is a formula language expression that
subtracts a randomized double-number value from the result field using the @Random formula
language @Function. Because a field name has been used in this expression, the second docu-
ment parameter becomes mandatory. Therefore, the jAgentDoc name supplied is actually a ref-
erence to the current in-memory document. This document does, of course, contain a field named
result. Listing 11.16 also shows how the scalar result is obtained from the java.
lang.Vector result object, before being saved into the jAgentDoc document:

jAgentDoc.replaceItemValue(“result”, result.firstElement());

jAgentDoc.save();

Recall that you cannot make changes to a document using the formula language expres-
sion. Listing 11.16 is therefore making the change to the document’s result field using the
document.replaceItemValue() method, only after obtaining the formula language evalua-
tion result.

These simple examples demonstrate not only how easy it is to leverage the @Function
library, but to evaluate formula language expressions within your server-side JavaScript code.
Before previewing the buildingBlocks XPage, read the next section, where you learn about
working with agents expression.

Working with Agents, In-Memory Documents, and Profile Documents
A typical Notes/Domino application contains one or more agents. These artifacts are considered
by many Notes/Domino developers as one of the most vital tools in their development arsenal. It,
therefore, seems reasonable to expect XPages to be able to work with agents. Indeed, from
Notes/Domino 8.5, XPages has provided the capability to run agents using server-side JavaScript
by way of the following four methods:

Agent.run() / Agent.run(paramDocId)

Agent.runOnServer() / Agent.runOnServer(paramDocId)

The parameterized version of these methods takes a document Note ID, which can then be
retrieved within the agent code through the Agent.getParameterDocID() method. This
allows you to retrieve the associated document from the database, within the agent. You can then
use this document in a read/write scenario before exiting the agent. On exiting the agent, your
server-side JavaScript can then retrieve the document once more to further process against it.

TIP A web application, either classic Domino or XPages, can only ever run what is
known as a WebAgent. This agent has its Run as web user option enabled to allow invoca-
tion by a web application. Note that, if an agent is written in LotusScript, it must not contain
any of the NotesUI* classes. These include NotesUIWorkspace, NotesUIDatabase, Note-
sUIDocument, and NotesUIView, as these require special native client features that are not
available in a web context.

406 Chapter 11 Advanced Scripting

The approach detailed in the preceding paragraphs has been considered cumbersome to
effectively ensure the same document is used under the context of the server-side JavaScript,
but also within the context of the agent. It is for this reason that XPages in Notes/Domino 8.5.2
now provides two new methods for invoking and passing in an in-memory document to an
agent. These two new methods are

agent.runWithDocumentContext(document)

agent.runWithDocumentContext(document, paramDocId)

To further examine these methods, reopen the buildingBlocks XPage in Designer if it is
not already opened. This XPage contains four examples that demonstrate different ways you can
run an agent from XPages server-side JavaScript code.

Once opened, click the button labeled Create in the WYSIWYG editor. Using the Events
view, open the Script Editor for the Create button’s onclick server-side event. You can either
study the code in the Script Editor. (Listing 11.17 displays the same code.)

Listing 11.17 onclick Event Code for the Create Button Using
agent.runWithDocumentContext()

1 var agent = database.getAgent(“jAgent”);

2 if(null != agent){

3 var document = database.createDocument();

4 if(null != document){

5 document.appendItemValue(“type”, “jAgentDoc”);

6 document.appendItemValue(“param1”, @Random());

7 document.appendItemValue(“param2”, @Random());

9 try{

10 agent.runWithDocumentContext(document);

11 }catch(e){

12 print(“Error: “ + e);

13 return;

14 }

15 document.save();

16 }

17 }

Listing 11.17 does many interesting things to make use of the new Agent.

runWithDocumentContext() method. Listing 11.17 is explained as follows:

1. On line 1, a reference to the jAgent agent is retrieved from the database. (You see the
code for this agent shortly.)

2. Having retrieved a reference to the jAgent agent, a new document is created on line 3.

Working with Traditional Notes/Domino Building Blocks 407

Figure 11.21 jAgent agent listed under Code > Agents in the Chapter11.nsf application

3. Lines 5, 6, and 7 append three fields into the new document. The new document has not
yet been saved, so is effectively an in-memory document.

4. The code on line 10 makes use of the new agent.runWithDocumentContext()
method, passing in the in-memory document. At this point, control is handed to the
jAgent agent. It processes against the in-memory document before handing control
back to the server-side JavaScript event.

5. On successful running of the agent, line 10 attempts to save the in-memory document.

Take this opportunity to examine the jAgent agent in Designer. jAgent can be found
under the Code > Agents design element in the Applications view, as displayed in Figure 11.21.
Simply double-click jAgent to open it.

Once opened, you are presented with the Java Agent tab page for this agent. This page
enables you to configure the basic options, the security settings, and document selection criteria
for an agent. This agent has been written in Java, so to view the source code, one more step is
required: You must also double-click the JavaAgent.java entry, as shown in Figure 11.22.
(Agents written in LotusScript open directly within the source code.) This extra double-click
opens the Java agent source code, as a Java agent is a project unto itself with the capability to
include other resources and reference other libraries; therefore, it’s more than just simple Java
source/class files.

408 Chapter 11 Advanced Scripting

Double-click to open the source

Figure 11.22 JavaAgent.java entry in the Java Agent tab page

Having double-clicked the JavaAgent.java entry, the Java source code for jAgent
opens in Designer within the Java editor. A reduced code listing for this agent’s NotesMain
method is also provided in Listing 11.18.

Listing 11.18 Java Source Code for the jAgent Agent

...

1 public void NotesMain() {

2 try {

3 Session session = getSession();

4 Database database = session.getCurrentDatabase();

5 AgentContext agentContext = session.getAgentContext();

6 Agent agent = agentContext.getCurrentAgent();

7 Document inMemoryDocument = agentContext.getDocumentContext();

8 String parameterDocID = agent.getParameterDocID();

9

10 if(parameterDocID.equals(““)){

11 if(null != inMemoryDocument){

12 // case: runWithDocumentContext(document)

13 double param1 =

Working with Traditional Notes/Domino Building Blocks 409

14 inMemoryDocument.getItemValueDouble(“param1”);

15 double param2 =

16 inMemoryDocument.getItemValueDouble(“param2”);

17 inMemoryDocument.replaceItemValue(

18 “result”, Double.valueOf(param1 + param2)

19);

20 }

21 }else{

22 Document parameterDoc =

23 database.getDocumentByID(parameterDocID);

24 if(null != parameterDoc){

25 if(null != inMemoryDocument) {

26 // case: runWithDocumentContext(document, noteID)

27 double result =

28 inMemoryDocument.getItemValueDouble(“result”);

29 double addon =

30 parameterDoc.getItemValueDouble(“addon”);

31 inMemoryDocument.replaceItemValue(

32 “result”, Double.valueOf(result + addon)

33);

34 }else{

35 // case: runOnServer(noteID)|agent.run(noteID)

36 double param1 =

37 parameterDoc.getItemValueDouble(“param1”);

38 double param2 =

39 parameterDoc.getItemValueDouble(“param2”);

40 double result =

41 parameterDoc.getItemValueDouble(“result”);

42 Document email = database.createDocument();

43 email.replaceItemValue(

44 “Subject”, param1+” “+param2+” “+result

45);

46 email.send(session.getUserName());

47 }

48 }

49 }

50 }catch(Exception e){

51 e.printStackTrace();

52 }

...

410 Chapter 11 Advanced Scripting

The code for jAgent seen in Listing 11.18, and displayed within the Java editor in
Designer, is designed to deal with three different running cases:

• agent.runWithDocumentContext(document)

• agent.runWithDocumentContext(document, paramDocId)

• agent.run(paramDocId) or agent.runOnServer(paramDocId)

The first thing done in the code for the agent, however, is initializing some important vari-
ables in lines 3 to 8 of the code. Lines 7 and 8 are the most notable of these assignments, in that
the document context and the parameter document ID are both easily obtained:

7 Document inMemoryDocument = agentContext.getDocumentContext();

8 String parameterDocID = agent.getParameterDocID();

Referring to the Create button event of Listing 11.17, you can see that this particular “cre-
ate” scenario is dealt with under the first of the three cases catered for by jAgent. Recall that an
in-memory document is passed into the jAgent agent. Using Listing 11.18 as a reference, this
case is then dealt with by lines 10 to 20 of the code. Line 7 has already obtained the in-memory
document through the call to agentContext.getDocumentContext(), allowing lines 10
through 20 to work upon the in-memory document.

Take this opportunity to preview the buildingBlocks XPage using either the client or
browser option. After the XPage launches, click the Create button a few times. This executes the
jAgent agent, therefore creating a number of documents within the application. You see some-
thing similar to what’s displayed in Figure 11.23.

The first of the three cases has now been explained. If you return to the buildingBlocks
XPage in Designer, the remaining two cases can now be examined in turn. First, if you click the
addon link within the WYSIWYG editor, using the Events view, open the Script Editor for this
link’s server-side onclick event. Listing 11.19 details the code of this event handler.

Listing 11.19 addon Link Event Using agent.runWithDocumentContext(document,
paramDocId)

1 var agent = database.getAgent(“jAgent”);

2 if(null != agent){

3 var profileDocument =

4 database.getProfileDocument(“jAgent”, @UserName());

5 if(null != profileDocument){

6 profileDocument.appendItemValue(“addon”, @Random());

7 profileDocument.save();

8 try{

9 agent.runWithDocumentContext(

10 jAgentDoc, profileDocument.getNoteID()

11);

Working with Traditional Notes/Domino Building Blocks 411

Figure 11.23 BuildingBlocks XPage being previewed

12 jAgentDoc.save();

13 }catch(e){

14 print(e);

15 }finally{

16 profileDocument.removePermanently(true);

17 }

18 }

19 }

This code uses the agent.runWithDocumentContext(document, paramDocId)

method, and the exact same jAgent agent is used to process against. The interesting thing about
this example is the use of a secondary document. The document used for this is a special type of
Notes Document called a profile document. Profile documents do not appear in views, nor do they
get indexed, so they are a good solution for holding data, such as user-specific preferences and so
forth. The profile document is created on line 3 of Listing 11.19. As you can see, it is created, and
a field is immediately written into it before being saved. The call to run the agent is then given a
reference to an already predefined document called jAgentDoc as its first parameter, and the
profileDocument.getNoteID for its second parameter. You can see that using this version of

412 Chapter 11 Advanced Scripting

the agent.runWithDocumentContext() method gives you a way to supply not only an in-
memory document, but also a secondary document Note ID. This document Note ID can then be
used to retrieve that document within the agent. This can be seen in Listing 11.18, where lines 22
through 33 take care of retrieving the profile document and work on the in-memory document.

The final scenario dealt with by the jAgent agent is the agent.run(paramDocId) or
agent.runOnServer(paramDocId) case. This can be examined by looking at the email link’s
onclick server-side event handler code in the Script Editor. Listing 11.20 also shows this code
for your convenience.

Listing 11.20 Code of the Email Link Using agent.runOnServer(paramDocId)

var agent = database.getAgent(“jAgent”);

if(null != agent){

try{

agent.runOnServer(jAgentDoc.getNoteID());

}catch(e){

print(e);

}

}

The jAgentDoc reference is a predefined document. In this case, its Note ID is supplied as
the parameter to the call on agent.runOnServer(paramDocId). The jAgent agent is also
used for this example, so referring to Listing 11.18 of the jAgent code, you see that lines 22
through 24 and 35 through 46 deal with retrieving the document using the parameter doc ID, and
processing the email.

Now that you have learned about the different ways the jAgent agent is being used in the
buildingBlocks XPage, spend sometime previewing it and digesting what you covered in this
section.

Managed Beans
In Notes/Domino 8.5.2, XPages provides support for managed beans. This feature is provided by
the JSF framework, so it is essentially a Java technology. Note, however, that XPages makes it
easy to develop an application using this feature—the Notes/Domino 8.5.2 Discussion Template
actually includes a managed bean to make the allDocumentsView Custom Control more interac-
tive and efficient.

As the name implies, there is some degree of automated management involved, and this is
certainly true. A managed bean has both an execution lifecycle, and a scope under which it lives.
The “managed” part is related to the management of that lifecycle and scope. This makes it easy
to develop managed beans, because all the infrastructural code is already in-place within the JSF
layer. Where XPages lends a further helping hand is in its support for managed beans. This

Managed Beans 413

support provides a registration mechanism through the faces-config.xml file, but also in
allowing you to work directly with managed beans in your server-side JavaScript code. You also
do not have to worry about initializing or constructing any managed bean instances, because this
is taken care of for you by the XPages runtime the first time you call a method on a managed bean
in server-side JavaScript code.

Now, reopen the Chapter11.nsf application in Designer if it is closed. As mentioned previ-
ously, this application is a Discussion Template 8.5.2 derived application which means that it con-
tains the same managed bean code provided by the Discussion Template. The first thing to look at
is the WebContent/WEB-INF/faces-config.xml file using the Package Explorer view. After
you find it, simply double-click it to open it in Designer. Listing 11.21 shows the content of this file.

Listing 11.21 Faces-config.xml from the Discussion Template and Chapter11.nsf application

<?xml version=”1.0” encoding=”UTF-8”?>

<faces-config>

<managed-bean>

<managed-bean-name>previewBean</managed-bean-name>

<managed-bean-class>

com.ibm.xpages.beans.PreviewBean

</managed-bean-class>

<managed-bean-scope>view</managed-bean-scope>

</managed-bean>

<!—AUTOGEN-START-BUILDER: Automatically generated by

IBM Lotus Domino Designer. Do not modify.—>

<!—AUTOGEN-END-BUILDER: End of automatically generated section—>

</faces-config>

This is an XML-based file, and as you have already learned in Chapter 5, declares JSF-
related items for an application. In this case, one managed bean is being declared as follows:

1. The <managed-bean-name> element declares the name that is used to reference the
managed bean in server-side JavaScript or EL Language code.

2. The <managed-bean-class> element declares the implementation Java class.

3. The <managed-bean-scope> element declares under which scope the managed bean
lives. Valid scopes are application, session, request, and view. These scopes are
comparable to the XPages server-side JavaScript scopes detailed in Chapter 6.

You can declare as many managed beans as you need within each of the scopes using the
faces-config.xml file. For example, you might require several different managed beans in
your application, doing different things within the view scope, and perhaps another couple that
work with the session scope.

414 Chapter 11 Advanced Scripting

Manage folders on the Build Path from here

Figure 11.24 Java Build Path editor

Next, study the implementation Java class for this managed bean. As seen in Listing 11.21,
the <managed-bean-class> element declares com.ibm.xpages.beans.PreviewBean to
be the implementation Java class. In Designer, use the Package Explorer view to examine the
Build Path for the Chapter11.nsf application. This shows you that a directory named source
has been configured to be included in the compilation build path for the application. This means
that any *.java source files within that directory are automatically compiled. The compiled
*.class files are then part of the executable application. Figure 11.24 shows the Java Build
Path editor for the Chapter11.nsf application.

Using the Java Build Path editor, you can see that the WebContent/WEB-INF/source
directory is on the build path. You are free to create directories under the WebContent folder as
required—in this example, the source directory was created by me under the WebContent/WEB-
INF/ folder so that its content is not accessible using a web URL. Any content under the
WebContent/WEB-INF/ folder is protected from web URL access. Close the Java Build Path
editor and return to the Package Explorer view, where you should fully expand the
WebContent/WEB-INF/source Java folder. Inside, you find the declared managed bean imple-
mentation Java package and class file, as shown in Figure 11.25.

Managed Beans 415

Double-click to open the Beans Java source

Figure 11.25 Declared managed bean implementation Java package and class

If you double-click the PreviewBean.java file, it opens in a Java editor within Designer.
Listing 11.22 also details the main parts of the code within this class file.

Listing 11.22 Source Code for the com.ibm.xpages.PreviewBean Class

package com.ibm.xpages.beans;

...

public class PreviewBean implements Serializable {

...

private Map<String,Boolean> _previews=new HashMap<String,Boolean>();

public PreviewBean(){}

public void setVisible(final String noteId, final boolean visible) {

if(_previews.containsKey(noteId)) {

if (false == visible) {

_previews.remove(noteId);

return;

}
(continues)

416 Chapter 11 Advanced Scripting

}

_previews.put(noteId, true);

}

public void toggleVisibility(final String noteId) {

if(_previews.containsKey(noteId)) {

_previews.remove(noteId);

}else{

_previews.put(noteId, true);

}

}

public boolean isVisible(final String noteId) {

if(_previews.containsKey(noteId)) {

return (_previews.get(noteId).booleanValue());

}

return (false);

}

public String getVisibilityText(

final String noteId, final ResourceBundle resourceBundle) {

String moreLinkText = “More”;

String hideLinkText = “Hide”;

if(null != resourceBundle){

moreLinkText = resourceBundle.getString(

“alldocuments.more.link”

);

hideLinkText = resourceBundle.getString(

“alldocuments.hide.link”

);

}

if(_previews.containsKey(noteId)) {

return (hideLinkText);

}

return (moreLinkText);

}

public String getSelectedClassName(final String noteId) {

Listing 11.22 (Continued)

Managed Beans 417

if(_previews.containsKey(noteId)) {

return (“xspHtmlTrViewSelected”);

}

return (“xspHtmlTrView”);

}

public String getVisibilityLinkStyle(final String noteId) {

if(_previews.containsKey(noteId)) {

return (“visibility:visible”);

}

return (“visibility:hidden”);

}

}

The implementation class for this managed bean is not complex. It simply declares a number
of public methods that are used by server-side JavaScript code in the allDocumentsView Custom
Control, as you will see shortly. The main things to remember are that a managed bean should
declare a public no-parameter constructor and should also implement the
java.io.Serializable interface. This enables the managed bean to be serialized and deserial-
ized between requests to an XPage that uses the managed bean. This supports the scope mecha-
nism, without which the managed bean would not persist between requests, therefore invalidating
the notion of any declared scope.

The final thing to examine is the allDocumentsView Custom Control to see how server-side
JavaScript code leverages this managed bean. Open this Custom Control in Designer, and within the
WYSIWYG editor, click the link with the ID moreLink. Then, switch to the Source editor, where
you see the full range of server-side JavaScript calls being used by this link control against the man-
aged bean. Listing 11.23 shows the key lines of code in the XSP markup for the moreLink control.

Listing 11.23 XSP Markup for the moreLink Link in the allDocumentsView Custom Control

<xp:link id=”moreLink”

text=

“#{javascript:previewBean.getVisibilityText(rowData.getNoteID(), res)}”

style=

“#{javascript:previewBean.getVisibilityLinkStyle(rowData.getNoteID())}”>

<xp:eventHandler event=”onclick” submit=”true” ...>

<xp:this.action>

<![CDATA[

#{javascript:previewBean.toggleVisibility(rowData.getNoteID())}

]]>

(continues)

418 Chapter 11 Advanced Scripting

Expanded/collapsed state managed by previewBean

Row coloring managed by previewBean

Figure 11.26 AllDocumentView Custom Control and previewBean in action

</xp:this.action>

...

</xp:eventHandler>

</xp:link>

As you can see in Listing 11.23, and within the allDocumentsView Custom Control, if you
have Designer opened, the moreLink is making extensive use of the managed bean. The interest-
ing aspect to this is the direct reference to the managed bean name, previewBean, within the
server-side JavaScript.

Now, take the opportunity to preview the allDocuments XPage. With this new knowledge
about the how the allDocumentView Custom Control is working, you should toggle the
moreLink on different rows of the view, and also page back and forth through the view. Note
how the previewBean is maintaining the state of expanded and collapsed rows for the
allDocumentsView Custom Control, changing the style of the rows, and also changing the text
of the moreLink for each row, as shown in Figure 11.26.

Listing 11.23 (Continued)

Conclusion 419

This is just one use case where the introduction of a managed bean provided a good solu-
tion. I’m sure that you can think of many use cases within your own applications that would ben-
efit from a managed bean. The great thing is that XPages makes it so easy to develop them. So,
what are you waiting for?

Conclusion
This chapter taught you about some of the key advanced scripting techniques that you can use
with XPages. It by no means covers everything that you could classify as an “advanced scripting
topic,” but nonetheless, it teaches you the fundamentals. The next chapter deals with another
advanced area of the XPages runtime: how to extend the XPages runtime using Java.

This page intentionally left blank

421

XPages provides a wide range of feature-rich components that enable you to build powerful
Internet applications. These applications are more visually appealing than, and functionally supe-
rior to, similar applications created using traditional Notes/Domino developer tools.

However, there are limits to what is provided with XPages insofar as only so many compo-
nents can be provided out-of-the-box. Although building Custom Controls is a powerful mecha-
nism for developing reusable XPages artifacts with valuable functionality, it is inherently
constrained to building on top of standard components or in combination with other Custom Con-
trols. XPages extensibility provides a way for you to extend the XPages runtime framework to
build your own user interface controls from the ground up, featuring their own behaviors and
functionality that you and others can then consume within XPages applications. Writing your
own user interface controls requires some Java programming skills, but this chapter guides you
through the process.

In fact, there is a lot more to XPages extensibility than new user interface controls. There
are many ways to extend XPages and the services that it provides. For example, creating ver-
sioned reusable libraries, developing custom NSF servlets, and building custom resource
providers in an NSF are all (nonvisual) examples of how to extend the XPages framework. It is
true to say that everything to do with XPages extensibility could probably fill an entire book by
itself!

This chapter focuses on the framework and, in particular, the extensibility of user-interface
components. XPages is a server-side component-based framework for creating web applications
that run on the Domino server and locally in the Notes client. The XPages framework leverages
and extends (and even enhances, in places) the JavaServer Faces framework. One of the key fea-
tures that JSF provides is the capability to extend existing components to create your own user
interface components. This chapter walks you through XPages extensibility and configuration

C H A P T E R 1 2

XPages Extensibility

422 Chapter 12 XPages Extensibility

mechanisms by building a simple number spinner user interface control that can be run from
within an application NSF.

To see a fully working example of the exercises used in this chapter, download the Chap-
ter12.nsf file provided online for this book. You can access this file at www.ibmpressbooks.
com/title/9780132486316.

TIP To find out more about all the various XPages Extensibility mechanisms not covered
in this chapter, visit the Lotus Notes and Domino Application Development wiki (www-10.
lotus.com/ldd/ddwiki.nsf) and look under the API documentation category.

How to Create a New User Interface Control
Creating a new user interface control using theXPages Extensibility mechanisms is a simple
three-step process. The following steps provide a high-level overview of the process; each step is
explored later in this chapter:

1. Create a user interface (UI) component extension Java class: This class imple-
ments the UIComponent interface (a JSF interface that all UI components must
implement). It stores and manages the state of properties that support the functionality
being provided by the component. Just like a standard JavaBean, the component
exposes its properties via setter and getter methods. It also implements several other
expected methods that are required to support the JSF request processing lifecycle
upon which XPages is based; however, numerous classes already implement all of this
required functionality. Your component can simply extend one of these classes, over-
ride one or two methods that identify the component, and focus on the properties it
should manage.

TIP Not familiar with JavaBeans? Wikipedia has a short and simple summary that can
help you quickly get up to speed: http://en.wikipedia.org/wiki/JavaBean4.

2. Create an xsp-config configuration file: This file essentially defines the tag that will
be used in the XPages source XML markup and will tie it to the UI component extension
class that Domino Designer will create for it when it builds the Java class for any XPage
that consumes the component. In addition to defining the component in terms of a tag
element, namespace, and attributes, it can also specify whether those attributes are
required, if they must be specified explicitly, or if they can be computed dynamically.
There will also be information specifically for Domino Designer, describing how the
property declarations should be manipulated and even information on how the compo-
nent should be displayed in the Controls palette, what icons to use, and so on.

Example Component 423

3. Create a Java renderer class: The role of the XPages renderer is to emit the HTML (or
other markup) that provides the visualization of the component. It implements numer-
ous methods that will be expected by the JSF request processing lifecycle, but its main
two responsibilities are to capture any user input for the component (decode) and gener-
ate a representation of the component (encode) for the target platform based on the com-
ponent properties. Although a component can generate its own HTML, it is useful to
provide a separate render if the component is to be used on multiple platforms where the
emitted markup may be different. If a separate renderer is used, it must be registered in
the application faces-config.xml so that the XPages runtime knows this is the one
to use for the component.

The xsp-config file, and the Domino Designer XPages registry that uses the xsp-
config file, is the magic glue that pulls everything together. It defines the tag that is used in the
source of an XPage, it enables Domino Designer to provide appropriate Property editors, and
generates the appropriate component class when building the XPage that will use the XPages
runtime framework.

Example Component
This section walks you though creating a simple UI component extension, the classic number
spinner component. It is a simple component in terms of functionality. This chapter focuses on
the extension mechanisms and does not get into the specific XPages framework classes and
JavaScript development. Figure 12.1 shows the end result of the application that is created with
the number spinner. The number spinner consists of an input text box and two buttons: one that
increments and one that decrements the value in the input box. The increment size and the mini-
mum and maximum values are all configurable as properties of the tag that represents the control.
The buttons pick up the XPages theme that has been configured for the application. In the appli-
cation, three number spinners are used to represent a date, day, month, and year, whose values are
bound to a managed bean with session scope via value binding expressions. As the values are
changed and saved to the bean, the application updates the number of changes by triggering a
value change listener method that is bound to the control.

Figure 12.1 Custom XPages UI Component extension

424 Chapter 12 XPages Extensibility

OK, it is not the most spectacular component in the world, but the focus is really on the
steps, configuration, and coding required to create an XPages component that XPages can use. It
is a good idea that you learn about the JavaServer Faces (JSF) lifecycle as the XPages framework
is based on JSF (refer to Chapter 5, “XPages and JavaServer Faces”) and borrows and shares
many of the same concepts and processes. A complete understanding of JSF is not a prerequisite
for reading this chapter; the only assumption is a bit of Java knowledge. If you follow the instruc-
tions and copy the code samples, you will be fine.

Let’s Get Started
Everything you need to create UI component extensions for XPages is available with Domino
Designer. It provides an XPages development environment, a preview web server for testing the
output, and Java editors and tooling support for building the Java component classes.

The steps in this section walk you through getting your Domino Designer development
environment set up, which prepares you to progress to the next section, where you create some
basic infrastructure classes and configuration files. Pretty quickly, you will have something up
and running!

Create the Initial Application
Start by creating a blank new application based on the blank application template that ships with
the Notes client and Domino server. From Domino Designer, follow these steps:

1. Choose File > New > Application.

2. In the New Application dialog (see Figure 12.2), select Local if you are just developing
for the Notes client or your Domino server (in both the Specify New Application Name
Location and Specify Template for New Application sections).

3. Enter a title for the application (for example, Chapter12), which automatically generates
the filename (for example, Chapter12.nsf). Note that when you enter an application
name, the filename is autogenerated (but only up to the first eight characters if you are
storing the application on a Domino server).

4. Select Blank as the Template and choose OK.

Add Package Explorer to the Domino Designer Perspective
UI Component extensions are written in the Java programming language, so you need to open the
Package Explorer in Domino Designer, which allows you to view the contents of the application
NSF as a raw Java web-application archive (WAR) file system. Follow these steps:

1. Choose Window > Show Eclipse Views > Other.

2. In the Show View dialog (see Figure 12.3), under the Java directory, select Package
Explorer.

3. Choose OK.

Let’s Get Started 425

Figure 12.2 New Application dialog

Figure 12.3 Show View dialog

426 Chapter 12 XPages Extensibility

Figure 12.4 Domino Designer Java Package Explorer

You now see the Package Explorer on the right-hand side of Domino Designer beside the
Controls and Data palettes, as shown in Figure 12.4. With the Package Explorer view, Domino
Designer gives you a file-system representation of the contents of your application NSF that you
can easily navigate around and add your own Java source files that are compiled and added to the
WEB-INF\classes directory under the WebContent folder.

Add a Java Source Code Folder
In the Package Explorer, create a new folder that will store the Java source files you create for
the UI component extension. This folder has a little hash symbol on it to distinguish it from gen-
eral folders. Follow these steps:

1. In the Package Explorer, select the top-level folder, Chapter12.nsf.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Source Folder.

5. Choose Next.

6. See the New Source Folder dialog (see Figure 12.5). Enter src for the Folder Name field.

7. Choose Finish.

Let’s Get Started 427

Figure 12.5 New Source Folder dialog

There is a new src folder (with a special hash icon to signify that it is a source folder and
not a general file folder) under the top-level Chapter12.nsf folder (see Figure 12.6).

The source folder has special properties, most notably defining where compiled Java
classes from the source code in this folder are stored. For the XPages runtime to find the compiled
classes, they need to be stored under the WebContent/WEB-INF/classes folder. You can verify
this for the src folder by examining the Java Build Path properties. To do this, right-click the src
folder in the Package Explorer, choose Build Path > Configure Output Folder..., and note the
value of the project’s default output folder; it should be Chapter12.nsf/WebContent/WEB-
INF/classes, as shown in Figure 12.7.

Figure 12.6 Java Source code folder

428 Chapter 12 XPages Extensibility

Figure 12.7 Source folder output location

NOTE You could also create Java source files in the existing Local folder; however, Local
represents the Domino Designer workspace that is stored on the local file system of your
workstation. Everything would work fine, but if you copied the NSF file somewhere else,
the original source would not be included.

Building a Component
This section follows the three steps for extending the XPages framework with custom UI compo-
nent extensions that were outlined at the beginning of this chapter. There is a sprinkle of JSF the-
ory, just enough to provide some context.

1. Create a UI Component Extension class that implements UIComponent.

2. Create an xsp-config file that defines the tag and properties of the component.

3. Create a renderer that emits the HTML to provide a realization of the component.

Create a UI Component Extension Class
Now, it’s time to create the Java class that represents the number spinner component. The class
extends an existing JSF class, javax.faces.component.UIInput, because the number spin-
ner is a control that accepts user input (whose value can be manipulated by the associated buttons).

JSF provides a component model that is based on the composite pattern. The composite
pattern defines a whole-part hierarchy where all components implement a common interface.
This means that all components, either container or individual components, can be treated
equally. In JSF, the UIComponent interface specifies the common behaviors that all components
must have to support and function correctly within the JSF request-processing lifecycle. This also
holds true for XPages components. UIComponent specifies a large set of behaviors; however, to
ease development, JSF provides the UIComponentBase class. This is a concrete implementation
of all the UIComponent methods except one, getFamily(), a method that returns the compo-
nent’s family identifier which, along with a render type identifier, can be used to associate a spe-
cific renderer with the component. You could start from the UIComponentBase class, but you
would have to provide much more functionality to do something interesting or useful. Standard

Building a Component 429

JSF components extend this base class (UIOutput, for example). UIOutput provides the capa-
bility to display data, read only, that is read from a data model. UIInput, in turn, extends
UIOutput to provide the capability to edit the displayed data and save it back to the data model.
Custom classes can, of course, extend the standard components. That is one of the main goals of
JSF: to provide an easy-to-use, reusable, and extensible user interface component framework for
building web-based applications.

XPages extends the standard JSF components. For example, com.ibm.xsp.component.
UIInputEx extends UIInput and provides extra Notes/Domino functionality, such as the capa-
bility to deal with multivalue items, XPage themes and styling, and filtering of data for harmful
script code.

For now, keep it simple, and just work off the standard JSF UIInput component. To create
the UISpinner class, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Class.

5. Choose Next.

6. See the New Java Class dialog.

7. Enter mxpd.component for the Package field.

8. Enter UISpinner for the Name field.

9. Enter javax.faces.component.UIInput for the Super Class field. Note that you
can also type Ctrl+Space here to have the supper class name suggested.

10. Your dialog should be populated, as shown in Figure 12.8.

11. Choose Finish.

Completing these steps gives you an empty class file. There is nothing to implement,
because UIInput has implemented everything from the UIComponent interface. However, there
are couple of methods to override and add, namely, getFamily(), and the constructor to set the
render type. Shortly, you will see these two identifiers (family and renderer type) used in the
faces-config.xml application configuration file to associate a specific renderer class with this
component. Every component can render itself, and this is the default behavior for components.
Specifying null as a parameter to the setRendererType() method instructs the component to
render itself rather than delegate to an associated renderer. You could override the rendering
methods within the component itself to produce the HTML output. This is often a good approach
when starting to learn about this topic. It reduces some of the initial complexity of requiring addi-
tional renderer classes and having to register them. However, this example extends UIInput and
certain behaviors are inherited. One of these behaviors is that it expects rendering to be delegated
to a separate renderer class, and this is the approach followed in the example.

Listing 12.1 shows the updates. Make these changes and save the file.

430 Chapter 12 XPages Extensibility

Figure 12.8 New Java class for the UI component extension

NOTE After you save (make sure Project > Build Automatically is checked), the Java
classes is generated. However, the Java Package Explorer does not show the class files
under WebContent/WEB-INF. Select Window > Open Perspective > Java. The display
of Domino Designer changes and, on the left-hand side, you now see that the application
navigator looks like the Java Package Explorer, but this time, you can see the classes folder
under the WebContent/WEB-INF folder. In there, under the mxpd/component folder, find
the UISpinner.class file. Select Window > Open Perspective > Domino Designer (or
use the keyboard shortcut Ctrl+F8 to switch between perspectives) to switch back.

Listing 12.1 Implement Standard Methods

package mxpd.component;

import javax.faces.component.UIInput;

public class UISpinner extends UIInput {

public static final String COMPONENT_FAMILY =

“mxpd.component.UISpinner”;

public static final String RENDERER_TYPE =

“mxpd.renderer.UISpinnerRenderer”;

Building a Component 431

public UISpinner() {

super();

setRendererType(RENDERER_TYPE);

}

@Override

public String getFamily() {

return COMPONENT_FAMILY;

}

}

Create Tag Specificaton (.xsp-config) for the UI Component Extension
To use the new UI component in XPages, you need to extend the current set of XPages control
tags. To do this, specify a new tag name as part of a component definition in an xsp-config file.
Then, when Domino Designer comes across a reference to the component extension tag in an
XPage, it generates Java code to create a new instance of the custom UI component extension as
part of the XPage component tree. To create an xsp-config file, follow these steps:

1. In Package Explorer, select the WebContent/WEB-INF folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the General folder, select File.

5. Choose Next.

6. See the New File dialog. In the File Name: field, specify the .xsp-config file by call-
ing it the name uispinner.xsp-config.

7. Choose Finish.

8. Add the configuration information in Listing 12.2 and save the file.

Listing 12.2 Initial xsp-config File for the Tag Specification

<faces-config>

<faces-config-extension>

<namespace-uri>http://mxpd/xsp/control

</namespace-uri>

<default-prefix>mx</default-prefix>

</faces-config-extension>

continues

432 Chapter 12 XPages Extensibility

<component>

<description>MXPD Spinner Example</description>

<display-name>MXPD Spinner</display-name>

<component-type>mxpd.component.UISpinner

</component-type>

<component-class>mxpd.component.UISpinner

</component-class>

<component-extension>

<tag-name>uiSpinner</tag-name>

<component-family>mxpd.component.UISpinner

</component-family>

</component-extension>

</component>

</faces-config>

Although the xsp-config file is proprietary to XPages, the syntax and tags specification
are very much based on JSF with the XPages enhancements and additions typically found in the
<something-extension> tags. The extension tags are a JSF mechanism that is typically used
by development tools to implement additional functionality. They are heavily used and extended
by XPages and Domino Designer. If you are familiar with writing custom JSF components for
JavaServer Pages (JSP), you would typically specify the Java component extension class in the
faces-config file and the tag namespace and description in a separate tag library definition file
(.tld). Although JSF integrates well with JSP, they are separate technologies and have separate
extension mechanisms. XPages has just one, the xsp-config file where both the Java component
extension is registered, along with the tags, properties, and attributes for the component, which
will be used in XPages XML source code. Table 12.1 describes the basic xsp-config tag ele-
ments. Note that the xsp-config file also defines Custom Controls within XPages.

Table 12.1 XPages xsp-config Tags

Tag Description

<faces-config> Outer tag element for the configuration file.

<faces-config-extension> XPages-specific extensions for declaring the tag namespace.

Listing 12.2 (Continued)

Building a Component 433

At this point, create an XPage and add your new control by following these steps:

1. From the Application Navigator, select the XPages folder.

2. Right-click and select New XPage.

3. See the New XPage dialog.

4. Name the XPage xpBasicTest.

5. Choose OK.

6. Select a point on the XPage.

7. From the control palette, select Other... > Other Controls.

8. See the Create Control dialog (shown in Figure 12.9) and select MXPD Spinner.

Table 12.1 XPages xsp-config Tags

Tag Description

<namespace-uri> The XPages namespace for the custom component. There
need not be anything at the URL. The default prefix is xp.
This namespace is, as are all namespaces beginning with
http://www.ibm.com/xsp, reserved for use by IBM. When
you need to define your own namespace, the convention is to
use a URL that starts with your company’s web address to
ensure that there are no collisions.

<default-prefix> The XPages tag prefix used to denote your namespace.

<component> Register a component extension with XPages.

<description> A text description of the component.

<display-name> A name used by Domino Designer when displaying the com-
ponent in a palette or selector.

<component-type> A unique name for the component typically uses a qualified
name prefix. com.ibm.xsp is used for XPages components,
com.ibm.xsp.InputText, for example.

<component-class> The fully qualified Java class name for the component that
implements the UIComponent interface or extends some class
that does.

<component-extension> Domino Designer uses configuration information supplied
in here.

<tag-name> Tag name for the component to be used in XPages XML
source.

<component-family> The component family identifier.

434 Chapter 12 XPages Extensibility

Figure 12.9 Create Control dialog

9. Choose OK.

10. See the tag that presents the UISpinner control appear on the XPages Design canvas (see
Figure 12.10).

Figure 12.10 also shows the default properties XPages creates for a component. There is no
point in running the XPage in a web browser; it does not do anything right now, because there is
no renderer to generate the appropriate HTML for the component.

Create a Renderer and Register It in the Application Configuration
(faces-config.xml)
A UI component must implement the required JSF methods to retrieve user input for the compo-
nent in the request and emit the appropriate HTML to represent the component in a web browser.
The JSF request-processing lifecycle implemented by the XPages runtime invokes these methods
at the appropriate time. Most components typically delegate these responsibilities to a specific
renderer class that implements the required methods by extending the abstract class javax.
faces.render.Renderer.

Building a Component 435

Figure 12.10 Default mx:uispinner representation

To create a Java class for the renderer, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other.

3. See the New dialog.

4. Under the Java folder, select Class.

5. Choose Next.

6. See the New Java Class dialog.

7. Enter mxpd.renderer component for the Package field.

8. Enter UISpinnerRenderer for the Name field.

9. Enter javax.faces.render.Renderer for the Super Class field.

10. Your dialog should be filled, as shown in Figure 12.11.

11. Choose Finish.

12. Copy the contents of Listing 12.3 into the file and save it.

436 Chapter 12 XPages Extensibility

Figure 12.11 New Java Class dialog

Listing 12.3 Simple Renderer Implementation

package mxpd.renderer;

import java.io.IOException;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.context.ResponseWriter;

import javax.faces.render.Renderer;

public class UISpinnerRenderer extends Renderer {

@Override

public void encodeEnd(FacesContext context, UIComponent component)

throws IOException {

ResponseWriter rw = context.getResponseWriter();

rw.startElement(“input”, component);

rw.writeAttribute(“type”, “button”, “type”);

Building a Component 437

rw.writeAttribute(“style”, “border:orange solid thin”, null);

rw.writeAttribute(“value”, “Hello World!”, “value”);

rw.endElement(“input”);

super.encodeEnd(context, component);

}

}

Note that javax.faces.render.Renderer implementations are stateless; only one
instance is created irrespective of the number of components on the page. (The component class
is the one responsible for managing state; more on that in the next section.) Now that a renderer
has been created, you need to register it as the renderer to be used by XPages runtime to create
the HTML representation of the mxpd.component.UISpinner component family. Follow
these steps:

1. In Package Explorer, open the WebContent/WEB-INF folder.

2. Select the faces-config file and open it.

3. Replace the contents with the configuration information shown in Listing 12.4.

4. Save the file.

Listing 12.4 Register Renderer for UI Component Extension in faces-config.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<faces-config>

<render-kit>

<renderer>

<component-family> mxpd.component.UISpinner </component-family>

<renderer-type> mxpd.renderer.UISpinnerRenderer </renderer-type>

<renderer-class> mxpd.renderer.UISpinnerRenderer </renderer-class>

</renderer>

</render-kit>

</faces-config>

Quick Test Application to Verify Everything Is OK So Far
Now that everything is in place, you can test out the new UI component extension by adding it to
an XPage and running it in the preview web engine. The XPage does not do much. It just simply
displays a button with an orange border, but at least you have successfully created a custom
XPages UI component extension.

438 Chapter 12 XPages Extensibility

Figure 12.12 Test run for mx:uispinner configuration

To create a new XPage and add the UISpinner control, follow these steps:

1. From the Application Navigator, select the XPages folder.

2. Right-click and select New XPage.

3. See the New XPage dialog.

4. Name the XPage xpQuickTest.

5. Choose OK.

6. Select a point on the XPage.

7. From the control palette, select Other.. > Other Controls > MXPD Spinner.

8. Choose OK.

9. See the tag that represents the UISpinner control appear on the XPages Design canvas.

The XPage should look similar to the one created for the previous basic test (refer to Figure
12.10). In fact, if you run xpBasicText.xsp now, you get the same output, as shown in Figure
12.12, because the mx:uispinner tag now has a renderer for creating output associated with its
component.

Before running the XPages application using the preview web server, add the Anonymous
user to the application access control list (ACL) with at least author access and the ability to cre-
ate documents.

Select the XPage and save the contents if necessary. To see the result of the test page
(shown in Figure 12.12), select Design > Preview in Web Browser > Default System Web
Browser. When the browser opens up, you should see the button created from the HTML the ren-
derer was coded to emit.

That should all be working nicely. Now, it is time to implement the number spinner.

Working with Component Properties
Most of the files needed to complete the number spinner are now in place, and their role in devel-
oping a control should be clear. They just need some editing, and for any new files that need to be
created, particilarly Java classes, the procees should be familiar now.

Component Properties and Attributes
The characteristics of a component that give it certain behavior and state when loaded, irrespec-
tive of the type of renderer producing the visualization of the component, are usually called

Working with Component Properties 439

properties (or render-independent properties). They are generally represented as JavaBean com-
ponent properties with getter and setter methods. Properties represent the state of a component, a
value entered by a user that needs to be maintained between requests until it is saved to the data
model, for example. XPages, through the JSF request processing lifecycle, supports state man-
agement between requests. There is more on state management in the section, “State Holder:
Saving State Between Requests.”

Attributes of a component tend to be of interest to the renderer of a component. They are
not managed directly by the component itself, but via a Map that is accessed using the
getAttributes() method. For example:

component.getAttributes().get(“styleClass”)

In the XPages xsp-config file, both properties and attributes associated with a compo-
nent are specified as properties using the <property> tag. When XPages generate the code for a
component that has a value specified in a tag attribute, it can introspect the component associated
with the tag to see whether it should generate setter code or store the property value in the generic
attribute map. If a set method exists in the component for the property, it is called passing the
value as a partmeter. Otherwise, a call to put the value into the attribute map for the component is
generated. If you really want to specifically designate an attribute, use the <attribute> tag
instead.

One interesting thing about the implemention of the attribute map in JSF is that it supports
attribute-property transparency. This means that, when the attribute map is requested to get or set
a value, the attribue map first tries to to find a property setter or getter on the component, wrap-
ping primitive type in their equvlent object representations, if necessary.

XPages supports both simple properties that are based on a single datatype (a string or integer,
for example), and complex properties that are based on a object type. Complex properties are usu-
ally called complex types.A complex type is an object represention of a piece of data that is the prop-
erty of a component. In JSF, converters and validators are specific cases of complex types; however,
XPages provides support for the general case of declaring any object as a property of a component.

Adding a Property to a Component
The sequence of steps for adding properties and attributes to a tag is to

1. Specify the <property> tag in the xsp-config file for the <component>. Only this step
is needed for attributes. In fact, you can specifically use the <attribute> tag for
generic attributes of the component.

2. In the UI input component class, implement the setter and getters methods for the com-
ponents properties (if it is not an attribute of the component).

3. If the property should maintain state (it’s not an attribute), override or extend the
saveState() and restoreState() methods that implement the StateHolder interface.

All the <property> and <attribute> tags specified for the component appear in All
Properties section on the Properties tab for the component in Domino Designer. When a value for

440 Chapter 12 XPages Extensibility

a property is specifed, Domino Designer adds the appropriate component tag attribute and value
in the XPage XML source.

State Holder: Saving State Between Requests
StateHolder is a JSF interface that must be implemented by components that need to save their
state between requests. Note that both the saveState() and restoreState() methods must
be implemented and equally reflect each other’s content. The same data must be saved and
restored in the same componet class.

If the component that implements the StateHolder interface also has references to objects
that implement StateHolder (complex properties, for example) the saveState() and restore
State() methods of the component must call the respective saveState() or restoreState()
of the complex property.

Saving and restoring the state of a component object is done as a serializable object, and
any class implementing the StateHolder interface must have a public no-args constructor. If a
component does not implement save and restore state for its properties correctly, the first time the
XPage with the component is referenced, the properties are set initially when the XPages view
component tree is first constructed. On subsequent postbacks to the same XPage, the view com-
ponent tree is restored—restoring the view is the first phase, Restore View, of the JSF request pro-
cessing lifecycle (see Chapter 5 for more details on the request processing lifecycle)—using the
no-arg constructor to create the instance. Its properties are then set via the restoreState()
method. If you neglect to implement the approprite save/restore, your user interface componets
appear with blank values on suqsequent reloads.

See Listing 12.8 in the section, “Inheriting xsp-config Properties,” for an example of the
saveState() and restoreState() methods.

Specifying Simple Properties
The behavior of a component can be altered by changing its properties in the tag. To get a list of
all the properties and attributes associated with a particular tag:

1. Select the component on the XPage.

2. Select the All Properties section from the Properties tab.

All the properties for a tag are listed in this section and reflect the properties as specifed in
the xsp-config file for the tag. They are also organized per the categories assigned. If no category
is assigned to a property, it is assigned the default category others. The base set of categories are
as follows:

• Basics: General category of properties

• Styling: Properties that control the visual appearance of the component

More complete componets would have Events and Data categories. To add a simple prop-
erty to the UISpinner control, first specify the property definition in the uispinner.xsp-
config file. Listing 12.5 shows an example specification for a simple property.

Working with Component Properties 441

Listing 12.5 Example Specification of a Simple Property

<faces-config>

...

<component>

...

<property>

<description>Value</description>

<display-name>value</display-name>

<property-name>value</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

</designer-extension>

</property-extension>

</property>

When you save the configuraton file, the new propertry shows up in the All Properties sec-
tion of the Properties tab for the component. The next step is to implement the property in the
component class file. Because the UISpinner component inherits from UIInput (which
extends UIOutput implements the ValueHolder interface), the componet class inherits the
getValue() and setValue() methods, so there is no need to implement them (or the
saveState() and restoreState() methods for the property). The next section shows an
example, Listing 12.8, where the property getter and setters and state management are imple-
mented for properties specific to the UISpinner component.

Inheriting xsp-config Properties
You are not limited to one xsp-config file; there may be several, and all the definitions in their
content are stored in the XPages registry, which is a catalog that Domino Designer uses to define
controls in the controls palette and fill out all the component properties in the All Properties sec-
tion of an XPages component Properties tab.

An interesting feature of XPages component definitions is their capability to inherit other
xsp-config artifacts and definitions. This avoids duplication and reduces development time, main-
tence, and mistakes when developing new XPages components. It also helps promote reuse at the
component configuration level.

This allows you to define a hierarchy of XPages UI component extension classes and inter-
faces and have an equivalent set of XPages xsp-config files that mirrors that hierarchy.

For example, take a component that should work like a UIInput component, which
accepts a value, but also supports minimum and maximum values declaratively as a tag property
so that an XPages developer using the component would not have to to add a validator.

442 Chapter 12 XPages Extensibility

The minimum and maximum properties can be defined as a group. See the xsp-config
configuration snippet shown in Listing 12.6.

Listing 12.6 <group> Snippet from base.xsp-config

<faces-config>

...

<group>

<group-type>mxpd.component.group.minmaxpair</group-type>

<property>

<description>Minimum value allowed</description>

<display-name>min</display-name>

<property-name>min</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner-base</category>

</designer-extension>

</property-extension>

</property>

<property>

<description>Maximum value allowed</description>

<display-name>max</display-name>

<property-name>max</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner-base</category>

</designer-extension>

</property-extension>

</property>

</group>

...

</faces-config>

Table 12.2 details the group and property-related xsp-config tags.

Working with Component Properties 443

Table 12.2 XPages Group and Property xsp-config Tags

Tag Description

<group> Specifies a group of related properties.

<group-type> An identifier for the group.

<group-type-ref> Includes predefined groups in another group or component by
specifying the target <group-type> identifier in the body of the tag.

<property> Specifies an individual property.

<description> Description of the property that appears in Domino Designer.

<display-name> A name used by Domino Designer when displaying the property.

<property-name> Name of the property.

<property-class> Datatype that represents the property.

<property-extension> Domino Designer-specific information is supplied in here.

<designer-extension> Domino Designer uses property information supplied in here.

<category> Groups properties under headings to appear in the All Properties
property tab in Domino Designer.

With the group defined, any other component can include the properties. In the
uispinner.xsp-config, as shown in Listing 12.7, the predefined group of properties are ref-
erenced using the <group-type-ref> tag, and they are added to the components properties in
the XPages registry. The is no need to reference the actual xsp-config filename, all the xsp-
config files get loaded into the XPages registry, which makes all the types and properties avail-
able for reference.

Listing 12.7 <group-type-ref> Snippet from uispinner.xsp-config

<component>

...

<group-type-ref>mxpd.component.group.minmaxpair</group-type-ref>

...

</component>

A component class that supports a specific component definition should define the proper-
ties, implement the property setters and getters, and handle the state management. Listing 12.8

444 Chapter 12 XPages Extensibility

shows the MinMaxInput class that defines a component with two properties. The setter and get-
ter follow standard JavaBean conventions and the class implements the required StateHolder
interface methods so that the data that represents this component is preserved correctly as as the
component tree is saved and restored.

Listing 12.8 MinMaxInput Snippet

public class MinMaxUIInput extends UIInput implements StateHolder {

int min = Integer.MIN_VALUE;

int max = Integer.MAX_VALUE;

private boolean transientFlag = false;

public UISpinner() { super(); }

public int getMin() {

if (min != Integer.MIN_VALUE) {return min;}

ValueBinding vb = getValueBinding(“min”);

if (vb != null){

Object value = vb.getValue(getFacesContext()) ;

if (value != null){

return ((Number)value).intValue();

}else {

return Integer.MIN_VALUE;

}

} else {

return Integer.MIN_VALUE;

}

}

public void setMin(int min) { this.min = min; }

public int getMax() {

if (max != Integer.MAX_VALUE) {return max;}

ValueBinding vb = getValueBinding(“max”);

if (vb != null){

Object value = vb.getValue(getFacesContext()) ;

if (value != null){

return ((Number)value).intValue();

}else {

return Integer.MAX_VALUE;

Working with Component Properties 445

}

} else {

return Integer.MAX_VALUE;

}

}

public void setMax(int max) { this.max = max; }

public boolean isTransient() { return transientFlag; }

public void setTransient(boolean transientFlag) {

this.transientFlag = transientFlag;

}

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

super.restoreState(context, values[0]);

this.min = ((Integer) values[2]).intValue();

this.max = ((Integer) values[3]).intValue();

}

public Object saveState(FacesContext context) {

Object values[] = new Object[4];

values[0] = super.saveState(context);

values[1] = new Integer(this.min);

values[3] = new Integer(this.max);

return values;

}

}

NOTE In Listing 12.8, because the property types are a primitive type, int, they need to be
changed to Integer objects to support serialization. In the case where the min and max
properties allow runtime binding (they are a computed value), there is support for getting the
values from a ValueBinding. Normally, with primivite types, you also have to manage the
case where the property was never set (because a primitive type cannot be null) using an
appropriate value that is boxed and unboxed based using a boolean to track if the value was
ever set directly. However, in this case, a default value is set and used so it is never unset.

The declaration of the group-type named mxpd.component.group.minmaxpair in
base.xsp-config, and the definition of the MinMaxUIInput class encourages reuse. This

446 Chapter 12 XPages Extensibility

means that, if there was a requirement to implement a component that allowed a user input a
value which should have a configurable minimum and maximum value, the new component
could extend MinMaxUIInput class, and the xsp-config definition for the component tag
could reference the mxpd.component.group.minmaxpair property group definition. Note
that the MinMaxInput class is just used as an example and is not used in the UISpinner compo-
nent example.

Create the Initial xsp-config Definitions
As just described, XPages provided support for creating certain definitions, like a property group,
that can be referenced and reused in another xsp-config file. The next section walks through cre-
ating base.xsp-config, which contains definitions to be used in the main component configu-
ration file, uispinner.xsp-config. This base configuration file contains a definition for a
complex type. Complex types were briefly mentioned earlier in this chapter, but they are covered
in more detail in the next section.

Create base.xsp-config
The UISpinner class example already extends UIInput, so it cannot extend another class. How-
ever, it can implement an interface and still leverage the predefined mxpd.component.
group.minmaxpair property group.

Follow these instructions to create another xsp-config file, base.xsp-config. It contains
definitions of a property group and complex types that are referenced by the uispinner.xsp-
config configuration file. It simply shows how an interface can be used, and the all component
and complex-type definitions can be referenced between xsp-config files:

1. In Package Explorer, select the WebContent/WEB-INF folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the General folder, select File.

5. Choose Next.

6. See the New File dialog. In the File Name field, specify the xsp-config file by calling
it the name base.xsp-config.

7. Choose Finish.

8. Enter the faces-config information shown in Listing 12.9 into base.xsp-config and
save it. Note that base.xsp-config is not a special name; it can be anything.

Don’t worry about the complex-type definitions for now; we will return to them later.

Create the Initial xsp-config Definitions 447

Listing 12.9 base.xsp-config

<faces-config>

<faces-config-extension>

<namespace-uri>http://mxpd/xsp/control

</namespace-uri>

<default-prefix>mx</default-prefix>

</faces-config-extension>

<complex-type>

<complex-id>mxpd.component.step.LargeSmallStepInterface

</complex-id>

<complex-class>mxpd.component.step.LargeSmallStepInterface

</complex-class>

</complex-type>

<complex-type>

<description>Large and Small Step Size</description>

<display-name>largeSmallStepSize</display-name>

<complex-id>mxpd.component.step.LargeSmallStepImpl

</complex-id>

<complex-class>mxpd.component.step.LargeSmallStepImpl

</complex-class>

<property>

<description>Large and Small Step Size</description>

<display-name>small</display-name>

<property-name>smallStep</property-name>

<property-class>int</property-class>

<property-extension>

<required>false</required>

<allow-run-time-binding>true</allow-run-time-binding>

</property-extension>

</property>

<property>

<description> Large and Small Step Size </description>

<display-name>large</display-name>

<property-name>largeStep</property-name>

<property-class>int</property-class>

<property-extension>

(continues)

448 Chapter 12 XPages Extensibility

<required>false</required>

<allow-run-time-binding>true</allow-run-time-binding>

</property-extension>

</property>

<complex-extension>

<tag-name>largeSmallStep</tag-name>

<base-complex-id>mxpd.component.step.LargeSmallStepInterface

</base-complex-id>

</complex-extension>

</complex-type>

<complex-type>

<description>Large and Small Step Size</description>

<display-name>largeSmallStepSize</display-name>

<complex-id>mxpd.component.step.DummyStepImpl

</complex-id>

<complex-class>mxpd.component.step.DummyStepImpl

</complex-class>

<property>

<description> Large Small Step Size </description>

<display-name>small</display-name>

<property-name>smallStep</property-name>

<property-class>int</property-class>

<property-extension>

<allow-run-time-binding>false</allow-run-time-binding>

</property-extension>

</property>

<property>

<description>Step Size for Large Small</description>

<display-name>large</display-name>

<property-name>largeStep</property-name>

<property-class>int</property-class>

<property-extension>

<required>true</required>

<allow-run-time-binding>false</allow-run-time-binding>

</property-extension>

</property>

<complex-extension>

<tag-name>dummyStep</tag-name>

Listing 12.9 (Continued)

Create the Initial xsp-config Definitions 449

<base-complex-id>mxpd.component.step.LargeSmallStepInterface

</base-complex-id>

</complex-extension>

</complex-type>

<group>

<group-type>mxpd.component.group.minmaxpair</group-type>

<property>

<description>Minimum value allowed</description>

<display-name>min</display-name>

<property-name>min</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner-base</category>

</designer-extension>

</property-extension>

</property>

<property>

<description>Maximum value allowed</description>

<display-name>max</display-name>

<property-name>max</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner-base</category>

</designer-extension>

</property-extension>

</property>

</group>

</faces-config>

TIP The xsp-config file definitions use many different tags that have special meaning and
purpose for XPages and the XPages registry in Domino Designer. Many of the tag mean-
ings are obvious by inspection, and some are explained in this chapter as appropriate. The
“XPages Extensibility Developers Guide” contains extensive reference material covering all
the xsp-config tag formats and meaning. This reference material is highly recommended
reading. A reference to this guide is given at the end of this chapter.

450 Chapter 12 XPages Extensibility

Create an Interface to Match the Group Property Definition in
base.xsp-config
Now that base.xsp-config defines a specific group of properties, create a Java interface that
specifies the setters and getters for the min and max properties. The UISpinner component class
implements this interface. The min and max properties are used to allow a user of the spinner to
restrict the minimum and maximum values allowed by clicking on the increment and decrement
buttons of the spinner control. To create the interface, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Interface.

5. Choose Next.

6. See the New Java Interface dialog.

7. Enter mxpd.component.group for the Package field.

8. Enter MinMaxPair for the Name field.

9. Choose Finish.

10. Add the four method declarations to the interface, as shown in Listing 12.10 and save
the file.

Listing 12.10 MinMaxPair.java

package mxpd.component.group;

public interface MinMaxPair {

public void setMin(int min);

public int getMin();

public void setMax(int max);

public int getMax();

}

The next step is to update uispinner.xsp-config (under the Chapter12.nsf\
WebContent\WEB-INF folder) to include a reference that includes the mxpd.component.
group.minmaxpair property group and a simple value property. The modified section to add
is highlighted in bold, as shown in Listing 12.11. Note that, although the property group name is

Create the Initial xsp-config Definitions 451

identical to the package hierarchy used for the mxpd.component.group.MinMaxPair inter-
face, the naming is done purely from an organizational clarity point of view and implies no spe-
cial implemention meaning. Only the <component-class> declaration in an xsp-config file
actually ties an implementation to a property or type declaration.

Listing 12.11 uispinner.xsp-config

<faces-config>

<faces-config-extension>

<namespace-uri>http://mxpd/xsp/control

</namespace-uri>

<default-prefix>mx</default-prefix>

</faces-config-extension>

<component>

<description>MXPD Spinner</description>

<display-name>MXPD Spinner</display-name>

<component-type>mxpd.component.UISpinner

</component-type>

<component-class>mxpd.component.UISpinner

</component-class>

<component-extension>

<tag-name>uiSpinner</tag-name>

<component-family>mxpd.component.UISpinner

</component-family>

</component-extension>

<group-type-ref>mxpd.component.group.minmaxpair</group-type-ref>

<property>

<description>Value</description>

<display-name>value</display-name>

<property-name>value</property-name>

(continues)

452 Chapter 12 XPages Extensibility

Figure 12.13 Properties for the mx:uiSpinner control showing inherited properties

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

</designer-extension>

</property-extension>

</property>

</component>

</faces-config>

Revisit the Component Properties in Domino Designer
Now, go back to the test XPage with the single UISpinner control (or simply create a new
XPage and, from the controls palette, select Other... > Other Controls > MXPD Spinner and
choose OK). On the Domino Designer XPage design canvas, select the UISpinner control and
open the Properties tab. There, you see the the component properties, as shown in Figure 12.13.

Listing 12.11 (Continued)

Specifying Complex Properties 453

Notice that there is now a value property under the spinner category and that the min
and max properties inherited from the <group> definition can be found under the spinner-
base category.

Specifying Complex Properties
So far, the component tag properties and attributes have been primitive data types, strings, and
integers, and so on, but not all properties of a component need necessarily be primitive types.
Nonprimitive properties are referred to as complex properties. Complex properties are repre-
sented as their own tags. Listing 12.12 shows an example XPage souce code snippet for a
<mx:uiSpinner> control that includes a complex-type property using XPages this syntax.

Listing 12.12 Compex Property Referenced Using the mx:this. Syntax

<mx:uiSpinner id=”uiSpinner1” size=”2” value=”#{spinnerBean.day}”

min=”1” max=”31”>

<mx:this.stepSizes>

<mx:largeSmallStep largeStep=”10” smallStep=”1”>

</mx:largeSmallStep>

</mx:this.stepSizes>

</mx:uiSpinner>

The <mx:uiSpinner> control has a property, stepSizes, that references a complex
type. The complex type is represented by its own tag, <mx:largeSmallStep>, which has two
properties that are set using attributes of the tag element.

A complex property is defined in a component just like any other property; however, the
<property-class> tag specifies an object (a class name or an interface name that is imple-
mented by a class) rather than a basic data type. Listing 12.13 shows an example of setting a
complex-type property for a control tag in an xsp-config file. Note that Listing 12.13 spec-
ifies an interface called mxpd.component.step.LargeSmallStepInterface, which is
implemented later in this section.

Listing 12.13 Setting a Complex-Type Property

<faces-config>

...

<component>

...

<property>

<description>The big increment value</description>

<display-name>Big increment</display-name>

<property-name>stepSizes</property-name>

(continues)

454 Chapter 12 XPages Extensibility

<property-class>mxpd.component.step.LargeSmallStepInterface

</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

</designer-extension>

</property-extension>

</property>

The significance of specifying interface for a complex type is that the Domino Designer
registry automatically detects any classes that implement the interface and offers a choice of
complex-type classes when setting the complex property. To demonstrate this, you need to add
the following Java interface and two Java classes that implement the interface to the application.

TIP The XPages registry in Domino Designer is where all the components, groups, types,
and properties that have been declared in various xsp-config files get stored for refer-
ence. This enables types and components to easily reference each other. In addition,
Domino Designer also uses the registry to associate feature-rich property editors with dif-
ferent XPages components (for example, the XPage and View property editors, which pro-
vide a better and richer design time experience than the standard “All Properties” editor
that is available for every XPages component).

To create a Java interface that specifies the behavior of a component that supports incre-
menting a value in small or large steps, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Interface.

5. Choose Next.

6. See the New Java Interface dialog.

7. Enter mxpd.component.step for the Package field.

8. Enter LargeSmallStepInterface for the Name field, as shown in Figure 12.14.

9. Choose Finish.

10. Add the code to the interface, as shown in Listing 12.14, and save the file.

Listing 12.13 (Continued)

Specifying Complex Properties 455

Figure 12.14 New Java Interface dialog

Listing 12.14 LargeSmallStepInterface.java

package mxpd.component.step;

public interface LargeSmallStepInterface {

public void setSmallStep(int smallStep);

public int getSmallStep();

public void setLargeStep(int largeStep);

public int getLargeStep();

}

Now, create the first of two classes that implements the interface. The first is a dummy class
that does nothing and is not used in the UISpinner example. Having the second class helps
demonstrate the capability of the Domino XPages registry to detect classes that implement a cer-
tain interface that has been specified as the <property-class> of a complex-type. In the
final version of the UISpinner control, when you select the stepSizes property, Domino
Designer displays a little Add button that, when selected, pops up a list of available complex-
type tags for the property. The list includes the tags for the two complex types whose
<complex-class> classes have implemented the interface that was specified as the

456 Chapter 12 XPages Extensibility

Figure 12.15 New Java Class dialog

<property-class> for the stepSizes property. The interesting thing about this is that the
control property class could be a data source interface, and the complex type classes could imple-
ment the interface but provide the data in different formats, depending on what the XPages
designer required.

To create the dummy class, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Class.

5. Choose Next.

6. See the New Java Class dialog.

7. Enter mxpd.component.step for the Package field.

8. Enter DummyStepImpl for the Name field.

9. Add mxpd.component.step.LargeSmallStepInterface to the Interface field,
as shown in Figure 12.15.

10. Choose Finish.

11. Add the code to the interface, as shown in Listing 12.15, and save the file.

Specifying Complex Properties 457

Listing 12.15 Compex Property Referenced Using the mx:this. Syntax

package mxpd.component.step;

public class DummyStepImpl implements LargeSmallStepInterface {

private int smallStep;

private int largeStep;

public int getLargeStep() { return largeStep; }

public int getSmallStep() { return smallStep; }

public void setLargeStep(int largeStep) {

this.largeStep = largeStep; }

public void setSmallStep(int smallStep) {

this.smallStep = smallStep; }

}

Now, create another Java class that implements the LargeSmallStepInterface. This
class is used for the complex-class property for the UISpinner component. Follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other.

3. See the New dialog.

4. Under the Java folder, select Class.

5. Choose Next.

6. See the New Java Class dialog, as shown in Figure 12.16.

7. Enter mxpd.component.step for the Package: field.

8. Enter LargeSmallStepImpl for the Name: field.

9. Add mxpd.component.step.LargeSmallStepInterface to the Interface field (by
selecting the Add button). Note that the Implemented Interface Selection dialog auto-
matically suggests the interface as you type mxpd.

10. Choose Finish.

11. Add the code to the class, as shown in Listing 12.16, and save the file.

458 Chapter 12 XPages Extensibility

Figure 12.16 New Java Class dialog

Listing 12.16 LargeSmallStepImpl.java

package mxpd.component.step;

import java.util.HashMap;

import java.util.Map;

import javax.faces.component.StateHolder;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.el.ValueBinding;

import com.ibm.xsp.binding.ComponentBindingObject;

import com.ibm.xsp.complex.ValueBindingObject;

import com.ibm.xsp.util.FacesUtil;

import com.ibm.xsp.util.StateHolderUtil;

public class LargeSmallStepImpl implements LargeSmallStepInterface

, StateHolder, ValueBindingObject, ComponentBindingObject {

Specifying Complex Properties 459

public LargeSmallStepImpl() {

super();

}

private int smallStep = 1;

private boolean smallStep_set ;

private int largeStep = 10;

private boolean largeStep_set;

private boolean transientFlag = false;

private Map<String, ValueBinding> valueBindings;

private UIComponent component;

public int getSmallStep() {

if (this.smallStep_set) {

return this.smallStep;

}

ValueBinding vb = getValueBinding(“smallStep”);

if (vb != null) {

FacesContext context = FacesContext.getCurrentInstance();

Object value = vb.getValue(context);

if (value == null) {

return smallStep; // default

} else {

return ((Number)value).intValue();

}

} else {

return this.smallStep;

}

}

public int getLargeStep() {

if (this.largeStep_set) {

return this.largeStep;

}

ValueBinding vb = getValueBinding(“largeStep”);

if (vb != null) {

FacesContext context = FacesContext.getCurrentInstance();

Object value = vb.getValue(context);

if (value == null) {

(continues)

460 Chapter 12 XPages Extensibility

return largeStep; //default

} else {

return ((Number)value).intValue();

}

} else {

return this.largeStep;

}

}

public void setLargeStep(int largeStep) {

this.largeStep = largeStep;

this.largeStep_set = true;

}

public void setSmallStep(int smallStep) {

this.smallStep = smallStep;

this.smallStep_set = true;

}

public boolean isTransient() {

return transientFlag;

}

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

this.valueBindings =

StateHolderUtil.restoreValueBindings(

context, component, values[0]);

this.component =

FacesUtil.findRestoreComponent(context, (String)values[1]);

this.smallStep = ((Integer) values[2]).intValue();

this.smallStep_set = ((Boolean) values[3]).booleanValue();

this.largeStep = ((Integer) values[4]).intValue();

this.largeStep_set = ((Boolean) values[5]).booleanValue();

}

public Object saveState(FacesContext context) {

Object values[] = new Object[6];

Listing 12.16 (Continued)

Specifying Complex Properties 461

values[0] = StateHolderUtil.saveValueBindings(

context, valueBindings);

values[1] = FacesUtil.getRestoreId(context, component);

values[2] = new Integer(this.smallStep);

values[3] = this.smallStep_set ? Boolean.TRUE : Boolean.FALSE;

values[4] = new Integer(this.largeStep);

values[5] = this.largeStep_set ? Boolean.TRUE : Boolean.FALSE;

return values;

}

public void setTransient(boolean transientFlag) {

this.transientFlag = transientFlag;

}

public ValueBinding getValueBinding(String name) {

if(null == valueBindings){

return null;

}

return valueBindings.get(name);

}

public void setValueBinding(String name, ValueBinding binding) {

if(null == valueBindings){

valueBindings = new HashMap<String, ValueBinding>(4);

}

valueBindings.put(name, binding);

}

// Implement ComponentBindingObject Interface

public void setComponent(UIComponent component) {

this.component = component;

}

public UIComponent getComponent() {

return this.component;

}

}

462 Chapter 12 XPages Extensibility

Table 12.3 Key XPages Interfaces for Complex Types

Interface Description

StateHolder Component classes that need to save their state between requests
implement the javax.faces.component.StateHolder
interface.

ValueBindingObject Properties that can be computed dynamically must implement
the com.ibm.xsp.complex.ValueBindingObject
interface.

Properties that are specifically designed not to have computed
values. In the xsp-config, the <property> has a <property-
extension> configured to <allow-run-time-bindings> to
be false. Any attempt to set dynamically computed values cause
a design-time error.

ComponentBindingObject The com.ibm.xsp.binding.ComponentBindingObject
interface must be implemented by complex types that need to
know the UIComponent instance that they are added to.

ValueBindingObjectImpl The class com.ibm.xsp.complex.ValueBinding
ObjectImpl provides a base implementation for complex-type
classes that need to support computed expressions to extend.

Before moving on to the final version of uispinner.xsp-config, a couple of things are worth-
while to highlight from Listing 12.16.

The LargeSmallStepImpl class not only implements the LargeSmallStepInterface
interface, it also implements three other interfaces: StateHolder, ValueBindingObject, and
ComponentBindingObject as repeated here:

public class LargeSmallStepImpl implements LargeSmallStepInterface

, StateHolder, ValueBindingObject, ComponentBindingObject {

Table 12.3 describes these interfaces.

A class used for a complex-type does not extend or implement UIComponentBase, and
therefore would not implement the behaviors that other UICompnents would have. However, if
the complex-type class is intended to be used to store computed values (which are maintained in
ValueBinding objects) it needs to provide the expected methods for storing and retrieving
valueBindings and support state management.

The process for saving and restoring state for value bindings and component bindings is a
bit more complex than primitive data types. The XPages framework provides numerous utility
classes, StateHolderUtil and FacesUtil, for example (note that the JARs containing these

Specifying Complex Properties 463

classes are automatically part of the Java build path for every NSF application) to support these
common operations:

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

this.valueBindings =

StateHolderUtil.restoreValueBindings(

context, component, values[0]);

this.component =

FacesUtil.findRestoreComponent(context,
(String)values[1]);

...

public Object saveState(FacesContext context) {

Object values[] = new Object[6];

values[0] = StateHolderUtil.saveValueBindings(

context, valueBindings);

values[1] = FacesUtil.getRestoreId(context, component);

Also note the property getters. Because the properties have been specified to allow literal
values and computed values, the getters must support getting the data from a value binding. The
general syntax follows. If a literal value has not been set to the property, try to retrieve a value
binding. If neither are set, this property returns a default value:

public int getSmallStep() {

if (this.smallStep_set) {

return this.smallStep;

}

ValueBinding vb = getValueBinding(“smallStep”);

if (vb != null) {

FacesContext context = FacesContext.getCurrentInstance();

Object value = vb.getValue(context);

if (value == null) {

return smallStep; // default

} else {

return ((Number)value).intValue();

}

} else {

return this.smallStep;

}

}

This getter pattern for properties that support computed values applies to components and
complex types.

464 Chapter 12 XPages Extensibility

Complete the xsp-config for the UISpinner Component
This section finishes off uispinner.xsp-config, the XPages component configuration file for
the UISpinner component. All the properties that should be associated with the component are
specified, and several <designer-extension> have been added. They are explained shortly,
but first update the uispinner.xsp-config configuration file that was started earlier in this
chapter. From the Package Explorer,

1. Open the WebContent/WEB-INF folder.

2. Select the uispinner.xsp-config file.

3. Right-click and choose Open.

4. Replace the contents of uispinner.xsp-config with the configuration information
specified in Listing 12.17.

Listing 12.17 uispinner.xsp-config (Final)

<faces-config>

<faces-config-extension>

<namespace-uri>http://mxpd/xsp/control

</namespace-uri>

<default-prefix>mx</default-prefix>

</faces-config-extension>

<component>

<description>MXPD Spinner</description>

<display-name>MXPD Spinner</display-name>

<component-type>mxpd.component.UISpinner

</component-type>

<component-class>mxpd.component.UISpinner

</component-class>

<component-extension>

<tag-name>uiSpinner</tag-name>

<component-family>mxpd.component.UISpinner

</component-family>

<designer-extension>

Complete the xsp-config for the UISpinner Component 465

<in-palette>true</in-palette>

<category>MXPD</category>

<render-markup>

<?xml version=”1.0”

encoding=”UTF-8”?> <xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:inputText size=”5”

value=”<%=this.value?this.value:’spin’%>”>

<xp:this.converter>

<xp:convertNumber

type=”number”></xp:convertNumber>

</xp:this.converter>

</xp:inputText >

<xp:button value=” - “ >

</xp:button>

<xp:button value=” + “ >

</xp:button>

</xp:view>

</render-markup>

</designer-extension>

</component-extension>

<group-type-ref>mxpd.component.group.minmaxpair

</group-type-ref>

<property>

<description>Value</description>

<display-name>value</display-name>

<property-name>value</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

</designer-extension>

</property-extension>

</property>

<property>

<description>Number of visible digits</description>

(continues)

466 Chapter 12 XPages Extensibility

<display-name>size</display-name>

<property-name>size</property-name>

<property-class>int</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

<editor>

com.ibm.workplace.designer.property.editors.comboParameterEditor

</editor>

<editor-parameter>

1

2

3

4

5

</editor-parameter>

</designer-extension>

</property-extension>

</property>

<property>

<description>The big increment value</description>

<display-name>Big increment</display-name>

<property-name>stepSizes</property-name>

<property-class>mxpd.component.step.LargeSmallStepInterface

</property-class>

<property-extension>

<designer-extension>

<category>spinner</category>

</designer-extension>

</property-extension>

</property>

<property>

<description>Example Method Binding</description>

<display-name>ExampleMethodBinding</display-name>

<property-name>valueChangeListener

</property-name>

<property-class>javax.faces.el.MethodBinding

</property-class>

Listing 12.17 (Continued)

Complete the xsp-config for the UISpinner Component 467

<property-extension>

<required>false</required>

<designer-extension>

<category>spinner</category>

</designer-extension>

<method-binding-property>true</method-binding-property>

<method-param>

<method-param-name>event</method-param-name>

<method-param-class>

javax.faces.event.ValueChangeEvent

</method-param-class>

</method-param>

</property-extension>

</property>

<property>

<description>style</description>

<display-name>style</display-name>

<property-name>style</property-name>

<property-class>string</property-class>

<property-extension>

<designer-extension>

<category>styling</category>

</designer-extension>

</property-extension>

</property>

<property>

<description>styleClass</description>

<display-name>styleClass</display-name>

<property-name>styleClass</property-name>

<property-class>string</property-class>

<property-extension>

<designer-extension>

<category>styling</category>

</designer-extension>

</property-extension>

</property>

</component>

</faces-config>

468 Chapter 12 XPages Extensibility

Table 12.4 More xsp-config <designer-extension> Tags

Tag Description

<in-palette> The <in-palette> tag enables you to have your control appear in
Domino Designers Controls palette.

<category> The <category> tag allows you to specify a category under which your
control appears in the Controls palette.

<render-markup> The <render-markup> tag enables you to specify a HTML description
of how you want your control to appear visually on the XPage Design
canvas. Note that you can even embed JavaScript scriptlets to dynami-
cally generate content in the visualization, and even better, you can use
the this notation to access the values of control attributes.

Many interesting xsp-config <designer-extension> tags are used in Listing 12.17.
The relevant section is reproduced here:

<designer-extension>

<in-palette>true</in-palette>

<category>MXPD</category>

<render-markup><?xml version=”1.0”

encoding=”UTF-8”?> <xp:view

xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:inputText size=”5”

value=”<%=this.value?this.value:’spin’%>”>

<xp:this.converter>

<xp:convertNumber

type=”number”></xp:convertNumber>

</xp:this.converter>

</xp:inputText >

<xp:button value=” - “ >

</xp:button>

<xp:button value=” + “ >

</xp:button>

</xp:view>

</render-markup>

</designer-extension>

Table 12.4 details the highlighted tags from the code section.

Complete the xsp-config for the UISpinner Component 469

Table 12.5 Available Editors for the <editor> Tag

Editor Functionality

Access Key Validator

com.ibm.workplace.designer.property.

editors.accessKeyValidator

Specifies a number in the range 0–9

Boolean Check Box

com.ibm.std.BooleanCheckBox

Displays a checkbox for the value

Boolean Value

com.ibm.std.Boolean

Drop-down list of true and false

Character Set Type Picker

com.ibm.workplace.designer.property.

editors.charSetPicker

Drop-down list of several prepopulated
character sets (ISO-8859-1, UTF-8, and
so on)

Client Side Event Editor

com.ibm.workplace.designer.ide.xfaces.int

ernal.editors.ClientSideEventEditor

Pop-up JavaScript editor

TIP For more information on visualizing XPages components, see the “Native and
Custom Control Custom Visualization Best Practices” article on the IBM Lotus Notes
and Domino Application Development Wiki: www-10.lotus.com/ldd/ddwiki.nsf/dx/
Native_and_Custom_Control_Custom_Visualization_Best_Practices.

For a property that should be restricted to a certain set of options, you can specify a
designer <editor>. For example, the comboParameterEditor can specify a set of options
that are listed using the <editor-parameter> tag:

<designer-extension>

...

<editor>

com.ibm.workplace.designer.property.editors.comboParameterEditor

</editor>

<editor-parameter>

1

2

3

Table 12.5 lists all the available editors.

470 Chapter 12 XPages Extensibility

Table 12.5 Available Editors for the <editor> Tag

Editor Functionality

Client Side Script Editor

com.ibm.designer.domino.client.script.

editor

Pop-up JavaScript editor

Combo Box

com.ibm.workplace.designer.property.

editors.comboParameterEditor

Drop-down list of values populated from
line items specified in
<editor-parameter> tag

Content Type Picker

com.ibm.workplace.designer.property.

editors.contentPicker

Drop-down list of HTML content types
(text/html, image/png, and so on)

Control Picker

com.ibm.workplace.designer.property.

”editors.controlPicker

Pop-up select control dialog

Data Source Picker

com.ibm.workplace.designer.property.

editors.dataSourcePicker

Drop-down list of data sources

DoubleValue

com.ibm.std.Double

Only allows double values to be entered

Generic File Picker

com.ibm.workplace.designer.ide.xfaces.

internal.editors.FilePicker

Pop-up file system browser for selecting
a filename

Image File Picker

com.ibm.workplace.designer.property.

editors.ImagePicker

Pop-up image picker with previewer

Integer Value

com.ibm.std.Integer

Only allows integer values be entered

Language Direction Picker

com.ibm.workplace.designer.property.

editors.dirAttrPicker

Drop-down list (left to right, right to left)

Language Picker

com.ibm.workplace.designer.property.

editors.langPicker

Drop-down list of world languages

Complete the xsp-config for the UISpinner Component 471

Table 12.5 Available Editors for the <editor> Tag

Editor Functionality

MIME Image Type Picker

com.ibm.workplace.designer.property.

editors.imageMIMEPicker

Drop-down list of common MIME
image formats (audio/mpeg, image/gif,
and so on)

Method Binding Editor

com.ibm.workplace.designer.ide.xfaces.

internal.editors.MethodBindingEditor

Pop-up JavaScript and Expression Lan-
guage (EL) editor

Multiline Text

com.ibm.std.MultiLine

Pop-up multiline editor

Number Format Editor

com.ibm.workplace.designer.property.

editors.numberFormatPicker

Pop-up editor to specify a number with
decimal places, currency symbol, or per-
cent

Password Value

com.ibm.std.Password

Entered characters appear as dots

Regular Expression Editor

com.ibm.workplace.designer.property.

editors.regExpression

Specifies a regular expression

Release Line Picker

com.ibm.workplace.designer.property.

editors.relPicker

Alternate, style sheet, Start, Next, Previ-
ous, Contents, Index, glossary, Contents,
and so on

Shape Type Picker

com.ibm.workplace.designer.property.

editors.shapePicker

Drop-down list of shapes (Default,
Circle, Rectangle, Polygon)

String Value

com.ibm.std.String

Specifies a String value

Style Class Editor

com.ibm.workplace.designer.property.

editors.StyleClassEditor

Pop-up editor to specify style classes
and/or themes

Style Editor

com.ibm.workplace.designer.property.

editors.StylesEditor

Pop-up editor to specify height, width,
font background, and margin sizes

Time Zone Picker

com.ibm.workplace.designer.property.

editors.timeZonePicker

Drop-down list of standard time-zone
abbreviations

472 Chapter 12 XPages Extensibility

Table 12.5 Available Editors for the <editor> Tag

Editor Functionality

XSP Document Action Picker

com.ibm.workplace.designer.property.edito

rs.XSPDocumentActionPickerEditor

Drop-down list of available document
actions (openDocument, editDocument,
newDocument)

XSP Page Picker

com.ibm.workplace.designer.property.edito

rs.PagePicker

Creates a drop-down list of XPages
available in the application

Specifying javax.faces.el.MethodBinding as a <property-class> with
<method-binding-property> set to true causes Domino Designer to enable a button for the
property. When clicked, this button launches a Script Editor for the property that allows the
designer to specify an EL reference value for the method binding:

<property-class>javax.faces.el.MethodBinding

</property-class>

<property-extension>

<required>false</required>

<designer-extension>

<category>spinner</category>

</designer-extension>

<method-binding-property>true</method-binding-property>

<method-param>

<method-param-name>event</method-param-name>

<method-param-class>

javax.faces.event.ValueChangeEvent

</method-param-class>

</method-param>

</property-extension>

As mentioned earlier, you can specify a property in the xsp-config file that does not corre-
spond to any property managed by the component, and it is treated as an attribute of the compo-
nent, which is typically of interest to renderers.

The styleClass attribute demonstrates this feature:

<property>

<description>styleClass</description>

<display-name>styleClass</display-name>

<property-name>styleClass</property-name>

<property-class>string</property-class>

Complete the UI Component Extension, UISpinner 473

<property-extension>

<designer-extension>

<category>styling</category>

</designer-extension>

</property-extension>

</property>

If styleClass is set, the final renderer implementation for the UISpinner uses the value
of the styleClass property as the value for the class attribute in the HTML elements used to
render the UISpinner control. In addition, if you want your component to support XPages
themes, you need to specify this attribute and implement the ThemeControl interface. It is easy
to add an XPages theme to a custom UI component extension and the next section shows you how
to do that.

Complete the UI Component Extension, UISpinner
In this section, you complete the implementation of the UI component extension class. Points of
interest in the code for this class are discussed throughout this section.

To complete the implementation, follow these steps:

1. From the Package Explorer, open the src folder.

2. Select the UISpinner.java file.

3. Right-click and choose Open.

4. Replace the contents of UISpinner.java with the Java code specified in Listing 12.18.

Listing 12.18 UISpinner .java

package mxpd.component;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

import javax.faces.convert.IntegerConverter;

import javax.faces.el.ValueBinding;

import javax.faces.validator.Validator;

import javax.faces.validator.LengthValidator;

import mxpd.component.group.MinMaxPair;

import mxpd.component.step.LargeSmallStepInterface;

import com.ibm.xsp.stylekit.ThemeControl;

import com.ibm.xsp.util.StateHolderUtil;

(continues)

474 Chapter 12 XPages Extensibility

public class UISpinner extends UIInput

implements MinMaxPair, ThemeControl {

public static final String COMPONENT_FAMILY =

“mxpd.component.UISpinner”;

public static final String RENDERER_TYPE =

“mxpd.renderer.UISpinnerRenderer”;

LargeSmallStepInterface stepSizes;

int min = Integer.MIN_VALUE;

int max = Integer.MAX_VALUE;

public UISpinner() {

super();

setConverter(new IntegerConverter());

Validator v = new LengthValidator();

((LengthValidator)v).setMaximum(4);

((LengthValidator)v).setMinimum(1);

addValidator(v);

this.setRendererType(RENDERER_TYPE);

}

@Override

public String getFamily() {

return COMPONENT_FAMILY;

}

public LargeSmallStepInterface getStepSizes() {

return stepSizes;

}

public void setStepSizes(LargeSmallStepInterface stepSizes) {

this.stepSizes = stepSizes;

}

Listing 12.18 (Continued)

Complete the UI Component Extension, UISpinner 475

public int getMin() {

if (min != Integer.MIN_VALUE) {return min;}

ValueBinding vb = getValueBinding(“min”);

if (vb != null){

Object value = vb.getValue(getFacesContext()) ;

if (value != null){

return ((Number)value).intValue();

} else {

return Integer.MIN_VALUE;

}

} else {

return Integer.MIN_VALUE;

}

}

public void setMin(int min) {

this.min = min;

}

public int getMax() {

if (max != Integer.MAX_VALUE) {return max;}

ValueBinding vb = getValueBinding(“max”);

if (vb != null){

Object value = vb.getValue(getFacesContext()) ;

if (value != null){

return ((Number)value).intValue();

}else {

return Integer.MAX_VALUE;

}

} else {

return Integer.MAX_VALUE;

}

}

public void setMax(int max) {

this.max = max;

}

// StateHolder Interface

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

(continues)

476 Chapter 12 XPages Extensibility

super.restoreState(context, values[0]);

this.stepSizes =

(LargeSmallStepInterface) StateHolderUtil.restoreObjectState(

context, this, values[1]);

this.min = ((Integer) values[2]).intValue();

this.max = ((Integer) values[3]).intValue();

}

public Object saveState(FacesContext context) {

Object values[] = new Object[4];

values[0] = super.saveState(context);

values[1] = StateHolderUtil.saveObjectState(context, stepSizes);

values[2] = new Integer(this.min);

values[3] = new Integer(this.max);

return values;

}

public String getStyleKitFamily() {

return “Button.Command”;

}

}

A couple of things about the UI component class from Listing 12.18 are worth highlight-
ing. The com.ibm.xsp.stylekit.ThemeControl interface is implemented. All that is
required is to implement the getStyleKitFamily() method to return a theme identifier (see
Chapter 14, “XPages Theming,” for details about XPages themes):

public class UISpinner extends UIInput

implements MinMaxPair, ThemeControl {

...

public String getStyleKitFamily() {

return “Button.Command”;

}

Then, depending on what XPages theme has been set for the application, the style class that
is associated with the theme ID returned by the component’s getStyleKitFamily() method is
set automatically by the XPages runtime as the value for the styleClass attribute of the compo-
nent. If the renderer set for the component supports the styleClass attribute, the rendered con-
trol has the appropriate XPages theme styling applied.

Listing 12.18 (Continued)

Complete the Renderer UISpinnerRenderer 477

Simply for convenience, the component explicitly sets its own Converter and Validator:

setConverter(new IntegerConverter());

Validator v =

new LengthValidator();

((LengthValidator)v).setMaximum(4);

((LengthValidator)v).setMinimum(1);

addValidator(v);

Complete the Renderer UISpinnerRenderer
The third and final step in the process for creating a custom UI component extension is to imple-
ment the renderer. A simple renderer was created earlier in this chapter. However, you now
update that renderer to implement the expected behavior for the UISpinner control.

Follow these steps:

1. From the Package Explorer, open the src folder.

2. Expand the mxpd.renderer package.

3. Select the UISpinnerRenderer.java file.

4. Right-click and choose Open.

5. Replace the contents of UISpinnerRenderer.java with the configuration informa-
tion specified in Listing 12.19 and save.

NOTE For a good article that describes building custom JSF components and imple-
menting a separate renderer, see “JSF for nonbelievers: JSF component development” on
the IBM developerWorks website (www.ibm.com/developerworks/java/library/j-jsf4/).

Listing 12.19 UISpinnerRenderer .java

package mxpd.renderer;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.component.ValueHolder;

import javax.faces.context.FacesContext;

(continues)

478 Chapter 12 XPages Extensibility

import javax.faces.context.ResponseWriter;

import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;

import javax.faces.render.Renderer;

import mxpd.component.UISpinner;

public class UISpinnerRenderer extends Renderer {

private static final String SMALL_INCR = “.smlincr”;

private static final String SMALL_DECR = “.smldecr”;

@Override

public void encodeBegin(FacesContext context,

UIComponent component) throws IOException {

ResponseWriter rw = context.getResponseWriter();

String clientId = component.getClientId(context);

int smallStep = 1;

int largeStep = 10;

if (!(component instanceof UISpinner)){

return;

}

UISpinner s = (UISpinner)component;

encodeInputText(rw, clientId, component, context);

if (s.getStepSizes() != null){

smallStep = s.getStepSizes().getSmallStep();

largeStep = s.getStepSizes().getLargeStep();

}

encodeButton(rw, clientId, s, SMALL_DECR, “<”,

(smallStep*-1), (largeStep*-1));

encodeButton(rw, clientId, s, SMALL_INCR, “>”,

smallStep, largeStep);

}

Listing 12.19 (Continued)

Complete the Renderer UISpinnerRenderer 479

@Override

public void encodeEnd(FacesContext context, UIComponent component)

throws IOException {

ResponseWriter rw = context.getResponseWriter();

StringBuffer sb = new StringBuffer();

sb.append(“ <script type=\”text/javascript\”> “);

sb.append(“ function spin(target, increment, clkEvent,

minVal, maxVal) { “);

sb.append(“ var newValue; “);

sb.append(“ if (increment > 0) { “);

sb.append(“ newValue = Math.min(maxVal,

Number(target.value) + (increment)); “);

sb.append(“ } else { “);

sb.append(“ newValue = Math.max(minVal,

Number(target.value) + (increment)); “);

sb.append(“ } “);

sb.append(“ target.value = newValue; “);

sb.append(“ } “);

sb.append(“ </script> “);

rw.write(sb.toString());

}

@Override

public void decode(FacesContext context, UIComponent component) {

String clientId = null;

if (!(component instanceof UISpinner)) {

return;

}

clientId = component.getClientId(context);

Map<?, ?> requestMap = context.getExternalContext()

.getRequestParameterMap();

String newValue = (String)requestMap.get(clientId);

if (newValue != null) {

((UIInput) component).setSubmittedValue(newValue);;

(continues)

480 Chapter 12 XPages Extensibility

}

}

protected Object getValue(UIComponent component) {

if (component instanceof ValueHolder) {

Object value = ((ValueHolder) component).getValue();

return value;

}

return null;

}

protected String getCurrentValue(FacesContext context,

UIComponent component) {

if (component instanceof UIInput) {

Object submittedValue =

((UIInput) component).getSubmittedValue();

if (submittedValue != null) {

return submittedValue.toString();

}

}

String currentValue = null;

Object currentObject = getValue(component);

if (currentObject != null) {

Converter c = ((ValueHolder)component).getConverter();

if (c != null) {

currentValue = c.getAsString(context, component,

currentObject);

} else {

currentValue = currentObject.toString();

}

}

return currentValue;

}

@Override

Listing 12.19 (Continued)

Complete the Renderer UISpinnerRenderer 481

public Object getConvertedValue(FacesContext context,

UIComponent component, Object submittedValue)

throws ConverterException {

Converter converter = ((UIInput)component).getConverter();

if (converter != null) {

Object result = converter.getAsObject(context, component,

(String)submittedValue);

return result;

}

return submittedValue;

}

protected void encodeInputText(ResponseWriter rw, String clientId,

UIComponent component, FacesContext context)

throws IOException {

rw.startElement(“input”, component);

rw.writeAttribute(“type”, “text”, null);

rw.writeAttribute(“id”, clientId, null);

rw.writeAttribute(“name”, clientId, null);

String currentValue = getCurrentValue(context, component);

if (currentValue!=null){

rw.writeAttribute(“value”, currentValue, “value”);

}

Integer s = (Integer)component.getAttributes().get(“size”);

if (s != null){

rw.writeAttribute(“size”, s, “size”);

}

rw.endElement(“input”);

}

protected void encodeButton(ResponseWriter rw, String clientId,

UISpinner component, String idSuffix, String buttonLabel,

int smallStep, int largeStep) throws IOException {

(continues)

482 Chapter 12 XPages Extensibility

rw.startElement(“button”, component);

rw.writeAttribute(“type”, “button”, null);

rw.writeAttribute(“id”, clientId + idSuffix, “id”);

if (null != component.getAttributes().get(“style”)) {

rw.writeAttribute(“style”,

component.getAttributes().get(“style”), “style”);

}

if (null != component.getAttributes().get(“styleClass”)) {

rw.writeAttribute(“class”,

component.getAttributes().get(“styleClass”),

“styleClass”);

}

rw.writeAttribute(“name”, clientId + idSuffix, null);

rw.writeAttribute(“onclick”, “return spin(“

+ “document.getElementById(‘“ + clientId + “‘),”
+ smallStep

+ “,” + “‘SGL’” + “,” + component.getMin() + “,”

+ component.getMax() + “)”, null);

rw.writeAttribute(“ondblclick”, “return spin(“

+ “document.getElementById(‘“ + clientId + “‘),”

+ (largeStep - (2 * smallStep)) + “,” + “‘DBL’” + “,”

+ component.getMin() + “,” + component.getMax()

+ “)”, null);

rw.write(buttonLabel);

rw.endElement(“button”);

}

}

In Listing 12.19, note the three key renderer methods and the ValueHolder interface:

• encodeBegin(): Renders the component to the output stream associated with the
response.

• encodeEnd(): Renders the component to the output stream associated with the
response after any children of the component need to be rendered.

• decode(): Extracts (decodes) submitted values from the request and stores them in the
component.

Listing 12.19 (Continued)

Create a Sample Application Using the UISpinner Component 483

• ValueHolder: Components that store a local value and support conversion between
String and the values native datatype should implement the ValueHolder interface.

Chapter 5 offers more information on the three key renderer methods.

Create a Sample Application Using the UISpinner Component
At last! The custom UI component extension is complete and ready to use. This section creates
the test application that was shown at the start of this chapter in Figure 12.1 to demonstrate the
capabilities of the component. But first, let’s quickly try out the new UI component.

Take Your New UI Component Extension for a Test Drive
Create a test application that exercises the properties and behaviors of the UISpinner control. To
create a new XPage, follow these steps:

1. From the application navigator, select the XPages folder.

2. Right-click and select New XPage.

3. See the New XPage dialog.

4. Name the XPage xpSpinnerTest.

5. Choose OK.

6. From the controls palette, drag your MXPD Spinner control onto the design canvas.

7. Open the Properties tab and set minimum (min) and maximum (max) values under the
spinner-base category.

8. Add a new stepSizes complex property and override the default smallStep and
largeStep step sizes, as shown in Figure 12.17.

9. Save the XPage and preview it in a web browser.

Initially, the spinner is blank; there is no data bound to the control. Enter in any numeric
value and click and double-click the spinner buttons to see the value change as expected and stop
at the limits specified.

The final sections create a slightly more complex example that tests more of the compo-
nent’s properties.

Create a Backing Bean
To finish the final application, first create a backing bean for the XPage that the day, month, and
year UISpinner components to which they are bound. A backing bean is another name for man-
aged bean used to data that appears in a control on a user interface. This example uses a bean to
store the data instead of a Domino Document. See the section, “Managed Bean” in Chapter 11
“Advanced Scripting,” for details on creating and using managed beans. When the XPages is

484 Chapter 12 XPages Extensibility

submitted, the beans properties are updated with the values entered (provided they converted cor-
rectly and passed validation, of course).

To create the backing bean, follow these steps:

1. In Package Explorer, select the src folder.

2. Right-click and select New > Other....

3. See the New dialog.

4. Under the Java folder, select Class.

5. Choose Next.

6. See the New Java Class dialog.

7. Enter mxpd.bean for the Package field.

8. Enter SpinnerBean for the Name field.

9. Choose Finish.

10. Add the code shown Listing 12.20 to the SpinnerBean class and save the file.

Figure 12.17 Test Drive the new UI Component

Create a Sample Application Using the UISpinner Component 485

Listing 12.20 SpinnerBean.java

package mxpd.bean;

import java.util.Date;

import javax.faces.event.ValueChangeEvent;

public class SpinnerBean {

private int day;

private int month;

private int year;

private int dateChangeCount;

@SuppressWarnings(“deprecation”)

public SpinnerBean() {

Date d = new Date();

setDay(d.getDate());

setMonth(d.getMonth()+1);

setYear(d.getYear()+1900);

}

public int getDay() { return day; }

public void setDay(int day) { this.day = day; }

public int getMonth() { return month; }

public void setMonth(int month) { this.month = month; }

public int getYear() { return year; }

public void setYear(int year) { this.year = year; }

public void dateChangeListener(ValueChangeEvent e){

dateChangeCount++;

}

public int getDateChangeCount() {

return dateChangeCount;

}

public void setDateChangeCount(int dateChangeCount) {

this.dateChangeCount = dateChangeCount;

}

}

486 Chapter 12 XPages Extensibility

Register the Backing Bean
Follow these steps to register the backing bean with faces-config.xml:

1. In Package Explorer, open the WebContent/WEB-INF folder.

2. Select faces-config.xml, right-click, and select Open.

3. Add the code to the SpinnerBean, as shown in Listing 12.21, and save the file.

Listing 12.21 Updated faces-config.xml with Managed Bean

<?xml version=”1.0” encoding=”UTF-8”?>

<faces-config>

<render-kit>

<renderer>

<component-family> mxpd.component.UISpinner </component-family>

<renderer-type> mxpd.renderer.UISpinnerRenderer </renderer-type>

<renderer-class> mxpd.renderer.UISpinnerRenderer

</renderer-class>

</renderer>

</render-kit>

<managed-bean>

<managed-bean-name> spinnerBean </managed-bean-name>

<managed-bean-class> mxpd.bean.SpinnerBean </managed-bean-class>

<managed-bean-scope> session </managed-bean-scope>

</managed-bean>

</faces-config>

Create the Final Test Application
Create a test application that exercises all the properties and behaviors of the UISpinner control,
the computed properties, complex types, and method bindings. To create the test XPage, follow
these steps:

1. From the application navigator, select the XPages folder.

2. Open the XPage xpSpinnerTest.

3. Open the Source tab for the XPage and replace it with the contents of Listing 12.22
and save.

Create a Sample Application Using the UISpinner Component 487

Listing 12.22 xpSpinnerTest.xsp

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”

xmlns:mx=”http://mxpd/xsp/control”>

<xp:label value=”UISpinner Example” id=”label4”

style=”font-weight:bold;font-size:14pt”></xp:label>

<xp:br></xp:br>

<xp:table border=”1” style=”width:800.0px”>

<xp:tr>

<xp:td style=”width:50.0px”>

<xp:label id=”label1” value=”Day”></xp:label>

</xp:td>

<xp:td style=”width:200px”>

<mx:uiSpinner id=”uiSpinner1” size=”2”

value=”#{spinnerBean.day}”

valueChangeListener=”#{spinnerBean.dateChangeListener}”

max=”31” min=”1”>

<mx:this.stepSizes>

<mx:largeSmallStep largeStep=”10”
smallStep=”1”>

</mx:largeSmallStep>

</mx:this.stepSizes>

</mx:uiSpinner>

</xp:td>

<xp:td>

<xp:message id=”message1”
for=”uiSpinner1”></xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Month” id=”label2”></xp:label>

</xp:td>

<xp:td>

<mx:uiSpinner id=”uiSpinner2” size=”2”

value=”#{spinnerBean.month}”

valueChangeListener=”#{spinnerBean.dateChangeListener}”

(continues)

488 Chapter 12 XPages Extensibility

max=”#{javascript:return 12}”

min=”#{javascript:return 1*1}”>

</mx:uiSpinner>

</xp:td>

<xp:td>

<xp:message id=”message2” for=”uiSpinner2”></xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td>

<xp:label value=”Year” id=”label3”></xp:label>

</xp:td>

<xp:td>

<mx:uiSpinner id=”uiSpinner3”

value=”#{spinnerBean.year}” size=”4”

valueChangeListener=”#{spinnerBean.dateChangeListener}”>

<mx:this.stepSizes>

<mx:largeSmallStep

largeStep=”#{javascript:return (10*10)}”

smallStep=”#{javascript:return (1*1*1)}”>

</mx:largeSmallStep>

</mx:this.stepSizes>

</mx:uiSpinner>

</xp:td>

<xp:td>

<xp:message id=”message3” for=”uiSpinner3”></xp:message>

</xp:td>

</xp:tr>

<xp:tr>

<xp:td></xp:td>

<xp:td>

<xp:button value=”Save” id=”button1”

disableTheme=”false”

themeId=”Button.command”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” immediate=”false”

save=”true”>

<xp:this.action>

Listing 12.22 (Continued)

Create a Sample Application Using the UISpinner Component 489

<![CDATA[#{javascript:var

computedField1:com.ibm.xsp.component.xp.XspOutputText =

getComponent(“computedField1”);

var uiSpinner1:mxpd.component.UISpinner = getComponent(“uiSpinner1”);

var uiSpinner2:mxpd.component.UISpinner = getComponent(“uiSpinner2”);

var uiSpinner3:mxpd.component.UISpinner = getComponent(“uiSpinner3”);

var dd = uiSpinner1.getValue();

var mm = uiSpinner2.getValue();

var yy = uiSpinner3.getValue();

y = (yy > 1900) ? yy-1900 : yy;

var someTime = new java.util.Date(y, mm-1, dd);

var currentTime = new java.util.Date();

var oneDay=1000*60*60*24; //1 day in milliseconds

diff = (Math.floor((currentTime.getTime()-someTime.getTime())/oneDay));

var days = (Math.abs(diff) == 1 ? “ day” : “ days”);

var togo = (diff <= 0 ? “ to go.” : “ ago.”);

computedField1.setValue(Math.abs(diff) + days + togo + ((true) ? “
(“+dd+”/”+mm+”/”+yy+”)” : ““));

}]]></xp:this.action>

</xp:eventHandler>

</xp:button>

</xp:td>

<xp:td>

<xp:table border=”0” style=”width:200.0px”>

<xp:tr>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”Select a date and click Save.”>

</xp:text>

</xp:td>

</xp:tr>

<xp:tr>

(continues)

490 Chapter 12 XPages Extensibility

Figure 12.18 XPage design for the application to test the new mx:uiSpinner control

<xp:td>

<xp:text escape=”true” id=”computedField2”>

<xp:this.value>

<![CDATA[#{javascript:spinnerBean.dateChangeCount + “ changes.”;}]]>

</xp:this.value>

</xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:td>

</xp:tr>

</xp:table>

<xp:br></xp:br>

</xp:view>

Figure 12.18 illustrates how the design of the test application should look. Notice that
the UISpinner control looks like how it will be rendered, rather than the plain test default tag
representation.

Listing 12.22 (Continued)

Where to Go From Here 491

Figure 12.19 mx:uiSpinner control in action showing conversion and validation errors

Nice Look and Feel
The final step is to provide a nice look and feel for by specifying the IBM OneUI theme for the
application. Follow these steps to set it:

1. From the application navigator, select the application.

2. Right-click and choose Application > Properties (or double-click the application name
in the application navigator).

3. Open the XPages tab.

4. Specify oneuiv2 in the Application theme: field (if not already specified).

5. Select File > Save.

6. Close the Properties file.

Test to Ensure That It All Works!
Return to the XPage xpSpinnerTest and run it by selecting Design > Preview in Web
Browser > Default System Web Browser.

Use a spinner control to set a date, check to see how many days until Christmas, or enter
junk dates to see the converter and validator in action, as shown in Figure 12.19. Have fun with it!

Where to Go From Here
This chapter has only scratched the surface of what is possible with XPages extensibility. Many
excellent resources are available on the Internet to help you build on what you have learned here
in this chapter. Hopefully, this chapter got the basics out of the way and enables you to tackle
more complex XPages extensibility challenges and projects.

492 Chapter 12 XPages Extensibility

XPages Extensibility API Developers Guide
The “XPages Extensibility API Developers Guide” is part of the IBM Lotus Notes and Domino
application development wiki. It is the place to go for more information about XPages extensi-
bility. There is a wide range of information here to help you with your XPages development and
answers what are probably your next two questions:

• How do I build my component as an XPages library as a plug-in so it can be distributed
and shared?

• How to deploy your plug-in to Domino Designer, Domino Server, and the Notes client?

Although this chapter focused on the XPages extension mechanisms and the aspects of JSF
that are important for XPages extension development, it did not cover the details and specifics of
the XPages framework classes and interface. That would be a huge documentation effort, and
thankfully, it has already been done:

Javadoc for the XPages framework programmatic and extensibility APIs: www-
10.lotus.com/ldd/ddwiki.nsf/dx/Master_Table_of_Contents_for_XPages_
Extensibility_APIs_Developer_Guide

Here, you can learn about the XPages classes you may want to extend that already pro-
vide XPages specific integration. The Javadoc APIs in conjunction with articles on the
“XPages Extensibility Developers Guide” is a useful resource to get to the next level in
XPages component development.

XPages Extension Library
The XPages Extension Library project on OpenNTF (http://extlib.openntf.org/) is a great way to
deepen your knowledge and understanding of XPages and extensibility by seeing lots of real-
world components. There is more documentation here and, most importantly, you get access to
the source code. So, if you really like a particular component, you can see exactly how it is built.
With the knowledge you have gained from this chapter, you should be familiar with the XPages
extension mechanisms so that you can get straight to understanding the implementation specifics
of the UI component extension.

IBM developerWorks
To learn more about JSF, visit the Java technology section of the IBM developerWorks website
and search for JSF. You can find many useful articles on the technology and architecture: www.
ibm.com/developerworks/java/.

Conclusion 493

Conclusion
This concludes your lesson on XPages extensibility. Up to now, the fact that XPages is based on
JSF will have been largely hidden in your daily XPages development. Going under the hood into
the JSF internals is a big step, especially considering the simplicity of mainstream XPages appli-
cation development. However, the XPages extensibility model opens up all sorts of new horizons
for you, as a software developer. Effectively, you no longer depend on the primary technology
provider to supply the components that you need for a particular app! You now have the option of
building any component yourself, obtaining it from a third-party provider or perhaps just down-
loading it for free from community resources, such as OpenNTF.org. The potential benefits of
this completely outweigh the incremental complexity involved in dabbling in a little Java pro-
gramming. Hopefully, this chapter taught you how to harness some of that power for your own
applications and that you will go on to provide and consume XPages components to the benefit of
yourself and the broader community.

This page intentionally left blank

495

No sooner was XPages released on the Domino server in version 8.5 than requests flooded in
from business partners and customers alike to have this technology running in the Notes client.
The primary reason, of course, was so that XPages web applications could be taken offline. NSF
data replication and synchronization has always been a key core asset of Notes/Domino, so lever-
aging its power for XPages applications was, not surprisingly, the next big customer use case.

Despite the ubiquity of broadband services today, it is often useful to be able to make an
exact replica of an application locally on your personal computer and work with it in isolation for
a period of time. This can be handy in a read-only context (for example, if you just want to
browse application data while disconnected from the network or you want to make changes and
post these updates at a later point once connected again). Through the years, local replicas of mail
and other corporate applications have made many a long-haul flight a more productive experience
for the traveling Notes user! There was no question that XPages applications needed to take
advantage of this powerful feature as early as possible in its own product development lifecycle.

Apart altogether from scenarios where offline application access is a key requirement,
other important factors also made XPages in the Notes client an important strategic next move.
For example, many organizations have a nonhomogeneous end-user mix (such as external clients
and internal employees who need access to the same application data). The former might need to
access the application over the web, whereas the latter might have the Notes client installed
across the corporate desktops with no (or restricted) browser access. In this situation, the ideal
solution is a single application that can execute in both environments—something XPages could
not offer until such time as it ran in the Notes client.

However, it is to some extent “old hat” to enumerate the motivating factors behind the deci-
sion to “port” XPages to the client, because they are much the same imperatives that drove tradi-
tional Notes apps to run on the web back in 1996. Clearly, there are many advantages to having a

C H A P T E R 1 3

XPages in the
Notes Client

496 Chapter 13 XPages in the Notes Client

cross-platform runtime capability, so the question shifts to how well and how quickly XPages
could support the Notes client platform. When initially introduced to the application develop-
ment community, XPages was heralded as a “write-once run-anywhere” technology and, in Notes
V8.5.1, it was time to see just how well it could deliver on that promise.

As usual, before you get started download the sample application, Chapter13.nsf, from
this website: www.ibmpressbooks.com/title/9780132486316.

Think Inside the Box
At first, you might have a difficult time conceiving just how XPages could run in a Notes client
environment. After all, it is a Java technology that requires a web-application server, a Java vir-
tual machine, and an HTML browser as fundamental components to function. On second
thoughts, however, the Notes client has all these components embedded within it...maybe all
XPages has to do is use them!

In Notes version 8.0, the Lotus Notes standard edition moved to an Eclipse-based platform
known as Lotus Expeditor (often referred to as XPD). XPD provides a web container based on
IBM WebSphere Application Server (WAS) technologies. In simple terms, a web container pro-
vides the runtime environment for Java web applications. The XPages runtime requires a web
container that supports the Java Servlet 2.4 specification, which the XPD web container does.
This requirement also exists on the server side, so the Domino web engine needed to be upgraded
in version 8.5 to support the 2.4-specification level in that environment at the time.

The Notes client has been shipping an embedded browser in various shapes and forms for a
long time. On Windows platforms, this is an embedded version of Internet Explorer® (IE). On Mac-
intosh and Linux, where IE is not an option, Notes provides an embedded browser based on a
Mozilla runtime technology known as XULRunner (pronounced “ZoolRunner”). Although XUL-
Runner itself is not a browser, it provides the underlying browser engine required to render HTML
and can execute rich cross-platform applications based on a programming language known as XML
User Interface Language (XUL). The Mozilla FireFox browser is based on XULRunner, as are
many other rich client applications. XPD provides a browser component based on XULRunner, and
this is the browser that XPages uses when running in the Notes client across all client platforms.

The reasons for choosing XULRunner were twofold. First, a single common browser
greatly simplifies development—for both the XPages runtime development team, and you, the
XPages application developer. Cross-browser rendering inconsistencies test the patience and san-
ity of web developers on a continual basis! The richer and more sophisticated the runtime appli-
cation, the more likely it is to have bugs across different browsers because of variances in the
implementation and support of the core technologies (HTML, CSS, and JavaScript). XULRunner
is now automatically included in the Notes installation packages on Windows platforms. Prior to
version 8.5.1, XULRunner was an available option that, if required, needed to be explicitly
installed as a supplementary package. This default installation of XULRunner and related brows-
ing components does not, however, impact the regular web-browsing experience of the Notes
user. Internet Explorer is still used for this purpose in the same way as before. The XPages run-

Think Inside the Box 497

time, on the other hand, explicitly instantiates the XULRunner-based embedded browser when an
XPages application is run in the Notes client.

The second reason for choosing XULRunner was made with a view to the future. Although
the XPages Notes user experience at this point in time is similar to that of XPages on the web, a
XULRunner-based browser offers more options for a richer client offering down the road. Part II
explained the concept of JSF renderkits (a renderkit is a library of Java classes responsible for
displaying components on a given runtime platform). Although XPages uses its own Rich Client
Platform (RCP) renderkit when running on the Notes client, it is almost identical to the web ren-
derkit. That is, the RCP renderkit extends the default web renderkit and overrides its rendering
behavior in a very limited number of cases. The end result is that the XPages markup emitted for
the Notes client and the web browser are about 99 percent the same! This, however, is a point-in-
time statement. As already briefly mentioned, the XULRunner runtime is capable of rendering
XUL markup that can build rich client user interfaces. Why not modify the RCP renderkit in a
future release to emit XUL rather than dynamic HTML on the client platform? Having this option
available, whether ever exercised in the future or not, was another compelling reason to opt for
XULRunner as the client rendering engine.

XULRunner V1.8.1.3 was shipped with Notes V8.5.1, which is the version on which FireFox
V2.x is based. In Notes V8.5.2, the embedded XULRunner runtime was upgraded to V1.9.1.3,
which is the version on which FireFox V3.5 is based. This XULRunner upgrade delivers a host of
new features, bug fixes, and performance enhancements, so it is beneficial for developers and users.
Including the FireFox browser versions here might give those who are already familiar with
Mozilla an insight into the level of browser support available in Notes 8.5.1 and 8.5.2, respectively.

TIP If you want to check out the version of XULRunner installed with your Notes client in
the future, first locate the XULRunner plug-in in the Notes installation. For example, on Win-
dows in 8.5.2, you can find it under the Notes framework folder, like this:

<notes_root_install_dir>\framework\rcp\eclipse\plugins\com.ibm.
rcp.xulrunner.runtime.win32.x86_6.2.2.yyyymmdd-hhmm

If you then move to the xulrunner subfolder and execute the command xulrunner.exe
/v, a dialog box displays the version of XULRunner installed with Notes. Figure 13.1 shows
an example.

Figure 13.1 XULRunner version dialog

498 Chapter 13 XPages in the Notes Client

Getting Started with XPages in the Notes Client
If you are new to XPages in a Notes client environment, but you have Notes V8.5.1 or later, it is
easy to get started with XPages applications and get a sense of how it works in that environment.
The standard Notes Discussion template application contains lots of ready-made examples of
XPages client features, so you can start by creating a new instance of this app. To do this, simply
select the File > New menu option or type Ctrl-N and create a new application like what’s shown
in Figure 13.2.

When the application opens in Notes, note that it is not an XPages interface but, in fact, the
same good ol’ Notes Discussion application. This is because the default client launch option is
still configured to open the application using the conventional Notes frameset.

To run the application using XPages you must therefore change the application launch
option, which you can do immediately by opening up the infobox properties for the database and
completing these steps:

1. Create type Alt-Enter anywhere in the application to open the infobox.

2. Switch the top combo box to Database (if not already selected).

3. Pick the Launch tab.

4. Change the Notes client launch property to match the option already chosen for the
browser at the bottom of the same panel (namely, allDocuments.xsp).

Figure 13.2 New local discussion application for Notes client

3, 2, 1...Lift Off 499

Figure 13.3 shows the required settings. Note that XPages is the default interface for the
Discussion app when run on the web, but not so when run on the client. As XPages in the Notes
client (a.k.a XPiNC) progresses and offers a richer client feature set, it might become the default
interface in a future release.

After your new selections are completed, close the Discussion app and reopen it to see the
XPages interface presented in the client. Note that if you happen to have any other live XPages
web applications, you could also change their launch properties and run them in the Notes client
in the manner just described.

3, 2, 1...Lift Off
So, what exactly happens when you change those launch options and invoke the application in
Notes? As a first step, the Notes core inspects the properties, identifies them as XPages launch
options, builds an XPages client URL internally, and passes it to the XPages client container. For
an arbitrary Discussion application instance, the launch URL looks like this:

notes:///discuss.nsf/allDocuments.xsp?OpenXPage

This complies with the following canonical form:

protocol://serverName/dbName.nsf/XPageName.xsp?OpenCmd

where:

• notes is the URL protocol.

• The database is local, so no server name is supplied.

• discuss.nsf is the database name. The replica ID can also be used here.

Figure 13.3 XPages application launch options

500 Chapter 13 XPages in the Notes Client

• allDocuments.xsp is the XPage specified in the launch options.

• ?OpenXPage is a new Notes client 8.5.1 URL command, just like ?OpenForm. This
parameter is not used by XPages on the web, but it has no side effects if it is applied there.

Internally, the XPages client container reconstructs the URL into a form suitable for the
XPD web container. The new internal URL would look something like this:

http://127.0.0.1:1234/xsp/discuss.nsf/allDocuments.xsp?OpenXPage

where:

• The standard http request/response protocol is used to interact with the local XPD web
container.

• 127.0.0.1 is the standard IP address used for the local host (this computer). The next
four digits, say “1234” as shown here, represent the port number and are randomly gen-
erated at runtime for security reasons.

• /xsp is the servlet alias used to identify XPages requests to the web container.

• If the NSF was located on a server, named “bigIron” for example, the database segment
of the URL would be bigIron!!discuss.nsf.

The remainder of the URL remains as before.
The XPages runtime instantiates the XPD web container if it is not already running. It then

instantiates an instance of the XULRunner-based browser and sets the new URL as its content.
Thus, the XPD web container is fed the request from the browser instance and recognizes it as an
XPages request. The XPages runtime is bootstrapped if this is the first XPages application to be
opened in the current Notes session (you no doubt notice a delay while opening the first app of a
session), and the request is then processed by the XPages runtime. From that point on, everything
works as it does when running on the Domino web server. That is, a component tree is con-
structed for the nominated launch page and the appropriate (RCP) renderers emit HTML markup
back to the (XULRunner) browser. And—presto!—an XPage duly appears in a new tab in the
Notes client. Figure 13.4 summarizes this process.

Note that all application processing occurs locally on your personal computer whether the
Notes application resides there or on a remote Domino server. In remote mode, all the applica-
tion’s Java class files, data, and resources need to be retrieved across the network from the
Domino server, but the local XPD web container and XPages runtime do all the processing.

XULRunner will cache the usual resources used on the XPage (images, CSS and so on),
but the Java classes still need to be loaded across the network for each new Notes session. This
adds some performance overhead when running in remote mode that does not occur when run-
ning locally. If you want to keep your data located on a remote server, you could improve perfor-
mance by having local design-only replicas on the client: thus the Java classes would not have to
be loaded across the network when running in the client.

Bookmarks 501

Bookmarks
Although the launch page represents the entry point nominated by the application developer, it is
not the only way to bring up an XPages app in Notes. A client URL, like the one built on-the-fly
by Notes at launch time, can also be stored as a bookmark and used an alternative entry point by
the end user.

Suppose, for example, that you are an active user of an XPages Discussion application, but
you find that you predominantly use the By Author view and By Category views. It might be
convenient for you, in this scenario, to simply bookmark these pages so that you can open the
application directly inside these views with a one-mouse click.

This can be achieved by following these steps:

1. Open an XPages Discussion application instance in the Notes (for example, perform a
client preview of Chapter13.nsf > allDocuments.xsp from Designer).

2. Activate a view, like By Author, by selecting it in the Discussion navigator.

3. Select Create > Bookmark from the Notes main menu.

4. Accept the default options in the Add Bookmarks dialog. This creates a By Author
bookmark in the Favorite Bookmarks space.

Sets
Updated
Launch
URL

XPages Client URL

User Opens
XPages Client
Application

XPages Notes
UI Container

• Transforms URL
• Starts Web Container
• Starts XULRunner

XSP Runtime

• Handles Requests
• Renders Responses

XPD Web
Container

• Bootstraps XSP Runtime
• Dispatches Requests

XULRunner-based
Browser Component

Sends Page Request

XSP
Requests

XSP
Responses

Sends Rendered Page

User
Experience

Notes Client

Figure 13.4 XPages in the Notes client

502 Chapter 13 XPages in the Notes Client

5. Close the XPages application.

6. Select Open > Favorite Bookmarks and click your XPages entry—just look for the
name used in step 4.

7. Verify that the XPages application is opened using the By Author as the entry point.

As an interesting follow-up exercise, copy (via right mouse menu on the bookmark entry)
and paste the bookmark to your desktop and look at its properties. Figure 13.5 shows the desktop
properties in a Windows environment (the simple URL format described earlier).

Figure 13.5 XPages bookmark

Of course, you can customize this bookmark in clever ways to really refine your entry point
to the XPages application. For example, suppose you are interested in the contents of a particular
topic in a hypothetical Discussion application (for example, all documents relating to XPages in
the Notes client that happen to be have been categorized using an XPiNC tag). Simply create a
new bookmark entry or edit an existing entry to read as follows:

notes:///discuss.nsf/byTag.xsp?OpenXPage&categoryFilter=XPiNC

As shown in Chapter 8, “Working with Domino Views,” the categoryFilter is simply
applied to the view data source on the specified XPage. So here, your bookmark essentially exe-
cutes a query while launching the Notes XPages application and thus reduces, or even eliminates,
unnecessary navigations that you would otherwise have to perform after opening the NSF.

Working Offline 503

The new ?OpenXPage URL command also ensures that XPages applications go through
the traditional Notes failover procedure when invoked from the Notes workspace. That is, should
a specific application instance be unavailable when clicked (such as when a server is down or a
database has been deleted), any known replicas are looked up and the next available replica, if
any, is launched in its place. For this reason, it is regarded as a best practice to include the
?OpenXPage command when constructing URLs for the client, although it’s not always strictly
required for the link to be successfully resolved.

Apart from bookmarks and HTML links, these URLs can also be invoked directly from the
Notes toolbar (see Figure 13.6), the OS desktop, the client browser, and so forth.

Figure 13.6 XPages URL in Notes Address toolbar

Furthermore, they can be used programmatically as a means of integrating XPages applica-
tions with traditional Notes design elements. For example, enveloping an XPages Notes URL in
an @Function means that you can launch an XPage from a form, frameset, and so on. For
example:

@URLOpen(“notes:///discuss.nsf/byAuthor.xsp?OpenXPage”)

This means that XPages can be plugged into existing client applications, so XPages can be
incrementally adopted on a piecemeal basis if that suits your application development strategy.

Remember that Chapter 9, “Beyond the View Basics,” explained the Display XPage
Instead form property, which provides another alternative means of launching XPages.

Working Offline
Working with your XPages web applications offline is a snap, thanks to the simplicity of the
replication and sync process. An example of how this works is again best illustrated using the
standard Notes Discussion application. If you want to step through this section in concert with the
text, you need access to a Domino server.

The exercise can be summarized as follows:

1. Create a Discussion application on a Domino server from the Notes client.

Use the same process as shown in Figure 13.2, except specify a server. Call the applica-
tion OfflineSample.

2. Change the Notes client launch options to XPages and reopen the application.

3. Use the New Topic button to create the first document.

504 Chapter 13 XPages in the Notes Client

4. Create a local replica of the application.

Use the File > Replication > New Replica menu, as shown in Figure 13.7 and
Figure 13.8.

5. Open the server instance of the application in a web browser and create a response to the
first topic.

Your browser URL will be http://<servername>/OfflineS.nsf.

6. Revert to the Notes client and verify that the response can be seen on the server copy, as
shown in Figure 13.9.

Enabled for XPages in V8.5.2

Figure 13.7 File Replication menu and New Topic Discussion action

Figure 13.8 File New Replica dialog

Working Offline 505

7. Open the local replica and verify that the response cannot be seen there.

8. Execute a replication task via Open > Replication and Sync or simply select File >
Replication > Replicate from the main menu.

9. Verify that the web response document is now visible in the local replica.

10. Create another response document locally.

11. Execute a replication task again; you see one document is sent to the server, as shown in
Figure 13.10.

Page Refresh Button

Figure 13.9 OfflineSample in Notes client on server

Figure 13.10 Notes Replication and Sync page

12. In the web browser, click the All Documents navigator entry and verify that the updates
from the local replica appear in the browser, as shown in Figure 13.11.

506 Chapter 13 XPages in the Notes Client

Some additional points are worth noting in regards to the preceding exercise. First, unless
you grant anonymous access to the Discussion application via the Notes access control list
(ACL), your credentials will be challenged on the web. If so, simply use your Notes ID and
password.

Second, if you are using Notes version 8.5.1, you see that the File > Replication menu is
disabled at step 4. As part of some XPages client-integration work done in Notes version 8.5.2,
that menu is now enabled. Readers using version 8.5.1 can access the replication menu by mov-
ing to the Notes workspace and using the right-mouse menu on the OfflineSample.nsf entry.

At step 5, you do not need to add allDocuments.xsp to the browser URL, because the
Domino web engine looks up the launch page when no xsp file is specified. Figure 13.9 shows the
server instance of the application in the Notes client after a response has been created on the web.
You need to force a refresh of the XPage before that web document appears.

The Notes Replication and Sync page, which was shown in Figure 13.10, can be accessed by
choosing the Replication and Sync entry from the Open drop-down button in the Notes workspace.

Figure 13.11 shows the end result: Three documents all created in different ways, but ulti-
mately located in a single NSF repository. Note that when a new replica is created, both the docu-
ment data and design elements are copied to the new NSF instance by default. This allows you to
execute the Discussion application in splendid isolation on your local computer—if you have a
wired network connection, you can remove the cable just before step 10 and reconnect it immedi-
ately afterward to fully verify that activity.

Figure 13.11 Discussion application viewed on the web after replication

One of These Things Is Not Like the Other 507

One of These Things Is Not Like the Other
Compare the tab window shown in Figure 13.9 to that in Figure 13.11. Okay, so the latter has an
extra document, but concern yourself more with application structure than content...do you
notice anything different?

The perceptive reader has no doubt observed that the banner area featured in the top-right
corner of the application has one less entry when displayed in the client. That is, the web has a
Welcome Martin Donnelly entry while the Notes version does not. Perhaps now is a good time
to revisit those earlier statements that claimed that application rendering is virtually identical on
both the Notes client and the web. Well, it is...unless you choose it not to be!

For this particular application, what relevance does a Welcome entry have in the Notes
client? The answer is none at all. After all, Notes establishes the user’s identity at startup or when-
ever an ID switch occurs, and only one user can be active at any one time during a given Notes
session. The web, of course, is a more stateless anonymous environment, so it is appropriate for
the Discussion banner to adopt different behavior in that context. The web behavior, in fact, iden-
tifies authenticated users in the manner shown in Figure 13.11 and presents a My Profile option
so that personal information can be entered or updated. If anonymous access is allowed for the
application, however, a login action is displayed instead, because anonymous users have no pro-
file information. Figure 13.12 shows the banner area configuration for an anonymous user.

Of more interest to you, of course, is the manner in which this conditional behavior is
achieved. To find out, open this Discussion app or the generic Discussion template in Domino
Designer and inspect the Custom Control named banner.xsp. Listing 13.1 shows the relevant
markup snippet.

Listing 13.1 Renderkit-Specific Properties

<xp:label value=”Welcome “ id=”labelWelcome”>

<xp:label.rcp rendered=”false”>

</xp:label.rcp>

</xp:label>

<xp:text escape=”true” id=”cfUserName”

Banner Area

Figure 13.12 Discussion application banner area for anonymous users

508 Chapter 13 XPages in the Notes Client

value=”#{javascript:sessionScope.commonUserName;}”>

<xp:text.rcp rendered=”false”>

</xp:text.rcp>

</xp:text>

You can see special rcp qualifiers being applied in this snippet, such as label.rcp,
text.rcp. The rcp qualifier is a renderkit identifier and, as previously mentioned, the Notes
renderkit is named rcp for Rich Client Platform. So, as the markup indicates, the text and label
components in this snippet are not rendered by the Notes renderkit, and thus they do not appear
when the XPage is displayed in the client because rendered=”false”.

This feature is similar in concept to the Hide/When logic used in conventional Notes appli-
cations, and you might find it useful if the applications you are building have more than one target
platform to support.

TIP If you need to detect programmatically in XPages whether you are running on the
web or in the Notes client—say that you want to build some platform-specific behaviors or
logic—the @ClientType @Function can be used; it returns Web and Notes, respectively.

Other Subtle Differences
If you continue to explore the Discussion application on both the client and the web, other subtle
differences become apparent. For example, if you go to the Notes client and delete the response
document created using the local replica, and then use a web browser to delete the other response
document, you can compare the warning dialogs presented in each case. Figure 13.13 and Figure
13.14 show the client and web dialogs, respectively.

Figure 13.13 XPages Notes warning dialog

Figure 13.14 XPages web warning dialog

Other Subtle Differences 509

Because you now know that XPages in the client runs in an embedded browser, and you
have seen the internal URL that is passed to the web container, you might question why Figure
13.14 does not read as follows:

”The page at http://127.0.0.1 says”

In fact, in the early days of XPiNC internal development, that’s exactly how it did read!
Because this looks out of place in the Notes client, even for an offline web application, there was
some work done in the XPages client runtime to make sure that native Notes dialogs are automat-
ically presented to the user in such scenarios.

These same native dialogs are available to you when you need to do client-side scripting.
Typically with JavaScript, UI dialogs are handled using the alert(), confirm(), and
prompt() functions. Although these functions run on XPages in the client, they have also been
abstracted to the XSP JavaScript object so that native functionality can be delivered on both the
client and the web. These are shown in Figures 13.15 through 13.18 and included in the
Chapter13_ClientSide_JS_APIs.xsp in Chapter13.nsf.

Figure 13.15 XSP.alert (“Changing this setting may negatively impact performance!”)

Figure 13.16 XSP.error (“Access to this operation is strictly prohibited!”)

Figure 13.17 XSP.confirm (“Are you sure you want to delete this resource?”)

510 Chapter 13 XPages in the Notes Client

In all cases, the dialog caption is the name of the XPage containing the executable
JavaScript code—this is automatically set for you by the XPages runtime code. The behavior of
XSP.alert() and XSP.error() is similar, insofar as they both issue informational warnings to
the user (along with a beep)—the latter is simply more severe than the former in terms of the
harshness of the beep emitted and the iconography employed. The next two solicit a response
from the user, which can then be processed by the application. XSP.confirm() is used to pose
questions where a boolean true or false response is required, whereas XSP.prompt() is used
to gather arbitrary end-user input. Listing 13.2 shows a snippet where XSP.prompt() poses a
question and tweaks the XPage UI based on the user’s response—when executed, the dialog
prompt text is highlighted in advance and the user is supposed to overwrite it by simply typing the
answer. The full XPage has also been created for you in Chapter13_Wordsworth.xsp in Chap-
ter13.nsf.

Listing 13.2 Wordsworth Quiz

var answer = XSP.prompt(“Please complete the following:”,

“I wandered lonely as a ...”)

var button = document.getElementById(“#{id:button1}”);

if (null != button && null != answer) {

if (answer == “cow” || answer == “cloud”)

button.innerHTML = “Correct 8-)”;

else

button.innerHTML = “Incorrect :’-(“

}

In any case, Eclipse Java developers will no doubt recognize the user dialogs as Standard
Widget Toolkit (SWT) controls. The XSP JavaScript functions are mapped to the appropriate
Java UI classes (for example, org.eclipse.swt.widgets.Messagebox) by the XPages RCP
runtime. On the web, they are mapped to the standard browser dialog functions.

Many other functions are provided by the XSP JavaScript object; for example, later on, you
use XSP.publishEvent() when working with XPages in Notes composite applications. This

Figure 13.18 XSP.prompt (“Please complete the following,” “I wandered lonely as a....”)

XPages: A Good Notes Citizen 511

area will probably be further expanded in future releases, as you can well imagine a host of handy
utility functions that would benefit client application development; for example:

• XSP.setWindowTitle(“My Title”): // set the title on active XPages tab.

• XSP.getPlatform(): // return a web or Notes platform ID, just like a client-side
@ClientType()

• XSP.isNotes(): // return true if runtime platform is Notes client.

• XSP.getPageURL(): // return the internal page URL.

• XSP.getBookMark(): // return a bookmarkable URL.

TIP You are encouraged by the XPages development and product management teams
to communicate any extensions you might find useful by using the IBM developerWorks
forum or creating an idea in ideajam.net. Using the latter, which just so happens to be an
XPages application, use the Domino Designer ideaspace and use an XPages tag.

XPages: A Good Notes Citizen
Although the native dialogs and renderkit-specific properties certainly help XPages applications
blend more seamlessly into the Notes client environment, XPages had to adopt new behaviors to
qualify as a model citizen. For example, how do you make sure that document updates are not
gratuitously lost when a user, inadvertently or otherwise, closes an XPages window in Notes that
contains unsaved data? Remember that as far as the Notes client is concerned, that tab window
just contains an embedded browser instance and, thus, it has no inherent knowledge regarding the
state of the window’s content. Allowing an XPages window to simply close might result in lost
data, but how do XPages and the Notes core communicate to prevent this scenario?

Again, you need look no further than the 8.5.1 Discussion template to see the correct
XPages client behavior in action and learn how to apply this to your own applications. To work
through this section, open the sample application in the Notes client and create a new topic.

Before entering any data, there’s something you must observe: The File > Save menu is ini-
tially not enabled. Pressing Esc at this point simply closes the window because no data has been
entered in the document. Enter some arbitrary data into a few fields and check the File > Save
menu once more. On this occasion, you can see that it is enabled, so selecting the menu item or
typing Ctrl+S saves your document.

The important point, however, is that Notes is obviously aware of when the XPages docu-
ment is “dirty” (has unsaved modifications) and when it is not dirty. This behavior is easy to
implement, but it is not automatic—that is, you, as the developer, need to explicitly enable your
application to take advantage of these advanced document save features.

512 Chapter 13 XPages in the Notes Client

But, there are more aspects to this feature that you need to first examine before diving into
the code. You have seen that explicit save operations are enabled at the right times and execute
successfully. Also, XPages and Notes need to handle a window close event on a dirty document
and give the user the option of saving the updates. This can occur when a user chooses File >
Close, types Esc, or uses the window tab’s Close button. Figure 13.19 shows the Save Resource
dialog that is used to prompt the user under any of those conditions.

Figure 13.19 XPages Save dialog for dirty documents

There are still more conditions to account for, however. Given that the entire Discussion
application is contained within the tab window (an artifact of being designed for web), it is pos-
sible to a have a topic document open in edit mode and still click a navigator link that causes the
active page to be replaced. For example, create a new topic, enter some data, and click the By Tag
link. If updates in the current page are not saved at this point, they are lost after byTag.xsp loads
and the current page is discarded. This is similar to, but not exactly the same as, the previous use
case. Figure 13.20 shows that the condition is trapped and the user is given the option of continu-
ing or cancelling the page navigation. If important data really needs to be saved, the user can can-
cel the operation and perform a deliberate save and then repeat the original navigation.

Of course, you must consider the case where the data entered on a page simply is not
important. If, for example, you click the New Topic button, enter some text box in the Search
box, and close the window—what do you expect to happen?

Well, the XPiNC behavior is that window is simply closed and the user is not prompted to
save anything. This is based on the fact that the search text is transient data and, even though it is
on the same page as the other input controls, it is not saved under normal circumstances when a

Introducing enableModifiedFlag and disableModifiedFlag 513

document itself is saved. Thus, the Discussion application is configured such that entering text in
the Search field does not dirty the document, but entering data in Subject, Tags, or Body fields
does. This makes sense from an application standpoint, so clearly, there is a way for the developer
to distinguish between required data and temporary data in XPages applications and enforcing
the correct application behavior in all cases. It’s finally time to go to Designer and understand
how this is achieved!

Navigation forced by selecting a link while editing a document

Figure 13.20 XPages preemptive dialog for navigations from dirty documents

Introducing enableModifiedFlag and disableModifiedFlag
If you’ve been following the previous use cases in a Discussion application in the Notes client
and want to quickly open this app in Designer, simply right-click the tab window and select the
Open In Designer context menu. The main reason for pointing this out is that this menu was not
provided for XPages applications in version 8.5.1, but was among the features added in version
8.5.2 to better integrate XPages to the client environment.

In any case, after you open the Discussion application in Designer, you need to search the
design elements for references to an enableModifiedFlag string. The Search dialog can be
launched from the main menu (Search > Search), the toolbar, or by typing the Ctrl+H keyboard
accelerator. Figure 13.21 shows the Search dialog with the required search string and scope
restrictions.

514 Chapter 13 XPages in the Notes Client

As shown in Table 13.1, the search results in just four hits, all of which are custom controls.

Figure 13.21 Search dialog for enableModifiedFlag

Table 13.1 Search Results for enableModifiedFlag

Custom Control Purpose Hits

mainTopic.xsp Creates/edits top-level discussion
documents

1 – top level <xp:view> tag

response.xsp Creates/edits response documents 1 – top level <xp:view> tag

viewTopic.xsp Edits a topic thread 1 – top level <xp:view> tag

authorProfile

Form.xsp

Creates/edits profile information 1 – top level <xp:view> tag

All four custom controls use the enableModifiedFlag property in the same way—as a
property value set on the custom control itself:

<xp:view ... enableModifiedFlag=”true”>

When applied at this level, it means all input controls contained within the custom control
are participating in a game that entails raising a “modified” flag if a user types something into
any of them. Input controls can be edit boxes, rich text controls, multiline edit fields, and so on—
basically, anything on a page that can be updated by user input. Thus, all the input controls on the

Introducing enableModifiedFlag and disableModifiedFlag 515

four custom controls listed here set a dirty flag for a given document after any update is per-
formed. The dirty notification is done transparently via some under-the-covers XSP client-side
JavaScript calls, but this underlying implementation is not really that relevant to the application
developer. The important point is that your XPage or custom control can acquire this behavior by
simply setting this one property value.

If enableModifiedFlag is not set on an XPage or on its custom controls, no dirty flag is
set when fields are updated; so, it is assumed that unsaved data can always be discarded. After
enableModifiedFlag is set, the opposite behavior occurs. As usual, reality is most likely
somewhere between these two extremes. In the case of the Discussion application, just the
Search text is temporary and should not raise any flags when touched. This field needs a way of
opting out of the enableModifiedFlag scheme and does so by using a property called
disableModifiedFlag—a property that denotes an exception to the general rule. In the same
way as you did in Figure 13.21, search for disableModifiedFlag in the Discussion applica-
tion. Sure enough, there is just a single match in titleBar.xsp:

<xp:inputText id=”searchText” ... disableModifiedFlag=”true”>

Thus, using a combination of these two properties, you should be able to build the required
behaviors into your own application. There is no specialized support in Designer for this feature, so
you need to work with the All Properties panel or directly in the XSP Source pane, as shown here.

At this point, you may wonder how all this works when combined with page validation. For
example, a user closes a Notes window containing a dirty document and is prompted with a save
option because the XPage has enableModifiedFlag=”true”. The user chooses to save the
document, so the request to do so is sent off to Notes and the window is closed. What happens if
the document fails server-side validation? If this occurs, the document cannot be saved, so the
window had better not close in the meantime! It’s easy to try this use case because the Subject
field on mainTopic.xsp has a server-side required validator. In other words, when the page is
submitted, the Subject field is tested for a null value, and the save operation fails if the field is
empty. Create a new topic and simply enter data into the other fields, leaving Subject empty and
close the window. As you can see from Figure 13.22, if server-side validation fails, the window is
not closed and the validation error is displayed in the proper way.

Client-side validation is also handled, although that it is the simpler use case because the
client-side validator executes before the page is submitted, so no call back from the server side is
necessary to prevent the window from closing if validation fails. If you are interested in this sce-
nario, simply add a required validator to the Tags field, preview allDocuments.xsp in the
Notes client, and repeat the previous test (leaving Tags empty in this case). Remember that val-
idators are client-side by default unless explicitly disabled in favor of server-side validation, as is
the case with the Subject field. The bottom line is that you not need to do any extra development
work to get validation to work with the enableModifiedFlag feature.

516 Chapter 13 XPages in the Notes Client

TIP The enabledModifiedFlag value can also be set at an application-wide level
using Themes. An example of this is provided in Chapter 14, “XPages Theming.”

Finally, all this behavior is supported, albeit to a slightly lesser extent, on the web. That is,
when closing a browser or browser tab window or navigating to another page when a document is
dirty, a preemptive dialog box, similar to Figure 13.20, is displayed. The option to instantly save
is not available, but accidental data loss is preempted. There are more use cases to support on the
Notes client and more control over the window management APIs in that environment, so it was
both necessary and feasible to provide a more sophisticated solution there.

Keeping Tabs on Your Client Apps
As fleetingly mentioned earlier, the XPages Discussion app executes within the confines of its
own tab window. That is, when a new page is loaded, it replaces the current page in the active
window tab instead of opening in a new tab window. This design paradigm emanates from the
web where, until recently, some browsers did not support tab windowing well and, more impor-
tantly, where it’s not possible to reliably identify the particular tab windows that belong to a given
application. The upshot of this is that sharing application session data across a multitabbed appli-
cation is not feasible on the web and, thus, applications are typically constructed for a single win-
dow runtime context.

Contrast this with your typical Notes application. For example, opening a discussion docu-
ment in the regular Notes client discussion (the non-XPages version) by default does so in a
new tab window. The default behavior is actually set by a client-wide preference, as shown in
Figure 13.23.

Server-side validation failure

Figure 13.22 enableModifiedFlag and server-side validation

Keeping Tabs on Your Client Apps 517

It was deemed important for XPages applications to be able to support the client applica-
tion windowing model, so in Notes version 8.5.2, you can build this tabbing behavior into your
client apps. This is achieved by using some new 8.5.2 properties and extending the behavior of a
preexisting property. Table 13.2 displays a summary.

Client window management options emulated by XPiNC

Figure 13.23 Notes Window Management Preferences

Table 13.2 Tab Management Property Summary

Container Property Values

<xp:link> target _self, _blank values determine if link
opens in same page on new tab.

<xp:viewPanel> target Uses same values to define link behavior for all
columns in the view.

<xp:view> defaultLinkTarget Uses same values to define default behavior for
all links on the page.

xsp.properties xsp.default.link.

target

Uses same values to define default behavior for
all links in the application.

518 Chapter 13 XPages in the Notes Client

A quick glance at the property table indicates that a hierarchical model similar to that used
in the implementation of the enableModifiedFlag feature has been applied in this instance.
For example, if you set _blank as the value for the target property on a link control, your link
target opens in a new tab window. If you want to apply this default behavior to all links on a given
XPage, apply this same property at the root <xp:view> level, and it is applied to all links on the
page, except where individual links contain an alternative setting. You can go a step further and
assign default link target behavior for the entire application by assigning the same values in the
Application Properties sheet in Designer.

As usual, some examples paint thousands of words! The simplest way to see these proper-
ties in action in the Notes client is to temporarily apply them in a local copy of the Discussion
template. For expediency, revisit the custom control banner.xsp that was earlier used to demon-
strate renderkit-specific properties. Locate the My Profile link within that custom control and add
the target property, as shown in Listing 13.3.

Listing 13.3 Link Target Property

<xp:link escape=”true”

text=”My Profile”

target=”_blank”

themeId=”Link.logout”

id=”linkMyProfile” value=”/authorProfile.xsp”>

<xp:this.rendered>

<![CDATA[#{javascript:!sessionScope.isAnonymous;}]]>

</xp:this.rendered>

</xp:link>

After this update is complete, save your Custom Control and preview a page that uses the
Custom Control, such as allDocuments.xsp. Click the link after the containing XPage is loaded
in Notes and observe that the profile page is loaded in a new tab window.

TIP If your page does not refresh as expected, close any instances of it that might be
open from previous previews in this client session. If your preview page does not update as
expected, it might be because the containing page needs to be regenerated. You can use
the Project > Clean menu to force the XPages to be rebuilt.

Because multitab applications are not well supported on the web, you can construct this
behavior exclusively for the client by combining it with a little of the knowledge gleaned earlier,
that is, apply the target setting only to the rcp renderkit, as shown in Listing 13.4. Bear in mind

Keeping Tabs on Your Client Apps 519

that the target attribute on a Link control actually works on the web because it is a native
HTML attribute. That is, a new tab will be opened by the browser; however, this does not mean
that application session data is maintained for the application on the web—it is not! This is why
you might want to suppress the target attribute on that platform. The tab behavior for the View
control and XPage itself is under the full control of XPages, so the tab management feature is
only honored in the Notes client for those controls.

Listing 13.4 Link Target Property Applied for Notes Only

<xp:link escape=”true”

text=”My Profile”

themeId=”Link.logout”

id=”linkMyProfile” value=”/authorProfile.xsp”>

<xp:this.rendered>

<![CDATA[#{javascript:!sessionScope.isAnonymous;}]]>

</xp:this.rendered>

<xp:link.rcp target=”_blank”>

</xp:link.rcp>

</xp:link>

The target property on the link control is not new—it’s been there since the first release
of XPages and is a standard HTML link attribute. The target behavior on the client, however, is
new to version 8.5.2, because not only are tab windows supported, but session data can be prop-
erly managed across all tabs in any given application. The View control (<xp:viewPanel>)
acquired a new target property in version 8.5.2 so that the same behaviors could be easily applied
to links contained in any of the view columns. It is left to you to temporarily modify the behavior
of one or more of the view controls in the Discussion app in the same manner as done previously
for the profile link. For example, look in the byTagView or byAuthorView custom controls.
Designer provides some special UI assistance with this feature, as shown in Figure 13.24.

This same property is available for the XPage itself on the main XPage property sheet. The
Use page default option, if selected, means that the View control’s behavior is determined by the
target setting on the page itself. Finally, to apply the setting as an application-wide preference,
you need to make the appropriate selection in the XPages pane in Application Properties, as
shown in Figure 13.25. Note that all properties on this page are written to an xsp.properties
text file, and you will see later how to directly access that file.

520 Chapter 13 XPages in the Notes Client

Tab Navigation Option Picker

Figure 13.24 View control link behavior Options in Designer

Client window management settings for app as a whole

Figure 13.25 Application settings for link and navigation behavior

Notes Links Versus Domino Links
This section is important for anyone providing an XPages interface to an existing application that
already contains documents created using the regular Notes client or the classic Domino web

Notes Links Versus Domino Links 521

engine. To ensure smooth integration, you need to be aware of incompatibility issues that can
arise when older documents of different formats are surfaced in XPages and what best practices
you can adopt to deal with such occurrences.

The first issue stems from the fact that there is not one, but two, data formats used in
Notes/Domino to manage rich text content. Documents containing rich text fields created in the
standard Notes client are stored natively as composite data/compound data (CD) records. Rich
content in documents created on the web is stored using MIME format. The MIME acronym
stands for Multipurpose Internet Mail Extensions, but, at this point, that description might be
considered dated because, today, MIME represents content types in a general context, rather than
anything specific to mail per se. MIME can descriptively encapsulate fancy HTML content, such
as text fonts and styles, inline images, tables, and attachments, so that content can be reliably
stored, retrieved, and exchanged.

In XPages, whether your application is running in the Notes client, on the web, or in both
environments, any rich content is always saved in MIME format. Classic Domino web applica-
tions use MIME format to store rich content. Thus, if your XPages application is new (contains
no old data of a different format), you will not have any incompatibility issues that result from
data format conversions. It might well be, however, that many or all documents in your XPages
application were created using the native Notes client and must, therefore, go through a CD-to-
MIME conversion when surfaced in XPages. The conversion process can be lossy in certain cir-
cumstances, because not all CD objects map identically to equivalent MIME entities.

To make this discussion more practical, you can easily force a CD-to-MIME conversion
scenario in your client. For example, using the regular Notes client, create a document that con-
tains three links, namely a document link, view link, and application link, as shown in Figure
13.26. To create these links, use the Notes Edit > Copy As main menu when you have a docu-
ment open, when you have a view active, and when you have a database icon selected in the Notes
workspace, respectively.

Figure 13.26 Document, View, and Application links in Notes

Change the application’s launch options to XPages, restart the application, and open the
document. The native Notes document goes through a data format conversion in this process, and

522 Chapter 13 XPages in the Notes Client

the links are correctly displayed for use in XPages, as shown in Figure 13.27. The link icons are
provided by the XPages runtime and, if you click these links, you can also observe the correct
link behavior.

Figure 13.27 Document, View, and Application links in XPiNC

Editing and saving this document in XPages, however, rewrites the rich text content in
MIME format. XPages recognizes that a data format conversion is about to take place when the
save event occurs and duly warns the user as to the potential loss of formatting, as shown in
Figure 13.28.

Figure 13.28 Warning dialog on data format Conversion

Until the advent of XPages in the Notes client, MIME format in Notes/Domino was syn-
onymous with the web. In other words, it was assumed that a CD-to-MIME conversion always
meant that someone was accessing a native Notes document from the web (as opposed to an
XPages user accessing the document in the client). As part of the CD record to MIME entity
conversion, Notes links are transformed into Domino links, and these two sets of links are
often not compatible. Although one-off conversions tended to work reasonably well, round
tripping documents between CD and MIME formats tended to break down. In Notes version
8.5.1, for example, links became unusable in this scenario because the image icon used to dis-
play a document link could not be resolved on a MIME-converted document that was reopened
in the native client. In version 8.5.2, icons are no longer embedded in document links contained
in MIME-converted documents to prevent this error.

Notes Links Versus Domino Links 523

In any case, the solution put forward in version 8.5.2 was to give the application developer
control over the type of link used when saving rich text content in XPages. If your application is
used in a mixed runtime environment, it is a combination of two or more of the following four
possibilities:

• XPages application on the web

• XPages application on the Notes client

• Native application Notes client

• Classic Domino web application

In the first two instances, there is no problem because no CD/MIME conversions take
place among XPages applications running on different platforms.

If your application runs natively on the Notes client and you have some combination of the
first two possibilities, you should not encounter any link issues as long as your links are always
saved in XPages as Notes links. Why? Because the XPages runtime can handle converted Notes
links both on the web and on the client and, obviously, the Notes client can handle its own links!

If you have a classic Domino web application and you have some combination of the first
two possibilities, you should not encounter any broken links as long as your links are stored in
Domino format when saved using XPages. Again, this is because the XPages runtime can handle
Domino links when running on the client. When running XPages on the web, the Domino links
are actually handled directly by the Domino web engine, so there are no issues there.

If you have some combination of all four possibilities, this is problematic. This is also a
highly unusual scenario. For example, why would your application be available on the web as
both a classic Domino web app and as an XPages web app? After all, the latter is intended to
replace the former as the new app-dev strategy for Web 2.0 applications. A direct combination of
#2 and #4 would be equally problematical and “unusual by the way.”

Thus, the vast majority of link compatibility issues can be resolved by simply choosing the
link format that is most appropriate to your mix of runtime environments. You can do this at both
the document data source level (for any given document that you save links in a particular format)
and as an application-wide preference. The latter is more likely to be the more popular setting.
Figure 13.29 shows how to set the saveLinkAs property on the document data source via the All
Properties sheet in Designer.

As yet, there is no Designer UI for the application-wide link format preference, but you can
set it manually in the xsp.properties file. Accessing this resource within Designer is off the
beaten path, because it is not visible in the default perspective. You need to add a new element to
the Designer perspective by selecting the Window > Show Eclipse Views > Other menu and
choose the Package Explorer view from the Java category. This adds a new tab next to the Con-
trols and Data palette, from which you can explore the elements of your NSF in raw form.
Expand the Web Content\WEB-INF folder in the NSF to find the xsp.properties file and
then double-click to open it. Adding an xsp.save.links=useWeb entry, like that shown in
Figure 13.30, specifies the default link behavior for the application as a whole. If nothing is

524 Chapter 13 XPages in the Notes Client

specified here or on the relevant document data sources, the Notes link format is assumed by
default. Be aware that the default behavior in version 8.5.1 was to use web links.

Figure 13.29 saveLinkAs property on Domino Document data source

Package Explorer View

Figure 13.30 xsp.properties preference setting for link format

Some Debugging Tips 525

Some Debugging Tips
At this point, it should be clear that you can build a lot of cool stuff using XPages in the Notes
client. It’s probably appropriate, therefore, at this juncture to impart some tips on what to do
when you’re getting hot under the collar trying to build all that cool stuff! This section provides
miscellaneous tips and tricks to employ when your code is not fully cooperating with your ideas.

The first step is knowing where to look for information when your application malfunc-
tions. If your application fails to load or loads with an error stack, you should inspect some logs
clues as to what went wrong. Start in the client itself and use the Help > Support > View Log or
Help > Support > View Trace menu options to view the latest logs for any error information that
may be related to the problem. If nothing relevant is evident, you can look in the
IBM_TECHNICAL_SUPPORT folder under your Notes data folder for XPages log files. The log file
names of interest to you are of the form:

xpages_yyyy_mm_dd@hh_mm_ss.log

If the stack information shown in the logs doesn’t help you resolve the issue, it might be
useful if you need to revert to a technical support specialist.

Any client-side JavaScript errors that occur in your code should be reported in the Notes
status bar. For example, in Figure 13.31, a simple typo in an alert instruction is caught and dis-
played at runtime.

This command shows the faulty allert() instruction (as opposed to alert()), the XSP
page on which it is located and line number in the rendered page. Note that this is not the line
number in the source XPage but in the rendered HTML page. You can view the HTML page
source using the XPages client toolbar, as shown in Figure 13.32.

Apart from the standard navigation and print functions, the toolbar has some handy utilities
to aid with debugging. In particular, the Clear Private Data button is handy in overcoming stub-
bornly cached resources (such as CSS or JavaScript) that have been updated in the application
design and need to be replaced in the client browser.

Notes Status Bar

Figure 13.31 Client-side JavaScript error in Notes status bar

526 Chapter 13 XPages in the Notes Client

View Page Source is handy when you need to see the HTML markup that has been gener-
ated for your XPage, and View Browser Configuration may also help you tweak some applica-
tion settings that affect caching, character sets handling, and so forth—although it is strongly
suggested that you know exactly what you’re doing before you venture into this domain. Both
options are only displayed when Domino Designer has been included as part of the Notes client
installation and are not available to “mere mortals”!

For server-side JavaScript debugging, the print() and _dump() utility functions pro-
vided by the XPages runtime can help you out by simply displaying the real value of variables
and other objects. On the Domino server, the output of these commands is obviously directed to
the server console, but you might well wonder where the client console is. The answer is that the
Notes client console is turned off by default and needs to be explicitly invoked when the client
starts up. This can be achieved by adding –RPARAMS –console to your startup command. In a
Windows environment, your revised desktop target properties might read like this:

”C:\Notes\notes.exe” “=C:\Notes\notes.ini” –RPARAMS –console

To see how this works, create an XPage in Designer based on the markup shown in Listing
13.5 and restart the Notes client as previously shown.

Listing 13.5 Client Print-to-Console Debugging Sample

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:inputText id=”inputText1” password=”true”>

<xp:eventHandler

event=”onblur”

submit=”true”

refreshMode=”complete”>

XPiNC Tool Bar

View Browser Configuration

View Page Source

Clear Private Data
Page Refresh

Figure 13.32 XPages client toolbar

Some Debugging Tips 527

<xp:this.action><![CDATA[#{javascript:

var c1 = getComponent(“inputText1”);

var c2 = getComponent(“inputText2”);

var hiddenText = c1.getValue();

print (hiddenText);

c2.setValue(hiddenText);

}]]></xp:this.action>

</xp:eventHandler>

</xp:inputText>

<xp:inputText id=”inputText2”>

</xp:inputText>

</xp:view>

Observe a console window start up at roughly the same time as the Notes splash screen
appears. Open the sample XPage and type some data into the first edit box. Because the
password=”true” property has been applied to this control, any text entered is obscured as you
type. Then, move focus to the next edit box by tabbing or clicking the mouse.

As you can see, the “hidden” text content is displayed in the adjoining field, in the console,
and in the trace window (Help > Support > View Trace). It’s also interesting to see that hidden
input is only as hidden as the application developer wants it to be. Chapter 17, “Security,” covers
trusting XPages code created by other people in more depth.

The final tip shows how to integrate Firebug Lite into the embedded XULRunner-based
browser component. Many web developers will no doubt be familiar with the Mozilla Firebug
add-on for the Firefox browser and its various tools for inspecting, debugging, and editing the
DOM, CSS, JavaScript, and so on. Some of these tools are dependent on Firefox-specific features,
but the Lite version is more generic and runs successfully within Notes. To enable Firebug Lite,
all you need to do is to include one JavaScript resource in your XPage. This can be done by enter-
ing the tag (as shown in Listing 13.6) directly into the XPages source or by adding the src portion
of the tag as the link value for a JavaScript library resource in the Designer Resources property
sheet. If pasting the tags manually, look for a <xp:this.resources> section in the XPage and
paste the script tag within that section. If no such section exists, surround the markup shown in
Listing 13.6 with the <xp:this.resources> </xp:this.resources> tags and paste this
block anywhere on the page.

Listing 13.6 Firebug Lite Tag for XPiNC Applications

<xp:script

src=”http://getfirebug.com/releases/lite/1.2/firebug-lite-compressed.js”

clientSide=”true”>

</xp:script>

528 Chapter 13 XPages in the Notes Client

XPages and Composite Applications
Composite applications were introduced to Notes when the client was rebased to the Eclipse RCP
platform in version 8.0. The idea was to further enhance the collaborative nature of Notes through
interapplication communication and aggregation. In other words, applications, such as team
rooms, calendaring, mail, and other ad-hoc components, could be loosely assembled into a larger
composite entity and interact with each other by sharing data using a common event model. It
was important, therefore, that XPages client applications could play a part in any such client
aggregation, so additional features were added to the XSP client runtime to support the compos-
ite application model.

To be part of a composite application, any participant must acquire the social capability of
both listening and talking to its neighbors. In XPages, this is achieved through the use of an inde-
pendent “component”, which is literally a new “component” design element introduced in V8.51
that allows send and receive events to be defined and associated with one or more XPages.

Figure 13.33 shows how this renders using the Discussion application as an example. Note
that the Firebug Lite link has the release version embedded in it, so you most likely need to
update this in the future as new versions become available.

Firebug Lite Page

Figure 13.33 Firebug Lite running in XPiNC

XPages and Composite Applications 529

Making a Component of an XPages Application
In this section, you will implement a simple “comp app” use case by extending the search facility
of the Discussion template so that its internal search queries are also relayed to a third-party
search engine. You can use Chapter13.nsf as a ready-made sample because it has this code
already implemented, or you can try to develop your own sample as you follow along. Be aware
that you need a full text-indexed application, because this use case depends on the ability to
search the application. Chapter13.nsf is full-text indexed, and you can verify this by looking
ahead to Figure 13.41 and making sure that the search bar displayed in the top-right corner of the
diagram is also visible in your local application instance. If not, for whatever reason, you need to
create a full-text index, and full details for performing that task are provided in Chapter 8 in the
section, “View Data Source Filters.” Chapter13.nsf has a search component defined that contains
a searchQuery publish event that passes the search text to another component in a composite
application. The component design element is located under Composite Applications in the
Designer navigator, as shown in Figure 13.34, along with the details of the searchQuery event.

Search component

Figure 13.34 Component design element with sample search component

When you create a component, you also need to provide the name of an XPage to open
when this component is added to a composite application. In this particular example, the main
page of the application, allDocuments.xsp, is used because it contains the search text control. In
fact, the search text control is defined in a custom control named titleBar.xsp, and this in turn is

530 Chapter 13 XPages in the Notes Client

included in allDocuments.xsp and other pages. Thus, any modifications you make here to
titleBar.xsp bleeds through to the rest of the application, just as you would want!

To extend the current custom control logic, you need to open titleBar.xsp custom control in
Designer and move to the Events panel. Notice that the linkSubmit control adjacent to the search
edit box already has a server-side simple action attached to it, and if you inspect the source
markup you will see the simple action shown in Listing 13.7.

Listing 13.7 Simple Action for Search Control

<xp:actionGroup>

<xp:openPage>

<xp:this.name>

<![CDATA[#{javascript:

“/allDocuments.xsp?vm=0&searchValue=” +

viewScope.searchValue;

}]]>

</xp:this.name>

</xp:openPage>

</xp:actionGroup>

Simply put, the search query, once entered in the edit box, is stored in a scoped variable
called searchValue. When the user clicks the link to execute the search, the default page
(allDocuments.xsp) is reopened, but its contents are filtered with the user’s query, which is pro-
vided as a searchValue URL parameter. You need to leave this server-side logic intact and add
some client-side JavaScript code to publish the search Value. To do this, activate the Client tab on
the Events panel, select the onclick event, and click the Script Editor radio button. Enter the
JavaScript snippet shown in Listing 13.8 into the editor and save the XPage.

Listing 13.8 Client-Side JavaScript for Search Control

// find the searchText edit box in the client DOM

var searchCtl = document.getElementById(“#{id:searchText}”);

// copy whatever text it contains in searchTxt

var searchTxt = searchCtl.value;

// if there is a non-blank search query, publish it

if (searchTxt != null && searchTxt != ““) {

XSP.publishEvent(“searchQuery”, searchTxt, “string”);

}

Earlier in this chapter, you were promised an introduction to the XSP.publishEvent()
client JavaScript function, so here it is. It captures whatever value is typed into the search edit box

XPages and Composite Applications 531

and then passes this on to any component that might be listening. Note that you have combined
both client-side JavaScript and server-side Simple Actions on the same event, onclick, for the
search link. The client-side JavaScript is executed first, followed by the simple action after the
XPage is submitted.

Is Anyone Out There? Creating a Component that Listens
to Your XPages Component
The listener in this scenario is any another component that is wired to the searchQuery publish
event using the Composite Applications Editor. The listening component could be a Notes mail
component, a browser instance, a Notes widget, a Notes plug-in, another XPage, and so on. In
this particular use case, you use a Notes widget (widgets are small, specialized applications that
enable users to leverage existing services or resources) to manage a web browser instance config-
ured to give access to the Google search engine.

To create a Google search widget, you need to first enable the widget toolbar via Notes
preferences (select File > Preferences > Widgets), and then select the Show Widget Toolbar
checkbox. Once this setting is applied, you can launch a Widget wizard from the Notes toolbar
icon, from the side panel link or from the Tools > Widgets > Getting Started with Widgets
main menu. Clicking any selection causes the dialog shown in Figure 13.35 to launch.

Figure 13.35 Start Configuring Widgets wizard dialog: Initial page

532 Chapter 13 XPages in the Notes Client

You need to navigate through the wizard dialog screens, making the following options in
the same sequence as shown here:

1. Click the Web Page radio button as the source for the widget.

2. Choose Web Page by URL and enter http://www.google.com as the URL.

3. Choose the Form option to use HTTP POST requests when working with the widget.

4. Click Form Google Search in the Form group box.

5. Select the Advanced tab and click the Configure checkbox on the final screen,
as shown in Figure 13.36.

Figure 13.36 Start Configuring Widgets wizard dialog: Final page

After you click the Finish button, a Google widget appears in the Notes side panel. The next
step is to create a composite application that contains both the modified Discussion application
and the Google widget and wire them together so that any user-defined XPages search applies to
both components.

XPages and Composite Applications 533

Assembling a Composite Application: Aggregating the XPages
Discussion Component and Notes Google Widget
Create a new Notes application based on the Blank Composite Application template, for
example, DiscExtn.nsf, as shorthand for an extended Discussion application. This creates a shell
application that contains no components by default. Components are added using the Composite
Application Editor (CAE), as shown in Figure 13.37, which can be invoked via Action > Edit
Application from the Notes main menu.

Figure 13.37 shows Composite Application Editor (CAE) in its initial state. The middle
pane is the drop zone for components, and components can be chosen from the palette on the
right-hand side. Here, by right-clicking, you find the Add Component drop-down menu. You
should choose the Add NSF Component submenu so that you can add the Discussion applica-
tion to the palette. In the resulting dialog box, click the Browse button adjacent to the Notes URL
text box so that the search component created earlier can be located and selected. Figure 13.38
shows both dialogs with the appropriate selections.

Component Drop Zone

Sidebar Manager

Component Palette

Page NavigatorPage Navigator

Figure 13.37 Composite Application Editor

534 Chapter 13 XPages in the Notes Client

Note that the Notes URL generated is of the form:

notes:///replicaId/name.component

When an XPage application is launched as a composite application, the startup URL con-
tains a component reference rather than the name of an XSP page.

TIP If you are building an NTF template that will be used to create NSF application
instances, use the replica ID rather than the database name as the startup URL. This
means that the launch property for any and every NSF created from the NTF will not need
to be manually updated.

Clicking OK on the New NSF Component dialog adds the Discussion application to the
General category of the palette. Now, you can drag-and-drop this entry into the middle pane and—
voilà!—the application appears live in CAE. Be aware that this is not a mock-up preview approxi-
mation, but the component is running live and is fully functional in CAE at this point. It is in dire
need of some company, however, so add the Google widget next. This component can be found in
the My Widgets category of the palette and can be dragged and dropped on the middle pane just as
before. Try to place this component so that it shares the lower half of the middle pane with the Dis-
cussion component (the screen is split in half horizontally). If you hover over the lower region of the
middle pane, almost to the bottom, in fact, while dragging the component, CAE outlines the drop
area in shadow form, which allows you to release once the lower rectangle is outlined.

Figure 13.39 shows both components in their assembled positions. It also shows an acti-
vated context menu in Page Navigator on the left-hand side of the screen. You should follow suit
and choose the Wiring menu item by right-clicking in this space. On the resulting Wiring tab,
simply use the mouse to drag a connection from the Discussion searchQuery event to the Google
q property. This gesture wires the components together; the value of a searchQuery event will be

Design Element Browser

URL for Chosen Design Element

Figure 13.38 Adding an NSF component to the palette

XPages and Composite Applications 535

published across a virtual wire to the Google widget as a search engine query. After the wire is
graphically represented, as shown in Figure 13.40, click the Apply button and terminate CAE by
closing its window.

Figure 13.39 Two components aggregated in the CAE

Figure 13.40 Wiring components in CAE

536 Chapter 13 XPages in the Notes Client

You are prompted to save your application on exit, which, of course, you should do. The
regular Notes client window is reactivated, and your composite application is refreshed to include
your two new components. To test your new feature, simply type some text into the Discussion
search box and see how it is applied in the usual way in XPages, but also passed to the Google
search engine in the bottom half of the screen. Figure 13.41 shows a sample result.

Congratulations! You have successfully included XPages in a useful client aggregation—
hopefully, your imagination is now flooding with ideas of how to bind XPages applications with
other components to bring Notes desktop integration to a new level!

Hey, This Is a Two-Way Street! A Component May Receive
and Publish Events!
Although you worked through an example of how XPages can publish data to another compo-
nent, it is equally important to know that XPages can consume events from other components in
the same way. Although you will not implement a complete example of that here, this section

XPages Search Results

XPages Search Query

Query sent to Notes Google Widget

Query sent to XPage

Figure 13.41 Integrated search results

XPages and Composite Applications 537

explains the implementation path, and it should be intuitive to you because it is, for the most part,
a mirror image of what you just completed with the searchQuery publish event.

The steps are as follows:

1. Define a receive event (see Listing 13.9).

2. Add a handler for the receive event (see Listing 13.10).

3. Add your components to a composite application in CAE as before.

4. Wire a publish event of another component to your receive event.

5. Save your composite and test as before.

The receive event is defined in the same way as the publish event (just an event name, type,
and identifier). In Figure 13.42, a viewFilter receive event is defined, which enables an external
component to provide a text value that the Discussion application can use to refine its current
view, such as a view category filter or a full text query.

Figure 13.42 Simple action receive event

Handling the receive event, on the other hand, is different. In Designer, you must activate
the XPage itself, say allDocuments.xsp, and select the Events tab. A Components (Receive)
event is listed in the panel and, by double-clicking the New Event subentry, you can provide a
handler. Note that the name you provide here must match the name of the receive event exactly,
(viewFilter in this example). Figure 13.43 shows a simple action defined as the handler for the
viewFilter receive event.

538 Chapter 13 XPages in the Notes Client

This is where the example explained in Listing 13.7 comes in handy (how the regular full-
text search box submits a search query). You can apply the same logic here. In other words, when
a viewFilter event is received from another component, capture the value and apply it as a full-
text search query in the same way as what’s done when the end user enters one directly. Thus, the
Target Document of the Open Page simple action can execute similar server-side JavaScript
to that described earlier, as shown in Listing 13.9.

Listing 13.9 JavaScript to Compute a Target Document Based on a Receive Event

var searchFilter = context.getSubmittedValue();

if (searchFilter != null && searchFilter != ““) {

return “/allDocuments.xsp?vm=0&searchValue=” + searchFilter;

}

JavaScript handler snippet

receive event definition

Figure 13.43 Creating simple action receive event handler

XPages and Composite Applications 539

This means that just the first line needs some explanation. The context.

getSubmittedValue() function does exactly as the name suggests—it returns the value sub-
mitted for the current page. If a value has been submitted, it is applied as a full-text filter in the
usual way. What is perhaps not obvious is why the handler is looking for a submitted value in the
first place. How does this receive event value end up as the submitted page value?

To understand this, first preview a page containing a receive event and then view the HTML
source. You see that the renderer for the receive event has inserted an invisible <div> element
into the rendered page, something like what Listing 13.10 demonstrates. It is not visible because
of the inline ”display:none” style rule that is applied.

Listing 13.10 HTML Markup Emitted for the Receive Event

<div id=”view:_id1:platformEvent1”

class=”XspHandler-viewFilter”

onclick=”XSP.fireEvent(arguments[0],

”view:_id1:_id21”,

”view:_id1:platformEvent1”, null, true, 2, null);”

style=”display:none”>

</div>

TIP If you are building a receive event into an XPage, the logic needs to be on every
application page that should handle the event. Thus, it probably make sense for you to
define your receive event handler in a custom control and include that in the appropriate
XPages.

When an XPage is launched with a component URL (refer to Figure 13.38 if necessary), as
opposed to a regular XSP URL, the XPages client container reads and registers the properties
declared in the component, and provides a Java handler for any receive events that happen to
exist—this is all done automatically by the XPages runtime. Once another component publishes
data across a virtual wire to XPages, that Java handler is notified, reads the published data, and
dispatches it by dynamically injecting some JavaScript into the XPages client browser. The
dynamic JavaScript looks for a well-known element on the page (the <div> element shown in
Listing 13.10) and calls its onclick event passing along the original data. As you can see in
Listing 13.10, the <div> element has a class attribute whose value can be deduced based on a
combination of a descriptor (XspHandler) and the receive event name (viewFilter). This allows
the element to be deterministically located in the DOM and calling its onclick code causes the
XPage to be submitted. Thus, the receive event handler can read the submitted value and thereby
obtain the receive event data on the server side. Nothing like a little indirection to whet the
curiosity of a software engineer—hope you enjoyed that!

540 Chapter 13 XPages in the Notes Client

Further Adventures with Composite Applications
This book does not assume that you have a fully functional Notes client complete with mail and
so on. The minimal requirement is simply the no-charge download of Domino Designer. This
limits the components that can be guaranteed to be in your workspace and, thus, the types of com-
ponent interaction that that can be explored in this chapter. However the XPages runtime team
has posted a highly informative online video on the subject of XPages in composite applications.
The video walks through the integration of the XPages Discussion, Notes mail, and widgets in
great depth. It is highly recommended if you want to explore this topic.

The video comes in two parts, and the URLs are as follows:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/

XPages/Components/XPage_Components_in_Notes_851_Part1.html

http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/

XPages/Components/XPage_Components_in_Notes_851_Part2.html

This section concludes the discussion of XPages in the Notes client. Many topics were cov-
ered, and it will be interesting to see how these topics evolve as XPages continues to integrate
with the Notes client in future releases.

541

PART V

Application User
Experience

14 XPages Theming 543

15 Internationalization 621

This page intentionally left blank

543

User-interface design and frontend engineering are well-established disciplines in today’s soft-
ware development industry. It is now commonplace to have dedicated UI designers and frontend
developers on a development team. The need for these specialists is due to the fact that a well
constructed and robust application can ultimately fail because of a badly designed or poorly per-
forming user interface.

If you have ever done any Domino web-application development, you are familiar with the
practice of embedding pass-through web browser presentation code into forms, providing styling
information within views, and so on. These practices make it difficult to maintain the presentation
logic of an application. This is mainly because there is no clear separation between application
and presentation logic, with the two entities heavily intertwined across the various design ele-
ments of an application. XPages alleviates this problem by providing dedicated design elements
and features to loosely couple presentation logic from application logic.

This chapter explains the design elements and features provided by XPages that can help
you develop well-constructed user interfaces and deliver a visually consistent user experience.
Before you start into the exercises of this chapter, be sure to download the Chapter14.nsf appli-
cation provided online for this book. You can access this file at www.ibmpressbooks.com/
title/9780132486316. Once downloaded, open in Designer and sign it.

It Used to Be Like That...But Not Anymore!
Web-application user interfaces have come along way since the inception of HTML back in the
early 1990s. At that time, the choice of browsers was limited, with the rendering of an HTML
page left much to the vagaries of a vendor’s browser-specific behavior. Prior to this, user interface
design and frontend engineering were not even recognized disciplines, or even requirements in
those early years.

C H A P T E R 1 4

XPages Theming

544 Chapter 14 XPages Theming

Over time, major advancements have been made in client-tier and server-tier technologies
to assist user-interface development and support efficient delivery of presentation logic to the
end-user. The concept of a web application has become ever more prominent, both culturally and
commercially, all but displacing client application architectures. Web-based programming lan-
guages and standards have also flourished. This cohort of programming languages and standards,
each staking their own claim on providing the perfect solution or specification for some key
aspect of web-application development, are manifold and constantly evolving. But, it is true to
say, without exception, that only one language and standard remains the pillar-post for aesthetic
web-application development: Cascading Style Sheets (CSS). In its most elementary form, CSS
style rules can be statically embedded within a HTML page to define the look of that page once
rendered in a web browser, mobile device, printer, or some other form of media. Equally, in its
most complicated form, CSS style rules and classes can be contained within separate files, and
dynamically injected or removed from the HTML page’s Document Object Model (DOM) using
JavaScript. This can be further enhanced with CSS pseudo-events triggered by a user-input
device, such as a mouse, touch-screen, or speech tool, interacting to provide a degree of feel
within the page.

Domino web-application development has, up to the introduction of XPages in version 8.5,
relied heavily on tightly coupled techniques for providing the look and feel of a web applica-
tion—for example, embedding pass-through HTML constructs, conditional statements control-
ling display of web constructs, distributed setting of styles within views, and so on! All of this
makes the task of maintaining, or revamping, an out-of-date application a daunting and costly
development job when it shouldn’t be.

XPages does things differently. One of the primary objectives of XPages is to provide a
clean separation between data, structure, and presentation. This is evident in many ways:

• An XPage doesn’t need to bind itself directly to fields in the way a traditional form does.

• An XPage supports the inclusion of different types of resources, even conditionally if
necessary.

• An XPage supports the use of Custom Controls and nested XPages, which gives you a
flexible and dynamic development and runtime environment for Notes/Domino applica-
tion development.

The end result is that an application can be cleanly separated into specific parts. You have
already seen that the data model can be developed separately from the structure. You now learn
that the same is true for application look and feel; that is, it can be developed separately from both
the data model and structure. All in all, this gives you, the developer, the greatest degree of flexi-
bility to create great Notes/Domino web applications that you can come back to, time and time
again, to modernize without restriction.

In the first practical section, “Styling with Style!” you learn how to use inline styles within
an XPage. This is the most basic technique that can be used to create a visual appearance for an

Styling with Style! 545

Figure 14.1 Font tab on the Style properties panel

XPage using CSS. The following section, “Styling with Class!” teaches you about incorporating
CSS resources within your XPages, and using CSS style classes. The final section, “Theming on
Steroids!” teaches you about the XPages Theme design element.

TIP If you are unfamiliar with CSS, or want a refresher, you might find it beneficial to read
some of the following resources before continuing with the rest of this chapter:

www.w3.org/Style/CSS/

www.w3schools.com/css/

Styling with Style!
In this section, you learn how to use inline CSS styles within an XPage—this is a technique com-
monly known as inline styling. This is the most basic technique you can use to alter the visual
appearance of an XPage and its controls. Designer helps by providing a Style properties panel.
This assists you by generating the CSS code required to support the format selections made
within the Style properties panel. Therefore, without having any CSS knowledge, you can still
create visually appealing XPages.

On the Style properties panel, you can change three groups of style formatting using child
panels located within this panel. The first group is related to Font settings, as shown in Figure 14.1.

The second tab contains the Background group of settings. These settings can alter the
background appearance, such as background image or color, and so on, as shown in Figure 14.2.

The third and final styling tab contains the Margins group of settings. You can use this tab
to alter the padding and margin settings, as shown in Figure 14.3.

546 Chapter 14 XPages Theming

Figure 14.2 Background tab on the Style properties panel

Figure 14.3 Margins tab on the Style properties panel

If you are familiar with creating CSS styles, you undoubtedly come across situations where
the three Style properties panel groups do not expose some particular CSS style setting that you
might need. This is expected, of course, as the three groups of style-related settings only contain
some of the most frequently used CSS style settings; therefore, you can do something different by
using the style property directly. Almost every XPages control that has a visual appearance sup-
ports the style property. Take any control from the control palette and examine the All Proper-
ties panel—there, you find the style property listed, as shown in Figure 14.4.

You can set the style property with a static string value that contains any CSS style rules.
Equally, you can also specify a computed value. Note that whenever you use the three Style prop-
erties panel editors to specify stylistic settings, the values get joined together to form a single
string value containing CSS style rules code. This CSS style rules value is then written into the
style property within the XSP markup.

Styling with Style! 547

Select any control

Style property in the All Properties list

Figure 14.4 style property listed in the All Properties panel

Now, you try out the Style properties panel and style property in Designer. With Designer
open, open the Chapter14.nsf application. Then, create a new XPage called styling. On the
WYSIWYG editor for this XPage, type an arbitrary sentence and press the Enter key a couple of
times to put in two carriage returns. Now, drag-and-drop a Button control on to the XPage. Cre-
ate two more carriage returns just after the Button control, drag-and-drop a Label control on to
the XPage. You should have something similar to Figure 14.5.

Now, highlight one or all words within the sentence you typed earlier. In the Style proper-
ties editor, click the Font tab. On this tab, select some font settings for the sentence, such as font,
size, color, and so on. Also, select settings from the Background and Margins tabs. After you
finish styling the sentence, select the Button control and go through the same process of setting its
style using the Font, Background, and Margins tabs. At this point, do not give the Label control
any styling details—you come back to it later in this section.

As you already noticed, the WYSIWYG editor displays the visual changes you have made.
This editor does support the visualization of CSS, but there are some CSS style rules that it does
not support. However, for the vast majority of use cases, it does a good job of giving you a design-
time visualization of the CSS used by an XPage for the styling XPage, as shown in Figure 14.6.

548 Chapter 14 XPages Theming

Figure 14.6 Styling XPage in Designer with the style changes applied

Now, examine the XSP source markup for your styling XPage. Simply select the Source
panel in the WYSIWYG editor. In the markup, you see a number of style properties have been
generated on the words of the sentence and the Button control. These style properties now con-
tain CSS style rules code that is similar to Listing 14.1.

Listing 14.1 XSP Markup for the Styling XPage, Including Generated Style Properties

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:spanstyle=”font-family:Arial;font-

size:16pt;color:rgb(255,0,0)”>Hello</xp:span>

<xp:span style=”font-family:Arial;font-size:14pt;background-

color:rgb(0,255,255);padding-left:10px;padding-right:10px”>
world</xp:span><xp:span style=”font-family:Arial;font-size:14pt”>,

this is an </xp:span>

<xp:span style=”font-family:Arial;font-

size:14pt;color:rgb(0,0,255)”>example</xp:span>

<xp:span style=”font-family:Arial;font-size:14pt”> of inline

Figure 14.5 Sample styling XPage with the typed sentence, the Button, and Label controls

Styling with Style! 549

Figure 14.7 Styling XPage in the Notes client with changes to the sentence and button control

styling</xp:span>

<xp:br></xp:br>

<xp:br></xp:br>

<xp:button value=”Label” id=”button1” style=”font-
family:Cambria;font-size:18pt;color:rgb(255,128,255);
font-weight:bold;font-style:italic;background-color:rgb(128,128,0);
margin-left:30px”></xp:button>

<xp:br></xp:br>

<xp:br></xp:br>

<xp:label value=”Label” id=”label1”></xp:label>

</xp:view>

Having saved your changes to the styling XPage, preview your artistic masterpiece. You
might have something like that seen in Figure 14.7.

So, without writing a single line of CSS code, you styled your XPage controls using the
built-in features of Designer. This is a straightforward example of applying styling details to an
XPage. You should now revisit your styling XPage in Designer to learn about using the style

550 Chapter 14 XPages Theming

Label control selected

Style property with CSS value

Figure 14.8 All Properties panel showing the style property of the Label control with CSS typed
into it

property directly for situations where you need more than the built-in styling editors of
Designer.

Setting the Style Property Manually
On the styling XPage, select the Label control in the WYSIWYG editor in Designer. Now, click
the All Properties panel in the Properties view. Scroll through the list of properties, and you see
a styling category that contains four properties, one of which is the style property. (You learn all
about the other three later in this chapter.) Select the style property by clicking in its value editor
and typing some CSS style rules into it, such as the following:

font-weight:bold;font-size:30px;

You should see something similar to that of Figure 14.8, where the Label control is
selected in the WYSIWYG editor, and the style property has the suggested CSS style rules typed
directly into its value editor.

Having set the style property, examine the XSP markup for the Label control using the
Source panel in the WYSIWYG editor. You see that the CSS code you typed into the style prop-
erty has been written into the XSP markup of the <xp:label> tag, as shown here in Listing 14.2.

Styling with Style! 551

Listing 14.2 XSP Markup Fragment Showing the Manually Added Style Property on the Label
Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

...

<xp:label value=”Label” id=”label1”

style=”font-weight:bold;font-size:30px”></xp:label>

</xp:view>

Understanding How the Style Property Is Used
Again, preview your styling XPage. This time around, view the emitted HTML source of the
XPage. This task makes you aware of how the style property and its CSS style rules value are
used by a browser or client.

In the emitted HTML source, or alternatively also shown here as a fragment in Listing 14.3,
you see several instances of the style attribute on the HTML elements. The value for each con-
tains the same values you set within Designer for the sentence and each of the XPages controls.

Listing 14.3 Emitted HTML Source Fragment Showing the Inline Style Attributes and CSS Values

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE HTML PUBLIC ...

<html lang=”en”>

...

<body ...>

...

<span style=”font-family:Arial;font-
size:16pt;color:rgb(255,0,0)”>Hello

<span style=”font-family:Arial;font-size:14pt;background-

color:rgb(0,255,255);padding-left:10px;padding-right:10px”>world

, this is an

<span style=”font-family:Arial;font-
size:14pt;color:rgb(0,0,255)”>example

of inline styling

<button style=”font-family:Cambria;font-
size:18pt;color:rgb(255,128,255);font-

weight:bold;font-style:italic;background-color:rgb(128,128,0);margin-

left:30px” ... type=”button” name=”view:_id1:button1”

id=”view:_id1:button1”>Label</button>

(continues)

552 Chapter 14 XPages Theming

<span id=”view:_id1:label1” style=”font-weight:bold;font-size:30px;”
...>Label

...

</body>

</html>

Note that CSS is a technology used to alter the presentation of HTML, XML, and other
types of document elements. The parsing and visualization process of CSS takes place in the
client-side browser. This process does not occur until the emitted HTML markup has been
received by the browser or client, and must then complete before presenting the resultant HTML
page to the user. Therefore, when you specify CSS style rules using the style property on an
XPage and its controls, these are basically written directly into the emitted HTML markup as
style attributes on the associated HTML tags, as shown in Listing 14.3. It is then the responsi-
bility of the receiving browser or client to parse the style attribute values accordingly for presen-
tation to the user.

Computing the Style Property
You might have noticed that the style property supports computed values also. The examples
explained so far in this section have been focused on using static values. To see a worked example
of a computed style property value, you should open the Chapter14.nsf application in Designer.
Once launched, open the allDocumentsView Custom Control. Then, use the Outline view to
locate and select the rowDataPanel DIV control. Having selected this control in the Outline
view, click the All Properties panel under the Properties view, and scroll to the style property.
You see that this property indicates it has a computed value—denoted by the blue diamond icon
in the value editor. Click the blue diamond and select Compute Value from the pop-up menu to
open the Script Editor. In this editor, you see that the computed value expression contains code
to calculate the CSS padding style rule, as shown in Figure 14.9.

This example calculates the amount of padding that should be applied to the left side of the
rowDataPanel DIV element by generating the padding-left CSS style rule and number of
pixels. This is a great example of dynamically computing some CSS style rule and applying it
directly to the style property. This gives you a flexible mechanism to manipulate the presentation
of an XPage and its controls.

Styling with Class!
This section teaches you how to adopt a slightly more advanced approach to styling an XPage.
This approach involves using another CSS construct known as a style class. A CSS style class is
used as a means of referencing CSS style rules stored in a separate file, from within a web page.
Typically, this mechanism is supported by most browser implementations for HTML, XML, and

Listing 14.3 (Continued)

Styling with Class! 553

rowDataPanel selected in Outline Click on the blue diamond here

Figure 14.9 Computed style value for the rowDataPanel control in the allDocumentsView
Custom Control

several other types of documents containing presentation markup. As an XPage is ultimately
rendered as a HTML document, using and understanding how CSS style classes work is therefore
important.

Getting Something for Nothing!
In the last section, you learned all about XPages support for inline styling using the style property
and should now understand its benefits. But, take a minute to consider what negative aspects
might be introduced by inline styling across an application containing many XPages:

• A lot of redundancy exists across all the XPages due to many instances of duplicated
CSS styling code. This, in turn, makes it difficult and time consuming to change the
presentation consistently across all the XPages. It is also equally as difficult to find and
correct any presentation anomalies.

• There is also a performance cost incurred when heavy use of inline styling is made. This
is due to all the extra bytes representing the inline styling code that must be transmitted
over the network to reach the browser or client. This slows the responsiveness of the net-
work and, consequently, that of the application. This process must also be repeated each
time an XPage is requested.

554 Chapter 14 XPages Theming

It is for these main reasons that the CSS style class mechanism is important. It effectively
allows you to avoid inline styling within an XPage by referencing a style class definition kept in a
linked file known as a CSS file. An XPage can use more than one CSS file if required. Con-
versely, a single CSS file can be used by several different XPages. This means that you can
declare all the CSS styling code within a CSS file, and link as many XPages to this single file as
needed. You are then sharing the styling information consistently across all the XPages that
use it.

This reaps benefits for you and your application in two ways:

• You can consistently change the presentation logic in one CSS file instead of within
multiple XPages—hence making development and maintenance tasks much easier.

• The performance of your application is boosted by the fact that the number of bytes
transmitted over the network is radically reduced. This is streamlined by the fact that
the first time an XPage is requested, the emitted HTML is loaded into the browser or
client along with any linked CSS and JavaScript files. These are then typically saved
into the browser or client cache to avoid retransmitting them over the network in subse-
quent XPage requests. The style classes within the emitted HTML document then
simply reference the linked CSS file that is cached, for the complete CSS style rule
definition.

Now, reopen the Chapter14.nsf application in Designer if it has been closed. Once opened,
bring up the stylingWithClasses XPage. This XPage might look familiar to you in the sense that
it is similar to the styling XPage you created in the last section. This is intentional, and you learn
the reason for this soon—Figure 14.10 shows the stylingWithClasses XPage previewed in the
Notes client.

Returning to Designer, you need to examine the Resources panel under the Properties
view for the stylingWithClasses XPage. You see that one Style Sheet resource called classes.

css is listed (see Figure 14.11).
You learned about the Resources panel in Chapter 6, “Building XPages Business Logic,”

so you should already understand that it is used to attach different types of resources to an XPage.
CSS style sheets are one of those resource types. In this example, the classes.css style sheet
has been created, coded, and attached to the stylingWithClasses XPage for your convenience.
You should now open it in Designer by expanding the Resources > Style Sheets design element
in the Navigator view, double-clicking classes.css, as shown in Figure 14.12.

It is important for you to remember that you manage CSS style sheets under the Resources
> Style Sheets design element, as shown in Figure 14.12. Therefore, any time you need to create
a style sheet, you do so by right-clicking this design element and selecting New Style Sheet. You
then are prompted to name the newly created file. Once created, it can be attached using the
Resources panel of any XPage, as shown in Figure 14.11.

Styling with Class! 555

Note the similarity to the styling XPageNote the similarity to the styling XPage

Figure 14.10 stylingWithClasses XPage previewed in the Notes client

Other actions you can perform on style sheets

classes.css under the Resources/Style Sheets design element

Figure 14.11 classes.css Style Sheet resource listed in the Resources panel

556 Chapter 14 XPages Theming

Designers CSS editor

Figure 14.12 Resources > Style Sheets design element containing classes.css

With the style sheet classes.css now open in Designer’s CSS editor, you can see that it
contains several style class declarations, each with their own associated style rule definitions.
These are also detailed in Listing 14.4.

Listing 14.4 CSS Style Class Declarations and Style Rule Definitions Within classes.css

.sentence{

font-family:Arial;

font-size:16pt;

}

.red{

color:rgb(255,0,0);

}

.blue{

color:rgb(0,0,255);

}

Styling with Class! 557

.shaded{

background-color:rgb(0,255,255);

padding-left:10px;

padding-right:10px;

}

.button{

font-family:Cambria;

font-size:18pt;

color:rgb(255,128,255);

font-weight:bold;

font-style:italic;

background-color:rgb(128,128,0);

margin-left:30px;

}

.label{

font-weight:bold;

font-size:30px;

}

.h3OuterClass{

margin:50px;

}

.orange{

font-size:30px !important;

font-family:arial;

color:orange;

}

.odd{background-color:AliceBlue;}

.even{background-color:Cornsilk;}

.captionStyleClass{font-weight:bold;font-size:30px;}

These style classes contain the same style rule settings selected using the three different
groups of style-related settings on the Style properties panel in Listing 14.1 and typed directly
into the style property in Listing 14.2. In this case, the CSS styling code is contained within this

558 Chapter 14 XPages Theming

single style sheet file, with each set of style rules wrapped into a style class that is identifiable by
its class name.

If you now look at the XSP markup for the stylingWithClasses XPage in Designer, you see
that the text, the Button control, and the Label control all have references to the style class names
within classes.css by way of the styleClass property. This is also shown in Listing 14.5.

Listing 14.5 styleClass Properties Referencing the Style Classes Within classes.css

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:styleSheet href=”/classes.css”></xp:styleSheet>

</xp:this.resources>

<xp:span styleClass=”sentence red”>Hello</xp:span>

<xp:span styleClass=”sentence shaded”>world</xp:span>

<xp:span styleClass=”sentence”>, this is an</xp:span>

<xp:span styleClass=”sentence blue”>example</xp:span>

<xp:span styleClass=”sentence”>of styleClass styling</xp:span>

<xp:br></xp:br>

<xp:br></xp:br>

<xp:button value=”Label” id=”button1” styleClass=”button”>

</xp:button>

<xp:br></xp:br>

<xp:br></xp:br>

<xp:label value=”Label” id=”label1” styleClass=”label”></xp:label>

</xp:view>

Take this opportunity to compare the XSP markup of the styling XPage, detailed in Listing
14.1, which uses inline styling, to that of the stylingWithClasses XPage, detailed in Listing 14.5,
which uses style classes and a style sheet. I am sure that you will agree that the latter is much eas-
ier to read and comprehend—never mind the inherent benefits it now bestows by using the style
class technique.

In the previous section, you learned about the three different groups of style-related set-
tings on the Style properties panel. You did not, however, learn about the main Style properties
panel itself. You use the Style properties panel to effectively set the styleClass property on a con-
trol, from whatever CSS style sheets are attached to the current XPage. Figure 14.13 shows an
example for the Button control on the stylingWithClasses XPage, where you can see the
.button style class has been selected from the available list of style classes in the classes.css

style sheet.

Styling with Class! 559

Button control selected

Style panel shows current styleClass

Figure 14.13 Style properties panel for the Button control

Understanding How the styleClass Property Is Used
Take a moment to preview the stylingWithClasses XPage. When opened, view the emitted
HTML source of the XPage. This task makes you aware of how the styleClass property is used
by a browser or client and highlights the performance benefit explained earlier.

In the emitted HTML source, or alternatively shown as a fragment in Listing 14.6, you can
see several instances of the class attribute on the different HTML elements. Each one contains a
class name that is contained within the classes.css style sheet linked in the head section of the
HTML source.

Listing 14.6 Emitted HTML Source Fragment Showing the Style class Attributes

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE HTML PUBLIC ...

<html lang=”en”>

<head>

...

<link rel=”stylesheet” type=”text/css”
(continues)

560 Chapter 14 XPages Theming

href=”/xsp/taurus!!Chapter14.nsf/xsp/classes.css”>

</head>

<body ...>

...

Hello

world

, this is an

example

of styleClass styling

<button class=”button” type=”button” name=”view:_id1:button1”

id=”view:_id1:button1”>Label</button>

Label

...

</body>

</html>

When the browser or client receives this HTML markup, it needs to do a couple of things.
First, if caching is enabled, check the local cache to see if the classes.css file is already
stored there from a previous request. If not, it is downloaded at this point, cached for subsequent
requests, and made available to the HTML document. Otherwise, a comparison of the last modi-
fication or expiry timestamps in the request headers against the cached version is calculated to
ascertain if the cached version should be updated with a more recent version. After this process
completes, the cached version, updated or not, is made available to the HTML document.

TIP The default cache expiration date for resources emitted for an XPages request is 365
days from the time of the first request. You can, however, change this period of time using
the Custom Browser Cache Expiration (days) settings for JavaScript, style sheet files, and
image files—each independent of one another. You can find this group of settings on the
Basics tab of the Application Properties panel.

Second, the browser or client must then resolve any class attributes on elements within
the HTML document. These attribute references are resolved against the style classes within the
currently loaded style sheet files.

Earlier, the point was made about gaining a performance benefit using the style class tech-
nique. This is evident here in the reduced amount of emitted HTML markup in Listing 14.6;
therefore, radically reducing the number of bytes being transmitted over the network.

Listing 14.6 (Continued)

Styling with Class! 561

The final thing to say about this example hearkens back to the observation that the
styling and stylingWithClasses XPages both look remarkably similar. This is intentional, of
course, because it simply shows that you can achieve an identical presentation using style
classes and a style sheet instead of inline styling and gain all the benefits of style classes at the
same time!

Computing the styleClass Property
The styleClass property can also be computed in the same way as the style property. The
examples in the stylingWithClasses XPage all used static styleClass values, but you can exam-
ine a worked example in the Chapter14.nsf application by opening the ccTagCloud Custom
Control. Select the Source panel for this Custom Control, and you can see an <xp:link> tag
that has a computed styleClass property. Listing 14.7 shows this as a fragment of XSP markup
from that Custom Control.

Listing 14.7 Computed styleClass Property in the ccTagCloud Custom Control

...

<xp:link id=”linkTagCloud” ...>

<xp:this.styleClass>

<![CDATA[#{javascript:’tagCloudSize’+tagArray.getWeight();}]]>

</xp:this.styleClass>

...

</xp:link>

...

Note that, for any XPages control that supports the styleClass property, you can specify a
computed value expression by selecting the All Properties panel under the Properties view, and
scrolling to the styleClass property in the same way you did for the style property. The
styleClass property is the second of the four properties under the styling category you have now
learned about. In the same manner, as you also did for the style property, you need to click the
blue diamond icon in the value editor and select Compute Value from the pop-up menu to open
the Script Editor. Alternatively, as shown in Figure 14.14, you can double-click the
{Computed} link on the Style properties panel. Using the Script Editor, you can then specify
the computed value expression to calculate the styleClass value.

Listing 14.7’s example dynamically computes the styleClass name for the links within the
generated tag cloud. The end result is shown in Figure 14.15, where the presentation of the tag
cloud is shown.

Listing 14.8 shows the dynamically computed CSS style class names in a fragment of the
emitted HTML markup for the tag cloud in Figure 14.15.

562 Chapter 14 XPages Theming

Double-click on the {Computed} link to open the Script Editor

Figure 14.14 Link controls computed value expression for its styleClass property

Listing 14.8 Emitted HTML Fragment for the Tag Cloud Showing Dynamically Computed
Class Names

...

<div ...>

<a ... class=”tagCloudSize0” ...>Anonymous

<a ... class=”tagCloudSize4” ...>Frank Adams

<a ... class=”tagCloudSize4” ...>Jasmine Haj

<a ... class=”tagCloudSize3” ...>Minh Li

<a ... class=”tagCloudSize2” ...>Pierre Dumont

<a ... class=”tagCloudSize5” ...>Ron Espinosa

<a ... class=”tagCloudSize3” ...>Samantha Daryn

<a ... class=”tagCloudSize3” ...>Simone Dray

</div>

...

Styling with Class! 563

Two instances of the tag cloud with
links that have computed style classes

Figure 14.15 Tag cloud at runtime with its links presented using dynamically computed value
style classes

Working with Extended styleClass and style Properties
So far, you learned how to use both the style and styleClass properties. You can, however, use a
set of extended styleClass and style properties to enhance the presentation of your XPages. They
are typically used to apply styleClass and style values to specific areas of a control composed of
several parts—cases where a single styleClass or style property would not be enough to cus-
tomize the appearance of that control. Therefore, different extended style and styleClass proper-
ties are supported by various controls.

From the Chapter14.nsf application, open the stylingWithExtendedClasses XPage in
Designer. This XPage contains a Computed Field control and a View Panel control, both of
which expose different extended styleClass and style properties. These extended properties can be
found by inspecting the properties within the styling category in the All Properties view for each
of these two controls. Figure 14.16 shows the styling category for the Computed Field control.

You might notice the inclusion of a second styleClass property called outerStyleClass. This
property can be used to specify an additional CSS class for the Computed Field that is applied to
an enclosing HTML SPAN element. This element effectively wraps the generated HTML element
that contains the value of the Computed Field, therefore creating a pair of nested tags. If the
outerStyleClass is not specified, no enclosing element is generated.

564 Chapter 14 XPages Theming

outerStyleClass

Figure 14.16 outerStyleClass property supported by the Computed Field control

Examine the XSP markup of the Computed Field control using the Source editor in
Designer. Listing 14.9 shows a fragment of XSP markup for this.

Listing 14.9 XSP Markup for the Computed Field Control with the outerStyleClass Property Set

...

<xp:text escape=”false” id=”computedField1” tagName=”h3”

value=”#{javascript:java.lang.System.currentTimeMillis()}”

outerStyleClass=”h3OuterClass” styleClass=”orange”>

</xp:text>

...

As you can see, both the outerStyleClass and styleClass properties are both set. The result
of which can then be seen in Listing 14.10, where the emitted HTML markup contains a pair of
nested tags representing the value of the Computed Field control.

Styling with Class! 565

Listing 14.10 HTML Markup for the Computed Field Represented as a Pair of Nested Tags

...

<h3 id=”view:_id1:computedField1” class=”orange”>1.284413698328E12</h3>

...

This simple example shows a convenient way to generate container elements that wrap
some computed value without the need to create extra tags in the XSP markup to achieve the
same thing. This is convenient for situations where you might be using CSS from a library or
toolkit not of your making, which contains nested CSS style class rules. This is not an uncommon
occurrence, and the outerStyleClass property saves you having to generate the nested struc-
tures to fulfill the CSS requirements. To study a more complex example, examine the View Panel
control on the stylingWithExtendedClasses XPage.

In Figure 14.17, you can see the styling category in the All Properties view for the View
Panel control. This shows several extended styleClass and style properties.

Various style and style classes

Figure 14.17 Various styleClass and style properties supported by the View Panel control

566 Chapter 14 XPages Theming

As you can see in Figure 14.17, only two of these are set. The first of these two is the
captionStyleClass. This is used to apply a CSS class name to any caption declared on the View
Panel. The second is the rowClasses property. This comma-separated list of CSS class names get
applied sequentially to the rows within the View Panel. This can provide alternate styling of the
rows, so providing a minimum of two different CSS class names achieve this. Table 14.1 lists all
the styleClass and style properties supported by the View Panel control.

Table 14.1 styleClass and Style Properties Supported by the View Panel Control

Property Description

captionStyleClass A single CSS class or space-separated list of CSS classes applied
to the View Panel caption.

columnClasses A comma-separated list of CSS classes applied to View Panel
columns sequentially in the order specified.

rowClasses A comma-separated list of CSS classes applied to View Panel rows
sequentially in the order specified.

dataTableStyle CSS style rules applied to the data table within the View Panel

dataTableStyleClass A single CSS class or space-separated list of CSS classes applied
to the data table within the View Panel.

readMarksClass A single CSS class or space-separated list of CSS classes applied
to the first column within the View Panel indicating the read status
of the view entry. If specified, this overrides the default
readMarksClass.

unreadMarksClass A single CSS class, or space-separated list of CSS classes applied
to the first column within the View Panel indicating the unread
status of the view entry. If specified, this overrides the default
unreadMarksClass.

dataTableStyle CSS style rules applied to the data table within the View Panel
structure.

viewStyleClass A single CSS class or space-separated list of CSS classes applied
to the overall View Panel structure.

Now, take a moment to preview the stylingWithExtendedClasses XPage to see both the
captionStyleClass and rowClasses being applied to the View Panel. Figure 14.18 shows the
XPage being previewed in the Notes client.

This concludes this section on styling an application using the styleClass property and
Style Sheet resource. The next section examines a feature introduced by XPages in Notes/
Domino 8.5 called the Theme design element.

Theming on Steroids! 567

Figure 14.18 stylingWithExtendedClasses XPage being previewed in the Notes client

Theming on Steroids!
Along with the introduction of XPages in Notes/Domino 8.5 came a new design element called a
theme. This design element is specific to XPages applications and can be used for numerous good
reasons, as you learn in this section.

At this point, it is important to explain that you can style an XPages application solely
using inline styling and/or style classes, as you have learned in the previous two sections of this
chapter. A theme is simply another great feature provided by XPages to help you further abstract
and separate the presentation logic of an application away from its underlying application logic.
The result of which is much cleaner application code that can also lead to an improvement in the
performance of an application. This also helps make the task of user interface development and
maintenance a much easier one to undertake.

What Is a Theme?
To give a sound explanation of this feature, it is important to first define the concept of a “theme”
so you understand the intent and scope of this when using a theme. First, the intent of a theme is
to describe not only how an application appears visually, but also to describe any code or
resources that affect the behavior of its visual appearance, otherwise known as presentation logic.
Therefore, a theme should only be used to describe the look of an application and any logic or

568 Chapter 14 XPages Theming

Metal theme

Green theme

OneUIv2 theme

Figure 14.19 Examples of an XPages application using three different Notes/Domino 8.5.2
themes

resources that contribute to the feel of an application. The scope of a theme is, therefore, bound to
anything that is user interface related.

In the previous section, you already learned how CSS style classes and style sheets help
you abstract inline CSS code out of an XPage and into manageable files. A theme can be used to
achieve the same purpose with the style and styleClass properties, along with other control prop-
erties, and even style sheet and JavaScript resources declared within an XPage. This means that a
lot of declarative XSP markup related to presentation logic can be removed from within all the
XPages of an application and contained within a theme. You can then manage the look and feel of
an entire XPages application, or any number of applications that are using that theme, from a
single descriptive resource.

What Can You Do with a Theme?
Within any XPages application, you can create a theme or use any preexisting theme. This allows
you to not only change the visual appearance of your application, but reduce or remove any pres-
entation logic from within the XPages of that application. You can do this for example, by using
one of the 15 preconfigured themes in Notes/Domino 8.5.2 to make your XPages application look
like a Lotus OneUI web application, as shown in the examples in Figure 14.19.

Theming on Steroids! 569

Alternatively, you can also extend any of the Notes/Domino 8.5.2 themes when creating
your own themes as a way of establishing a baseline to work from. Either way, using the preexist-
ing themes like this saves you a lot of development time when creating a user interface.

You can also create several themes that can be used by the same XPages application, or
indeed any number of applications, as you learn later in this section, where each one describes
totally different visual appearances and presentation behaviors. A good example of this is a use
case where several different themes are used by an XPages application in a large multinational
corporation. Depending on which geography a user logs in from, that user is presented with a
totally different user interface for the same application.

A theme can also be used to set the values of custom properties on a Custom Control—
therefore enabling different behaviors for Custom Controls, depending on which theme is cur-
rently being used by an application.

You can also use a theme to manage the look and feel in the context of specific browser and
locale requests. This makes it easier to develop and maintain an application that serves multiple
browser and mobile device types or bidirectional content.

Understanding Theme Architecture and Inheritance
A structural design, or architecture, is supported by the theme mechanism in XPages. The archi-
tecture is equally applicable to XPages applications running on either a Domino server or in a
Notes client. As of Notes/Domino 8.5.2, the architecture supports eight different possible theme
configurations. Note that a theme configuration is different from a theme in that the former is an
architectural layout for a theme to run against—only eight different theme configurations are pos-
sible, whereas any number of themes can be created and run in this architecture. These exist to
cater to the different use cases that can be encountered when developing themes for XPages
applications that run on multiple platforms.

Out of the eight theme configurations, five are made possible by an inheritance mechanism.
This means that the XPages runtime allows a theme to inherit from another one to provide
extended presentation logic or even override existing presentation logic from an ancestor. As of
Notes/Domino 8.5.2, single inheritance is supported, allowing up to five levels of inheritance to
be achieved. Circular references to the same theme are not permitted.

The theme architecture has two levels:

• Platform Level: Represents the Domino server environment or equally the Notes client
environment.

• Application Level: Represents one or more applications running in the context of the
Platform Level.

Platform Level Default Theme Versus an Application Level Theme

As mentioned earlier, Notes/Domino 8.5.2 ships with 15 preconfigured themes. Of this number,
eight reside in the Platform Level, with the remaining seven residing inside the Discussion

570 Chapter 14 XPages Theming

Platform Level (default=B)

Application Level

W.NSF
(theme=default)

Y.NSF (theme=C)

Z.NSF (theme=C)
X.NSF

(theme=default)

A B C

Figure 14.20 Theme configuration #1

template that ships with Notes/Domino 8.5.2. Therefore, if you create an application based on
this template, or indeed replace the design of an existing application from it, your application
contains seven Application Level themes of its own. The interesting thing here is that all seven of
these Application Level themes directly inherit from six of the eight Platform Level themes!

Note that Notes/Domino 8.5.2 is preconfigured to use one of the eight Platform Level
themes as a Platform Level default—out-of-the-box that default is the webstandard theme, but
you can change this to one of the other eight preconfigured Platform Level themes or one of your
own making in the case of having your own corporate theme. Having a Platform Level default is
important for new XPages applications that get created because that is the default setting for new
applications and ensures that even a new blank application gains some degree of presentation
logic. Equally, it is also important for working XPages applications that depend on the Platform
Level default theme. XPages applications can be configured to use their own themes, too. This
means using a theme within the Application Level—just like the Discussion Template example.
You learn how to specify and change the Platform Level default theme and an Application Level
theme later in this section.

Theme Configuration #1

If you study Figure 14.20, you see that it depicts the most basic of the eight theme configurations
supported by XPages.

Theming on Steroids! 571

Platform Level (default=B)

Application Level

W.NSF (theme=B1) Y.NSF (theme=C)

Z.NSF (theme=C)
X.NSF

(theme=default)

A B C

B1

Figure 14.21 Theme configuration #2

This configuration enables an XPages application to directly use a Platform Level theme.
For example, when you create a new XPages application and do not specify which theme to use,
the application automatically uses the Platform Level default theme. Figure 14.20 shows this,
where applications W.NSF, and X.NSF, both use the Platform Level default (which is set to theme
B in the Platform Level). Applications Y.NSF and Z.NSF, on the other hand, specify that they use
theme C in the Platform Level.

This configuration should be used when you do not want any presentation logic or
resources to reside inside an .NSF application file. Everything the application needs for its pres-
entation logic and resources should be available in the Platform Level.

Theme Configuration #2

Figure 14.21 details the most commonly used theme configuration for a typical XPages applica-
tion. In this figure, application W.NSF no longer depends on the Platform Level default theme,
but specifies that it uses its own Application Level theme.

You can see that application W.NSF inherits from a Platform Level theme. In this case,
application W.NSF has its own Application Level theme called B1 that inherits from Platform
Level theme B.

572 Chapter 14 XPages Theming

Platform Level (default=B)

Application Level

W.NSF (theme=B2) Y.NSF (theme=C)

Z.NSF (theme=C)
X.NSF

(theme=default)

A B C

B1B2

Figure 14.22 Theme configuration #3

The Discussion template actually uses this configuration for each of the seven themes
residing inside that template. This configuration should be used when you want an application to
benefit from using the preexisting Platform Level themes that ship with Notes/Domino 8.5.2, or
one of your own Platform Level themes, but you also need to provide application-specific presen-
tation logic and/or resources within that application.

Theme Configuration #3

Similar to Theme Configuration #2, Figure 14.22 shows how the same application goes one step
further to provide a second Application Level theme within itself.

The interesting aspect to this is that the second theme called B2 inherits from theme B1.
Therefore, enabling application W.NSF to provide another theme that builds upon the original
one. As mentioned earlier, the theme mechanism within XPages allows up to a maximum of five
levels of inheritance, and circular references to the same theme are not permitted. Therefore, this
configuration allows a total of three more Application Level themes that are on the same inheri-
tance path to Platform Level theme B to exist within this application. As a result, this application
could potentially also contain themes B3, B4, and B5, all on the same inheritance path.

Theming on Steroids! 573

Platform Level (default=B)

Application Level

W.NSF (theme=B2) Y.NSF (theme=C)

Z.NSF (theme=D)
X.NSF

(theme=default)

A B C D

B1B2

Figure 14.23 Theme configuration #4

Use this configuration when you need to provide specialized presentation logic or
resources to that already defined by any of the other Application Level themes (for example,
handling logins from different geographies to provide different user interfaces to the same
application).

Theme Configuration #4

In Figure 14.23, application Z.NSF specifies that it uses Platform Level theme C. Essentially, it
uses the Theme Configuration #1. But, for this fourth architectural configuration, you can see that
application Z.NSF has been changed to use a new Platform Level theme called D.

You learned about theme inheritance and saw examples of it within the Application Level
themes in the previous configuration, but this is an example of theme inheritance occurring in the
Platform Level.

This configuration is actually used in Notes/Domino 8.5.2 within four of the eight Platform
Level themes. Basically, one of the eight Platform Level themes you get with Notes/Domino
8.5.2 is called OneUIv2. This is then extended by themes OneUIv2_Gold, OneUIv2_Green,
OneUIv2_Metal, and OneUIv2_Red to provide the four variants of the OneUIv2 theme within
the Platform Level.

574 Chapter 14 XPages Theming

Theme Configuration #5

Figure 14.24 shows application Z.NSF and Platform Level theme D being used again in a differ-
ent configuration.

In this configuration, application Z.NSF now has its own Application Level theme called
D1 that inherits from Platform Level theme D. This configuration demonstrates the flexibility of
the different possible theme configurations.

Note that this configuration has been employed within the Discussion Template by four of
the seven Application Level themes within this template. These are the gold, green, metal, and
red themes that inherit from the Platform Level themes OneUIv2_Gold, OneUIv2_
Green, OneUIv2_Metal, and OneUIv2_Red, which are detailed in the previous theme config-
uration.

Theme Configuration #6

Figure 14.25 shows that this configuration is essentially a mix of configurations.
If you study the figure carefully around application Z.NSF, you can establish the fact this is

an example of using all the configurations you’ve learned about so far. It demonstrates the use of

Platform Level (default=B)

Application Level

W.NSF (theme=B2)

Y.NSF (theme=C)
Z.NSF (theme=D1)

X.NSF
(theme=default)

A B C D

B1B2

Figure 14.24 Theme configuration #5

Theming on Steroids! 575

Platform Level (default=B)

Application Level

W.NSF (theme=B2)

Y.NSF (theme=C)

Z.NSF (theme=D2)

X.NSF
(theme=default)

A B C D

B1 D1B2 D2

Figure 14.25 Theme configuration #6

Platform Level and Application Level theme inheritance, and is the most complex of all the pos-
sible configurations.

Theme Configuration #7

Figure 14.26 shows the penultimate configuration supported by the theme mechanism in XPages.
Examine the change to application X.NSF and how it no longer depends on the Platform Level
for any presentation logic; it now specifies its own theme that is completely independent of the
Platform Level.

To apply this configuration correctly requires detailed knowledge of the underlying Plat-
form Level themes. If incorrectly configured, you will undoubtedly break your application. This
can be caused by unresolved CSS or JavaScript resources, or even missing Dojo CSS style class
information used by the core XPages controls. When an application uses any of the other con-
figurations, a dependency on the Platform Level exists either directly or by inheritance. Presum-
ing you are using or inheriting from a valid Platform Level theme, your application is then
receiving all the necessary core XPages controls presentation logic and resources to function
correctly.

576 Chapter 14 XPages Theming

Theme Configuration #8

Figure 14.27 shows the final possible configuration supported by the theme mechanism in
XPages. Examine the change to application X.NSF in that it now specifies the <empty> theme.

The <empty> theme is a virtual theme that does not provide any presentation logic or
resources to an application. It is important to note that emitted XPages coming from an applica-
tion using this pseudo-theme lack any stylistic or structural presentation logic normally included
by either direct or inherited use of a Platform Level theme. Therefore, this particular configura-
tion should only be used when an application provides all of its own presentation logic for not
only its own content, but also for the core XPages controls and Dojo.

Working with a Theme
At this point, you learned about the purpose of a theme and the different configurations supported
by the theme architecture. Understanding these aspects is important for creating good themes.
This means you are now ready to start working with a theme.

Platform Level (default=B)

W.NSF (theme=B2) Z.NSF (theme=D2)X.NSF (theme=X)

A B C D

B1 X D1B2 D2

Y.NSF (theme=C)

Application Level

Figure 14.26 Theme configuration #7

Theming on Steroids! 577

Platform Level (default=B)

W.NSF (theme=B2) Z.NSF (theme=D2)

A B DC

B1 D1B2 D2X.NSF
(theme=<empty>)

Y.NSF (theme=C)

Application Level

Figure 14.27 Theme configuration #8

Creating a Theme

First, a theme design element can be created within an application, or as you learned about in the
theme configurations, can reside within the Notes client or Domino server installation itself. To
fully understand this, reopen the Chapter14.nsf application in Designer (if it is closed). Once
open, in the Navigator, expand the Resources > Themes design element. You see many themes
already contained within this design element. Now, double-click the Themes design element to
open the Themes viewer, as shown in Figure 14.28.

There are four ways to create a new theme:

• Click the New Theme button at the top of the Themes viewer.

• Right-click the Themes design element in the Navigator and select the New Theme
option from the right-click context menu.

• Select Create > New > Theme from the main Designer menu.

• Select File > New > Theme from the main Designer menu.

578 Chapter 14 XPages Theming

Whichever way you choose opens the New Theme dialog, as shown in Figure 14.29.
Having named your new theme with a name of your own choosing (say HelloWorld, for

example) you should click the OK button. The HelloWorld theme is now created and appears
within the Themes viewer and Themes design element in the Navigator. It also automatically
opens in the Themes editor, as shown in Figure 14.30 in Source mode. This is either Design or
Source mode, depending on the format you selected during your last viewing of a theme file.

Similar to the XPages WYSIWYG editor, the Themes editor has a Design and a Source
editor. The main difference between the two is the fact that a theme file does not have any visual
presentation like the XPages WYSIWYG editor, so its Design editor simply displays the con-
tents of the theme file in a hierarchical manner. This reflects the underlying content of the theme
file, which as mentioned before, is an XML-based file. In the newly created HelloWorld theme
file, you see a preconfigured <theme> tag. This is also detailed as a fragment in Listing 14.11.

Themes design element

Themes viewer

Figure 14.28 Resources > Themes and Themes viewer in Designer

Theming on Steroids! 579

Figure 14.29 New Theme dialog

Theme Source editor

Figure 14.30 Newly created HelloWorld theme file in Source mode

Listing 14.11 Fragment of the HelloWorld Theme Detailing the Preconfigured <theme> Tag

...

<!—

Application themes can extend an existing global theme using the

extends attribute. Existing themes include the following options:

1. webstandard 2. oneui 3. notes
(continues)

580 Chapter 14 XPages Theming

—>

<theme extends=”webstandard”>

...

This <theme> tag indicates that this new theme actually inherits from the webstandard
theme. As shown in the comment in Listing 14.11, two other options can also be used, all of
which are Platform Level themes residing in the Notes client and Domino server installations.
Because of this preconfigured setting, when you create a new theme, by default, all newly created
themes inherit a degree of presentation logic and resources from the webstandard theme. You can
also see numerous other comments populated into a newly created theme file. These simply
assist you with the task of creating the content for the theme. At this point, don’t worry about
these comments; you learn all about their meaning later.

You can close the theme you just created (save your changes). You now learn how to set or
change a theme for your XPages applications.

Setting a Theme

You can configure an application to use a specific theme in many ways using the Application
Properties editor or in a slightly more indirect manner using XSP properties. If you open the
Application Properties editor for the Chapter14.nsf application, you see several tabs across the
bottom of this editor. One of these tabs is XPages. If you select this particular tab, you are pre-
sented with various XPages specific settings, as shown in Figure 14.31.

As you can see in Figure 14.31, there is a Theme Defaults group of settings. The interesting
thing about this group is that it allows you to set the application theme in three different ways. This
accommodates the possibility of an application running in different platforms, namely a Notes
client or Domino server, and requires different themes for each. You can also use this group of set-
tings to specify a single theme for use in all platforms—this being the most common case. This is
done by not specifying any Override on Web or Override on Notes settings, therefore allowing the
theme specified for the Application Theme setting to be the one that is used regardless of the run-
ning environment. Also, note that setting either of the two override settings makes the Application
Theme setting redundant on that platform.

You should now examine the themes listed within the Application Theme drop-down
combo box. Note the presence of the HelloWorld theme you just created among several other
themes within the Chapter14.nsf application. Now, select mxpd from this list to set the
Application Theme. Also, select tux for the Override on Web setting and red for the Override
on Notes setting. Save your changes, and then preview the allDocuments XPage in both the web
browser and Notes client.

Listing 14.11 (Continued)

Theming on Steroids! 581

Theme Defaults group of settings

Figure 14.31 XPages tab within the Application Properties editor

Once launched in preview mode, you can see subtle differences in the color scheme applied in
the two different platforms. This is, of course, a consequence of the theme override settings being
applied to the application in the context of the running environment.After previewing in the two dif-
ferent platforms, close the browser and Notes client and return to Designer, where you should now
open the xsp.properties file within the Chapter14.nsf application. Use the Package Explorer
view to navigate to this file at Chapter14.nsf/WebContent/WEB-INF/xsp.properties.

TIP As an alternative means of opening a resource within an application, the key combi-
nation of Ctrl + Shift + R brings up the Open Resource dialog. This allows you to do a
simple type-ahead search for any resource within the currently opened applications in the
Designer workspace.

You see that the following XSP properties in Listing 14.12 have been written into the
xsp.properties file for the Chapter14.nsf application based on the settings you selected in
the Application Properties editor.

582 Chapter 14 XPages Theming

Listing 14.12 XSP Properties for Theme Settings Within the xsp.properties File

...

xsp.theme=mxpd.theme

xsp.theme.web=tux.theme

xsp.theme.notes=red.theme

...

Had you not selected the Override on Web and Override on Notes settings, with only the
Application Theme configured to mxpd, only the xsp.theme property would have been written
into the xsp.properties file.

Also, note that when no Application Theme setting is configured, the value of Server Default
appears within the drop-down combo box for this setting in Designer. (This relates to the Platform
Level default you learned about earlier in the architecture section.) When Server Default is selected,
no XSP properties are written into the xsp.properties file. Instead, the XPages runtime uses the
Platform Level default as specified by the xsp.theme property defined within the XPages runtime
or, alternatively, if declared in a special global xsp.properties file if it exists. This file does not
exist unless you explicitly create it. Out of the box, Notes/Domino 8.5.2 is configured to use the
webstandard theme as the Platform Level default. This default setting is held in-memory by the
XPages runtime, but can be changed using the special global xsp.properties file. When created,
this file must reside within the <Notes/Domino>/data/properties directory. A new installa-
tion of Notes/Domino does not have this file, but instead has an xsp.properties.sample file
within this directory as a reference resource should you need to create your own. If you do, you can
simply make a copy of this file, renaming it to xsp.properties. If you open this file in a text edi-
tor, you see a range of XSP properties that can be used to change all sorts of settings. One group of
properties relates to global Theme settings, as shown in Listing 14.13.

Listing 14.13 Fragment of xsp.properties.sample File Showing Theme-Related Properties

...

#######################################

THEME

#######################################

Name of the XSP theme to use

#xsp.theme=webstandard

Name of the XSP theme to use when running on the web

If this property is not defined, the xsp.theme is used

#xsp.theme.web=

Theming on Steroids! 583

Name of the XSP theme to use when running on the notes client

If this property is not defined, the xsp.theme is used

#xsp.theme.notes=

As the comments suggest, if either xsp.theme.web or xsp.theme.notes are not defined,
xsp.theme is used. (Note that comments are denoted by the # character by removing this character
from a property enables that property.) You can, therefore, configure the default theme for a Notes
client or Domino server using these settings; these are the Platform settings, and affect all new or
existing applications that do not specify their own theme. However, applications can then override
these settings using their own xsp.properties settings—these are theApplication Level settings.

More on the <empty> Theme

As you learned earlier, the <empty> theme is a special pseudo theme. It does not provide any
associated theme or resources on disk for an application. This, in effect, means that no Platform
or Application Level theme resources are applied to an application using this virtual theme. A
minimum set of client-side JavaScript resources are, however, included by the XPages runtime
within the emitted HTML markup. These resources are required by the core XPages controls to
ensure client-side JavaScript event handlers still function correctly—it is just a case of the visual
appearance being diminished.

Now, preview the allDocuments XPage within the Chapter14.nsf application. As you
learned earlier, this application is using the “blue” theme. Listing 14.14 shows the emitted HTML
markup for the allDocuments XPage when using the blue theme. This theme inherits several
OneUIv2 and XSP CSS style sheet resources from a Platform Level theme. It also declares one
CSS style sheet of its own, called blue.css. Hence, the markup you see in this example contains
six different CSS style sheets, and most of the HTML tags have CSS class attributes.

Listing 14.14 Emitted HTML Markup for the allDocuments XPage Using the blue Theme

...

<head>

<title></title>

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/dojo/dojo.js”

djConfig=”locale: ‘en-gb’”>

</script>

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/ibm/xsp/widget/layout/xspClientDojo.js”>

</script>

<link rel=”stylesheet” type=”text/css”

href=”/oneuiv2/base/core.css”>

(continues)

584 Chapter 14 XPages Theming

<link rel=”stylesheet” type=”text/css”

href=”/oneuiv2/defaultTheme/defaultTheme.css”>

<link rel=”stylesheet” type=”text/css”

href=”/domjava/xsp/theme/oneuiv2/xsp.css”>

<link rel=”stylesheet” type=”text/css”

href=”/domjava/xsp/theme/oneuiv2/xspLTR.css”>

<link rel=”stylesheet” type=”text/css”

href=”/domjava/xsp/theme/oneuiv2/xspFF.css”>

<link rel=”stylesheet” type=”text/css”

href=”/Chapter14.nsf/blue.css”>

</head>

<body class=”lotusui lotusSpritesOn tundra”>

<form id=”view:_id1” class=”lotusForm” ...>

...

Listing 14.15, on the other hand, lists the emitted HTML markup for the same
allDocuments XPage when the Chapter14.nsf application has its Application Properties
theme set to the <empty> theme. If you now compare Listing 14.14 with that of Listing 14.15,
notice two key differences:

• The six different CSS style sheet resources are no longer included in the markup.

• None of the HTML tags have any CSS class attributes set.

Listing 14.15 Emitted HTML Markup for the allDocuments XPage Using the <empty> Theme

...

<head>

<title></title>

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/dojo/dojo.js”

djConfig=”locale: ‘en-gb’”>

</script>

<script type=”text/javascript”

src=”/domjs/dojo-1.4.3/ibm/xsp/widget/layout/xspClientDojo.js”>

</script>

</head>

<body>

<form id=”view:_id1” ...>

...

Listing 14.14 (Continued)

Theming on Steroids! 585

No styling applied with <empty> Theme

Figure 14.32 allDocuments XPage with diminished visual appearance due to using the
<empty> theme

Obviously, the emitted HTML markup and number of supporting resources is reduced in
Listing 14.15 by using the <empty> theme, but the visual appearance of the emitted
allDocuments XPage has now been totally diminished, as shown in Figure 14.32.

This virtual theme should, therefore, only be used for situations that require an application to
provide all of its own presentation logic and supporting resources. This should also include presen-
tation logic and resources for the core XPages controls.

More on the Five Levels of Theme Inheritance

As previously mentioned, the XPages runtime supports up to five inheritance levels for themes.
This is an built-in safety measure within the XPages runtime to eliminate the possibility of infi-
nite looping occurring because of a circular reference in a theme. It is also an optimal maximum
number of inheritance levels for the XPages runtime to process and still provide excellent page
loading performance.

586 Chapter 14 XPages Theming

To experience an example of the theme inheritance levels limit being exceeded, open the
Application Properties for the Chapter14.nsf application in Designer. On the XPages tab,
expand the Application Theme combo box. This contains a number of themes, including mxpd,
mxpd1, mxpd2, mxpd3, mxpd4, and mxpd5. These all share the same inheritance path, with mxpd

being the base ancestor. Change the current theme from its current value to mxpd and save this
change before previewing the themeInheritance XPage. You then see the following information
being displayed in the emitted XPage:

Theme: mxpd -> Level: 1

Now, repeat these steps by changing the theme to mxpd1, mxpd2, mxpd3, mxpd4 and pre-
viewing the themeInheritance XPage between each change. Each time you preview, the infor-
mation displayed changes, as follows:

Theme: mxpd1 -> Level: 2

Theme: mxpd2 -> Level: 3

Theme: mxpd3 -> Level: 4

Theme: mxpd4 -> Level: 5

As you can see, the information changes with each theme change. If you now reset the
theme for a final time to mxpd5, preview again, you see something different this time. An excep-
tion occurs as the mxpd5 theme has exceeded the maximum number of inheritance levels. If you
select Help > Support > View Trace, you see an exception logged that’s similar to Listing 14.16.

Listing 14.16 Exception Logged When Maximum Number of Inheritance Levels Is Exceeded

...

CLFAD0151E: Error while loading theme mxpd5

com.ibm.xsp.FacesExceptionEx: More than 5 extends levels detected while

loading theme mxpd. There might be a circular reference between the themes

at com.ibm.xsp.application.ApplicationExImpl._loadTheme(Unknown Source)

at com.ibm.xsp.stylekit.StyleKitImpl.loadParent(Unknown Source)

at com.ibm.xsp.stylekit.StyleKitImpl._parseTheme(Unknown Source)

at com.ibm.xsp.application.ApplicationExImpl._loadTheme(Unknown Source)

...

Consequently, the XPage is not rendered because of this exception. To fully understand the
reason for this exception, examine the contents of each of the mxpd* theme files by opening them
in Designer. For your convenience, Listing 14.17 shows the root <theme> element from each one
of these theme files.

Theming on Steroids! 587

Listing 14.17 <theme> Element from the mxpd* Theme Files Describing the Inheritance Path

mxpd == <theme>

mxpd1 == <theme extends=”mxpd”>

mxpd2 == <theme extends=”mxpd1”>

mxpd3 == <theme extends=”mxpd2”>

mxpd4 == <theme extends=”mxpd3”>

mxpd5 == <theme extends=”mxpd4”>

Essentially, theme inheritance is established by using the extends attribute on the <theme>

tag. The value for this is the name of the theme being extended, or inherited from. In this particular
example, you can see that mxpd is the base level theme, with mxpd1, mxpd2, mxpd3, mxpd4, and
finally mxpd5 inheriting from it in that order to establish an inheritance path among these themes.
As a result, mxpd5 is the sixth theme to exist within the inheritance path of these themes and,
therefore, exceeds the maximum number of inheritance levels that can be loaded.

Theme Resources
One of the primary tasks of a theme is to manage application resources. In a typical working web
application, the resources required by each web page are declared in the source markup for each
web page. This means that a degree of redundancy exists within the application code as some if not
all declared resources are commonly used across all the web pages. A theme can, therefore, negate
this redundancy by acting as a descriptor for commonly used resources across an application. Fur-
thermore, a Platform Level theme can act as a descriptor for resources used across all applications
running on that platform.

Sure enough, there are cases where a specific resource is perhaps infrequently used or
should not be emitted with every XPage within an application. This is not a problem, because that
resource can simply be enlisted in the Resources for that particular XPage itself, not within the
list of theme resources.

In addition to managing collective lists of resources, a theme also supports a mechanism for
detecting the type of requesting browser (a.k.a User Agent), platform, locale, and bidirectional
requests. This enables you to easily provide targeted resources for specific locales, browsers, and
devices all from one well-defined, manageable place.

So, as you can now begin to understand, a theme is essentially providing a way for you to
decouple presentation logic resources away from application logic within the XPages. This is
analogous to a JavaScript library or a CSS file; instead of having inline JavaScript snippets or
inline CSS rules within an XPage, you store these in manageable, separated files. The upshot here
is a cleaner separation of source code and an easier to maintain application.

Many different resource types are supported by a theme, as shown in Table 14.2. Note that
this list of resource types is exactly the same as that supported directly on an XPage when you use
the Resources panel in Designer.

588 Chapter 14 XPages Theming

The range of different resources supported by a theme cover the most commonly used
resources you need.

Now, ensure that the mxpd theme is set in the Application Properties editor for the
Chapter14.nsf application. Also, open the mxpd theme for this application in Designer by
double-clicking it under the Themes design element. Once opened, select the Source editor and
scroll to the first of the <resource> elements within this theme file, as shown in Listing 14.18.

Listing 14.18 <resource> = Elements Within the mxpd Theme

...

<resource target=”xsp”>

<content-type>text/css</content-type>

<href>screen.css</href>

<media>screen,handheld,tv</media>

</resource>

<resource target=”xsp”>

<content-type>text/css</content-type>

<href>print.css</href>

<media>print</media>

</resource>

<resource target=”xsp”>

<content-type>application/x-javascript</content-type>

<href>mxpd.js</href>

</resource>

...

Table 14.2 Resource Types Supported by a Theme

Type Description

Cascading Style Sheet A CSS resource used for styling on the client side

JavaScript A JavaScript code file executed on the client side

Dojo Module A Dojo module identified by its full dijit package, and used on
the client side

Link Any arbitrary file resource used on the client side

META Data Provides a way to specify any meta tag information for use on
the client side

Server-side JavaScript A server-side JavaScript file executed within the XPages
runtime

Property Bundle A property bundle file referenced within the server side

Theming on Steroids! 589

These <resource> elements define three different resources that get emitted to the client-
side. The first two are CSS resources. The last one is a client-side JavaScript resource. As you can
see in Listing 14.18, each of the <resource> elements contains child elements. These are
detailed in Table 14.3.

You also probably noticed the presence of the target attribute on the <resource> tag. It
marks certain resources and other types of elements within a theme file for use by different target
environments. As of Notes/Domino 8.5.2, this attribute is only used by the XPages runtime,
hence the declaration of target=”xsp”. Perhaps in the future, this attribute might be used by
other environments that are also built to leverage a theme, therefore allowing targeted use of ele-
ments within a theme file for any given environment (imagine target=”notes.mobile” or
target=”domino.classic” for theme elements). Note, however, that this attribute is com-
pletely optional, so it can be left out of any theme file you create. The Chapter14.nsf mxpd theme
is simply making explicit use of it for your benefit.

A final point to make about the <resource> element is that it is used solely to declare
client-side CSS and JavaScript resources. No other type of resource, client-side or server-side,
can be declared using the <resource> element. To do that, you need to use a different sort of
theme element, namely the <resources> element that you learn about next.

If you now scroll through the mxpd theme file, you find a <resources> element, as shown
in Listing 14.19.

Listing 14.19 <resources> Element Within the mxpd Theme

...

<resources>

<bundle target=”xsp” src=”foo.properties”

var=”foo” loaded=”true” rendered=”true”>

</bundle>

Table 14.3 Child Elements Supported by the <resource> Element

<resource> Child Element Description

<content-type> Can be either text/css or application/x-javascript.

<href> Specifies either an absolute or relative path to the resource.

<media> Only applicable to CSS type resources. Specifies the device
context for the CSS. For a full list of supported CSS media
types, see www.w3.org/TR/CSS2/media.html.

Common media types are: screen, print, handheld, TV, and
speech.

(continues)

590 Chapter 14 XPages Theming

<dojoModule target=”xsp” condition=”dojo.isFF”

name=”dijit.form.Form”>

</dojoModule>

<script target=”xsp” src=”/xpServerSide.jss”

clientSide=”false” type=”text/javascript”>

</script>

<script target=”xsp” src=”/xpClientSide.js”

clientSide=”true” type=”text/javascript”>

</script>

<styleSheet target=”xsp”

contents=”.foo{font-family:arial;}” media=”screen”>

</styleSheet>

<linkResource target=”xsp” charset=”UTF-8”

dir=”ltr” media=”screen” type=”image/png” href=”foo.gif”>

</linkResource>

<metaData target=”xsp” name=”viewport”

content=”initial-scale=1.0;maximum-scale=1.0”>

</metaData>

<metaData target=”xsp” httpEquiv=”Content-Type”

content=”text/xsp”>

</metaData>

<metaData target=”xsp” name=”date”

content=”2010-10-10” scheme=”YYYY-MM-DD”>

</metaData>

</resources>

...

This element is a container for several different types of resource. Unlike the <resource>

element, both client-side and server-side resources can be specified. The <resources> element
is more powerful than its <resource> ancestor, and should be used in preference to it. Table
14.4 outlines a full list of resource types supported by the <resources> element.

Listing 14.19 (Continued)

Theming on Steroids! 591

As you can see from this list, a wide range of resource types are available using the
<resources> element. This gives you lots of flexibility to create rich themes that describe not
only client-side, but also server-side presentation logic.

The following set of tables detail the properties available on each of the resource types sup-
ported by the <resources> element.

<bundle> Resource

The <bundle> resource element declares a properties bundle resource within a theme file. This
resource contains name/value properties that are accessed using server-side JavaScript. The most
common use case is for retrieving localized property bundle strings for user-interface presenta-
tion as you learn in Chapter 15, “Internationalization.” Table 14.5 lists the properties supported
by this element.

Table 14.4 Resource Types Supported by the <resources> Element

Resource Type Description Execution Context

<bundle> Properties file Server side

<dojoModule> Dojo module Client side

<script> JavaScript file Client side and server side

<styleSheet> CSS file Client side

<linkResource> Arbitrary file Client side

<metadata> Meta tag Client side

Table 14.5 Properties Supported by the <bundle> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component
tree.

rendered Controls rendering of this resource to the client-side handler (Notes or
browser).

src The absolute or relative path to the bundle resource file (required).

var The name used to reference the bundle in server-side JavaScript (required).

592 Chapter 14 XPages Theming

<script> Resource

The <script> resource element declares a client-side or server-side JavaScript resource within
a theme file. Table 14.7 lists the properties supported by this element.

<styleSheet> Resource

The <styleSheet> resource element declares a CSS resource within a theme file. Table 14.8 lists
the properties supported by this element.

Table 14.6 Properties Supported by the <dojoModule> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component
tree.

rendered Controls rendering of this resource to the client-side handler (Notes or
browser).

name The full Dojo module package and widget name (required).

condition A client-side condition that controls loaded of the Dojo module.

Table 14.7 Properties Supported by the <script> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component tree.

rendered Controls rendering of this resource to the client-side handler (Notes or browser).

charset Defines the character encoding of the script designated by the emitted script tag.

clientSide Indicates if this script is client side or server side. The default is server.side.

contents Defines the script contents when the src is not specified (required if no src).

src Defines an absolute or relative path to a script resource file (required if no
contents).

type Defines the scripting language to be used; text/javascript is the default.

<dojoModule> Resource

The <dojoModule> resource element declares a dojo module for the client-side XPage within a
theme file. Table 14.6 lists the properties supported by this element.

Theming on Steroids! 593

Table 14.9 Properties Supported by the <linkResource> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component tree.

rendered Controls rendering of this resource to the client-side handler (Notes or browser).

charset Defines the character encoding of the linked resource.

dir Specifies the direction for text that does not inherit a direction.

href Defines an absolute or relative path to the linked resource file (required).

hreflang Specifies the language code of the linked resource.

media Specifies which device displays the linked resource.

rel Specifies the relationship between the current document and the anchor refer-
enced by the control.

rev Specifies a reverse link from the anchor referenced by the control in the current
document.

<linkResource> Resource

The <linkResource> resource element can also declare a CSS resource within a theme file.
The main difference between this resource element and the <styleSheet> element is the fact
that this one supports the full range of HTML LINK tag attributes. Table 14.9 lists the properties
supported by this element.

Table 14.8 Properties Supported by the <styleSheet> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component tree.

rendered Controls rendering of this resource to the client-side handler (Notes or browser).

href Defines an absolute or relative path to a style sheet resource file (required if no
contents).

media Defines the media type for the style sheet resource. (See
www.w3.org/TR/CSS2/media.html for full specification.)

contents Defines the contents of the style sheet resource when the href is not specified
(required if no href).

594 Chapter 14 XPages Theming

<metaData> Resource

The <metaData> resource element declares HTML meta tags in the header section of the emit-
ted XPage. Table 14.10 lists the properties supported by this element.

Property Description

style Defines any CSS style rules to be applied to the rendered link resource.

styleClass Defines any CSS style classes to be applied to the rendered link resource.

target Specifies the target frame to load the link resource into.

title Defines title information for the link resource.

type Specifies the MIME type of the link resource file.

Table 14.9 Properties Supported by the <linkResource> Element

Table 14.10 Properties Supported by the <metaData> Element

Property Description

target For targeting different environments. “xsp” is the default environment.

loaded Controls loading of this resource into the server-side XPage component tree.

rendered Controls rendering of this resource to the client-side handler (Notes or browser).

content Defines the metadata entry value (required).

httpEquiv Can be used in place of the name attribute to set a HTTP header when the name is
not specified.

name Defines the metadata entry name.

scheme Defines a scheme to be used to interpret the entry value.

Now, open the resources XPage from the Chapter14.nsf application and examine its XSP
markup. Listing 14.20 details the entire XSP markup for this XPage for your convenience.

Listing 14.20 XSP Markup for the Resources XPage

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:dataTable id=”dataTable1” rows=”30” var=”resource”

value=”${javascript:facesContext.getViewRoot().getResources()}”>

<xp:column id=”column1”>

<xp:text escape=”true” id=”computedField1”

value=”#{javascript:typeof resource}”>

Theming on Steroids! 595

</xp:text>

</xp:column>

<xp:column id=”column2”>

<xp:text escape=”true” id=”computedField2”>

<xp:this.value><![CDATA[#{javascript:

var resourceDetails = ““;

switch(typeof resource){

case “com.ibm.xsp.resource.StyleSheetResource” : {

if(resource.getHref() == null){

resourceDetails = “media=” +

resource.getMedia() +

“ contents=” + resource.getContents();

}else{

resourceDetails = resource.getHref();

}

break;

}

case “com.ibm.xsp.resource.ScriptResource” : {

resourceDetails = resource.getSrc();

break;

}

case “com.ibm.xsp.resource.BundleResource” : {

resourceDetails = resource.getSrc();

break;

}

case “com.ibm.xsp.resource.DojoModuleResource” : {

resourceDetails = resource.getName();

break;

}

case “com.ibm.xsp.resource.LinkResource” : {

resourceDetails = resource.getHref();

break;

}

case “com.ibm.xsp.resource.MetaDataResource” : {

resourceDetails = “http-equiv=” +

resource.getHttpEquiv() +

“ name=” + resource.getName() +

“ content=” + resource.getContent() +

“ scheme=” + resource.getScheme();

break;

}}
(continues)

596 Chapter 14 XPages Theming

return resourceDetails;

}]]></xp:this.value>

</xp:text>

</xp:column>

</xp:dataTable>

</xp:view>

As you can see in Listing 14.20, the <xp:dataTable> control on the third line obtains a
list of all the resources on the resources XPage. Note that the var property is given a reference
name of “resource.” This simply acts as a scripting reference to the current resource object that is
iterated over from the call to getResources() in the value property:

<xp:dataTable ... var=”resource”

value=”${javascript:facesContext.getViewRoot().getResources()}”>

This control then iterates over this list to display the resource names and their contents. The
point here is that this list of resources is actually specified within the mxpd theme. You saw this in
Listing 14.18 by the <resource> elements and Listing 14.19 by the <resources> elements.
Therefore, no resources are declared on the resources XPage itself. You should now ensure that
the mxpd theme is the currently set theme on the Chapter14.nsf application before previewing
the resources XPage in the Notes client, as shown in Figure 14.33.

The different resources loaded
by the mxpd Theme

Figure 14.33 Previewing the resources XPage in the Notes client

Listing 14.20 (Continued)

Theming on Steroids! 597

Table 14.11 HTML Directory

Path Alias Physical Location Server HTTP Location

/.ibmxspres/domino <Notes/Domino>/data/domino/html/ http://<server>/

As you can see in Figure 14.33 or in preview mode, the full list of <resource> and
<resources> elements have been loaded based on the declarations in the mxpd theme file and
are being used by the resources XPage.

Resource Paths
Up to this point, you have learned about declaring resources within a theme. These resources
have been using relative paths to resources that reside within the Chapter14.nsf application
itself. But, how do you declare resources within a theme that reside outside of an application
such as Notes/Domino 8.5.2 Platform Level theme resources, or even the OneUIv2 style
library resources? Not to worry, because the XPages runtime provides you with a special
resource handling service known as the XPages Resource Servlet. This servlet understands
how to retrieve and serve resources from a number of special dedicated global locations using
specially registered path aliases. You can use these aliases whenever you need to use resources
from the Notes client or Domino server platforms, as the XPages Resource Servlet ensures they
are correctly resolved regardless of whichever platform your application is currently running
in. The following subsections provide you with information on what is available by using this
special servlet.

HTML Directory

To access the Notes/Domino HMTL directory, use the following XPages Resource Servlet path
alias, as shown Table 14.11.

The HTML directory on Notes/Domino 8.5.2 contains amongst several other things, a full
copy of the OneUIv2 style library. Listing 14.21 shows an example theme resource element that
is declaring use of a CSS file in this style library.

Listing 14.21 <resource> Using a CSS File in the HTML Directory

...

<resource>

<content-type>text/css</content-type>

<href>/.ibmxspres/domino/oneuiv2/base/core.css</href>

</resource>

...

598 Chapter 14 XPages Theming

When this <resource> element is loaded, its href property is resolved to the following
location on a Domino server:

http://<server>/oneuiv2/base/core.css

Likewise, on a Notes client, it is resolved to the following relative location:

/xsp/.ibmxspres/domino/oneuiv2/base/core.css

Therefore, the resolved URL is translated appropriately by the XPages Resource servlet for
the Notes client or Domino server automatically for you based on the running platform.

XPages Global Directory

In Notes/Domino 8.5.2, there is a dedicated directory used for XPages resources. This directory
is known as the XPages Global directory. It contains all the Platform Level theme resources
along with images used by the core XPages controls. Table 14.12 details the path alias to this
directory.

Table 14.12 XPages Global Directory

Path Alias Physical Location Server HTTP Location

/.ibmxspres/global <Notes/Domino>/data/domino/

java/xsp/

http://<server>/domjava/

xsp/

This directory location contains a theme subdirectory. Inside this directory, you find sev-
eral subdirectories, each containing CSS and image resources for the different Platform Level
themes. Appendix B, “XSP Style Class Reference,” gives you details on the main CSS files and
CSS style classes within these files, which can be found in the XPages Global Directory theme
subdirectories. Listing 14.22 shows an example theme resource element that is declaring use of a
CSS file in the webstandard theme resource location.

Listing 14.22 <resource> Using a CSS File in the XPages Global Directory

...

<resource>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/webstandard/xsp.css</href>

</resource>

...

When this <resource> element is loaded, its href property is resolved to the following
location on a Domino server:

http://<server>/domjava/xsp/theme/webstandard/xsp.css

Theming on Steroids! 599

Likewise, on a Notes client, it is resolved to the following relative location:

/xsp/.ibmxspres/global/theme/webstandard/xsp.css

Again, the resolved URL is translated appropriately by the XPages Resource Servlet for the
Notes client or Domino server automatically for you based on the running platform. It is impor-
tant to know about the XPages Global Directory if you need to create and manage your own Plat-
form Level theme.

Also note that this location can be changed using the xsp.resources.location XSP
property in the xsp.properties file you learned about earlier.

Dojo Directory

In Notes/Domino 8.5.2, there is also a dedicated directory for Dojo resources. This directory con-
tains a full copy of the Dojo 1.4.3 library, but also all the XPages Dojo modules and extensions.
Table 14.13 details the path alias to this directory.

Table 14.13 Dojo Directory

Path Alias Physical Location Server HTTP Location

/.ibmxspres/

dojoroot

<Notes/Domino>/data/domino/

js/dojo-1.4.3/

http://<server>/domjs/

dojo-1.4.3/

Listing 14.23 shows an example theme resource element that is declaring use of a
JavaScript file in the Dojo directory.

Listing 14.23 <resource> Using a Client-Side JavaScript File in the Dojo Directory

...

<resource dojoTheme=”true”>

<content-type>application/x-javascript</content-type>

<href>

/.ibmxspres/dojoroot/ibm/xsp/widget/layout/xspClientDojo.js

</href>

</resource>

...

When this <resource> element is loaded, its href property is resolved to the following
location on a Domino server:

http://<server>/domjs/dojo-
1.4.3/ibm/xsp/widget/layout/xspClientDojo.js

Likewise, on a Notes client, it is resolved to the following relative location:

/xsp/.ibmxspres/dojoroot/ibm/xsp/widget/layout/xspClientDojo.js

600 Chapter 14 XPages Theming

Again, the resolved URL is translated appropriately by the XPages Resource Servlet for the
Notes client or Domino server automatically for you based on the running platform from its virtual
path used by the XPages Resource servlet into a HTTP URL path, that maps to a physical location in
the Notes client or Domino server.

dojoTheme Property

You may have noticed the inclusion of a dojoTheme property on the <resource> element in
Listing 14.23. This declares that a resource should only be included on an XPage that has Dojo
controls. For example, if you drag-and-drop a Date Time Picker or Type-Ahead control onto an
XPage, the dojoTheme property for that XPage is automatically set to true for you. When the
XPage is then run, any theme <resource> elements that has an explicit dojoTheme property set
to true, is included in the emitted HTML markup for that XPage. Otherwise, they are ignored.

User Agent Resources

One of the most common problems encountered by modern day web applications is serving spe-
cific content to different end-user browsers and devices. This problem is further complicated by
different versions of end-user browsers and devices that have compatibility issues and so on. This
is an area that a theme makes a lot easier to manage by providing a server-side JavaScript API for
identifying a wide range of end-user browsers, versions, and devices.

In the following location, where <Notes/Domino> represents the install location of your
Notes client, or Domino server, you find the oneuiv2 theme:

<Notes/Domino>/xsp/nsf/themes/oneuiv2.theme

Listing 14.24 shows a fragment taken from the oneuiv2 theme file that details some of the
<resource> elements using the server-side JavaScript API to detect the end-user browser.

Listing 14.24 Some of the <resource> Elements in the oneuiv2 Theme Detecting the End-User
Browser

...

<!— iehacks == if IE6 —>

<resource rendered=”#{javascript:context.getUserAgent().isIE(6,6)}”>

<content-type>application/x-javascript</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/js/ie6.js</href>

</resource>

<!— iehacks == if IE7 —>

<resource rendered=”#{javascript:context.getUserAgent().isIE(7,7)}”>

<content-type>application/x-javascript</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/js/ie7.js</href>

</resource>

<!— FireFox Specific —>

Theming on Steroids! 601

Table 14.14 API Provided by the com.ibm.xsp.designer.context.XSPUserAgent Class

Method Description

getBrowser() : String Returns a string that represents the browser com-
mon name. It analyses the browser based on the
user-agent variable and currently recognizes: Fire-
fox, IE, Opera, and Safari. For other browsers or
devices, you should analyze the user-agent string.

getBrowserVersion() : String Returns the version number as a string. This works
if the browser has been properly identified by the
class. Returns the version number or an empty
string if not applicable.

<resource rendered=”#{javascript:context.getUserAgent().isFirefox()}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspFF.css</href>

</resource>

<!— Safari Specific —>

<resource rendered=”#{javascript:context.getUserAgent().isSafari()}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspSF.css</href>

</resource>

<!— IE Specific —>

<resource rendered=”#{javascript:context.getUserAgent().isIE(0,6)}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspIE06.css</href>

</resource>

<resource rendered=”#{javascript:context.getUserAgent().isIE(7,8)}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspIE78.css</href>

</resource>

...

As you can see, there is a varied range of end-user browsers and versions being detected in
Listing 14.24 mostly focusing on Microsoft Internet Explorer and Mozilla Firefox. You can also
see that the rendered property is used to control whether or not to emit each resource in the final
HTML markup. Furthermore, the API to detect the end-user browser is accessible from the global
context object by calling the getUserAgent() method. This method returns an object of class
type com.ibm.xsp.designer.context.XSPUserAgent. Table 14.14 lists all the methods
supported by this class.

602 Chapter 14 XPages Theming

Table 14.14 API Provided by the com.ibm.xsp.designer.context.XSPUserAgent Class

Method Description

getBrowserVersionNumber() : double Returns the version number converted as a double.
This works if the browser has been properly iden-
tified by the class. The number is converted to a
double from the string, and every digit located
after the second decimal point is ignored (for
example, 3.0.1 becomes 3.0). Returns the version
number or 0 if not applicable.

getUserAgent() : String Get the USER-AGENT string. This method grabs
the user-agent value from the request header vari-
able named “user-agent.” This string identifies the
browser, operating system, and so on.

getVersion(String) : String Get the version for a particular entry. This func-
tion scans the user agent and returns the version
number immediately following the entry (in this
case, the Version/VersionNumber entry).

getVersionNumber(String) : double Get the number version for a particular entry. This
function converts the version string to a version
number by converting to a double. If the actual
version string contains more than one decimal
point (for example, 3.0.1), it ignores the digits
after the second decimal point (for example, 3.0).

hasEntry(String) : Boolean Check if an entry is available in the user agent.

isChrome() : boolean Check if the user-agent is a Google Chrome
browser.

isChrome(double,double) : boolean Check if the user-agent is a Google Chrome
browser within the given range (inclusive of given
min and max range).

isFireFox() : boolean Check if the user-agent is a Mozilla Firefox
browser.

isFireFox(double,double) : boolean Check if the user-agent is a Mozilla Firefox
browser within the given range (inclusive of given
min and max range).

isIE() : boolean Check if the user-agent is a Microsoft Internet
Explorer browser.

Theming on Steroids! 603

Table 14.14 API Provided by the com.ibm.xsp.designer.context.XSPUserAgent Class

Method Description

isIE(double,double) : boolean Check if the user-agent is a Microsoft Internet
Explorer browser within the given range (inclusive
of given min and max range).

isOpera() : boolean Check if the user-agent is an Opera browser.

isOpera(double,double) : boolean Check if the user-agent is an Opera browser within
the given range (inclusive of given min and max
range).

isSafari() : boolean Check if the user-agent is a Apple Safari browser.

isSafari(double,double) : boolean Check if the user-agent is a Apple Safari browser
within the given range (inclusive of given min and
max range).

parseVersion(int) : String This utility function extracts a version number
located at a particular position. This function
ignores all the letters, spaces, and slashes.

Currently, this API is heavily focused toward the five main browsers, namely Mozilla Fire-
fox, Google Chrome, Microsoft Internet Explorer, Opera, and Apple Safari. This, however, does
not limit you to detecting this range, as you can use the API to detect any device based on its
USER-AGENT string. Listing 14.25 shows you an example of a theme <resource> element that
is only rendered when the end-user device is an Apple iPhone.

Listing 14.25 <resource> Element That Is Only Rendered to an Apple iPhone

...

<resource rendered=”#{javascript:context.getUserAgent().

getUserAgent().indexOf(‘iPhone’)>-1}”>

<content-type>application/x-javascript</content-type>

<href>/.ibmxspres/global/iphone/screen.js</href>

</resource>

...

In this example, the call on context.getUserAgent().getUserAgent()typically
returns a USER-AGENT string similar to

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+
(KHTML, like Gecko) Version/3.0 Mobile/1C25 Safari/419.3

604 Chapter 14 XPages Theming

Table 14.15 API Provided by the Context Global Object for Detecting the
Current Platform

Method Description

isRunningContext(String) : boolean Check if the application is running under the
given platform. Valid platforms are “Notes”
and “Domino.”

It is then a case of parsing whatever relevant piece of the USER-AGENT string that is neces-
sary to identify the end-user browser or device. In this example, the word iPhone appears in the
string making it easy to identify the Apple iPhone as the requesting user-agent.

A related method that can be used to detect the current platform can be found on the context
global server-side JavaScript object. Table 14.15 details this method.

Listing 14.26 shows an example taken from the oneuiv2 theme. This example shows a theme
resource element that is only rendered when the current application is running on the Notes client.

Listing 14.26 <resource> Element That Is Only Rendered When Running in the Notes Client

...

<!— RCP Specific —>

<resource rendered=”#{javascript:context.isRunningContext(‘Notes’)}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspRCP.css</href>

</resource>

...

This is different to the user-agent related methods you have just learned about in that it can
only be used to identify either a “Notes” or a “Domino” platform.

Bidirectional Resources

To assist you creating internationalized applications where reading direction is right-to-left in
some countries, you can use two other methods that are also available on the global context object.
Table 14.16 details both of these methods.

Theming on Steroids! 605

If you again examine the oneuiv2 theme, you see several occurrences of both these meth-
ods, as shown in the fragment taken from this theme file in Listing 14.27.

Listing 14.27 Some of the <resource> Elements in the oneuiv2 Theme Detecting Reading
Direction

...

<resource rendered=”#{javascript:context.isDirectionLTR()}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/domino/oneuiv2/base/core.css</href>

</resource>

<resource rendered=”#{javascript:context.isDirectionRTL()}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/domino/oneuiv2/base/coreRTL.css</href>

</resource>

<resource rendered=”#{javascript:context.isDirectionLTR()}”>

<content-type>text/css</content-type>

<href>

/.ibmxspres/domino/oneuiv2/defaultTheme/defaultTheme.css

</href>

</resource>

<resource rendered=”#{javascript:context.isDirectionRTL()}”>

<content-type>text/css</content-type>

<href>

/.ibmxspres/domino/oneuiv2/defaultTheme/defaultThemeRTL.css

</href>

</resource>

<resource rendered=”#{javascript:(context.isDirectionLTR())}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspLTR.css</href>

</resource>

<resource rendered=”#{javascript:context.isDirectionRTL()}”>

<content-type>text/css</content-type>

Table 14.16 API Provided by the Context Global Object Detecting Reading Direction

Method Description

isDirectionLTR() : boolean Checks if the reading direction is left to right

isDirectionRTL() : boolean Checks if the reading direction is right to left

(continues)

606 Chapter 14 XPages Theming

<href>/.ibmxspres/global/theme/oneuiv2/xspRTL.css</href>

</resource>

<resource rendered=”#{javascript:(context.isDirectionRTL()

&& context.getUserAgent().isIE())}”>

<content-type>text/css</content-type>

<href>/.ibmxspres/global/theme/oneuiv2/xspIERTL.css</href>

</resource>

...

One of the most interesting uses of the both the user-agent and bidirectional methods can
be seen in the last <resource> element in Listing 14.27. Here, a server-side JavaScript expres-
sion uses a combination of the two types of methods to detect right-to-left reading direction and a
Microsoft Internet Explorer browser. It is important to note the encoding of the double-amper-
sand to maintain the validity of the theme XML file structure.

Theme Properties, themeId, Control Definitions, and Control Properties
As a descriptor of presentation logic and resources for an XPages application, a theme should
naturally support more than just the inclusion of different resource types. This fulfills its require-
ments to also be a descriptor for presentation logic. Therefore, a theme supports a range of other
features, namely theme properties, control definitions, and control properties.

These features allow you to declare the presentation logic for your application in a
name/value property-based manner and through the theme inheritance mechanism you learned
about earlier in this chapter. This mechanism is leveraged to enable control property definitions to
be defined within a theme for any given control, and extended or overridden across themes as and
when required.

This is a powerful mechanism, so let’s begin with an explanation of theme properties.

Theme Properties

From the Chapter14.nsf application, reopen the mxpd theme in Designer (if it is closed). Once
open in the theme Source editor, scroll to the three instances of the <property> element.
Listing 14.28 details these <property> elements for your convenience.

Listing 14.28 Three <property> Elements Within the mxpd Theme File

...

<property target=”xsp”>

<name>mxpd.theme.info</name>

<value>Theme: mxpd -> Level: 1</value>

</property>

<property target=”xsp”>

Listing 14.27 (Continued)

Theming on Steroids! 607

<name>mxpd.panel.width</name>

<value>14</value>

</property>

<property target=”xsp”>

<name>mxpd.chapter.number</name>

<value>14</value>

</property>

...

Here, you see how you can declare name/value properties for use in an application. The
<property> element itself supports the optional target attribute (in the same way the
<resource> element does), but also <name> and <value> child elements, as shown in Listing
14.28. Note, however, that both the <name> and <value> child elements cannot be dynamically
computed using a server-side JavaScript or EL expression. Only static values are available.

If you now open each of the other mxpd* theme files in Designer, you see that the first of
these properties, the one with the name mxpd.theme.info, is repeated within each of the other
themes. By way of repeating the declaration of a property in an extended theme, implicitly over-
rides the parent version of that property. Listing 14.29 describes the content of each of the other
four mxpd* themes.

Listing 14.29 Four Other mxpd* Theme Files Showing the Overridden mxpd.theme.info
Property

...

<!— mxpd1 —>

<theme extends=”mxpd”>

<property>

<name>mxpd.theme.info</name>

<value>Theme: mxpd1 -> Level: 2</value>

</property>

</theme>

...

<!— mxpd2 —>

<theme extends=”mxpd1”>

<property>

<name>mxpd.theme.info</name>

<value>Theme: mxpd2 -> Level: 3</value>

</property>

</theme>

...

<!— mxpd3 —>
(continues)

608 Chapter 14 XPages Theming

<theme extends=”mxpd2”>

<property>

<name>mxpd.theme.info</name>

<value>Theme: mxpd3 -> Level: 4</value>

</property>

</theme>

...

<!— mxpd4 —>

<theme extends=”mxpd3”>

<property>

<name>mxpd.theme.info</name>

<value>Theme: mxpd4 -> Level: 5</value>

</property>

</theme>

...

<!— mxpd5 —>

<theme extends=”mxpd4”>

<property>

<name>mxpd.theme.info</name>

<value>Theme: mxpd5 -> Level: 6</value>

</property>

</theme>

...

Therefore, in this example, the mxpd.theme.info theme property is being overridden in
each of the extended themes. You should now examine the XSP markup for the properties XPage
in Designer. Listing 14.30 lists a fragment of XSP markup for the Computed Field control on the
properties XPage.

Listing 14.30 XSP Markup for the Computed Field on the Properties XPage

...

<xp:text escape=”true” id=”computedField4” themeId=”mxpd.text.control”>

<xp:this.value>

<![CDATA[#{javascript:context.getProperty(“mxpd.theme.info”)}]]>

</xp:this.value>

</xp:text>

...

Listing 14.29 (Continued)

Theming on Steroids! 609

The interesting point here is the way in which the mxpd.theme.info theme property is
retrieved by the Computed Field control using the context.getProperty() method. This
means that theme properties are loaded into the XPage runtime and made available to an applica-
tion from the runtime.

Now, ensure the mxpd theme is the currently set theme for the Chapter14.nsf application.
Then, preview the properties XPage in the Notes client where you see something similar to
Figure 14.34.

Value coming from mxpd theme property

Figure 14.34 Previewing the properties XPage in the Notes client using the mxpd theme

In Figure 14.34, you can see the mxpd.theme.info property value has been displayed by
the Computed Field control. Now, close the Notes client, reset the current theme to mxpd1, save
your changes, and choose to preview in the Notes client again. On this occasion, as you might
expect, the Computed Field displays the overridden mxpd.theme.info property value from the
extended mxpd1 theme, as shown in Figure 14.35.

610 Chapter 14 XPages Theming

If you repeatedly reset the current theme to each of the other mxpd* themes, previewing the
properties XPage in between, you see the same behavior being applied each time.

themeId Property

Building on the concept of theme properties, a theme also supports controls and control proper-
ties. This feature allows you to associate an XPage control to a control definition within a theme.
Furthermore, a control definition allows you to manage the actual property values that are sup-
ported by the associated XPage control. In essence, this is how a theme totally removes presenta-
tion logic from within an XPage, away from its application logic, into a loosely coupled and
easy-to-manage theme file.

You may have noticed the themeId property on the <xp:text> element in Listing 14.30.
This property is the glue between an XPage control and a control definition in a theme. It
achieves this by acting as a reference to a Control element within a theme. You can set the
themeId property using the All Properties panel or the Style panel for any given XPages con-
trol. Figure 14.36 shows the Theme edit box on the Style panel used to specify the themeId for
the <xp:text> control.

Value coming from mxpd1 theme property

Figure 14.35 Previewing the properties XPage in the Notes client using the mxpd1 theme

Theming on Steroids! 611

To fully understand this relationship, examine the mxpd theme in Designer. In this theme,
you can find many <control> elements declared, one of which is shown in Listing 14.31 with
the name mxpd.text.control.

Listing 14.31 mxpd.text.control <control> Element Within the mxpd Theme

...

<control>

<name>mxpd.text.control</name>

<property>

<name>styleClass</name>

<value>text</value>

</property>

<property>

<name>tagName</name>

<value>h1</value>

</property>

</control>

...

Theme edit box for specifying the themeId

Figure 14.36 Style panel with the Theme edit box where you specify the themeId property

612 Chapter 14 XPages Theming

Table 14.17 <control> Override Behaviors

What Happens with <control
override=”false”>

What Happens with <control override=”true”>

An inherited control property that
is redefined in an extending theme
control definition is overridden by
the redefined version.

An inherited control property that is redefined in an extend-
ing theme control definition is overridden by the redefined
version.

An inherited control property that
is not redefined in an extending
theme control merges with the
extended control definition.

An inherited control property that is not redefined in an
extending theme control is ignored and, therefore, NOT
included in the extended control definition.

Newly defined control properties
that do not exist on the parent con-
trol definition is merged with the
extended control definition.

Newly defined control properties that do not exist on the
parent control definition merges with the extended control
definition.

The themeId property shown in Listing 14.30, or on the properties XPage if you have it
open in Designer, specifies the <name> element value of the <control> element as its value in
the XSP markup:

<xp:text ... themeId=”mxpd.text.control”>

Because this themeId matches the <control> element with the name mxpd.text.

control, a binding between the <xp:text> control and the control definition in the theme is
established. Therefore, when the theme is loaded and this binding is established, any control
properties declared on the control definition are applied to the XPages control. In the case of the
properties XPage, the styleClass property of the <xp:text> control is set using the
styleClass control property value from the mxpd.text.control in the mxpd theme.

Control Definitions

Themes go even further by supporting control definition inheritance when you are extending a
theme. This allows a control definition in an extending theme to either override or merge the con-
trol definition from its parent theme. This is achieved by specifying the override property on
the <control> element. The default behavior is to merge control definitions or, in other words,
<control override=”false”>. Table 14.17 outlines what happens when you set the
<control> override to either true or false.

Theming on Steroids! 613

As you can see, the second item is where the key difference between the two override

settings comes into play.
An example of using the override property can be seen by examining the mxpd1 theme in

Designer. Listing 14.32 shows a fragment from the mxpd1 theme file containing an extended ver-
sion of the mxpd.text.control control definition.

Listing 14.32 Extended mxpd.text.control Control Definition Within the mxpd1 Theme

...

<control override=”true”>

<name>mxpd.text.control</name>

<property>

<name>styleClass</name>

<value>bigText</value>

</property>

<property>

<name>style</name>

<value>text-decoration:underline;</value>

</property>

</control>

...

This extended control definition has its override property set to true. The base version
of this control definition, declared in the mxpd theme, defines a tagName property with the value
of h1 as seen in Listing 14.31. But, because override is set to true in the mxpd1 extended con-
trol definition, the tagName property is ignored and not be merged into the extended control def-
inition. Likewise, the mxpd1 extended control definition declares a style property that is not
declared on the base mxpd control definition. This new property is included in the extended con-
trol definition. The emitted HTML markup is as follows:

<span class=”bigText” style=”text-decoration: underline;”
id=”view:_id1:computedField4”>Theme: mxpd1 -> Level: 2

On the other hand, if the override property were set to false in the mxpd1 extended
control definition for the mxpd.text.control, things would be slightly different. The
tagName property coming from the base control definition would be included in the extended
control definition. Likewise, the new style property definition would also be included. The
base control definition styleClass property would be overridden by the extended version.
The emitted HTML markup is as follows:

<h1 class=”bigText” style=”text-decoration: underline;”
id=”view:_id1:computedField4”>Theme: mxpd1 -> Level: 2</h1>

614 Chapter 14 XPages Theming

Ensure that the mxpd1 theme is set before previewing the properties XPage in the Notes
client. Toggle the value of the override property for each case, true and false, and examine
the change to the Computed Field control when you preview.

Control Properties

Control definitions are not just about the <control> element and its capability to use the
override property. A control property itself also supports a similar capability to either over-
ride or concatenate its value with that defined in the XSP markup for an XPage control. A third
option is available and is actually the default behavior that allows the value defined in the XSP
markup to take precedence over a control property specified in a theme. Furthermore, unlike
theme properties, control properties do support computable values using server-side JavaScript
or EL expressions.

To understand these features, open the mxpd2 theme in Designer. Listing 14.33 details the
mxpd.text.control control definition in this theme.

Listing 14.33 Extended mxpd.text.control Control Definition Within the mxpd2 Theme

...

<control>

<name>mxpd.text.control</name>

<property mode=”concat”>

<name>style</name>

<value>text-decoration:underline;</value>

</property>

...

</control>

...

In this version of the control definition, the style property now declares mode=”concat”

on itself. This specifies that its style property value should be concatenated to any value speci-
fied in the style property for the associated XPage control in the XSP markup.

If you do not specify the mode attribute on a control property, the default behavior applies
whereby whatever value is specified for that property in the XSP markup takes precedence. Valid
values for the mode attribute are concat to concatenate, and override to override whatever
value is specified within the XSP markup for that property.

You now must format the style of the Computed Field control in the properties XPage by
adding the following attribute and value to the <xp:text> element:

style=”border:1px solid blue;”

Listing 14.34 shows the modified Computed Field control in the properties XPage with its
style property specified.

Theming on Steroids! 615

Listing 14.34 Modified Computed Field Control with Its Style Property Specified

...

<xp:text escape=”true” id=”computedField4” themeId=”mxpd.text.control”

style=”border:1px solid blue;”>

<xp:this.value>

<![CDATA[#{javascript:context.getProperty(“mxpd.theme.info”)}]]>

</xp:this.value>

</xp:text>

...

You need to reset the current theme to be mxpd2 in the Application Properties for the
Chapter14.nsf application, having saved all of your changes, preview the properties XPage
once more in the Notes client. This time around, if you view the emitted HTML source for the
XPage, you see something similar to the following for the Computed Field control:

<span dir=”ltr” class=”bigText” style=”border: 1px solid blue; text-

decoration: underline;” id=”view:_id1:computedField4”>Theme: mxpd2
-> Level: 3

Note the fact that the style property value from the XSP markup and that of the Theme
control definition, have indeed been concatenated together within the emitted HTML markup.

Likewise, if you change the mode attribute on the style control property in the mxpd2

theme to mode=”override”, you see something similar to the following:

<span dir=”ltr” class=”bigText” style=”text-decoration:
underline;”

id=”view:_id1:computedField4”>Theme: mxpd2 -> Level: 3

In this case, the style property value specified in the XSP markup has been completely
ignored and not included in the emitted HTML markup.

The last available configuration is to modify the mxpd2 control definition once more by
removing the mode attribute from the style control property. If you examined the emitted
HTML source for the Computed Field control, you see something similar to the following:

<span dir=”ltr” class=”bigText” style=”border:1px solid blue;”
id=”view:_id1:computedField4”>Theme: mxpd2 -> Level: 3

This time around, the style property value from the XSP markup takes precedence over the
style control property value

Computing Control Property Values As mentioned earlier, control properties support
computed values using server-side JavaScript or EL language expressions. Listing 14.35 lists the
dir control property shown in the previous examples and its computed value expression.

616 Chapter 14 XPages Theming

Listing 14.35 dir Control Property Using Server-Side JavaScript to Computes Its Value

...

<control>

<name>mxpd.text.control</name>

...

<property>

<name>dir</name>

<value>

#{javascript:context.isDirectionLTR()?’ltr’:’rtl’}

</value>

</property>

</control>

...

This is, of course, a trivial example, but nonetheless demonstrates the dynamic nature of a
theme file for creating and enabling presentation logic.

Setting Properties on the XPages Core Controls You can also set the properties of the
XPages Core Controls using a theme file. For example, you might want all submit type Button
controls in your application to have the same textual label, such as OK, and all cancel type Button
controls to have a label such as Cancel. You might also want to have the Modified Flag feature
enabled for all XPages in your application. All of these use cases can easily be achieved by set-
ting the appropriate control properties in a theme file, as shown in Listing 14.36.

Listing 14.36 Setting Submit and Cancel Type Button Control Labels and Enabling the
Modified Flag on the View Control

...

<control>

<name>Button.Submit</name>

<property>

<name>value</name>

<value>OK</value>

</property>

</control>

<control>

<name>Button.Cancel</name>

<property>

<name>value</name>

<value>Cancel</value>

</property>

Theming on Steroids! 617

</control>

<control>

<name>ViewRoot</name>

<property>

<name>enableModifiedFlag</name>

<value>true</value>

</property>

</control>

...

As you can see in Listing 14.36, each control has a specific <name> element. As you
learned earlier, this corresponds to being the themeId for the control, and every XPage core con-
trol also obeys the rules of the themeId mechanism. This means you can interoperate with the
core controls and provide your own specific settings. The secret is in knowing what the implicit
themeId values are for each XPages core control; Table 14.18 gives you that information.

Table 14.18 themeId values for the XPages Core Controls

Control themeId

View ViewRoot

Form Form

Computed Field Text.ComputedField

Label Text.Label

Edit Box InputField.EditBox

Edit Box [password = true] InputField.Secret

Date Time Picker InputField.DateTimePicker

Multiline Edit Box InputField.TextArea

Rich Text InputField.RichText

File Upload InputField.FileUpload

File Download DataTable.FileDownload

File Download Link Link.FileDownload

Link Link

Button Button.Command

Button [type = submit] Button.Submit

618 Chapter 14 XPages Theming

Table 14.18 themeId values for the XPages Core Controls

Control themeId

Button [type = cancel] Button.Cancel

Check Box CheckBox

Radio Button RadioButton

List Box ListBox

Combo Box ComboBox

Image Image

Error Message Message

Error Messages Message.List

Panel Panel

Section Section

Tabbed Panel TabbedPanel

Tabbed Panel Tab Tab.TabbedPanel

Data Table DataTable

View Panel DataTable.ViewPanel

View Panel Title Text.ViewTitle

View Panel Column Column.View

View Panel Column Text Text.ViewColumn

View Panel Computed Column Text Text.ViewColumnComputed

View Panel Column Link Link.ViewColumn

View Panel Column Image Image.ViewColumn

View Panel Column Check Box CheckBox.ViewColumn

View Panel Column Header Panel.ViewColumnHeader

View Panel Column Header Text Text.ViewColumnHeader

View Panel Column Header Link Link.ViewColumnHeader

View Panel Column Header Check Box CheckBox.ViewColumnHeader

View Panel Column Header Icon Image.ViewColumnHeader

View Panel Column Header Sort Image Image.ViewColumnHeaderSort

View Panel Column Header Image Image.ViewColumnHeader

Theming on Steroids! 619

Control Property Types A final feature of control properties for you to learn about is sup-
port for data-types. In the mxpd theme, you can find a control definition for the
mxpd.types.control control. Listing 14.37 also details this control definition for your convenience.

Listing 14.37 mxpd.types.control Control Definition Showing the Different Supported Data Types

...

<control>

<name>mxpd.types.control</name>

<property type=”char”>

<name>charProp</name>

<value>#{javascript:java.lang.Character.MAX_VALUE}</value>

</property>

<property type=”byte”>

<name>byteProp</name>

<value>#{javascript:java.lang.Byte.MAX_VALUE}</value>

</property>

<property type=”short”>

<name>shortProp</name>

<value>#{javascript:java.lang.Short.MAX_VALUE}</value>

</property>

<property type=”int”>

<name>intProp</name>

Table 14.18 themeId values for the XPages Core Controls

Control themeId

Pager Pager

Pager Control PagerControl

Pager First PagerControl.Pager.First

Pager Previous PagerControl.Pager.Previous

Pager Next PagerControl.Pager.Next

Pager Last PagerControl.Pager.Last

Pager Group PagerControl.Pager.Group

Pager Status PagerControl.Pager.Status

Pager Goto PagerControl.Pager.Goto

Pager Separator PagerControl.Pager.Separator

(continues)

620 Chapter 14 XPages Theming

<value>#{javascript:java.lang.Integer.MAX_VALUE}</value>

</property>

<property type=”long”>

<name>longProp</name>

<value>#{javascript:java.lang.Long.MAX_VALUE}</value>

</property>

<property type=”float”>

<name>floatProp</name>

<value>#{javascript:java.lang.Float.MAX_VALUE}</value>

</property>

<property type=”double”>

<name>doubleProp</name>

<value>#{javascript:java.lang.Double.MAX_VALUE}</value>

</property>

<property type=”boolean”>

<name>booleanProp</name>

<value>#{javascript:java.lang.Boolean.TRUE}</value>

</property>

<property type=”string”>

<name>stringProp</name>

<value>#{javascript:”String value!”}</value>

</property>

</control>

...

A total of nine different data types can be specified on a control property. If unspecified, the
default type is assumed to be string. Use cases for using property types can be varied, but one
useful case is to provide a control definition within a theme for a Custom Control and its proper-
ties. By doing so, you can drive the values of a Custom Control’s custom properties using a theme
file and ensure that the expected data types are being loaded into the Custom Control.

Conclusion
This concludes this chapter on XPages theming. In this chapter, you learned a lot about the differ-
ent ways you can use the features that XPages provides to create and manage presentation logic.
Techniques that support inline styling, style classes, and themes all provide different levels of
efficiency, productivity, consistency, and flexibility to you, as the developer, when developing and
maintaining the look and feel of an application. You now have a better understanding of the bene-
fits and most suitable use cases for employing each available technique.

Listing 14.37 (Continued)

621

Internationalization refers to the process whereby you prepare your application for users from
varied geographies. There are two parts to this: localization and international enablement.

The need for localization is obvious; a German user wants to see an application in German
and a French user in French, and so on. Localization involves making different language versions
of all the application strings available and ensuring the correct strings are used based on user
preferences. Some programming models require that you think about localization upfront and
instead of just inserting strings directly into your application, you must instead enter keys that
reference the actual strings from a separate resource file. In this chapter, you see that XPages pro-
vides a mechanism that allows you to create your application in your native language and then
translate it later. This mechanism covers everything you might need to translate so you also learn
how to handle some of the more complex translation requirements.

International enablement on the other hand can be more subtle—different geographies
have their own locale specific conventions, such as how dates and numbers are displayed. You
might also need to change page layout, such as right to left versus left to right and even
images/colors as part of your international enablement. This chapter deals with both the transla-
tion and international enablement of XPages. You learn how to use the features provided by
Domino Designer to translate your XPages and how to ensure your XPages application is fully
internationalized. Be sure to download the .nsf file provided online for this book to run through
the exercises throughout the chapter. There are two .nsf files for this chapter: Chapter15.nsf and
Chapter15_untranslated.nsf. If you want to follow along and perform the steps outlined in this
chapter use the untranslated version; if you want to see the end results, use the translated version.
You can access these files at www.ibmpressbooks.com/title/9780132486316.

C H A P T E R 1 5

Internationalization

622 Chapter 15 Internationalization

English string for label

Figure 15.1 Sample XPage

Using Localization Options
The starting point for this section is where you have an application containing some XPages in
which you have entered all the labels, messages, and other UI elements in your native language,
such as English. This is a natural way to create your application and allows you to make a lot of
progress quickly. Figure 15.1 shows a sample XPage, and you can see that the labels are all
English strings. If you are following along with the accompanying .nsf files, refer to the untrans-
lated version, chap15_untranslated.nsf.

If you use the Package Explorer view to look at the associated Java file, you see that the
English strings are hard-coded into the Java code. Figure 15.2 shows the string “First name:”
being set for one of the labels.

Now, you want to provide translations for these pages to support some other countries, such as
Arabic, Chinese, and German. The procedure to add support for additional languages is as follows:

1. Edit the application’s Localization Options to specify the languages your application
supports, go to Application Properties > XPages > Localization Options. Refer to the
translated version of the accompanying .nsf file, chapter15.nsf.

2. Optionally, you can now generate a pseudo translation of your application for testing
purposes by choosing Project > Clean and rebuilding the project.

3. Export a set of property bundles containing the source strings that need to be translated
and send out for translation.

4. Import the translated property bundles and test the translated version of your application.

Using Localization Options 623

Hardcoded English string for label

Figure 15.2 Hardcoded English string

Localization with Resource Bundle Files
XPages uses resource bundle files for managing the translated strings for each language, so all the
strings for a particular language are stored in its own resource bundle file. A resource bundle file
is a text file with the extension .properties, where each line is either:

• A key/value pair in the format <key>=<value>.

• Blank lines are ignored.

• A comment, which are lines starting with the ‘#’ character.

The Java programming language also uses resource bundles to handle translations and a
full description of this mechanism can be found by searching the web for the article, “Java Inter-
nationalization: Localization with Resource Bundles.”

Each language has its own resource bundle file and a special naming convention identifies
the correct file to load: <base file name>_<locale identifier>. In XPages, the resource
bundle file has the same name as its corresponding XPage so the French translations for a page
called SamplePage.xsp is stored in SamplePage_fr.properties. A locale identifier can
specify more then just the language (for example, there are two variations of Portuguese spoken
in the world, one in Portugal and one Brazil). To distinguish between these two variations, the
following locale identifiers are used:

• Portuguese (Brazil): pt_BR

• Portuguese (Portugal): pt_PT

624 Chapter 15 Internationalization

Setting Localization Options
To add support for Arabic, Chinese, and German in addition to the language the application was
written in (English, in this example), you must edit the application properties as follows (use the
untranslated version of the accompanying sample [chap15_untranslated.nsf] when performing
these steps):

1. Open the Application Properties page and go to the XPages tab.

2. Select the checkbox to enable localization for your application.

3. Use the Add button to add Arabic, Chinese, English, and German to the list of languages
for which property bundles are generated.

4. Select the source language, which is the language you are using when creating your
application, in this case English.

5. Leave the language as being the source language in this case. Note that if you create
your application in a language that is not intended as the default, you can set the default
language here.

The default language is the one that is used if the user’s preferred locale cannot be deter-
mined or is a locale that is not supported by the application. For example, if a French user tries to
access this application, she sees English strings. Figure 15.3 shows the localization options as
they should appear when you complete these steps.

To get the new localization options to take effect, you must clean and rebuild the project, as
follows:

1. Select the Project > Clean option.

2. In the Clean dialog, select the option to Clean projects selected below and select your
application, as shown in Figure 15.4.

3. Selecting OK causes the project-derived artifacts to be removed and rebuilt.

Cleaning the project causes the property bundle files required for translation to be created. It
also causes all the XPages and Custom Controls to be resigned.

After the clean and rebuild process completes, the application contains resource bundle
files for each of the languages you configured in the localization options. The resource bundle file
names for the language versions are constructed as follows: <XPage base file

name>_<locale identifier>.properties. The resource bundle filename for the default
language is simply <XPage base file name>.properties. The generated resource bundle
files are in the same directory as the associated XPage, and you can use the Package Explorer
view to see them.

Using Localization Options 625

Localization Options

Application Properties XPages Tab

Figure 15.3 Localization options

Figure 15.4 Cleaning the project

626 Chapter 15 Internationalization

Figure 15.5 shows the resource bundle files for the sample XPage shown earlier and the
contents of the default language file. You can see that the keys are generated from a combination
of the control ID and the property name for which the string applies. For each property associated
with an XPages tag, a flag is maintained to specify whether the property value should be local-
ized. All property values that are flagged as localizable automatically are extracted and an associ-
ated key/value pair is added to each property resource bundle. Unfortunately, no list specifies
which properties support localization and which don’t. The general rule of thumb is that proper-
ties that correspond to user visible strings are extracted.

SamplePage key\value pairs

Property bundle files

Figure 15.5 Resource bundle files

Now, if you look at the associated Java file for the XPage, you see that the English strings
are no longer hardcoded into the Java code. Instead, each string is referenced from an array of
strings that contain the translations for the current locale. Figure 15.6 shows the string is now
being set for the label you looked at earlier.

Testing a Localized Application
The resource bundle files for the non-source languages contain pseudo translations in the format
“[[locale identifier]| [original source string]]”. This allows you to test the internationalization
support in your application. You can preview the application in a browser that is configured to use

Using Localization Options 627

Localized string for label

Figure 15.6 Localized string

one of the supported languages and the XPages appear with the pseudo translations (see Figure
15.7). If there are parts of your application where the automatic string extraction has not been
able to locate a string that needs to be localized, you see this in the preview. This can happen
when using Custom Controls or when computing labels using JavaScript.

Figure 15.7 Browser preview with psuedo translations

You can edit the resource bundle file for a particular language and, when you save the file,
the XPage Java file is automatically regenerated to include the new strings. The XPage Java file
contains a string array for each supported locale, which contains all the translations for that
locale. Then, you can refresh the previewed page in the browser and see the change straight away.
Listing 15.1 shows some sample German translations.

628 Chapter 15 Internationalization

Listing 15.1 German Translations

#Sat Sep 04 10:05:33 BST 2010

firstName_Label1/@value=Vorname:

lastName_Label1/@value=Nachname:

button1/@value=Speichern

button2/@value=Abbrechen

salary_Label1/@value=Gehalt:

Figure 15.8 shows the updated preview with the German translations.

Working with Translators
If you are doing all the translations yourself, editing the resource bundle files within Domino
Designer is probably going to be just fine. More likely is that you are dealing with individual
translators or a translation agency who in turn deals with the individual translators for each lan-
guage. The recommended approach now is that you do the following:

1. Export all the resource bundle files and send them out for translation.

2. Import the translated resource bundle files and test your application.

Exporting Resource Bundle Files

There is an export feature available using the Package Explorer view. Switch to this view and fol-
low these steps:

1. Right-click the root element of the project and then select Export.

2. Expand the General option, select File System, and click Next.

3. Select the Filter Types button, select the “*.properties” option, and click OK.

4. All the folders that contain files with a .properties extension remains selected. There
are some .properties files you should not send to the translators: build.
properties in the root folder, xsp.properties in the \WebContent\WEB-INF
folder, and database.properties, xspdesign.properties in the \AppProperties
folder. Deselect both of these.

Figure 15.8 Browser preview with German translations

Using Localization Options 629

5. Specify the directory to export to in the To directory edit control.

6. Select the Create directory structure for files option and select Finish to export the files.

Figure 15.9 shows the Export dialog and the files which should be exported to do the trans-
lations of SamplePage.xsp.

Figure 15.9 Resource Bundle Export using Package Explorer

The contents of the exported folder are now ready to be sent out from translation. It is
important that you maintain this directory structure as it is needed for the import procedure to
work correctly.

One more thing about property bundle files that you need to understand is that they should
only contain ASCII and/or Unicode escape sequences to represent Unicode characters. This is
because there is no way to specify the character set being used in the file. So, for the preceding
sample, the translated resource bundle file for Chinese looks something like the translations
shown in Listing 15.2. These are some free translations I looked up on the web, so please excuse
any inaccuracies.

Listing 15.2 Chinese Translations

#Sat Sep 04 11:49:26 BST 2010

firstName_Label1/@value=\u7B2C\u4E00\u540D\u79F0\uFF1A

lastName_Label1/@value=\u59D3\u6C0F\uFF1A

button1/@value=\u4FDD\u5B58

button2/@value=\u53D6\u6D88

salary_Label1/@value=\u85AA\u916C\uFF1A

630 Chapter 15 Internationalization

Importing Resource Bundle Files

There is an import feature available using the Package Explorer view. Switch to this view and fol-
low these steps:

1. Right-click the root element of the project and then select Import.

2. Expand the General option, select File System, and click Next.

3. Specify the directory to import from in the From directory edit control. If you want to use
the same location earlier, you need to include the folder with the .NSF name in the path.

4. Select the Filter Types button, select the “*.properties” option, and click OK.

5. Select the XPages folder and select Finish to import the files.

6. Select Yes To All when prompted about overwriting the existing property files.

Figure 15.10 shows the Import dialog and the files which should be exported to do the
translations of SamplePage.xsp.

Figure 15.10 Resource Bundle Import using Package Explorer

Using Localization Options 631

Importing Resource Bundles in Domino Designer 8.5 Domino Designer intro-
duces a new feature, which is the ability to merge source file changes into property files.
This feature was not available in 8.5, so before importing, go to Application Properties,
select the XPages tab and, in the Localization Options section, check the option for “Do
not modify Existing Properties Files.” This prevents Domino Designer from overwriting your
translations. You can do the same in Domino Designer 8.5.1 by deselecting the option to
“Merge source file changes into property files.” If you do this in Designer 8.5.1, you start to
see warnings that the XPages localization property files are out of date if you change the
associated XPages.

Figure 15.11 shows the updated preview with the Chinese translations.

Figure 15.11 Browser preview with Chinese translations

Merging XPage Changes
You need to make updates to your XPages either while the resource bundle files are out from
translation or after they are returned. There is an option to merge XPage changes into the property
files, which automates the process of keeping the resource bundle files up to date. The behavior
for string changes, additions, and deletions is explained in this section.

Changing a String

When you modify a string, the default resource bundle file is simply updated with the new
key/value pair; however, the resource bundle files for other languages get a special update if
Designer detects a translation exists for the changed file. Consider what happens if the “Salary:”
string is changed to “Gross salary:.” If you make this change and open the German resource
bundle, you see that the value associated with this string is updated with the default pseudo trans-
lation, but a comment is added to the top of the file showing the old translated value and the old
original value. Listing15.3 shows the changes in the German resource bundle after a string
change in the associated XPage.

632 Chapter 15 Internationalization

Listing 15.3 Translated Resource Bundle After a String Change

#——-

key: salary_Label1/@value

src: Salary:

nls: Gehalt:

#——-

#Sat Sep 04 14:01:32 BST 2010

salary_Label1/xp\:this.value[1]/text()=[de| Gross salary\:\n]

...

Adding a String

When you add a string, all the resource bundle files are updated with a new key/value pair for the
new string. The existing translations are preserved and translators can identify the new string
because it is in the form of the standard pseudo translation. Listing 15.4 shows the key/value pair
that is inserted if you type some text directly into the XPage.

Listing 15.4 Resource Bundle Adding a String

#——-

key: salary_Label1/@value

src: Salary:

nls: Gehalt:

#——-

#Sat Sep 04 14:15:53 BST 2010

salary_Label1/xp\:this.value[1]/text()=[de| Gross salary\:\n]

/xp\:view[1]/text()[2]=[de| Please enter your details in the field below.]

Removing a String

When you remove a string, the default resource bundle file is simply updated to remove the exist-
ing key/value pair, but the resource bundle files for other languages get another special update.
The key/value pair gets deleted from these files also, but additionally, a comment is added to the
top of the file showing the old translation. If you delete the Cancel button from the sample XPage,
the German resource bundle file ends up looking like Listing 15.5.

Listing 15.5 Resource Bundle Removing a String

#——-

key: salary_Label1/@value

src: Salary:

Using Localization Options 633

nls: Gehalt:

#——-

key: button2/@value

src: Cancel

nls: Abbrechen

#——-

#Sat Sep 04 14:21:16 BST 2010

salary_Label1/xp\:this.value[1]/text()=[de| Gross salary\:\n]

/xp\:view[1]/text()[2]=[de| Please enter your details in the field below.]

firstName_Label1/@value=Vorname\:

lastName_Label1/@value=Nachname\:

button1/@value=Speichern

If you add the Cancel button back in, Designer does not automatically revert to the old
translation; this is something you have to do manually.

Backup Translations Translation is a costly process, so we strongly advise you to
back up your translations. Don’t just rely on the copy stored in the Domino database.

Gotchas!
The process for localizing XPages fits well with how the application developer would naturally
work, meaning that you can create XPages using your native language and then automatically
extract the strings that need to be translated without having to change the design of the XPage.
The responsibility for dealing with the translated resource bundles resides with the XPages run-
time and the XPage Java files. So far, so good, but there are some gotchas that you need to be
aware of:

• Control IDs are required.

• Custom Control properties must be flagged as being localizable

• Computed values and client-side JavaScript are not handled.

Computed values and JavaScript are handled in the next section.

Control IDs

The key value that is used in the resource bundle file is derived from the control ID and the prop-
erty name in the format [control id]/@[property name]. So, what happens if you don’t
specify an ID? XPages derives an ID for the component based on its location within the compo-
nent hierarchy. Consider the XPage shown in Listing 15.6.

634 Chapter 15 Internationalization

Listing 15.6 Label Without ID

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:label value=”First Label”>

</xp:label>

</xp:view>

The resource bundle entry for the string associated with this label looks like this:

/xp\:view[1]/xp\:label[1]/@value=First Label

The key can be interpreted as the first xp:label tag inside the first xp:view tag (of which
there can only ever be one). If you now insert another label before the first one, the key changes to

/xp\:view[1]/xp\:label[2]/@value=First Label

The problem gets worse if the new label doesn’t have an ID either, as shown in Listing 15.7.

Listing 15.7 Two Labels Without IDs

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:label value=”Another Label”>

</xp:label>

<xp:label value=”First Label”>

</xp:label>

</xp:view>

The associated resource bundle looks like Listing 15.8.

Listing 15.8 Resource Bundle for Two Labels Without IDs

#Sat Sep 04 15:21:56 BST 2010

/xp\:view[1]/xp\:label[2]/@value=First Label

/xp\:view[1]/xp\:label[1]/@value=Another Label

So, for controls with no IDs, moving the controls is going to cause updates to the keys in
the resource bundle file, which causes problems with translations. The prime case where this hap-
pens is if you use pass-through text. The associated components implicitly have no IDs, so the use
of pass-though text is discouraged; if you are going to be translating the application, use a label or
span control instead.

Using Localization Options 635

Custom Control Properties

You saw earlier that certain properties of the standard controls are flagged as containing localiz-
able strings and Designer automatically generates an entry in the language resource bundles when
a string value is set for one of these properties. So, what happens when you create a Custom Con-
trol and define custom properties for use with that control? In this case, what you can do is flag that
the property value is a localizable string, and Designer treats it in the same way as it treats localiz-
able property values for the standard controls.

Consider the following example of a Custom Control, which has a single property called
label. The property is defined using the Property definition tab in the Custom Controls properties
panel. The type of the property can be set to Localizable String. Figure 15.12 shows the
property definition property sheet for such an example. Now, when you include this Custom Con-
trol in an XPage where localization options are enabled, an entry is created in the associated
resource bundle file like this:

custom1/@label=Hello World

Localizable String Property Type

Figure 15.12 Localizable string custom property type

636 Chapter 15 Internationalization

Localizing Computed Expressions and JavaScript
The localization mechanism outlined in the previous sections works fine when the property is
flagged as being a localizable string and the value is not being computed. Computed expressions
can also include strings that need to be localized, as can client-side JavaScript. In this section, you
learn how to handle these elements of your application.

Consider the XPage shown in Listing 15.9. In this sample, the label value property (which
we know is a localizable string) is being computed in the first case using a combination of static
text and a computed expression and, in the second case, using a server-side JavaScript expres-
sion. Also, a client-side JavaScript expression includes a string that should be localized. If you
look at the associated resource bundle file, you see that it is empty. (Designer has detected these
are all cases it cannot handle.)

Listing 15.9 XPage with Computed Expressions and JavaScript

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:label value=”Hello #{session.commonUserName}” id=”label1”>

</xp:label>

<xp:br></xp:br>

<xp:label id=”label2”>

<xp:this.value>

<![CDATA[#{javascript:”Hello “ + session.getCommonUserName()}]]>

</xp:this.value>

</xp:label>

<xp:br></xp:br>

<xp:label id=”label3” value=”Click Here

#{session.commonUserName}”> // is this right?

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.script><![CDATA[alert(“Hello

World”);]]></xp:this.script>

</xp:eventHandler>

</xp:label>

</xp:view>

Avoid String Concatenation Listing 15.9 uses string concatenation to build the
labels that is displayed to the user. This is something you need to avoid in a real applica-
tion. The assumption here is that the convention of a greeting followed by a person’s name
applies everywhere. This may not always be the case. Instead of using string concatena-
tion, your strings needs to contain placeholders that indicate where the value(s) should be
inserted. The translator can then move the placeholders to the appropriate position in the
translated string.

Localizing Computed Expressions and JavaScript 637

Localizing these strings involves the following tasks:

1. Adding a resource bundle to the XPage that contains the translated strings.

2. Modifying the computed expressions to reference the resource bundle.

3. Modifying the client-side JavaScript to reference the resource bundle.

Adding a Resource Bundle
A resource bundle is one of the resource types that you can add to an XPage. Follow these steps to
add a resource bundle to your XPage:

1. Create a new file in your application (select File > New > File) with the extension
.properties (see Figure 15.13).

Figure 15.13 Adding a property file

2. Create a second file for the German translations using the same filename, but with the
_de suffix.

3. Add a resource of type Resource Bundle using Resources tab in the XPage properties
sheet, which references the property file you have just added (see Figure 15.14).

638 Chapter 15 Internationalization

You need two strings in each of the resource bundles to support localizing the computed
expression and client-side JavaScript. Edit the default property file to include the following
key/value pair:

greeting=Hello {0}. Current language is {1}.

clickHere=Click Here {0}

Edit the German property file to include this key/value pair:

greeting=Hallo {0}. Aktuelle Sprache ist {1}.

clickHere=Klicken Sie Hier {0}

Note that the strings added to the property bundle are written to include a placeholder, such
as {0} for the text that needs to be inserted. This placeholder can be moved by the translators if a
specific locale convention requires.

Localizing Computed Expressions
After you add a resource bundle to an XPage, you can reference those strings from your com-
puted expressions. The following code shows the updated computed expression that now refer-
ences the localized string from the resource bundle (refer to the XPage named
LocalizedComputedExpression). It also uses the I18n.format() method to insert the parame-
ters into the localized string:

var message = sampleBundle[“greeting”];

return I18n.format(message, session.getCommonUserName(),

context.getLocaleString());

Figure 15.15 show a preview of the page using a browser with a German locale configured.

Adding a Resource Bundle to an XPage

Figure 15.14 Adding a resource bundle

Localizing Computed Expressions and JavaScript 639

I18n is one of a collection of runtime classes that supports internationalization. I18n is a
shorthand way of writing “internationalization.” The class provides methods to perform locale
specific operations, such as the following:

• Building strings to display to the end user

• Comparing strings

• Parsing a number and date values to and from string values

• Converting date values to different time zones

The other XPages runtime classes provided for internationalization support are Locale
and TimeZone. A Locale object represents a specific geographical or cultural region and helps
process data in a region-specific manner, such as displaying a date using a regional convention. A
TimeZone object represents the time zone offset.

Refer to the Lotus Domino Designer XPages Reference help pages for more information
on these classes.

Localizing Client-Side JavaScript
You can localize inline client-side JavaScript by using a computed expression within the script.
This computed expression references the value from the resource bundle that your client-side
script needs to use. Listing 15.10 shows an example of how to reference a localized string from
some inline client-side script.

Listing 15.10 Using a Resource Bundle from Client-Side Script

<xp:label id=”label1” value=”Click Me”>

<xp:eventHandler event=”onclick” submit=”false”>

<xp:this.script>

<![CDATA[alert(“#{javascript:sampleBundle[‘helloWorld’]}”);]]>

</xp:this.script>

</xp:eventHandler>

</xp:label>

Figure 15.15 Preview of a computed expression

640 Chapter 15 Internationalization

Localizing Script Libraries
The built-in localization support handles localizing strings that appear directly within the XPage,
like control labels and such, and you have seen how to use resources bundles to localize
JavaScript that appears in the XPage. For more complex business logic, it is likely you will use
script libraries. In this section, you learn approaches to localizing server and client-side script
libraries.

Server-Side Script Libraries
You can use resource bundles from within your server-side JavaScript libraries by programmati-
cally loading the bundle and then referencing the associated localized strings. Listing 15.11
shows you how to programmatically load a resource bundle. Here is what it does:

1. Retrieve the locale object from the current view instance so you know what language
version of the string to load.

2. The code is caching the loaded resource bundle so it checks to see if the strings already
been loaded for this locale.

3. Create an instance of com.ibm.xsp.resource.BundleResource and set the src
property to the resource bundle file to use and the component property to the current
view instance.

4. Cache the loaded strings in application scope so they can be reused later. (The code to
create the map, which contains to cached resources, is synchronized to make sure it’s
only done once.)

Listing 15.11 Programatically Loading a Resource Bundle

function greeting() {

var message = sampleBundle()[“greeting”];

var name = session.getCommonUserName();

var lang = context.getLocaleString()

return I18n.format(message, name, lang);

}

function sampleBundle() {

var locale = view.getLocale();

if (applicationScope.sampleBundle) {

var strings = applicationScope.sampleBundle[locale];

if (strings) {

return strings;

}

Localizing Script Libraries 641

}

var resource = new com.ibm.xsp.resource.BundleResource();

resource.src = “/SampleBundle.properties”;

resource.component = view;

var strings = resource.contents;

synchronized(applicationScope) {

if (!applicationScope.sampleBundle) {

applicationScope.sampleBundle = new java.util.HashMap();

}

applicationScope.sampleBundle[locale] = strings;

}

return strings;

}

Elsewhere in the same script library, the resource bundle can be referenced by invoking the
sampleBundle() method, as shown in Listing 15.12.

Listing 15.12 Referencing the Loaded Resource Bundle

function greeting() {

var message = sampleBundle()[“greeting”];

var name = session.getCommonUserName();

var lang = context.getLocaleString()

return I18n.format(message, name, lang);

}

Client-Side Script Libraries
One additional technique you can use to localize client-side JavaScript is to dynamically generate
a client-side JavaScript object that contains the localized strings you need to use in your XPage.
Here is how you can do this:

1. Create a server-side JavaScript library with a method to programmatically load the
resource bundle you want to use (as shown previously).

2. Create a new method that creates a JavaScript object representation of the resource bundle.

3. Add a client-side script library to your XPage, whose contents are computed using the
method from the previous step.

642 Chapter 15 Internationalization

Listing 15.13 shows an example of how to generate a JavaScript class representation of a
resource bundle.

Listing 15.13 JavaScript Class Representation of a Resource Bundle

function sampleBundleAsClass() {

var bundle = sampleBundle();

var keys = bundle.getKeys();

var asClass = “var sampleBundle = { “;

while (keys.hasMoreElements()) {

var key = keys.nextElement();

asClass += key + “: ‘“ + bundle.getString(key) + “‘“;

if (keys.hasMoreElements()) {

asClass += “, “;

}

}

asClass += “}”;

return asClass;

}

Listing 15.14 shows an XPage that uses this technique. The contents for the client-side
script library are computed at page load time using the method defined in the server-side
JavaScript library. This causes a script block to be included in the generated HTML, which
declares a class called sampleBundle, which can be referenced later. The JavaScript code asso-
ciated with the label control is referencing the sampleBundle class to get the hello world string
with the correct translation.

Listing 15.14 Using JavaScript Class Representation of a Resource Bundle

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:this.resources>

<xp:script src=”/SampleBundleScriptLibrary.jss”

clientSide=”false”>

</xp:script>

<xp:script clientSide=”true”

contents=”${javascript:sampleBundleAsClass()}”>

</xp:script>

</xp:this.resources>

<xp:label id=”label1” value=”Click Me”>

<xp:eventHandler event=”onclick” submit=”false”

International Enablement 643

script=”alert(sampleBundle.helloWorld)”>

</xp:eventHandler>

</xp:label>

</xp:view>

International Enablement
The good news is that XPages is fully internationalized, so it provides a lot of built-in functional-
ity, as described here:

• Built-in Translations for XPages Runtime: XPages comes with built-in translations
for the strings that it includes in the user interface. For example, the column headers in
the File Download control are already translated, so you don’t need to translate them
in every application that uses the control. Similarly, if you choose to make a field
required and do not provide your own error message, a translated message is provided
by default. The context locale is used to determine which translation of the message is
displayed. Additional translations are provided by the Domino Server Language Pack
installers, which need to be installed onto your Domino server.

• Loading the Correct Application Translations: The XPages runtime loads the correct
translations for your XPages once the appropriate resource bundles exist or reverts to the
default language. You have seen examples of this earlier in this chapter.

• Handling Locale Sensitive Data Correctly: The converters provided as part of the
XPages runtime correctly converts to and from different data types (numbers and dates
in a locale sensitive manner). This means that, when you need to display such date or
allow the user to input such data, you don’t need to worry about the locale issues,
because this is handled by the converters.

• Built-in Translations for Dojo: The translated strings for Dojo toolkit JavaScript library
are provided by default. This means that controls that depend on Dojo (such as the Rich
Text Editor) works correctly across multiple locales. The Dojo translations are always
included in the server, even when the Language Packs are not installed. The Dojo locale
is usually the same as the context locale, except for the deprecated locales listed next.

• Computing the Correct Page dir and lang Property Values: The XPage view tag
supports the dir and lang properties, and these can be manually configured in your
XPages. The dir property is the direction (left to right or right to left) for the page. The
lang property is the language for the page. If these properties are not explicitly set, they
are computed based on the context locale.

• Loading the Correct Bundle Resources: If you include resource bundles to translate
text in your application’s server JavaScript libraries, the XPages runtime loads the cor-
rect translations based on the current locale. Again, this topic was covered earlier.

644 Chapter 15 Internationalization

• Library of Internationalization Classes: The Runtime library provide an asset of
classes for performing locale sensitive operations, such as manipulating dates, numbers,
and strings that are presented to the user. Always use these methods within your server-
side JavaScript to ensure your business logic is correctly internationally enabled.

Locales in XPages
The locale for an XPage is computed using a combination of what the user has configured and
what is supported by the application. The user’s browser or Notes client contains a configuration
which lists the users preferred locales in order. This information is sent to the server when the
user requests an XPages to be displayed. The following algorithm is used to compute the locale
for the XPage:

1. If the localization options are configured for the application, the user’s first preferred
locale is used.

2. If the first browser locale is a Norwegian language, the special rules for Norwegian are
used (see the section, “Deprecated Locale Codes”).

3. If the localization options are configured for the application, a best-match locale is com-
puted by comparing the user’s preferences in order against the list of supported locales.

4. If no best match can be established, the default locale for the application is used or the
server locale (if not default) is available.

The locale for a page can be programmatically set if, for example, you want to allow the
user to manually switch between the available language versions of your application. Listing
15.15 shows an XPage that uses this technique to allow the user to select what language version
of the page they want to view. Four links are displayed at the top of the page, and clicking a link

1. Changes the page locale using context.setLocaleString()

2. Reloads the page using context.reloadPage()

Listing 15.15 Switching Locale Programmatically

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:link escape=”true” text=”Arabic” id=”link1”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

context.setLocaleString(“ar”);

context.reloadPage();}]]>

Locales in XPages 645

</xp:this.action>

</xp:eventHandler>

</xp:link>

<xp:link escape=”true” text=”Chinese” id=”link2”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

context.setLocaleString(“zh”);

context.reloadPage();}]]>

</xp:this.action>

</xp:eventHandler>

</xp:link>

<xp:link escape=”true” text=”English” id=”link3”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

context.setLocaleString(“en”);

context.reloadPage();}]]>

</xp:this.action>

</xp:eventHandler>

</xp:link>

<xp:link escape=”true” text=”German” id=”link4”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete”>

<xp:this.action><![CDATA[#{javascript:

context.setLocaleString(“de”);

context.reloadPage();}]]>

</xp:this.action>

</xp:eventHandler>

</xp:link>

<xp:br></xp:br>

<xp:label id=”label1”

value=”This is the English version of this page”>

</xp:label>

</xp:view>

When this page is initially viewed, the locale of the user (if supported) is used. Figure 15.16
shows the German version of the page.

646 Chapter 15 Internationalization

The final example shows you the default behavior for locale sensitive data conversion and
how to override this behavior.

Looking at Listing 15.16, notice that the converter in the first row of the table has no locale
configured, so it defaults to the locale of the page. The page contains a repeat, which loops over
all the available locales. Inside the repeat is a converter, which uses a specified locale so in this
case the locale of the page is ignored.

Listing 15.16 Arabic Page

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<xp:table>

<xp:tr style=”background-color:rgb(187,255,187)”>

<xp:td>

<xp:text escape=”true” id=”computedField1”

value=”${view.locale}”>

</xp:text>

</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField2”

value=”#{javascript:new Date()}”>

<xp:this.converter>

Figure 15.16 German page

If the first link on the page is selected, the page is reloaded, and the Arabic version is dis-
played. Loading the Arabic version of the page not only changes the language, but also changes
the layout to right to left, which is the locale convention as demonstrated in Figure 15.17. If you
view the page source, you see that the generated HTML tag includes the direction and language
attributes like this, <html dir=”rtl” lang=”ar”>.

Figure 15.17 Arabic page

Locales in XPages 647

<xp:convertDateTime type=”both”

dateStyle=”full”

timeStyle=”full”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:td>

</xp:tr>

<xp:repeat id=”repeat1” rows=”30”

value=”${javascript:Locale.getAvailableLocales()}”

var=”locale” repeatControls=”true”>

<xp:tr>

<xp:td>

<xp:text escape=”true” id=”computedField3”

value=”${locale}”>

</xp:text>

</xp:td>

<xp:td>

<xp:text escape=”true” id=”computedField4”

value=”#{javascript:new Date()}”>

<xp:this.converter>

<xp:convertDateTime

type=”both”

dateStyle=”full”

timeStyle=”full”

locale=”${locale}”>

</xp:convertDateTime>

</xp:this.converter>

</xp:text>

</xp:td>

</xp:tr>

</xp:repeat>

</xp:table>

</xp:view>

As shown in Figure 15.18, the first row of the table displays the default locale and the full
representation of the current date and time according to the conventions of this locale. The fol-
lowing rows of the table show all the available locales and the corresponding representation of
the current date and time. Notice that all the strings are already translated.

648 Chapter 15 Internationalization

Figure 15.18 Default and available locales

Table 15.1 Deprecated Language Codes

Language Deprecated Code New Code

Yiddish ji yi

Hebrew Iw he

Indonesian In id

Norwegian (Bokmål) no nb

Deprecated Locale Codes
Table 15.1 lists four language codes that are deprecated and their replacement codes. The XPages
runtime still uses the old codes, but the Dojo toolkit uses the new codes.

As explained earlier, XPages uses the Dojo toolkit for some controls, such as the Rich Text
Editor. The Dojo Toolkit includes some translated strings. When Dojo is included in the output
from an XPage, it outputs the locale it’s using into the markup of the generated HTML page. The
Dojo locale differs from the XPage locale for the deprecated languages listed in Table 15.1.

Deprecated Locale Codes 649

Table 15.2 Default and Available Locales

Locale Usage Browser Locale

no nb nn

If Localization Is Disabled

Context Locale no no no

Server Strings no no no

Application Strings - - -

Dojo Locale (8.5) no no

Dojo Locale (8.5.1 or higher) nb nb nb

If Localization Is Enabled

Context Locale no nb else no no

Server Strings no no no

Application Strings no nb else no no

Dojo Locale (8.5) no no no

Dojo Locale (8.5.1 or higher) nb nb nb

One exception to this behavior is Norwegian, which has some special handling.
Because there are two different Norwegian languages—Norwegian (Bokmål) and Norwe-

gian (Nynorsk)—the old Norwegian language code “no” has been deprecated and replaced by two
codes. Norwegian (Bokmål) uses the code “nb” and Norwegian (Nynorsk) uses “nn.” Strings that
were previously translated to the single Norwegian “no” locale are in fact Norwegian (Bokmål).
So, “nn” can be considered the replacement for “no.” Some browsers still use the old “no” code.

Table 15.2 describes the behavior of the different parts of your application depending on
the locale sent by the browser and whether or not you have localization enabled.

The XPages runtime contains property bundles with the “no” suffix and, if the page locale
is set to either “nb” or “nn” languages, the “no” strings are used. When localization is disabled,
application strings are not translated so the source language is displayed. When localization is
enabled, you can choose between using the “no” or “nb” language code, but whichever you
choose, it must still match the other code if that’s what the browser specifies. For example, if you
choose to use “nb” and the browser requests “no,” the “nb” translations are still used and vice
versa. The localization options do not list the “nn” language code.

In the 8.5 release, the Dojo strings used the “no” language code. This changed for 8.5.1 and
higher to use the “nb” language code.

Conclusion
This chapter taught you techniques that allow you to localize your XPages applications. You saw
how XPages provides a natural localization model where the normal controls automatically
handle geographic conventions and where you can create your applications in your own language
and translate to other languages later with relative ease. You also learned some techniques to
allow you to localize your application logic. This completes the Application User experience sec-
tion of the book and now you can move on to examining the topics of performance, scalability,
and security.

650 Chapter 15 Internationalization

651

PART VI

Performance,
Scalability,
and Security

16 Application Performance and Scalability 653

17 Security 673

This page intentionally left blank

653

Your XPages journey thus far has covered a lot of ground. Assuming that you worked your way to
this point from the beginning of the book, you have learned how to construct XPages and Custom
Controls, interpret XSP tag syntax, manage data sources, build business logic, style a cool UI,
internationalize apps, and even contribute your own custom components! With all this knowl-
edge, you will be able to build sophisticated dynamic applications that wow customers and end
users alike...well, almost!

No matter how slick your application, it is absolutely essential for its success that it per-
form and scale well. Large development projects typically have metrics defined from the very
outset that define the viability of an application in hard numbers, like transactions per second,
minimum number of concurrent users, and so forth. Even when such metrics are not formally
applied, users and customers tend to vote with their feet when it comes to sites with slow
response times and unresponsive pages, so these apps quickly drop in the popularity stakes and
are eventually used only grudgingly in cases of necessity. This chapter makes sure that such a fate
does not happen to you!

XPages has a lot of magic levers and special tools that can be applied to ensure your appli-
cation meets acceptable performance and scalability standards. It must be understood, however,
that performance and scalability objectives can often work against each other, such as allocating
lots of memory to each user session can certainly work wonders for performance when there are a
small number of users, but also kill your application as the number of concurrent users begins to
scale upward. Thus, any set of performance and scalability requirements must be analyzed in
context, with each stipulation understood in its own right, but with due consideration also given
to how individual requirements can impact each other. It is then and only then that the appropriate
tweaks can be applied to the XPages runtime so that an optimal and well-balanced application
tuning can be achieved.

C H A P T E R 1 6

Application
Performance and
Scalability

654 Chapter 16 Application Performance and Scalability

Golden Rules
Notes/Domino 8.5.2 comes with numerous performance enhancements within the XPages core
runtime. Some of these are automatically applied to XPages applications running in
Notes/Domino 8.5.2; however, in special cases, you need to configure your applications to bene-
fit from some of the performance and scalability related features. In essence, these changes and
features aim to optimize central processing unit (CPU) and memory utilization under different
workloads and environments for an application.

Before examining the ways in which you can configure your XPages applications to
improve performance and scalability, you need to take into account several golden rules when
developing an XPages application.

1. Just by upgrading or installing Notes/Domino 8.5.2, your XPages applications automat-
ically gain performance and scalability improvements.

2. Try to use partial refresh whenever possible. You learned about the different ways you
can do this in Chapter 11, “Advanced Scripting,” and should now understand the bene-
fits of this feature.

3. Try to use GET-based links whenever possible instead of POST-based. POST-based
links are generated when you use the Open Page simple action, for example. Not all
cases to open a link require a POST-based redirect.

4. Try to use the readonly property on container type controls when no processing is
required by any controls within the container, such as a panel containing a list of Com-
puted Field controls; therefore, nothing is editable, and no server-side event handlers
need to be executed.

5. Try to limit server-side execution of an XPage to only the required part of that XPage for
any given request/action within the user interface. This is known as partial execution
mode, and you were introduced to this feature in Chapter 11. It is similar to partial
refresh in that it refreshes only a designated part of the user interface, but is instead used
to control execution of parts of the XPage component tree on the server-side.

6. Try to use the dataCache property on the Domino View data source appropriately. You
were introduced to this property in Chapter 8, “Working with Domino Views,” in the
section titled “Caching View Data.” When ID is used for this property, less memory is
consumed in the server-side component tree representing the Domino View data source.

7. Try to use the viewScope object to maintain server-side buffering objects and variables
for an XPage instead of the heavier-weight scopes, like sessionScope and
applicationScope. This reduces the amount of memory being consumed during the
life of an application.

The next section examines the underlying XPage lifecycle and how it relates to the JSF life-
cycle. Having a clear understanding of the XPage lifecycle is necessary to make the most of the

Understanding the Request Processing Lifecycle 655

XPages performance and scalability features. The following three sections then teach about these
features, and how you can apply them.

Before proceeding, you need to download the Chapter16.nsf application provided online
for this book to run through the exercises in this chapter. You can access this file at www.
ibmpressbooks.com/title/9780132486316. Once downloaded, open it in Designer and
sign it.

Understanding the Request Processing Lifecycle
In Chapter 5, “XPages and JavaServer Faces,” you learned that XPages is built on the JSF 1.1
framework and, therefore, complies with the JSF request processing lifecycle. Having a good
understanding of the JSF request processing lifecycle is necessary to get the most out of the
XPages performance and scalability features. Having this understanding also helps you design
and implement your XPages applications with performance and scalability factored in from the
start of your application development cycle. This also means you reduce the risk of introducing
performance bottlenecks and costly redevelopment work.

The HTTP protocol supports a set of commands for retrieving and sending data. Two of the
most frequently used of those commands are GET and POST:

• GET-based request: This type of request is typically sent from a browser when a user
enters a URL in a browser address bar or navigates from one web page to another using
a standard HTML link. When this type of request is issued, the browser discards any
information pertaining to the currently loaded web page before retrieving the next web
page. Browsers typically cache web pages retrieved using a GET request and are book-
markable and linkable.

• POST-based request: This type of request is issued by a browser when the actual con-
tents of the currently loaded web page is submitted as part of the request information to
the server. Typically, this is done when submitting an online order form (for example,
using a Submit button). The server then processes the incoming data and then either
redisplays the same web page updated with the new data or redirects to another page.
Browsers typically do not cache POST-based web pages due to the risk of persisting
sensitive data within the web page. Web pages retrieved using a POST request are not
bookmarkable or linkable in the same manner as GET based web pages. This type of
request is executed each time an XPages server-side simple action or server-side
JavaScript event handler is triggered—regardless of whether it is partial refresh–or com-
plete refresh–enabled.

So, this is where the understanding of the JSF request processing lifecycle becomes impor-
tant when you want to really optimize your applications. When processing a request, the XPages
runtime executes a six-phase processing lifecycle, known as the JSF lifecycle.

656 Chapter 16 Application Performance and Scalability

TIP Further information on GET- versus POST-based requests can be found at www.w3.
org/2001/tag/doc/whenToUseGet-20040321. A more extensive explanation of the JSF life-
cycle can be found at www.ibm.com/developerworks/java/library/j-jsf2/.

Note, however, that not all of the six phases need to be executed for every XPage request; in
certain circumstances, you can omit phases of the lifecycle depending on the type of request and
the requirements of the request data. The following sections explain how the JSF request process-
ing lifecycle applies to GET and POST based HTTP requests.

GET-Based Requests and the JSF Lifecycle
A GET-based HTTP request goes through only two of the six JSF lifecycle phases; therefore
making this type of request inherently more efficient than its POST-based alternative. This is the
reason for recommending as much use of GET-based requests as possible, as one of the “golden
rules:”

1. Lifecycle Phase One: Restore View: The request is received by the XPages runtime.
Two courses of action can then happen, depending on the existence of the component
tree in-memory or in disk persistence. If the request is an initial call for a given XPage,
the component tree for that XPage does not already exist. Therefore, the runtime creates
the corresponding component tree in memory by executing the precompiled XPage
.class file from within the associated .NSF file. This is an extremely efficient process, as
Designer has already precompiled the .class file with highly optimized Java byte code
when the application was first built using Designer. Once executed, the component tree
is then added to a cache of component trees under the current context for subsequent
retrieval as the user uses the application. Should the user revisit an XPage that is in the
component tree cache, that component tree can be restored directly at this point, there-
fore avoiding the need to restore from the precompiled .class file within the .NSF file.

2. Lifecycle Phase Two: Render Response: Every object within the restored component
tree is then recursed over by the XPages runtime. During this process, the renderers of
each control object in the component tree are called upon to emit the relevant HTML
markup for their controls back to the requesting browser.

POST-Based Requests and the JSF Lifecycle
Because of the formalities of dealing with a POST-based HTTP request that contains FORM field
data that can potentially be sensitive, this type of request typically goes through all six of the JSF
lifecycle phases. With XPages, however, this can be streamlined to create efficiencies, because not
all POST-based requests need to run through the entire JSF lifecycle. You, as the developer, can
therefore tailor the actions of your application appropriately to fulfill its requirements and
improve performance:

Understanding the Request Processing Lifecycle 657

1. Lifecycle Phase One: Restore View: The XPages request is received by the XPages
runtime. Then, similar to a GET-based request, the runtime simply restores the associ-
ated XPage based on its state, from either disk persistence or from the in-memory com-
ponent tree for that XPage. This incurs minimal processing cost to the XPages runtime
as the XPage has been previously created through an initial GET-based request.

2. Lifecycle Phase Two: Apply Request Values: The XPages runtime extracts the request
data, including POST content (such as form data) sent by the browser and assigns the
values to the corresponding control objects in the restored component tree. At this point,
any associated event handler component tree control objects identify which one is the
handler for the incoming triggered event. Any processing failure during this phase auto-
matically causes the lifecycle to jump to the Render Response phase, where the current
XPage gets rendered as is, and no underlying data has been modified or events triggered
against the component tree.

3. Lifecycle Phase Three: Process Validations: At this point, all the XPage component
tree control and event handler objects get their associated values assigned to them based
on the incoming request data. The XPages runtime then executes any associated valida-
tors or convertors against the component tree control objects to ensure the assigned data
values fulfill the stipulations of the any validators or convertors on the XPage. Any fail-
ures during this phase causes the next two phases to be entirely passed over, because
error messages must be displayed to the end user without saving any of the assigned data
values. Any error message or error messages controls on the XPage displays such
queued error messages during the Render Response phase.

4. Lifecycle Phase Four: Update Model Values: If the previous phase has successfully
passed any validation or convertor checks, the XPages runtime applies the assigned val-
ues for each component tree control object to the underlying data model. This is typi-
cally a Domino Document with its fields bound to edit box and rich text controls and so
on.

5. Lifecycle Phase Five: Invoke Application: As this point, the event handler that was
identified in the Apply Request Values phase is executed against the component tree.
This allows any business logic defined for that event handler to execute against the
updated and validated data model values.

6. Lifecycle Phase Six: Render Response: This final phase sees each of the XPage com-
ponent tree control objects have their associated renderer objects invoked. These ren-
derer objects generate the HTML markup that is then sent to the requesting browser.
Finally, the current state of the component tree is saved to the in-memory or disk cache
for subsequent retrieval is the user requests the same XPage again.

So, it is clear to see that a POST-based request is more expensive in terms of processing
compared with a GET-based request. Also note that every phase, except for Phase One: Restore
View, entails a complete recursion through the XPage component tree control objects. This in

658 Chapter 16 Application Performance and Scalability

itself can potentially be very expensive for a large, complex XPage. Hence, you need to gain a
good understanding of the JSF request processing lifecycle so you can fully optimize your appli-
cations by avoiding unnecessary processing of the last five phases of this lifecycle.

Reducing CPU Utilization
You can apply several optimizations to your XPages applications that inevitably reduce the
amount of CPU processing required. This is important because the amount of CPU cycle capacity
determines the speed at which an application request gets executed. Ultimately, this heavily influ-
ences the performance metrics for response times of an application. Other factors, such as net-
work latency and bandwidth, need to be factored in.

In the following sections, you learn more about GET and POST based HTTP requests, and
the read-only and immediate properties in terms of their impact on CPU usage. In Chapter 11,
you learned how to leverage partial refresh, but this section also teaches you why using it can
reduce CPU usage. Finally, you learn about a complimentary feature of partial refresh called par-
tial execution mode that allows you to really fine-tune your applications and radically reduce
CPU usage.

GET- Versus POST-Based Requests
As explained in the preceding section, GET-based requests cost less in terms of server-side pro-
cessing. Therefore, try to use GET-based requests where applicable—especially for link controls.
One of the most common mistakes in a lot of XPages applications is the assignment of an Open
Page simple action to a link control without any associated server-side JavaScript. Effectively,
this wastes server-processing time in that a POST-based request is sent to the server, the server
sends back a client-side redirect response to the browser, and finally the browser executes against
the client-side redirect to send back a GET-based request to the server for the target of the Open
Page simple action.

All of this can be done simply by just assigning a value to the link control for the target
page, resulting in a single GET-based request. Furthermore, if query string parameters need to be
sent with the request, the link control supports a Parameters complex property. This can be
found under the All Properties panel for a link control, as shown in Figure 16.1.

Figure 16.1 is actually taken from the Notes/Domino 8.5.2 Discussion template. If you
open the Chapter16.nsf application in Designer, and then open the allDocumentsView Custom
Control, you can see this by examining the linkSubject link control’s All Properties panel, or
alternatively viewing the XSP markup, as shown in Listing 16.1.

Reducing CPU Utilization 659

Listing 16.1 XSP Markup Fragment for the linkSubject Link Control with Parameters

...

<xp:link id=”linkSubject” style=”width:80%” escape=”true”

themeId=”Link.view.topicTitle” value=”/topicThread.xsp”>

<xp:this.text>

<![CDATA[#{javascript:rowData.getColumnValue(“Topic”)}]]>

</xp:this.text>

<xp:this.parameters>

<xp:parameter name=”action” value=”openDocument”>

</xp:parameter>

<xp:parameter value=”#{javascript:rowData.getUniversalID()}”

name=”documentId”>

</xp:parameter>

</xp:this.parameters>

</xp:link>

...

In summary, the benefits of using GET-based requests for link controls, or indeed for any
other navigation type scenario, in this way is two-fold:

• As a GET-based request is issued, JSF lifecycle phases two through five are completely
avoided, therefore reducing the amount of server-side CPU processing incurred.

• It eliminates the double-request scenario described previously where the client-side
HTTP redirect occurs; effectively, a server utilizes the CPU twice over for every single
Link/Open Page simple action request.

• The requesting browser caches the retrieved XPage for subsequent requests of that
XPage. This also means a large reduction of CPU usage on the server.

Parameters complex property

Figure 16.1 Parameters complex property of a link control

660 Chapter 16 Application Performance and Scalability

Using the readonly Property

Another way to omit processing of JSF lifecycle phases two through five is by using the
readonly property on container type controls. When a Panel control, an XPage, or even Custom
Control does not contain any controls that need server-side JavaScript or simple action process-
ing to occur in a POST-back request, setting the readonly property to true prevents lifecycle
phases two, three, four, and five from being processed on those containers and their child con-
trols. Figure 16.2 shows you where to find this property within the All Properties panel.

readonly property for an xp:view tag

Figure 16.2 readonly property within the All Properties panel

An example of this can be found in the ccTagCloud Custom Control from the
Chapter16.nsf application, shown here in the XSP markup fragment of Listing 16.2.

Listing 16.2 XSP Markup Fragment for the ccTagCloud Custom Control

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core” dojoParseOnLoad=”true”

dojoTheme=”true” readonly=”true”>

...

<xp:panel themeId=”tagCloud.outerPanel” id=”panelTagCloud”

readonly=”true” role=”navigation”>

<xp:panel id=”panelSlider”

Reducing CPU Utilization 661

rendered=”#{javascript:compositeData.slider.visible;}”

themeId=”tagCloud.slider”>

<xp:div dojoType=”ibm.xsp.widget.layout.TagCloudSlider”

id=”tagCloudSlider”>

...

</xp:div>

</xp:panel>

<xp:panel id=”panelTags” themeId=”tagCloud.innerPanel”>

<xp:repeat id=”repeatTagCloud” var=”tagArray”

value=”#{javascript:compositeData.tagCloud.getEntries();}”>

<xp:span style=”display: inline;”>

<xp:link id=”linkTagCloud”

style=”zoom:1” role=”link”

text=”#{javascript:tagArray.getName();}”>

...

</xp:link>

</xp:span>

</xp:repeat>

</xp:panel>

</xp:panel>

</xp:view>

This Custom Control only contains link controls and other controls with no server-side pro-
cessing requirements during a POST-back request. It doesn’t contain any user entry controls,
such as edit boxes, so it doesn’t need to have JSF lifecycle phases two through five processed;
therefore, setting readonly to true in this case reduces the amount of CPU processing against
the component tree control objects that represent this Custom Control.

Using the immediate Property

Eliminating JSF lifecycle phases three, four, and five is also possible to reduce CPU utilization
for POST-based HTTP requests. In some situations, you only need the triggered event handler to
be identified and then redirect to another XPage without any further server-side processing hap-
pening against the underlying data model. In this case, you don’t need the Process Validations,
Update Model Values, and Invoke Application phases to be executed. A common example of this
type of interaction is where you have a Cancel button that can navigate to the previous XPage or
some other XPage.

This is achieved by using the immediate property of the event handler, as shown in
Figure 16.3.

662 Chapter 16 Application Performance and Scalability

As just explained, with this option set, JSF lifecycle phases three, four, and five are ignored
during server-side processing of the POST-back request. Use this option when your event handler
needs to do something on its own, then redirect to a different XPage afterward.

An example of using the immediate property can be seen in the XSP markup of Listing
16.3, taken from the actionBar Custom Control in the Chapter16.nsf application.

Listing 16.3 XSP Markup Fragment for the buttonNewTopic Control with immediate Property

...

<xp:button value=”New Topic” id=”buttonNewTopic”>

...

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” execMode=”partial” immediate=”true”>

<xp:this.action>

<![CDATA[#{javascript:setDisplayFormType(1);

context.reloadPage();}]]>

</xp:this.action>

</xp:eventHandler>

</xp:button>

...

immediate property set with this checkbox on an Event Handler

Figure 16.3 immediate property on an event handler

Reducing CPU Utilization 663

Essentially, the button in Listing 16.3 triggers a server-side onclick action that executes
some server-side JavaScript and reloads the current XPage in the browser. It does so without pro-
cessing JSF lifecycle phases three, four, and five, so reducing CPU utilization simply with the
immediate property set on the Button controls event handler.

Partial Refresh
Appropriate use of the partial refresh capabilities provided by XPages undoubtedly reaps benefits
for the performance and responsiveness of your applications. It improves the performance of an
application by reducing the amount of HTML markup that must be processed and emitted in a
response back to the client or browser; hence, the application server is utilizing less CPU cycles.
This has a knock-on effect in that the responsiveness of an application is improved because of
less network bandwidth used to relay the response. Combine this with the fact that the client or
browser is not actually reloading an entire XPage, only a part of it. This radically reduces the
refresh time and gives a much more satisfying visual display due to the elimination of any screen
flicker that can occur during a full web page reload.

Using partial refresh results in JSF lifecycle phase six being much more efficient regardless
of the HTTP request being GET or POST based. This is due to several reasons, as explained in
the following sections.

Only the Selected Branch of the Component tree Is Processed

This designated branch is defined by setting the refreshId property on an event handler to the
id of a target control (as you learned in Chapter 11). Thereafter, during the Render Response
phase, only the renderers of the target refresh control and its child controls are invoked to emit
their HTML markup. Therefore, this partial rendering processes only the controls that need to be
rendered during the Render Response phase instead of the whole component tree.

This behavior was different in Notes/Domino 8.5, whereby the entire component tree was
rendered during the Render Response phase. This was further complicated by the fact that HTML
markup generated by nontarget controls of the partial refresh was discarded before a response
was sent to the browser. Obviously, this meant CPU cycles were being consumed unnecessarily.

The current behavior in Notes/Domino 8.5.2 has been optimized to avoid the unnecessary
invocation of non-target refresh control renderers; however, this can present an uncommon side
effect in an XPage. If some server-side JavaScript is evaluating some expression outside of the
target refresh area and is being used within the target refresh area (on repeated requests to par-
tially refresh the target area), the value used by the dependent control does not get updated. This
is generally easy to fix within an application, but if you require the previous behavior, an XSP
property can be set to revert the behavior accordingly:

xsp.ajax.renderwholetree=true | false (default false in N/D8.5.2)

If you need to use this, you can simply add the xsp.ajax.renderwholetree property to
the xsp.properties file in the WebContent/WEB-INF/ directory within your application. An
example of this can be found in the Chapter16.nsf application, as shown in Figure 16.4.

664 Chapter 16 Application Performance and Scalability

HTML Markup for the Response Is Reduced

Because the targeted invocation of component tree control renderers, a partial refresh request
results in less HTML markup being emitted in a response. This means your application requires
less CPU cycles on the server.

Browser Processing Is Faster

When an XPage is rendered for the first time, all the JavaScript and CSS files are downloaded,
parsed, and executed by the browser. Although today’s leading browsers are highly optimized
to process web page markup, the delay in processing the incoming markup for a web page can
result in a delay of some number of milliseconds, which can be noticeable by an end user. When
using partial refresh, the XPage is not entirely reloaded by the browser as you now understand,
but instead only a designated target area is refreshed. As a direct result, any JavaScript and CSS
resources used by the web page do not need to be reloaded from the browser cache or from the
web server and reprocessed for each partial refresh request. The end result is a more responsive
user interface and less CPU utilization within the end users client machine.

Defined in the xsp.properties file under WebContent/WEB-INF

xsp.ajax.renderwholetree set to false in this instance

Figure 16.4 xsp.ajax.renderwholetree property being used in the Chapter16.nsf application

Reducing CPU Utilization 665

Partial Execution Mode
Partial execution mode is similar to partial refresh; however, instead of being an optimization
for just the Render Response phase of the JSF lifecycle, it allows you to control the amount of
component tree processing that occurs during phases two through to five of the lifecycle. Also,
unlike partial refresh, which affects the requesting browser through the amount of emitted
HTML markup received, partial execution mode is purely a server-side optimization. Also note
that the two do not depend on each other—you can leverage partial execution mode even for
actions that do not use partial refresh, therefore still providing you with a mechanism to opti-
mize the amount of server-side processing needed by your application.

To explain it simply, if only a portion of an XPage should be updated and processed, the
event handler control has an execMode property that accepts the values of either complete or
partial. By default, this property is set to complete. When partial mode is specified, only
the associated component tree control, and its children, referenced by the event handler is
processed through the JSF lifecycle—all other component tree controls for a given XPage are
ignored. This is a powerful and efficient feature that can also manage component tree controls
held within a Repeat control or other iterable control, such as a Data Table or View Panel. In such
a scenario, the iterator is not reexecuted during the invocation of a child event handler, so there-
fore really streamlining the amount of CPU usage to a minimum.

Domino Designer exposes this feature to you through the Event panel for an event handler,
as shown in Figure 16.5.

Partial Execution Mode set using this checkbox on an Event Handler

Figure 16.5 Partial execution mode checkbox on the Event panel

666 Chapter 16 Application Performance and Scalability

By simply selecting the Set partial execution mode checkbox, you enable partial execu-
tion mode on the event handler of the associated control. This can be taken further, of course, in
that you can also set a designated target for partial execution processing instead of the current
control and its event handler. This is similar to the way you specify a refreshId property for a
partial refresh target control. Basically, it allows you to perform targeted partial execution of a
portion of an XPage from a control that is not the parent of that target area. This is done by speci-
fying an execId property on an event handler with the id of the target control. You can set this
property in two ways, either adding it directly in the XSP markup for an event handler tag, or by
using the All Properties panel for an event handler, as shown in Figure 16.6.

The execId property for the buttonSave Event Handler

Figure 16.6 execId property exposed in the All Properties of an event handler

An example of using execMode and execId in tandem can be found in the Chapter16.nsf
application within the mainTopic Custom Control. For your convenience, Listing 16.4 shows the
relevant XSP markup for you.

Listing 16.4 XSP Markup Fragment for buttonSave in mainTopic.xsp and allDocuments.xsp

...

<!— allDocuments.xsp —>

<xc:mainTopic

id=”mainTopic”

Reducing CPU Utilization 667

gotoPage=”/allDocuments.xsp”>

</xc:mainTopic>

...

...

<!— mainTopic.xsp —>

<xp:button value=”Save” id=”buttonSave”>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” id=”eventHandler2”

execMode=”partial”

execId=”mainTopic”>

<xp:this.action>

<xp:actionGroup>

<xp:save

name=”#{javascript:compositeData.gotoPage}”>

</xp:save>

</xp:actionGroup>

</xp:this.action>

</xp:eventHandler>

</xp:button>

...

Basically, when the buttonSave button is clicked on the mainTopic Custom Control, a
Save simple action saves any data sources on the current XPage, and then redirects to a target
XPage defined by the compositeData.gotoPage value. When doing all of this, it is done using
a combination of partial execution mode, and targeted to only partially execute the selected con-
trol with an id of mainTopic. This target control is the actual mainTopic Custom Control itself,
and is contained within the allDocuments XPage. This means that only the Custom Control and
all of its child controls get executed through the JSF lifecycle when the allDocuments XPage is
submitted to save data held on the mainTopic Custom Control, thus minimizing the amount of
CPU utilization needed in this case.

Using the immediate Property with Partial Execution Mode

In some cases, it makes perfect sense to combine the use of both the immediate property and par-
tial execution mode, typically for a Cancel button, but also for actions that do not require the data in
the current XPage to be processed during a POST-back request. For example, when clicking on a
Pager control bound to some iterator, such as a View Panel, or when selecting actions within a cus-
tom built Repeat view, such as More/Hide. In effect, this combination of settings allows a POST-
based HTTP request to not only avoid JSF lifecycle phases three, four, and five, but to also leverage
the power of a targeted partial execution for a branch of the component tree.

668 Chapter 16 Application Performance and Scalability

Some of the XPage Core Controls support a partialExecute property to make it easy for
you to use this combination of immediate and partial execution features. If you examine the prop-
erties of a Pager or View Panel control, you see this property listed among its All Properties, as
shown in Figure 16.7 for the Pager control.

partialExecute property for the Pager control

Figure 16.7 partialExecute property for a Pager control

Note that both the Pager and the View Panel controls (used for its category row
collapse/expand actions) have their partialExecute property set to true by default.

Reducing Memory Utilization
The underlying JSF framework used by XPages persists a predefined number of component tree
state representations for XPages requested by a user during their session using an application. A
standard JSF application can be configured to save the state of a component tree on the client or
server, but XPages does it specifically on the server. Therefore, it is important to minimize the
amount of information that is persisted into the component tree state. The smaller it is kept allows
a server to manage more users with the same amount of JVM memory. You need to be aware of a
few things in this area:

Reducing Memory Utilization 669

• HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet parameters

• xsp.persistence.* properties

• dataCache property

The following sections describe these features so that you gain an understanding of the
ways in which you can optimize the amount of memory consumed by your XPages applications.
The biggest impact of memory is in enabling an application to scale to larger numbers of users
and requests. Where reducing CPU utilization helps the performance of your application, reduc-
ing memory utilization helps the scalability of your application.

HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet Parameters
You can find the HTTPJVMMaxHeapSize parameter in the notes.ini file. This parameter defines
the maximum memory allocated to the JVM, which defaults to 64Mb in a Domino 8.5.2 install,
as shown here:

HTTPJVMMaxHeapSize=64M

The more memory that is allocated for this setting, the more concurrent users can be sup-
ported by a server. It is recommended to set a high memory allocation to this setting in a produc-
tion server (for example, 512M or 1024M). You also need to specify the
HTTPJVMMaxHeapSizeSet parameter to ensure the value you specify is not reset to the system
default of 64M:

HTTPJVMMaxHeapSizeSet=1

Although the HTTPJVMMaxHeapSize parameter defines the maximum memory available
to the JVM and not the physical memory allocated, this can be a constraint on 32-bit operating
systems, such as some versions of Windows. In this case, a contiguous range of addressable
memory is reserved from the system address space, therefore reducing the total space addressable
by the operating system process of 2Gb. This impacts applications and services as it reduces the
amount of memory available for normal running use—hence, less memory for the HTTP server
itself. Note that, on 64-bit systems, this is typically not a problem, and this parameter should be
set to a higher value relative to the total available physical memory of the server hardware.

xsp.persistence.* Properties
The underlying XPages JSF framework persists a predefined maximum number of component
tree state representations for XPages requested by a user during their session using an applica-
tion. This process happens in order to allow a component tree to be restored with its previous
state as a user navigates through an application. It also helps to improve the performance of the
Restore View phase of the JSF lifecycle when reconstructing a component tree.

In order to cater for application workloads that require a balancing of scalability and per-
formance characteristics, XPages supports three different persistence modes. This feature is
known as Server Page Persistence and can be configured using the XPages tab of the Application

670 Chapter 16 Application Performance and Scalability

Properties editor. (Note that the term page is used in this context to refer to a component tree state
representation.) The three different modes enable you to optimize the component tree state per-
sistence process as follows:

• basic: Keeps all pages in memory (performs well)

• file: Keeps all pages on disk (scales well)

• fileex: Keeps only the current page in memory (scales and performs well)

As mentioned above, you can configure Server Page Persistence using the XPages tab of
the Application Properties editor. By doing so, the xsp.persistence.mode property is written
into the xsp.properties file of an application like the following example:

xsp.persistence.mode=fileex

By default, the number of component tree state representations persisted is limited to
four when the xsp.persistence.mode property is set to basic. Otherwise, when xsp.
persistence.mode is set to either file or fileex, it is limited to 16. Two properties are used
to configure these limits under each context, like so:

xsp.persistence.tree.maxviews=4 (for basic mode)

xsp.persistence.file.maxviews=16 (for file and fileex mode)

As an example, this means that if an application is configured to Keep all pages in memory
(xsp.persistence.mode=basic), then when a user requests four XPages from that applica-
tion, the maximum number of persisted component trees and their state has been reached. If the
user then requests a fifth XPage from the same application, one of the preexisting persisted com-
ponent trees are discarded from the cache based on a most recently used algorithm.

Therefore, these properties enable you to establish a balance between faster component
tree restoration and minimizing the amount of memory used to maintain the persisted component
tree state representations based on application workload. The default limits for persisted pages
under each mode is adequate for most of the common use cases, but as mentioned above, if you
need to reconfigure these properties, you can do so by setting it them in the xsp.properties
file of an application. Alternatively, they can also be specified in the global xsp.properties
file of a server in order to reset any applications running in that server that do not provide their
own specific overriding values.

dataCache Property
You were first introduced to this property in Chapter 8, in the section “Caching View Data.” A fully
worked example is detailed in that section, so it is worth revisiting if you’ve not done so or need a
quick recap.

The dataCache property optimizes the amount of component tree data persisted when an
XPage containing a Domino View data source is requested. When a xp:dominoView data source
is included on an XPage, the XPages runtime needs to persist the view related values displayed

Reducing Memory Utilization 671

by the XPage in the event that a POST-back submission of the same XPage might occur. This
mechanism ensures that the same view-related data is available for processing during the Apply
Request Values and subsequent phases of the JSF lifecycle for the POST-back request regardless
of any changes that may have occurred to the underlying view data within the database. However,
this mechanism introduces two costly side effects:

• The persisted view related data for the Domino View data source can consume a large
amount of JVM memory.

• Not all of the objects within the view related data can be easily persisted or restored, if at
all in some cases, such as Domino backend Java objects. Therefore, some level of trans-
formation or representation is required that can consume more memory and CPU cycles.

Therefore, you can optimize the Domino View data source based on its requirements to be
more memory and CPU efficient using the dataCache property. Basically, the rules here are
that, if the view related data is not required during a POST-back request by any server-side
JavaScript code, a subset of scalar type view related data need only be persisted. This scalar data
includes the id of the XPages view row entry and its position—essentially, just enough infor-
mation to reconstruct the Domino View related data during normal pagination or category row
expand/collapse requests.

Three different values are supported by the dataCache property:

• full [default]: The entire view related data is persisted after a request. This can reduce
the amount of CPU processing required to reconstruct the Domino View data source
during a subsequent request for the same XPage. Access to the column values is possible
during a POST-back request by server-side JavaScript code. This option consumes the
most memory and CPU utilization of these three options.

• id: Only a minimum amount of scalar type view related data, such as id and position,
is persisted after a request. Access to the column values is not possible during a POST-
back request by server-side JavaScript code. This option uses the least amount of CPU
utilization and an optimized amount of memory consumption of these three options.

• none: No view-related data is persisted after a request. More CPU processing is
required on a subsequent request for the same XPage as the Domino View data source
needs to be fully reconstructed. Access to the column values is possible during a POST-
back request by server-side JavaScript code as the view-related data has been fully
reconstructed. This option uses the least amount of memory of the three options, but
requires the most CPU utilization.

So, as you can see, with the dataCache property set to id, a Domino View data source
uses less CPU utilization and reduce the amount of memory consumption needed to restore the
view-related data between requests. Therefore, try to use this option for Domino View data
sources whenever possible in your XPages applications.

672 Chapter 16 Application Performance and Scalability

Listing 16.5 shows an XSP markup fragment taken from the allDocumentsView Custom
Control in the Chapter16.nsf application. Note that you can set the dataCache property on a
Domino View data source by using the All Properties > Data panel in Designer.

Listing 16.5 XSP Markup Fragment for a Domino View Data Source with dataCache Set

...

<xp:dominoView var=”dominoView”

viewName=”xpAllDocuments”

dataCache=”full”>

...

</xp:dominoView>

Conclusion
This concludes this chapter on application performance and scalability. You learned about a wide
range of features and practices that you can leverage to help optimize your XPages applications
to reduce the amount of CPU and memory used. You gained an understanding of the XPages JSF
lifecycle, and the ways in which you can use partial refresh and partial execution against this life-
cycle. This in itself has given you a vital skill in knowing when to apply these features within
your application so that every XPage request is tailored to be fast and efficient. You also gained an
understanding of the ways in which you can increase the amount of allocated JVM memory, but
also how to help your application use less of it. In essence, this enables your application to
process more users and requests. You should now appreciate that, by spending time during your
development cycles to focus on reducing utilization of CPU and memory, you help your XPages
applications perform faster, serve more users and requests, and thereby keep your application
users and customers satisfied!

673

Notes/Domino has always delivered, and continues to deliver, a robust and powerful security
solution in terms of the protections it provides and its ease of administration. XPages maintains
this long tradition by leveraging and enforcing the existing security model for document security,
access control, and code execution. Whether XPages is run on Domino server or in the Notes
client, the XPages security model tightly integrates and extends the platforms existing adminis-
tration and control mechanisms to provide an experience that will be both familiar to and easily
understood by administrator, application developer, and end user alike.

Notes/Domino provides several layers of security with each layer gradually refining the
level of access and controlling the ability to perform certain functions. This chapter covers the
security mechanisms that XPages provides in the various layers to control access to design ele-
ments and data and to restrict what code can execute.

Before You Start To follow the examples in this chapter, you must have administrator
access to a Domino server where you can create applications, modify the server configura-
tion document, and register users. Be sure to download the Chapter17.nsf file provided
online for this book in order to run through the exercises throughout this chapter. You can
access this file at www.ibmpressbooks.com/title/9780132486316.

Notes/Domino Security and XPages
Notes/Domino provides several security mechanisms to protect your applications and the data
stored within them. The security model can be viewed as several layers working from the outside
in. Starting from the Domino server hosting the applications and working toward the documents

C H A P T E R 1 7

Security

674 Chapter 17 Security

stored inside applications, each layer gradually refines the access and authority a user has to exe-
cute certain operations.

• Server: controls access to the Domino server.

• Application: controls privileges within applications.

• Design Element: controls access to parts of an application.

• Document: controls who can read and edit documents.

• Workstation ECL: controls what can execute on a users workstation.

The following sections outline the key Notes/Domino layers of security and how they apply
to XPages.

Server Layer of Security
This layer has several functions. It determines the set of users allowed to access the Domino server
through the use of server access lists and by performing user authentication. It also restricts the set
of users allowed to create or sign any design elements that the Domino server allows to execute.

There is a definite distinction between a user who requests an XPage and a user who is the
creator of an XPages design element, both of whom are governed by orthogonal aspects of
XPages and Notes/Domino security.

The server security layer identifies those users allowed to create XPages that run on the
server and controls the methods and functions that the XPage application is allowed to execute.
The application and document security layers, on the other hand, control which document related
tasks (such as create/read/edit/delete) the XPage requestor can perform and the data that they are
allowed to access. Both aspects are discussed briefly here and are examined later in this chapter.

The creator, or indeed the last user to modify an XPage design element, is called the signer
of the XPage, or simply the signer. For an XPage to be allowed execute, the signer of the XPage,
or a group to which the signer belongs, must be granted the right to run XPages. The Domino
server administrator grants this right in the Security > Programmability Restrictions section of
the Domino server configuration document. Peek ahead to Figure 17.8 if you want to see how this
is managed in the Domino Administrator UI.

Any end user requesting an XPage is only asked for a name and password by the Domino
server when the web browser tries to access a protected resource. Initially, when a user requests an
XPage and no HTTP session has been established, the Domino server creates an anonymous ses-
sion for the web browser. If the application access control allows Anonymous access, the XPage
is then opened. If not, a no access signal is thrown, and the Domino server causes the web browser
to prompt (assuming basic authentication is configured) for a username and password. If valid,
these are then used to create an authenticated session. Note that an Internet password must be set
in the Person document on the Domino server for the user for basic authentication to succeed.

Notes/Domino Security and XPages 675

Name-and-Password Authentication Domino provides two Internet name-and-
password authentication methods: basic and session. Basic authentication is not very
secure; name and password details are transmitted unencrypted with each request and
should be used on a secure sockets layer (SSL) port for better protection. Session
authentication only transmits credentials once, uses a cookie to identify the session, and
offers more features, such as session to timeout after a set period and for the user to log out
without having to close the web browser.

The Domino session, meaning the connection from the XPages runtime thread to the
Domino server, is created based on the current server ID. This is an internal Domino session
object, which includes the identity of the authenticated web user. Therefore, when it comes to
application access control and document security, an XPages application is effectively Run as
Web user. Checking the invoker’s rights can provide more security as it is this authenticated web
username (or anonymous, as the case may be) that is used for any application, design element,
and document security checks. Notice that, when an XPage executes, querying some of the ses-
sion user information can return the Domino server name, while at the same time, querying the
effective user name for the session returns the web user.

NOTE The phrase “Run as Web user” is more often associated with classic Notes/Domino
web agents and describes a security setting on the agent that instructs Domino to check the
invoker’s rights to access the database instead of the agent signer’s rights.

Application Layer of Security
A Domino administrator controls the list of users who have access to the server. An access control
list (ACL) controls who has access to an application and the operations and tasks the user is
allowed to perform. Every application has an ACL. Table 17.1 lists the ACL access levels and
describes the permissions each access level grants.

Table 17.1 ACL Access Levels

Access Level Description

MANAGER This is the highest access level. Users granted this access level
can edit the ACL, perform encryption and replication operations
on the application, and delete the application. The MANAGER
level access includes all permissions granted to the other lower
access levels.

DESIGNER Users granted this level of access can edit design elements and
create a full-text index. The DESIGNER level access includes
all permissions granted to the other lower access levels.

676 Chapter 17 Security

Any web user allowed to access the server can open an XPage in a Domino application if
they have at least DEPOSITOR level access to the application, unless of course there are further
access restrictions applied at the application and design element layers.

Applications hosted on a Domino server are governed by an access control list (ACL), which
is stored and managed within each application. The ACL specifies the access level (READER,
AUTHOR, EDITOR, and so on) granted to users and controls who can access the application, the
type of tasks they are entitled to perform, and the access privileges (privileges that govern the ability
to perform specific types of operations, such as create and delete documents) they have been
granted.

The application ACL is one of the fundamental building blocks for Notes/Domino applica-
tion security and is fully supported, enforced, and leveraged by XPages.

Table 17.1 ACL Access Levels

Access Level Description

EDITOR EDITORs can create new documents and read and edit all other
existing documents. To be able to edit a document, an EDITOR
must have read access to the document (which could be pre-
vented by the user not being listed in the Readers field on the
document).

AUTHOR Despite the name AUTHOR, users granted this level of access
must also be granted the Create Documents privilege if
they are to create documents. AUTHORs can edit documents
where the user is specified in the Authors field of a document,
and they can read all documents (unless the document has a
Readers field and the user is not included in the list).

READER Users granted this level of access only have the permission to
read documents. Note that if the document has a Readers
field, the user can only read that document if they are listed in
that field.

DEPOSITOR DEPOSITORs only have the permission to create documents.
They do not have the ability to read their own or any other doc-
uments (unless they are marked for public access).

NO ACCESS This is the lowest level of access. Users with this level of access
can only read or create public-access documents.

Notes/Domino Security and XPages 677

ACL Maximum Internet Name and Password XPages applications on a Domino
server accessed via a web browser connection use an Internet name and password. The
access level given to Internet users is limited to a maximum level, irrespective of the access
level directly assigned to the user in the ACL. The default setting is Editor. To view or
change the current setting from Domino Designer, select your application, choose File >
Application > Access Control..., open the Advanced tab, and for the Maximum Internet
name and password field, choose the required level, as shown in Figure 17.1.

Figure 17.1 Application ACL Advanced tab

Roles provide a handy way to group a number of users together and help simplify adminis-
tration. Security can be applied to a role and users that belong to that role receive the privilege or
have the restriction applied. The role artifact is supported and can be used in XPages applications.

Design Element Layer of Security
Form, view, and XPage design elements have many security mechanisms associated with them.
The key point to note from this section is that, although an XPage is typically based on and asso-
ciated with a form, none of the form design element security features automatically apply to doc-
uments created with XPage. The XPage Domino Document data source property
computeWithForm should be used to associate any hidden security related fields with docu-
ments created by the XPage so that any default setting stored with the form would populate their
initial value. You set the computeWithForm property of a Domino Document data source

678 Chapter 17 Security

by navigating to XPage > All Properties > data > data > dominoDocument[0] >
computeWithFrom and selecting either onload, onsave, or both, depending on whether you
require the computation to occur as the document is read, saved, or for both read and save events.

XPages and Form Access Control Options

In traditional Notes/Domino application development, presentation (forms for entering and dis-
playing information) and data (documents for storing the information) are tightly integrated.
Form access control security settings can be configured so that any document created with that
form inherits those access control settings.

XPages does not require a form to create documents; however, having an XPage bound to a
form provides many benefits, such as the following:

• Acting as a type of data schema to facilitate simple binding of input controls to items in
a document.

• Executing business logic, such as computing default values associated with items in the
documents.

Although you can specify a form that is to be associated with an XPage and you can config-
ure a Domino Document data source that is based on a specific form, none of the form security
access control options (Menu > Design > Form Properties > Security) get applied to docu-
ments created by XPages.

The following lists the form access control options and, where applicable, indicates how
similar security may be achieved using XPages:

• Default read access for documents created with this form: By default, users with
Reader access and above can read documents created with a form. This option enables
the application designer to create a form reader access list, a subset of users who populate
the document reader access list field ($Readers) for documents created with this form.
This form security option has no effect for XPages applications, and there is no equivalent.
Although new documents created with an XPage do not have a $Readers field, existing
documents and new documents created with the form in a traditional Notes/Domino appli-
cation have the $Readers field, and Notes/Domino enforces the document level security.
Therefore, care needs to be taken in mixed environments because authorized web users
may not have the same access to documents via XPages if this form security option is
used.

• Who can create documents with this form: By default, only users with Author
access and above can access the form to create documents. This option enables an appli-
cation designer to further restrict who can use this form to a subset of users. With
XPages, the default is that any authorized web user with access to the application can
open an XPage. Note that if the XPage is managing a document data source, the user
must also have the appropriate access level in the application ACL to open, edit, or cre-
ate a document. The loading of an XPage can be restricted using the loaded and

Notes/Domino Security and XPages 679

rendered properties with a programmatic expression that evaluates to true or false based
on some aspect of the user credentials. An easier and more declarative way to limit spe-
cific XPages access to just a subset of users is to create a list of ACL entries for the
XPage, and only those users gain access at the specified level.

• Default encryption keys: XPages does not currently support field encryption.

• Disable printing/forwarding/copying to the clipboard: Does not apply to XPages.

• Available to Public Access users: Setting this option gives users with No Access to
the application the ability to view and modify specific documents created with this form.
Documents to be made available to a Public Access user must have a field called
$PublicAccess, which is of type text and has a default value of 1. This form security
option has no effect on XPages applications. See the section, “XPages and Public
Access Users,” for more details on adding Public Access support to XPages applica-
tions.

Notes/Domino forms also provide a feature (Menu > Design > Form Properties > Form
Info > Options > Anonymous form) whereby users who edit a document with the form are not
tracked in any $UpdatedBy field. This type of capability is not supported by XPages.

XPages and View Access Control Options

The Domino View is the other important XPages data source and is based on the Domino view
design element. The following two view security options (Menu > Design > View Properties >
Security) are available to control access to the view by users listed in the application ACL and
effect XPages applications. Note that these options only control access to the view and not the
underlying documents:

• Who may use this view: By default, all readers and above can use a view. This option
can be changed to only allow a subset of users in the application ACL to access this
view. Because a View Panel control in an XPage uses a Domino view as data source,
Notes/Domino will enforce this access control. An authorized web user accessing an
XPage with a View Panel who has not been granted permission to use the view will not
see any data returned from the view.

• Available to Public Access users: Setting this option gives users with No Access to the
application the privilege to access the view if it is included in an XPage that also has Pub-
lic Access enabled. If an XPage has been made available to Public Access users but the
view used as a data source for the XPage View Panel has not, and the View Panel pager and
column headings display, but no data entries are displayed. See the section, “XPages and
Public Access Users,” for details on adding Public Access support to XPages applications.

The web user must still have Reader access to the documents contained in the view. If they
do not, no entries are displayed and an empty View Panel with view pager and column headers
are simply displayed.

680 Chapter 17 Security

Similarly, if the web user has no access to the Domino view that has been defined as a data
source for a View Panel, no data is returned, so no entries are displayed either, and the view pager
and column headers still appear.

To visually distinguish between users who do not have access to the view and users who
simply do no have access to any documents currently contained in the view, the View Panel can
be prevented from appearing when the user has no access to the underlying view. Set the View
Panel Properties > View > Visible property (which can also be accessed via Properties > All
Properties > basics > rendered > Compute value...) with a computed value to control whether
the View Panel is displayed, depending on the web user’s ability to access the view that is used as
a data source. Listing 17.1 shows how to determine if a user has access to the view that is the
basis of an XPages Domino View data source.

Listing 17.1 Check Access to Underlying View

var viewPanel1:com.ibm.xsp.component.xp.XspViewPanel =

getComponent(“viewPanel1”);

var dataSource:com.ibm.xsp.model.DataSource =

viewPanel1.getDataSource();

if (typeof(dataSource) != “undefined” && dataSource != null){

var dominoView:lotus.domino.View = dataSource.getView();

if (dominoView != null){

return true;

} else {

return false;

}

} else {

return false;

}

XPage Access Control

The XPage design element provides the ability to restrict who can access and run specific indi-
vidual XPages. This is controlled using the acl property. Listing 17.2 shows the syntax for the
<xp:acl> tag.

Notes/Domino Security and XPages 681

Listing 17.2 XPages acl and aclEntry syntax

<xp:acl loaded=”true|false”>

<xp:this.entries>

<xp:aclEntry fullName=”common name” name=”canonical name”

right=”NOACCESS|READER|EDITOR”

type=”USER|GROUP|ROLE|DEFAULT|ANONYMOUS”

loaded=”true|false”>

</xp:aclEntry>

</xp:this.entries>

</xp:acl>

Watch out for a couple of things when creating an <xp:aclEntry>:

• XPages 8.5.2 and earlier include the options ORGUNIT and ORGROLE for the type attrib-
ute. Do not use these values for type as they are deprecated and have no function.

• Do not use the fullName attribute in XPages 8.5.2 and earlier; it has no function. Use
the name attribute and supply a canonical name if the type attribute is set to USER.

Table 17.2 describes the <xp:acl> tag attributes.

Table 17.2 acl Attributes and Properties

Property Values Description

entries Zero or more occurrences of
an <xp:aclEntry> tag

If there are multiple ACL entries, the first entry
that matches the user, the user’s group, or the
user’s role, is the level of access is enforced.

If no aclEntry matches the user, group, or role of
the user, the user has no access to the XPage and a
no-access signal is thrown, which causes the web
browser to prompt the user to log in.

If the ACL is loaded, but there are no entries, the
aclEntry Editor right is assigned by default.

loaded true or false Default is true. If loaded is false, the ACL is
never evaluated and applied to the user.

Table 17.3 describes the <xp:aclEntry> tag attributes.

682 Chapter 17 Security

Table 17.3 AclEntry Attributes and Properties

Property Values Description

name Enter the name of the user, group, or role to which this access
should apply. Ensure that the type attribute is set appropriately
to identify the name correctly.

Note: If the type is user, ensure that the name specified uses the
canonical form; for example, CN=Web User/O=MyOrg.

type USER

GROUP

ROLE

DEFAULT

ANONYMOUS

If name is specified, set type to USER, GROUP, or ROLE to iden-
tify the type of name.

DEFAULT applies to any user not specified directly by name. It
also applies to anonymous user if there is no other aclEntry for
ANONYMOUS.

ANONYMOUS restricts the right specified to anonymous users.

right NOACCESS

READER

EDITOR

NOACCESS prevents access.

READER and EDITOR correspond to whether the components on
an XPages are read only or editable, respectively.

Granting EDITOR access to an user who has only READER
access specified in the application ACL doesn’t escalate the
privilege, the user continues to have READER only access to the
XPages.

Although a user may have a right to edit a document, if the
XPages ACL access restricts them to READER, the XPage is
opened in read-only mode. Although the user may programmat-
ically modify the fields, when the page is submitted, it does not
go thorough validate and update model phases; therefore, any
updates to the fields on the XPage are not saved.

loaded true or false Default is true. If loaded, is set to false, and then the specific
ACL entry is never evaluated and applied to the user.

Listing 17.3 shows an <xp:acl> that is associated with an XPage that prevents any users
who belong to the [WebUser] role accessing the XPages. However, the user Web Developer can
load the XPages, even though they belong to the [WebUser] role, because the Web Developer
user entry is positioned before the [WebUser] role entry.

Notes/Domino Security and XPages 683

Listing 17.3 XPages acl Property Example

<xp:acl loaded=”true”>

<xp:this.entries>

<xp:aclEntry right=”EDITOR” type=”USER”

name=”CN=Web Developer/O=IBM”

loaded=”true”>

</xp:aclEntry>

<xp:aclEntry right=”NOACCESS” type=”ROLE” loaded=”true”>

<xp:this.name><![CDATA[[WebUser]]]></xp:this.name>

</xp:aclEntry>

</xp:this.entries>

</xp:acl>

Other XPages controls that support the <xp:acl> tag include the following:

• Panel container control: Enables large subsections of an XPage to be optionally
loaded depending on the user currently accessing the XPage.

• Include Page: Enables an entire XPage to be optionally included in another XPage
depending on the user currently accessing the XPage.

XPages loaded, rendered and readonly Properties Every control in XPages includes
two particular properties: loaded (Properties > All Properties > basics > loaded) and rendered
(Properties > All Properties > basics > rendered). The rendered property is often labeled Visible
in the control section of the properties tab.

loaded specifies whether or not the control should be created when the page is loaded.
rendered indicates whether the control should be displayed or processed on any subsequent
form submissions.

For an XPage, if the loaded property evaluates to false, the XPage returns an error. If
rendered evaluates to false, an empty HTML page is returned. For all other controls con-
tained in an XPage, a false value for either loaded or rendered property prevents the control
from being displayed.

The readonly property for an XPage (Properties > All Properties > data > readonly)
indicates that the XPage is read-only and switches any controls it contains to also be read-only.
The XPage, Panel, and Include Page controls all have a readonly property in their All Prop-
erties > data section that effects the read-only property of any controls they contain.

Input controls that have their readonly property set to true render in the web browser as
a read-only feature. A related property, the disabled property (Properties > All Properties >
basic > disabled) indicates that a control prohibits changes by the user and is similar to the
readonly property, the difference being that a read-only control can still receive focus unless it
has also been set to disabled. In addition, the value of a disabled field is not sent to the server
when the enclosing form is submitted.

684 Chapter 17 Security

The readonly, rendered, and loaded properties can be set to a value that is appropriate
for certain security conditions and can be used to control the appearance of the user interface,
depending on what information you want to communicate to the end user. For example, if you
want a component to be loaded or rendered only if the web user has been granted Editor ACL
level access, you can use the code snippet shown in Listing 17.4 to perform this security check.

Listing 17.4 Check ACL Access Level

database.queryAccess(session.getEffectiveUserName())

>= NotesACL.LEVEL_EDITOR ? true : false

If the control is available for the user, but a certain set of conditions has not been met, you
could set disabled to true so that the control remains visible, but ineffective, until the required
conditions are met.

Document Layer of Security
Full document security, enforced via Readers and Authors fields, is fully supported and respected
in XPages.

To create and edit documents, a user typically needs the right combination of ACL access
level privileges and document level security. This means the user must have at least Author access
level with the create documents privilege and not be restricted from editing the document. If a
document has an Authors field, modifying the Authors field can restrict who can edit the docu-
ment after it has been created to the list of specified users, or to users that belong to one of the
groups or roles specified. Similarly, if a document has a Readers field, specifying users, roles, and
groups in the Readers field can restrict who can subsequently read the document after it has been
created.

This is a core Notes/Domino security feature and is managed in the form properties
security settings. The Notes/Domino backend classes used by XPages enforce security for
existing documents with this information. However, for new documents, you need to be care-
ful and use the computeWithForm property to ensure the same security settings in the form
properties are added to the same documents. Although forms provide a useful data schema
template for creating a data entry XPage, by default, only those fields that are bound to the
Domino Document data source are created and stored. Because document security fields are
not something you typically present to the end user to edit and configure, they need to be set
programmatically or by using the computeWithForm property to pick up default values from
the base form.

The next four sections discuss traditional Notes/Domino document level security mecha-
nisms and how they apply to XPages.

Document Layer of Security 685

Reader Access List

In XPages, there is no way to specify a default reader access list that is to be inherited by docu-
ments created via a Domino Document data source. If an existing document has been created with
a document reader access list, those restrictions are honored in an XPages application.

Authors and Readers Fields and the XPages computeWithForm Property

For XPages Domino Document data sources, if computeWithForm is set, all fields specified in
the form are appended to the document that is being created. Any formulas used to calculate
default values are executed and the result stored in corresponding field. This is important for
Readers and Authors fields and any other fields that provide document security, for example
$PublicAccess, where you want to maintain the existing document security settings.

If the Domino Document data source used by an XPage is based on an existing form that is
also used by traditional Notes applications where documents inherit security setting from the
form, review the XPages computeWithForm property setting and the default form security set-
tings to ensure that the resulting document level security is the same through both interfaces.
Figure 17.2 shows how you can examine and set the value of the computeWithForm property
for a data source on an XPage.

Figure 17.2 XPage computeWithForm property

Sections, Paragraphs, and Layout Regions

Traditional Notes/Domino document area-control mechanisms, such as sections, paragraphs, and
layout regions, which can be hidden from viewing based on, for example, a user’s current mode or
a formula, do not apply to XPages. However, a similar effect can be achieved in XPages through
the panel container control that can hide areas of an XPage based on a computed formula or
JavaScript expression. Note that these types of area control mechanisms are not true document

686 Chapter 17 Security

security. Listing 17.5 shows how to use a JavaScript expression in the loaded property of an
<xp:panel> container control to determine if the current user has the HR role, and, only if this is
true, the section of the XPage with the salary information will be loaded and displayed.

Listing 17.5 Using a Panel Container Control to Hide Sections of an XPage

<xp:panel>

<xp:this.loaded><![CDATA[${javascript:

var db1:NotesDatabase = session.getCurrentDatabase()

var acl1:NotesACL = db1.getACL()

var aclEntry = acl1.getEntry(session.getEffectiveUserName())

if (aclEntry == null){

aclEntry = acl1.getEntry(“-Default-”);

}

return aclEntry.isRoleEnabled(“HR”)}]]>

</xp:this.loaded>

<xp:br></xp:br>

<xp:label value=”Salary Details” id=”label2”></xp:label>

<xp:table>

<xp:tr>

<xp:td>

<xp:label value=”Salary:” id=”salary_Label1” for=”salary1”>

</xp:label> </xp:td>

<xp:td>

<xp:inputText value=”#{document1.salary}” id=”salary1”>

</xp:inputText> </xp:td>

</xp:tr>

</xp:table>

</xp:panel>

Field Encryption and Document Signing

Field encryption and signing are not supported or applicable in XPages applications.

Workstation ECL Layer of Security
Much of the discussion so far focused on Notes/Domino security on a Domino server with
XPages applications being opened in a web browser. XPages also runs in the Notes client, and
although there is no control over which signers can run XPages on the Notes client, the end user
can still control which operations, methods, and tasks that embedded code created by specific

Let’s Get Started 687

signers within an XPages application may execute. This is achieved by means of a workstation
execution control list (ECL), which limits access to workstation functions and local applications.
Any attempt by embedded code in an XPages application to execute a protected operation or task
causes the end user to be warned via an execution security alert (ESA). The ESA dialog provides
the ability to prevent the operation, allow it to proceed, or to always trust the signer to perform the
operation, which results in the workstation ECL being updated with the signer being granted the
permission. To see an example of an ECL, peek ahead to Figure 17.9, where the workstation ECL
is covered as part of the section, “XPages Security in the Notes Client.”

Useful Resources
Although a little old, Overview of Notes/Domino security gives a good concise and complete
overview of Notes/Domino security:

https://www.ibm.com/developerworks/lotus/library/ls-security_overview/
For more detailed and up-to-date information on Notes/Domino security, see the IBM

Lotus Notes and Domino Information Centre documentation:
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.help.

domino.admin85.doc/H_SECURITY_OVER.html

Let’s Get Started
As you saw in the previous section, Notes/Domino is, by default, initially very open and as you
work through the layers, security, and access control becomes more and more restricted and
granular.

In a similar fashion, a new XPages application based on the Discussion—Notes & Web
application template can run without requiring any signature to be added to the security tab in the
server configuration document. This provides a quick and easy way for users to get started with
Notes/Domino applications. Subsequent sections demonstrate how to restrict access using many
of the various access control mechanisms already discussed.

Creating the Initial Application
The first step is to create a new application based on the Discussion application template that
ships with the Domino server. In Domino Designer,

1. Choose File > New > Application.

2. In the New Application dialog (shown in Figure 17.3), select your Domino server (in
both the Specify Application and Specify Template sections). Remember, you need a
Domino Server to be able to follow these steps. You can not use the local Domino
Designer Web Preview to follow these examples.

3. Enter a title for the application (for example, Chapter17) and a filename (for example,
Chapter17.nsf).

4. Select Discussion—Notes & Web (8.5.2) as the Template, and choose OK.

688 Chapter 17 Security

The Chapter 17 application is ready to run. Select the Chapter 17 application in the applica-
tion navigator and choose Design > Preview in Web Browser > Default System Web Browser to
launch the application in a web browser. You are prompted with a login dialog. Supply the username
and password of a registered user on your server who has an Internet password, and the application
opens with the allDocuments.xsp page. Note that this application ran out of the box. You have
not had to perform any security configuration or add users to the application ACL. How come?

In the application navigator, expand the Chapter17 application and double-click the
XPages tree item to list all the XPage design elements (see Figure 17.4).

Notice that the Lotus Notes Template Development/Lotus Notes signature was the last sig-
nature to modify all the XPage design elements.

Figure 17.3 New Application dialog

Figure 17.4 XPage design elements

Let’s Get Started 689

Lotus Notes Template Development/Lotus Notes

The application templates supplied with Lotus Notes and Domino are all signed with Lotus Notes
Template Development ID file. This signature (along with the server’s signature on Domino
server) is trusted implicitly by Notes/Domino and does not require security access to be specified
either in the server configuration on Domino server or the workstation ECL on the Notes client.

Signatures

When a user creates or modifies an XPage design element, his signature is stored with the XPage
in the $UpdatedBy item and anyone else who subsequently modifies the XPages is also tracked.
The signer of an XPage is the last person to have updated and XPage design element. This is the
same for any other XPages-related design element, Custom Controls, server-side JavaScript
libraries, and Java code (classes and JARs). Security for XPages is based on controlling the privi-
leges granted to signers of an XPage and XPages components.

Implementing ACLs
The other security aspect enabling the end user run the application is the access control list
(ACL). The ACL controls access to the application and what operations users can perform, for
example read and create documents, and modify the application design. Choose File >
Application > Access Control... to see the application ACL (see in Figure 17.5).

Figure 17.5 Access control list

690 Chapter 17 Security

Examine the ACL and notice that it contains two special names, Anonymous and -Default,
with Anonymous having No Access, and Default having Author-level access. When the XPage is
requested, anonymous access is attempted first. That fails, throws a no access signal, and causes
the Domino server to prompt for a valid username and password. After authenticated, the applica-
tion ACL is again checked—this time to see if the username is listed as an entry. Because it is not,
the rights associated with the Default entry, Author, are granted, and the XPage is loaded success-
fully.

Special Names

The Anonymous name governs what access rights are granted to unauthenticated users. The
Default user (every ACL must have a Default name) governs which access rights are given to
authenticated users who are not explicitly listed in the ACL (and unauthenticated users if the
Anonymous user is not listed). The Anonymous user is optional. To prevent unauthenticated users
from accessing the applications and being granted the Default rights, you must specify the Anony-
mous user with the No Access-level access.

Sign the XPages with Your Signature
To update the existing XPage design elements with your signature, you can modify and save each
XPage. However, Domino Designer provides a useful button that does the same job. From
Domino Designer, open the list of XPages (double-click the XPages tree item in the application
navigator), select them all, and click the Sign button. Notice that the Last Modified By column
(see Figure 17.6) now contains the signature of the user currently logged into Domino Designer.

Reload the XPage and notice that, this time, the web browser displays an error, as shown
in Figure 17.7, which indicates a permission problem. As expected, the signer of the XPage
design elements does not have the right to sign XPages that are permitted to run on the Domino
server (this assumes that no changes have been made to the default Domino server configuration
document).

Figure 17.6 Last Modified By list of XPages

Programmability Restrictions 691

To fix this, the signer needs to be added to the Programmability Restrictions sections under
the Security tab of the server configuration document.

Programmability Restrictions
Because XPages are executable code, similar to agents, authorization for who can create and
modify XPages that run on the server is controlled by the server configuration.

To view and edit the programmability restrictions,

1. From Domino Administrator, log in as an administrator.

2. Connect to your Domino server (File > Open Server...).

3. Open the Security tab of the Server Configuration document (Server > Current Server
Document > Configuration > Security).

4. Navigate to the Programmability Restrictions section, as shown in Figure 17.8, and
add your user to the Sign agents or XPages to run on behalf of the invoker field.

Figure 17.7 Error 403 HTTP Web Server

Figure 17.8 Domino server programmability restrictions

692 Chapter 17 Security

Reload the web browser page again with the application and this time notice that the
XPages application is now displayed.

The Programmability Restrictions section in the Security tab of the Server Configuration
document controls which users can sign XPages applications that run on the Domino server and
what privileges they have.

Note that, when talking about signing an XPages design element, the security and program-
mability restrictions also apply to XPages-related design elements that can be contained in an
XPage. This includes

• Custom Controls

• Server-side JavaScript libraries

• Java classes

• JAR files

The following sections detail the relevant Programmability Restrictions fields for XPages.

Sign or Run Unrestricted Methods and Operations
In this field, enter the name of users or groups who have the ability to sign XPages that run unre-
stricted. On Domino server, design elements that execute embedded code, such as
LotusScript/Java agents and XPages, have two modes of operation: restricted and unrestricted.
Running restricted prevents a signer from using protected operations, such as network access and
file I/O, while running unrestricted allows all those protected operations to succeed.

Leaving this section blank means no user is granted this ability (except for the current
server and Lotus Notes Template developers who are granted unrestricted access by default).

Any users who have been specified in the Full Access Administrator field (also under the
Security tab of the server configuration document) also have the ability to run XPages with unre-
stricted rights. Note that XPages do not execute with full administration rights.

Any users granted this right also gains the following rights:

• Sign agents to run on behalf of someone else

• Sign agents or XPages to run on behalf of the invoker

• Sign or run restricted LotusScript/Java agents

• Run Simple and Formula agents

Sign Agents to Run on Behalf of Someone Else
In this field, enter the names of user and groups who are allowed to sign agents that are executed
on anyone else’s behalf.

Leaving this section blank means no user is granted this ability (except for the current
server and Lotus Notes Template developers who are granted this right by default).

Restricted Operation 693

Any users granted this right also gain the following rights:

• Sign agents or XPages to run on behalf of the invoker

• Sign or run restricted LotusScript/Java agents

• Run Simple and Formula agents

Although this right provides no specific XPages privilege, it is significant for XPages appli-
cations because any user or group listed here also includes the right to sign agents or XPages to
run on behalf of the invoker.

Sign Agents or XPages to Run on Behalf of the Invoker
In this field, enter the names of user and groups who are allowed to sign agents or XPages that are
executed on behalf of the invoker.

Leaving this section blank means no user is granted this ability (except for the current
server and Lotus Notes Template developers who are granted unrestricted access by default).
Therefore, any users you want to have the ability to run XPages must be specified here (or be part
of a group that is specified here).

This security right reflects the typical XPages configuration, where an XPage is created by
one user but runs as the web user who authenticated with the server and was granted access to the
XPages application.

Any users granted this right also gain the following rights:

• Sign or run restricted LotusScript/Java agents

• Run Simple and Formula agents

Sign Script Libraries to Run on Behalf of Someone Else
In this field, enter the names of users who are allowed to sign script libraries in agents or XPages
executed by someone else. A script library is a design element for storing code that can be
shared by other design elements. Server-side JavaScript libraries are a type of script library and
are specific to XPages.

Leaving this section blank means everybody is granted this right. Therefore, add the names
of user or groups here so that only trusted users have this capability.

As usual, the current server and Lotus Notes Template developers are granted this right by
default.

If is a signer name is specified (or is part of a group specified here), that signer name must
also be specified in one of the preceding fields.

Restricted Operation
Create a new XPage that has two inputs (two Edit Box controls, named networkHost and
networkPort, for specifying a hostname and port), a status output (a Computed Field control

694 Chapter 17 Security

named networkStatus, to display the result), and a button (named Test) that executes the
server-side JavaScript code shown in Listing 17.6 when clicked.

Listing 17.6 Code Snippet That Executes a Restricted Network Operation

var h = getComponent(“networkHost”).getValue();

var p = getComponent(“networkPort”).getValue();

var errmsg = “Exception: “;

var statuscomp = getComponent(“networkStatus”);

try {

var s:java.net.Socket = new java.net.Socket(h, parseInt(p));

if (s != null) {

s.close();

}

statuscomp.setValue(“OK: “);

} catch (e) {

var msg = e.getMessage();

if (msg == null){

var e2 = e.getCause();

msg = e2.getMessage();

if (msg == null || msg.equalsIgnoreCase(h)){

msg = e2.getClass().getName();

}

}

statuscomp.setValue(errmsg + msg);

}

When you run the XPage, enter the hostname of your Domino server and 80 as the port
number. When you click the Test button, you get an error similar to the following.

Exception: not allowed to make a socket connection to jquill-laptop,-1

Now, as Domino administrator, in the Programmability Restrictions, add your user signa-
ture to the Sign or run unrestricted methods and operations field and save the changes.

Rerun the test application and this time notice that the network status output is simply

OK:

Now that the XPages signer has the right to run unrestricted methods, the socket connection
in the example code is successful.

XPages Security Checking 695

XPages Security Checking
Each request for an XPage creates a security context that performs two things:

• Verifies that all the signers of the design elements that comprise the XPages are valid.

• Determines the level of execution privileges (unrestricted or restricted) to be associated
with the security context based on all the design element signers.

For an XPage to execute, all the signers must have at least been granted the ability to run
XPages on behalf of the invoker.

The following lists the design elements that can comprise an XPages application. The sign-
ers of these design elements are verified and, together, they collectively set the execution privi-
lege level for an XPage:

• XPage

• Custom Control

• Server-side JavaScript library

• Java class (stored in WEB-INF/classes)

• JAR (Java Archive File stored in WEB-INF/lib)

Because the XPage design element is the one that is a container for all the other XPages-
related design elements, the signer of the XPage is known as the top-level signer.

In order for the XPages security manager to allow any design element to execute
restricted operations contained in embedded Java code, all the signers of the XPages design ele-
ments must have the ability to sign or run unrestricted methods and operations. Initially, the
security context assumes unrestricted. Then, as each signer is checked, once one signer does not
have the unrestricted right, the XPages security context for the request is downgraded to
restricted.

When any embedded user-defined Java code subsequently executes a protected operation,
the security context is referenced to see if the operation should be allowed to proceed. If the secu-
rity context is restricted then a security exception is thrown.

Most of the design elements are verified and checked at start of the request. The Java class
files stored in the NSF are only checked when they are loaded.

For safety, security context information is not maintained between requests. When the
request is complete, the security context is discarded and recalculated for the next request.

NSF ClassLoader Bridge
XPages has its own classloader for reading XPages, user-defined Java classes, and JARs stored
within the application’s NSF. Because this NSF classloader is used to load the initial XPage, any
subsequent reference to a class always looks to use this classloader first, which checks the NSF
first and doesn’t delegate to its parent until it cannot find the class. The parent of the NSF class
loader provides a bridge between the NSF and the classloader hierarchy of the platform running

696 Chapter 17 Security

XPages (OSGi on Domino server and Eclipse on Notes client) and prevents any code from within
the NSF accessing external classes that XPages wants to restrict on security grounds. For
example, classes in the following two packages, org.osgi.* and org.eclipse.*, and several
internal packages (such as com.ibm.* and com.ibm.xsp.*) are not accessible from classes in
the NSF, because they could potentially be used to access information and code outside the cur-
rent application that is not fully managed by the XPages security manager.

XPages Security in the Notes Client
On the Notes client, workstation execution control lists (ECLs) restrict which tasks and opera-
tions embedded code in an application can perform based on who the application signers are.
XPages security on the Notes client is integrated with the workstation ECLs to prevent XPages
applications from running security sensitive operations where the user has not explicitly trusted
all the signers.

XPages security in the Notes client also enforces many other restrictions that do not apply
for XPages applications on Domino server:

• The embedded XULRunner browser that is used to run XPages applications in the Notes
client can only access the application for which it was invoked. Because the user is
already authenticated on the Notes client and has unrestricted access to data in the local
applications, this restriction prevents any malicious code in one application from simply
redirecting the XULRunner browser to another application and accessing the data. It is
still possible to access data from other applications through the programmatic inter-
faces. These methods check the workstation ECL to ensure the application signers have
been authorized by the user to access data from other applications.

• An XPages application cannot be invoked from an external web browser, HTTP session
information is stored with the XPages runtime, and when the embedded XULRunner is
closed, any subsequent request is rejected. Also, the port number for which the embed-
ded web application container listens for HTTP requests is random and changes each
time it is instantiated.

• There is no access to Java from JavaScript within the XULRunner browser. XPages
allows a limited set of Notes client platform capabilities that provide a richer user expe-
rience (for example, native dialogs instead of standard web browser dialogs for alerts)
that are available from an XPages application. This functionality is provided though the
XPages Client-Side JavaScript functions, XSP.alert, XSP.error, XSP.confirm,
and XSP.publishEvent.

• The ECL also controls the capability for an XPages application to perform Property
Broker access. (Property Broker is the underlying technology for publishing events
when running XPages as a Composite Application in the Notes client.)

XPages Security in the Notes Client 697

Execution Control List (ECL)
The Notes client workstation ECL is a more granular approach to security than Unrestricted/
Restricted signer on Domino server. Instead of just specifying if a signer can perform protected
operations, a signer may be allowed to perform some protected operations but not others.

The ECL maintains a list of names (signers) and the operations they are allowed to per-
form. XPages uses the capabilities granted under the Using Workstation tab for User Security to
grant/deny permission to signers of XPages applications. To examine the ECL that controls
XPages applications in the Notes client, select File > Security > User Security... > What Others
Do > Using Workstation. Figure 17.9 shows an example.

Figure 17.9 Notes client ECL security settings

This is the same ECL that controls Java agents on the Notes client. Java agents called syn-
chronously from an XPages application has the same ECL restrictions enforced by the agent
security manager.

Note that “Lotus Notes Template Development/Lotus Notes” signature has full access by
default.

The Notes/Domino backend classes called from an XPages application perform the appro-
priate security check directly with the Notes Client ECL.

Any embedded Java code in an XPages application that calls a security-sensitive operation
(such as file IO or network IO) triggers a Java permission check. XPages in the Notes client sup-
plies an implementation of a Java Security Manager that maps Java permissions to ECL access
rights and passes the required security contexts and signer information to the Notes client ECL
for permission checking to determine if the Java operation should be allowed.

698 Chapter 17 Security

From the ESA dialog, a Notes client user can then choose to allow the operation and
optionally add the signer name to the ECL so the signer has permission to perform that operation
in future.

If the user does not allow the signer to perform the operation, a security exception is raised
and the request is ended unless the exception is handled in the application code.

The ESA options are

• Do NOT execute the action: Prevents the operation from executing and raises security
exception that should be caught by the calling code so the user experience is handled
appropriately.

• Execute the action this one time: Allows the operation to proceed. The next time the
same operation is executed, the user is again prompted.

If all the XPages design element signers are listed the ECL and have been granted access to
the particular operation, the execution continues.

If any of the signers are not listed, or are not allowed perform the operation, an Execution
Security Alert (ESA), detailing the operation that is being attempted and the signer of the code
who does not have the permission, is displayed to the user. For example, if you run the network
test XPages application that you created based on the code snippet in Listing 17.6, when you
click the Test button, you are presented with and Execution Security Alert, similar to the one
shown in Figure 17.10.

Figure 17.10 Notes client Exception Security Alert

Active Content Filtering 699

• Trust the signer to execute this action for this Notes session: This option is not sup-
ported in XPages. It allows the operation to proceed and behavior is similar to choosing
execute the action this one time.

• Start trusting the signer to execute this action: Allows the operation to proceed and
add the signer to the Notes client ECL with the corresponding access option granted.

Table 17.4 lists the ECL access options that apply to Java code embedded in an XPages
applications and the corresponding Java permissions that are managed by the XPages Java secu-
rity manager.

Active Content Filtering
Active Content Filtering (ACF) can remove potentially malicious active content from data that
has just been entered before it is saved to the application, or as application data is retrieved and
before it is returned to the web browser, where it may be interpreted and executed. ACF helps pre-
vent the type of attack where one user tries to enter malicious code as input to an application in an
effort to have another user unwittingly upload and execute that code in their web browser.

Several XPages input controls (for example, InputText, InputTextArea, and InputRichText)
include two properties (under All Properties > basics) that support ACF:

• htmlFilter: Defines the ACF engine to use when the control sends data to the client.

• htmlFilterIn: Defines the engine to use when the control receives input from the
client.

These properties can be set explicitly in the Properties section of the control or by using
themes.

Table 17.4 Notes Client ECL Access Options for XPages

ECL Access Option Java Permission Mapping

File system FilePermission(read, write, delete)

Network SocketPermission, NetworkPermission

External code RuntimePermission (loadLibrary.{library name})

External programs FilePermission(execute)

Environment variables PropertyPermission

Several Java runtime permissions, for example RuntimePermission (exitVM), are never allowed by the
XPages Java security manager.

700 Chapter 17 Security

The output controls (for example, Input Text, Text Area, Rich Text editor Computed Field,
Link, and Label) just use the htmlFilter property to filter the value emitted by the control.
Also, the following View Panel components can have their content displayed as HTML and also
support the htmlFilter property:

• View Title

• View Column Header

• View Column.

Four ACF engines are available for XPages applications:

• acf: Parses the HTML text and filters out the unsafe constructs. The filter used is based
on a default configuration shipped with the XPages runtime. The default configuration
can be over-ridden by specifying a custom acf-config.xml configuration file in your
Notes/Domino data/properties directory.

• striptags: Removes all the tags using a regular expression:
’replaceAll(“\\<.*?>”,””)’.

• identity: Does nothing but return the original string. This option is useful if you have
the engine set to acf and you want to override this setting for one particular control.

• empty: Removes everything and returns an empty string.

The Rich Text Editor control is a special case, because it can allow HTML to be directly
entered and displays its content as HTML by default. There are two global properties with the fol-
lowing default values:

xsp.richtext.default.htmlfilter=acf

xsp.richtext.default.htmlfilterin=

This means that the content for any Rich Text Editor control is, by default, filtered when the
HTML data is emitted from the RichTextEditor control but not when input from a web browser.

Note that these default ACF properties can be overridden in the Notes/Domino data/
properties/xsp.properties file. If this file does not exist, make a copy of the supplied
xsp.properties.sample file and rename it xsp.properties.

To create a custom configuration file for the ACF filter engine specify the configuration file
to use in Notes/Domino data/properties/xsp.properties by adding (or uncomment) the
line:

xsp.htmlfilter.acf.config=acf-config.xml

In the data/properties directory, make a copy of acf-config.xml.sample in the
same folder and use this file as the basis for your extended or enhanced ACF rules. Listing 17.7
shows an example acf-config.xml file with some filter rules.

Active Content Filtering 701

Listing 17.7 Sample ACF Custom Configuration

<?xml version=”1.0”?>

<config>

<filter-chain>

<filter name=’base’

class=’com.ibm.trl.acf.impl.html.basefilter.BaseFilter’

verbose-output=’false’ use-annotation=’false’ />

</filter-chain>

<filter-rule id=’base’>

<target scope=’’>

<!— C14N rules —>

<rule c14n=’true’ all=’true’ />

<!— Base rules —>

<rule attribute=’on’ attribute-criterion=’starts-with’

action=’remove-attribute-value’ />

<rule attribute=’${‘ attribute-criterion=’starts-with’

action=’remove-attribute-value’ />

<rule attribute=’href’ value=’javascript:’

value-criterion=’contains’

action=’remove-attribute-value’ />

<rule attribute=’style’ action=’remove-attribute-value’ />

<rule tag=’script’ action=’remove-tag’ />

<rule tag=’style’ action=’remove-tag’ />

</target>

</filter-rule>

</config>

The best way to learn is to look at the sample configuration file where most of the keywords
are self-explanatory. For example:

<rule attribute=’on’ attribute-criterion=’starts-with’ action=’remove-

attribute-value’ />

This rule means remove attributes that start with the sequence of letters ‘on’. If the input con-
tains any tag attributes, such as onmouseover or onclick, these are removed, while still leaving
the enclosing tag. If you want to strip out the complete tag, use a rule similar to the following:

<rule tag=’script’ action=’remove-tag’ />

702 Chapter 17 Security

This rule removes all the ‘script’ tags.
One important thing to remember with ACF filtering is that it is based on a “blacklist”

approach. This means that everything is allowed and only code matching the specified patterns
are removed. As new vulnerabilities are discovered, the blacklist needs to be updated.

ACF filtering can also be applied programmatically. The XPages server-side JavaScript
context global object provides two methods:

filterHTML(html:String, processor: String) : String

filterHTML(html:String) : String

The methods accept a string of markup that is filtered using the specified engine and return
the processed string as a result. If no engine is specified, acf is used. A typical use case might be
where you want to verify that the result of several input fields do not form a string with malicious
content when concatenated.

Public Access
Public Access is supported in XPages from release 8.5.2. Public Access enables users to view,
create, and edit documents they would not normally have access to. In the application Access
Control List (ACL), the Anonymous user, for example, can have a level of No Access that, by
default, gives the user no access privileges at all. You can then optionally grant the Read public
documents and/or Write public documents privileges to Anonymous, which allows the
Anonymous user to view, create, and edit certain documents in the application that have been
marked for public access.

Any documents that should be accessible to Public Access users must contain a field called
$PublicAccess, which is a text field with a default value of 1. After the user has the ACL priv-
ilege to Read public documents or Write public documents, they can access the docu-
ment accordingly.

As previously mentioned, although XPages are typically associated with forms, it is not
necessary to have the Available to Public Access users attribute set in the Security tab
of the Forms Properties box to enable public access for XPages.

Views also have a public access property and this is enforced in an XPages application.
Typically, users who are not on the view Readers list do not see the contents of a view. If the view
has the Available to Public Access User property set in the access control options for the
view, those documents that are available to Public Access users appear in the view. On an XPage,
if the view defined as the data source for a View Panel component does not make its data available
to Public Access users, the View Panel does not display any data—only the column headers and
pagers.

Public Access 703

Setting Public Access for XPages
To make an XPage available to Public Access users, enable the Available to Public

Access users property in the Security section of the Properties tab for the XPages design ele-
ment. To access the design element properties, ensure the XPages design element is selected, not
the actual XPage open in the design canvas.

If a user is a Public Access user and the XPage is not available for Public Access users, a
NoAccessSignal exception is thrown, which causes the web browser to prompt the user to
authenticate.

For XPages in the Notes Client, if a user does not have access to a particular XPage, a secu-
rity exception is thrown instead of a NoAccessSignal; therefore, the user is not prompted to log
in again. They see a default error page or other appropriate page that the application presents if it
catches and handles the security exception.

Checking for Public Access in XPages
Only the XPage is checked for Public Access. All the other design elements and controls are not
checked. A Public Access user that only has the Write public documents access level privi-
lege does not get access to a Public Access XPage. The user must have at least the Read public
documents privilege.

If a Public Access user without the Write public documents access level privilege tries
to open an XPage that is available to Public Access users to create a new document, the XPages
runtime raises a NoAccessSignal exception that causes the web browser to prompt the user to
authenticate as a user who has the appropriate privileges. If they cannot, permission to open the
XPage is denied. If the same user tries to edit an existing public access document, XPages shows
the data but opens the XPage in read-only mode.

A Public Access user may try to open an XPage, either programmatically via an Open Page
Server Side Simple Action, or via a URL. For example,

http:servexpages.nsf/xPerson.xsp?action=readDocument

The XPages runtime checks for a document ID. If no document ID is specified, even
though the requested mode was readDocument, XPages attempts to create a new document.
Because the Public Access user does not have the privilege to create documents, a
NoAccessSignal is thrown, and the web browser prompts the user to log in as a user with the
appropriate access level privilege.

A Public Access user may try to view a document by entering a URL directly into the web
browser. For example,

http://server/xpages.nsf/myXPage.xsp?documentId=ABCD44ABC2F008C6802577
6E00450E1A&action=readDocument

The request is prevented, and the application raises a
NotesException: Invalid universal id.

704 Chapter 17 Security

SessionAsSigner
At the start of this chapter, it was pointed out that there are two orthogonal security aspects to
XPages. The first controls which users can sign XPages that are allowed run on the Domino
server. The second controls the tasks and operations the authenticated web user is allowed to per-
form, as specified in the application ACL and document security. When an XPage is invoked,
security checking is applied using the invoker name (the web user).

There are some scenarios where you want security checking applied to the creator, the
signer of the XPage. For example, you might want a web user to be able to add comments to a dis-
cussion thread as a response document. However, you might not want them to be able to edit the
original parent document, but you do want the application, after they added their comment, to
increment and update the comment count item in the parent document. Because the XPage runs
in the security context of the web user, this operation would be prevented, even though the signer
of the XPages would have the required application ACL permissions.

From XPages 8.5.2, there are two server-side JavaScript objects to support this scenario
where the application can execute in the security context of the XPage signer, as opposed to the
web user. The two objects, listed in Table 17.5, are sessionAsSigner, which opens a session
using the signer rights, and sessionAsSignerWithFullAccess, which opens a session using
the signer rights, while giving it full access to document data. The signer credential used for the
session is the top level XPage signer.

Table 17.5 sessionAsSigner Server-Side JavaScript

Server Side JavaScript object name Comment

SessionAsSigner Opens a session based on the signer of the
XPages design element. The session is
restricted by the application’s ACL and
the Security tab of the server’s Domino
Directory entry.

sessionAsSignerWithFullAccess Opens a session based on the signer of the
XPages design element and allows full
administrative access to the application’s
data. A Readers field in a document does
not restrict full access. The signer must
have the appropriate right to full access or
the session is not created.

Listing 17.8 shows how to obtain a sessionAsSigner session. When run, the snippet can be
used to show how the effective user is different from the current session using credentials of the
web user and the sessionAsSigner that uses the credentials of the XPage signer.

SessionAsSigner 705

Listing 17.8 Using sessionAsSigner

<xp:inputText id=”inputText1”

value=”#{javascript:session.getEffectiveUserName()}”>

</xp:inputText>

<xp:inputText id=”inputText2”

value=”#{javascript:sessionAsSigner.getEffectiveUserName();}”>

</xp:inputText>

<xp:inputText id=”inputText3”>

<xp:this.value><![CDATA[#{javascript:var sess:NotesSession =

sessionAsSigner;

var result = ““;

var dbname = “TestCase01”

if (sess != null) {

var db:NotesDatabase = sess.getDatabase(null, dbname, false);

if (db != null) {

result += “Using Application (“+db.getFileName()+”) “;

if (sess.isOnServer()) {

result += “running on Server (“+sess.getServerName()+”).”;

} else {

result += “ running locally.”;

}

} else {

result = “database is NULL”;

}

}

else {

return “sessionAsSigner is NULL”;

}

return result;}]]>

</xp:this.value>

</xp:inputText>

After the server-side JavaScript code has a reference to the session that runs as the signer, it
can, based on the application ACL restrictions for the signer, get the database and read, create, or
edit documents and perform whatever tasks are required that the web user who invoked the
XPage is prevented from doing.

Note that for XPages in the Notes client, this functionality is not supported and these
JavaScript objects return the current session for the user logged into the Notes client.

706 Chapter 17 Security

Troubleshooting XPages Java Security Exceptions
The Java security managers that protect XPages applications on both Domino server and the
Notes client cover most of the core Java permissions that are required by many applications.
However, there will undoubtedly be times when there will be a particular Java permission that is
not handled, and a security exception brings a halt to your application.

You can modify the <Domino>/jvm/lib/security/java.policy file for your
Domino server, or <Notes>/java.policy on the Notes client, to allow the permission. What
you probably don’t want to do is provide a blanket opening for the permission like the following
java.policy entry:

grant {

permission java.lang.RuntimePermission “getClassLoader”;

};

XPages, Java classes, and JARs loaded into the XPages runtime from an application NSF
have a special XPages code source assigned to them that signifies where the code was loaded
from (also known as the code base). Table 17.6 lists the XPages code sources and the location of
the Java code they refer to.

Table 17.6 XPages Java Code Sources

XPages Code Source Java Code Location

xspnsf://server:0/<application>.

nsf/script/

Embedded Java in XPages and JavaScript code.

xspnsf://server:0/<application>.

nsf/WEB-INF/classes/

For user defined Java classes stored in an XPages
application NSF

xspnsf://server:0/<application>.

nsf/WEB-INF/lib/

For user defined JAR files stored in an XPages
application NSF

For example, if your application is failing with a Java security exception for the following
Java permission RuntimePermission(getClassLoader) caused by server-side JavaScript
executing embedded Java code, you can add the following grant statement to your
java.policy:

grant codeBase “xspnsf://server:0/<database>.nsf/script/-” {

permission java.lang.RuntimePermission “getClassLoader”;

};

Conclusion 707

If you have trusted the signers of the an XPages application, the preceding grant limits the
Java getClassLoader runtime permission to embedded Java in server-side JavaScript only, and
only for the specified application.

Conclusion
There are many aspects to XPages security, but at its core, it builds on the existing Notes/Domino
security mechanisms and honors and enforces both document security and ACL access—two cor-
nerstones of Notes/Domino security. XPages are run as compiled Java code and may contain
embedded user-defined Java code. The XPages runtime must protect the server and client plat-
forms from any potential malicious code that might be contained within the application NSF. It
leverages the Java security architecture to provide tight control while endeavoring to keep
XPages as flexible and powerful as possible. This chapter should help you, as an application
developer, build XPages applications that provide all the necessary functionality in a secure and
reliable way.

This page intentionally left blank

709

PART VII

Appendixes

Appendix A XSP Programming Reference 711

Appendix B XSP Style Class Reference 719

Appendix C Useful XPages Sites on the Net 727

This page intentionally left blank

711

Over the course of this book, you learned to build a host of XPages samples using the XSP tag
language, JavaScript, and Java. Although all the various examples and exercises covered most of
the mainstream XSP tags and programming classes, you need a complete reference guide at your
finger tips to get the most out of XPages application development. This appendix provides access
to these resources, which can be broken into four main categories:

• XSP tags that comprise markup language

• XSP Java classes that comprise XPages Java API

• Notes/Domino Java API classes

• JavaScript pseudo classes that map to the XSP and Notes/Domino APIs

The reference documentation for these resources is available from various different
sources, and access to them is explained in the following sections.

XSP Tag Reference
The help documentation in Notes/Domino 8.5.2 was enhanced to provide a full description of all
standard XSP component tags. It is probably easiest for you to access this information via
Domino Designer. To do so, invoke the Help > Help Contents main menu, choose the Lotus
Domino Designer User Guide from the content navigator, and open the Designing XPages
applications > Adding controls > Control reference section. Figure A.1 shows sample content.

A P P E N D I X A

XSP Programming
Reference

712 Appendix A XSP Programming Reference

This information has also been published on the web and can be found at this website (and
possibly others): publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.
7designer.domino.ui.doc/wpd_controls_cref.html.

XSP Java Classes
The XSP Java classes are described in Javadoc format and are available for you to download from
IBM Press website:

www.ibmpressbooks.com/title/9780132486316/XPages_JavaDoc_852.zip

After you download the zip file to your local computer or server, unzip the archive to a
folder so that you can access its contents using a web browser. For example, if you choose an
installation folder named XPages-Doc, your top-level directories should look like this:

Directory of <root_installation_dir>\XPages-Doc\8.5.2\

com

resources

allclasses-frame.html

allclasses-noframe.html

constant-values.html

contents.out

deprecated-list.html

help-doc.html

Figure A.1 XSP tag reference guide

XSP Java Classes 713

index-all.html

index.html

overview-frame.html

overview-summary.html

overview-tree.html

package-list

serialized-form.html

stylesheet.css

version

You need to open index.html, which is highlighted in the previous code, in your browser,
because this is the main entry point to the Javadoc library. Figure A.2 shows that page.

o Content frame

Class Navigator

Package Navigator

Figure A.2 Javadoc for XPages Java classes

In keeping with standard Javadoc format, classes are organized by package and class list-
ings in the frames on the left side of the screen, while detailed content is displayed in the main
frame. You can navigate to any particular Java package or class and select it for display. After you
select a class, a summary of its member variables, methods, and other details are provided in the
main window. Figure A.3 shows the DominoViewEntry class, which was used extensively in
various chapters, particularly those in Part III, “Data Binding.”

714 Appendix A XSP Programming Reference

If you want to browse the Javadoc online rather than downloading the archive locally, the
documentation is also available on the Domino Designer wiki at this location: www-10.lotus.
com/ldd/ddwiki.nsf/dx/XPages_Extensibility_API_Documentation.

Notes/Domino Java API Classes
The Notes help pages provide extensive documentation for the native Notes/Domino Java API
classes. From Domino Designer, you need to invoke Help > Help Contents and choose the
Lotus Domino Designer Basic User Guide and Reference from the content navigator in the left
frame. Expand the Java/CORBA Classes > Java Classes A –Z section for full details of all Java
classes. Figure A.4 shows a sample help page:

Figure A.3 Javadoc for DominoViewEntry class

XSP JavaScript Pseudo Classes 715

XSP JavaScript Pseudo Classes
Both the XSP and Notes/Domino Java API classes can be called directly from JavaScript in
XPages, although to do so, you need to always use the fully qualified class name, which can
prove awkward for an application developer. A library of XSP JavaScript pseudo classes has been
provided to make this task easier. For example, the NotesViewEntry JavaScript class provides
script access to the Notes/Domino ViewEntry class, but it removes the need to know and types
out the full package name of the underlying class. It also offers useful features, such as predictive
method name type ahead and so forth.

In certain instances, some XSP Java classes wrap Notes/Domino Java API also (for
example, DominoViewEntry wraps ViewEntry, DominoDocument wraps Document, and so
on). The XSP wrapper classes manage and adapt the native Notes/Domino classes so that they
function properly in an XPages runtime context. These XSP wrapper classes ensure, for example,
that object data contained in the native classes is kept in scope for the duration of the XPages
request processing lifecycle. The wrapper classes sometimes offer supplemental methods to
enhance XPages programmability or remove access to some native methods that cannot always
be guaranteed to work in an XPages context. Script access to the XSP wrapper classes is also
provided via the library of JavaScript pseudo classes. For example, the JavaScript
NotesXspViewEntry class is to the XSP DominoViewEntry Java class what JavaScript

Sample method doc

Notes Classes

Figure A.4 Help pages for Notes/Domino Java API classes

716 Appendix A XSP Programming Reference

NotesViewEntry class is to the Notes ViewEntry class, NotesXspDocument is to
DominoDocument what NotesDocument is to Document, and so on. So, the pattern, as you can
see, is to prefix the JavaScript classes that map to the XSP Java class as NotesXspXxx, while the
NotesXxx JavaScript classes target the regular Notes/Domino Java API classes.

A map of all these JavaScript classes is available on the Domino Designer wiki. Selecting
any object in the map allows you navigate to its associated reference documentation. This works
as a handy quick reference for you: www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_
Object_Map_8.5.2.

Figure A.5 shows the object map.

JavaScript Class Map

Click object to access class documentation

Figure A.5 XPages Domino object map 8.5.2

The class documentation that the object map targets is also available as part of the
Notes/Domino 8.5.2 help pages. Invoke the Help > Help Contents main menu, choose the Lotus
Domino Designer XPages Reference Guide from the content navigator, and open the Domino
section. Figure A.6 shows sample content.

XSP JavaScript Pseudo Classes 717

Figure A.6 XPages Domino JavaScript class reference

This page intentionally left blank

719

For each of the themes provided by XPages in a Notes/Domino 8.5.2 installation, there are sev-
eral XPages-specific CSS files included over and above those that are specific to the theme. Each
of these CSS files is prefixed with xsp to denote its special use by the XPages runtime. Subse-
quently, each CSS style class within these CSS files is also prefixed with xsp to denote its rela-
tionship to XPages. This appendix describes both the XPages CSS files and style classes.

XSP CSS Files
As Table B.1 shows, there are ten different XPages CSS files. You can find these within your
Notes/Domino 8.5.2 installation within the following location:

<Notes/Domino>\data\domino\java\xsp\theme\<Theme>

Note that only a subset of these gets emitted when an XPage is requested. This is calculated
based on the type of requesting browser and required language direction for the request locale.
This is managed by the underlying Theme resource declarations and conditions, as detailed in
Chapter 14, “XPages Theming.” However, the xsp.css file is regarded as the base CSS file and is
always emitted for every XPage. The other CSS files then build upon its contents based on target
browser and locale requirements.

A P P E N D I X B

XSP Style Class
Reference

720 Appendix B XSP Style Class Reference

XSP Style Classes
Table B.2 contains a list of the top-level XPages style classes. All these can be found in the
xsp.css file within any of the Themes. You will also find a subset of overridden versions within
each of the other XPages CSS files that fulfill the needs of their respective target browser and
locale requirements. Table B.2 gives you the style class name, a brief description of what XPages
control uses it, and to what type of HTML tag it gets applied. If you require more information on
any of these style classes, examine the contents of the XPages CSS files, where you see the actual
style rules of each of these style classes.

Table B.1 The XPages Specific CSS Files Found Within Each Theme

CSS Filename Description

xsp.css Base CSS file used by all emitted XPages

xspLTR.css Used by XPages in a left-to-right direction

xspRTL.css Used by XPages in a right-to-left direction

xspIE.css Used by XPages in any version of a Microsoft IE browser

xspIERTL.css Used by XPages in any version of an Microsoft IE browser in a right-to-
left direction

xspIE06.css Used by XPages in a Microsoft IE version 6 browser

xspIE78.css Used by XPages in a Microsoft IE version 7 or 8 browser

xspFF.css Used by XPages in any version of a Firefox browser

xspSF.css Used by XPages in any version of a Safari browser

xspRCP.css Used by XPages in the Notes client

XSP Style Classes 721

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspView Applied to the emitted body of an
XPage

<BODY>

xspForm Applied to the emitted form of an
XPage

<FORM>

xspTextComputedField Applied to a Computed Field

xspTextLabel Applied to a label

xspTextViewTitle Applied to a view panel title

xspTextViewColumn Applied to a view panel column text
value

xspTextViewColumnComputed Applied to a view panel column
computed value

xspTextViewColumnHeader Applied to a view panel column
header

xspInputFieldDateTimePicker Applied to a Date Time Picker icon <INPUT>

xspInputFieldDateTimePickerIcon Applied to a Date Time Picker icon

xspInputFieldDatePickerIcon Applied to a Date Picker icon

xspInputFieldTimePickerIcon Applied to a Time Picker icon

xspInputFieldEditBox Applied to an edit box <INPUT>

xspInputFieldSecret Applied to an edit box with pass-
word set

<INPUT>

xspInputFieldTextArea Applied to a multiline edit box <TEXTAREA>

xspInputFieldRichText Applied to a rich text <DIV>

xspInputFieldFileUpload Applied to a file upload <INPUT>

xspLink Applied to a link <A>

xspLinkFileDownload Applied to a file download column
link

<A>

xspLinkViewColumn Applied to a view panel column link <A>

xspLinkViewColumnImage Applied to a view panel column link
image

722 Appendix B XSP Style Class Reference

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspButtonCommand Applied to a button <BUTTON>

xspButtonSubmit Applied to a button with type set
to Submit

<BUTTON>

xspButtonCancel Applied to a button with type set
to Cancel

<BUTTON>

xspCheckBox Applied to a checkbox <INPUT>

xspCheckBoxViewColumn Applied to a view panel column
checkbox

<INPUT>

xspCheckBoxViewColumnHeader Applied to a view panel header
checkbox

<INPUT>

xspRadioButton Applied to a radio button <INPUT>

xspListBox Applied to a listbox <SELECT>

xspComboBox Applied to a combobox <SELECT>

xspImage Applied to an image

xspImageViewColumn Applied to a view panel column
image

xspImageViewColumnHeader Applied to a view panel column
header image

xspImageViewColumnHeaderSort Applied to a view panel column
header sort image

xspMessage Applied to an error message

xspMessages Applied to error messages

xspSection Applied to a section <DIV>

xspSection-header Applied to a section header <DIV>

xspSection-header-underline Applied to a section header,
underline type

<DIV>

xspSection-wide-header Applied to a section header, wide
type

<DIV>

xspSection-box-header Applied to a section header, box
type

<DIV>

XSP Style Classes 723

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspSection-tab-header Applied to a section header, tab
type

<DIV>

xspSection-tab-header-layout Applied to a section header, tab
layout container

<DIV>

xspSection-tab-header-layout-

underline

Applied to a section header, tab
layout underline

<DIV>

xspSection-body Applied to a section body <DIV>

xspTabbedPanelOuter Applied to a tabbed panel outer
container

<DIV>

xspTabbedPanelContainer Applied to a tabbed panel
container

<DIV>

xspTabbedPanelTabs Applied to a tabbed panel tabs
container

xspSelectedTab Applied to a tabbed panel selected
tab

xspTabbedPanelContentSeparator Applied to a tabbed panel content
separator

<DIV>

xspTabTabbedPanel Applied to a tabbed panel tab
content container

<DIV>

xspUnselectedTab Applied to a tabbed panel
unselected tab

xspStartTab Applied to a tabbed panel leading
tab

xspMiddleTab Applied to all tabbed panel middle
tabs

xspEndTab Applied to a tabbed panel trailing
tab

xspDataTableFileDownload Applied to a file download <TABLE>

xspDataTableFileDownloadType Applied to a file download Type
column header

<TH>

xspDataTableFileDownloadSize Applied to a file download Size
column header

<TH>

724 Appendix B XSP Style Class Reference

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspDataTableFileDownloadName Applied to a file download Name
column header

<TH>

xspDataTableFileDownloadCreated Applied to a file download Cre-
ated column header

<TH>

xspDataTableFileDownload

Modified

Applied to a file download Modi-
fied column header

<TH>

xspDataTableFileDownloadDelete Applied to a file download Delete
column header

<TH>

xspDataTableFileDownloadCaption Applied to a file download caption <CAPTION>

xspDataTableCaption Applied to a data table caption <CAPTION>

xspDataTable Applied to a data table <TABLE>

xspDataTableRowUnread Applied to a data table unread row <TR>

xspDataTableRowRead Applied to a data table read row <TR>

xspColumnRead Applied to a view panel read
row cell

<TD>

xspColumnUnread Applied to a view panel unread
row cell

<TD>

xspDataTableViewPanel Applied to a view panel <TABLE>

xspDataTableViewPanelHeader Applied to a view panel header
region

<TH>

xspDataTableViewPanelFooter Applied to a view panel footer
region

<TD>

xspDataTableViewPanelBody Applied to a view panel body
region

<TABLE>

xspDataTableViewPanelHeaderStart Applied to a view panel leading
column header

<TH>

xspDataTableViewPanelHeaderMiddle Applied to all view panel middle
column headers

<TH>

xspDataTableViewPanelHeaderEnd Applied to a view panel trailing
column header

<TH>

XSP Style Classes 725

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspDataTableViewPanelFooterStart Applied to a view panel leading
column footer

<TD>

xspDataTableViewPanelFooterMiddle Applied to all view panel middle
column footers

<TD>

xspDataTableViewPanelFooterEnd Applied to a view panel trailing
column footer

<TD>

xspDataTableViewPanelCaption Applied to a view panel caption <CAPTION>

xspPanel Applied to a panel <DIV>

xspPanelViewColumnHeader Applied to a view panel column
header

xspColumnViewStart Applied to a view panel leading
column

<TD>

xspColumnViewMiddle Applied to all view panel middle
columns

<TD>

xspColumnViewEnd Applied to a view panel trailing
column

<TD>

xspLeft Utility style class used to left float
a block container

<DIV>

xspRight Utility style class used to right
float a block container

<DIV>

xspPagerContainer Applied to a pager container <DIV>

xspPager Applied to a pager <DIV>

xspPagerLeft Applied to a pager to left float
within a view panel

<DIV>

xspPagerRight Applied to a pager to right float
within a view panel

<DIV>

xspPagerNav Applied to a pager link <A>

xspStatus Applied to a pager page number
status item

xspSeparator Applied to a pager separator item

xspGroup Applied to a pager page number
links group

726 Appendix B XSP Style Class Reference

Table B.2 Style Classes Found Within Each of the XPages-Specific CSS Files

Style Class Description HTML Tag

xspFirst Applied to a pager first page link <A>

xspPrevious Applied to a pager previous page
link

 <A>

xspNext Applied to a pager next page link <A>

xspLast Applied to a pager last page link <A>

xspCurrentItem Applied to a pager current page
number item

727

There are some great XPages resources out there on the web, and the list is growing as XPages
adoption moves onwards and upwards. Table C.1 provides a snapshot of some of the authors’
favorites—sorry if we missed your site!

A P P E N D I X C

Useful XPages Sites
on the Net

Table C.1 Useful XPages Sites

Name URL

IQJam iqjam.net/iqjam/iqjam.nsf/home.xsp?iqspace=Domino+Development%7EX
Pages

dominoGuru.com www.dominoguru.com/

John Mackey’s
Blog

www.jmackey.net/

Mastering XPages
Development

www.ibmpressbooks.com/bookstore/product.asp?isbn=9780132486316

Matt White’s Blog mattwhite.me

XPages101 Video
Training

http://xpages101.net

728 Appendix C Useful XPages Sites on the Net

Table C.1 Useful XPages Sites

Name URL

Notes/Domino 8.5
Forum

www-10.lotus.com/ldd/nd85forum.nsf/Dateallthreadedweb?OpenView

Notes/Domino
Application
Development wiki

www-10.lotus.com/ldd/ddwiki.nsf

NotesIn9
Screencast

notesin9.com

OpenNTF www.openntf.org

OpenNTF Blog www.openntf.org/blogs/openntf.nsf/FullArchive?openview

Planet Lotus planetlotus.org/search.php?search=xpages&sort=1

Taking Notes
Podcast

takingnotespodcast.com

XPages Blog xpagesblog.com

XPages Info Site xpages.info

XPages wiki www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=
Developing%20XPages%20Web%20applications

XPages.TV xpages.tv

XPages101 Video
Training

xpages101.net

YouAtNotes
XPages wiki

xpageswiki.com

729

Index

Symbols
#{ character sequence, 57

A
Access Control command

(Application menu), 19
access control lists (ACLs), 19

access levels, 675-676
implementing, 689-690

access control. See security, 675
Access Key Validator, 469
access levels (ACL), 675-676
ACF (Active Content Filtering),

699-702
acl property, 680
ACLs (access control lists), 19

access levels, 675-676
implementing, 689-690

action group simple action,
184-186

action property (Domino
document data source), 218

action property (xp:eventHandler
tag), 166

actions
Cancel, 38
client-side actions, refreshing

with, 162-163

Delete Selected Documents,
40

document actions, 235-236
executing multiple, 184-186
server-side actions, refreshing

with, 160-161
simple actions, 118-125, 167

action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175
open page, 175-176
publish component

property, 176-177
publish view column,

177-178
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

Submit, 37

Active Content Filtering (ACF),
699-702

Add Bookmarks dialog, 501
Add Simple Action dialog, 39-41
addon link event, 410
agents, 405-412
Aggregate Container pattern,

357-358
aggregating XPages Discussion

component and Notes Google
widget, 533-536

AJAX, partial refresh. See Partial
Refresh option, 369-376

alert() method, 211, 509
allDocuments XPage, 418-419
allDocumentsView control, 418
allowDeletedDocs property

(Domino document data
source), 218, 234

Anonymous users, 690
APIs (application programming

interfaces), JSF API, 137-138
Append Column command

(View menu), 285
Application command (New

menu), 15
application development

and performance, 654-655
creating applications,

5, 24-26

730 Index

CRUD operations,
supporting, 36-42

explained, 23-24
forms, 26-31
views, 26-31

creating, 31-36
XSP markup, 33-34

application frameworks, 367-368
application layer (security),

675-677
Application Level themes,

569-570
Application menu commands,

Access Control, 19
application performance

and application development,
654-655

reducing CPU utilization, 658
GET- versus POST-based

requests, 658-659
immediate property,

661-663
partial execution mode,

665-668
partial refresh, 663-664
readonly property,

660-661
reducing memory utilization,

668-669
dataCache property,

670-672
HTTPJVMMaxHeapSize

parameter, 669
HTTPJVMMaxHeapSize

Set parameter, 669
xsp.persistence.*

properties, 669-670
request processing lifecycle,

655-656
GET-based HTTP

requests, 656-659
POST-based HTTP

requests, 656-659
Application Properties editor,

configuring themes with,
580-583

applications
application frameworks,

367-368
application layer of security,

675-677
composite applications, 528

aggregating XPages
Discussion component
and Notes Google
widget, 533-536

creating components,
529-531

listening components,
531-532

online video about, 540
receiving and publishing

events, 536-539
creating, 687-688
JSF-based applications. See

JSF (JavaServer Faces)
Notes Discussion

banner area, 507-508
bookmarks, 501-503
client versus web,

508-511
disableModified flag,

513-516
enableModified flag,

513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

applicationScope variable, 138,
193-196

Apply Request View phase (JSF
request processing lifecycle),
134

architecture of themes, 569
inheritance levels, 585-587
Platform Level versus

Application Level themes,
569-570

theme configurations
supported by XPages,
570-576

Array class, 201

authentication, 675
AUTHOR access level, 676
Authors field, 685

B
Background tab (Style properties

panel), 545-546
backing beans, 483-486
banner area (Discussion

application), 507-508
base.xsp-config file, creating,

446-449
basic authentication, 675
beans. See backing beans,

483-486
behavioral interfaces, 143-145
bidirectional resources, 605-606
binding data, 306
binding expressions,

136, 152-153
body tag, 49
Bookmark command (Create

menu), 501
bookmarks, 501-503
Boolean Check Box, 469
Boolean class, 201
Boolean Value, 469
browsers, previewing XPage

design elements in, 18-21
bundle resource element,

591-592
business logic

JavaScript. See JavaScript
overview, 157-160
simple actions, 167

action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175

Index 731

open page, 175-176
publish component

property, 176-177
publish view column,

177-178
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

xp:eventHandler tag
example to display current

date/time, 160
properties, 164-167
refreshing with client-side

JavaScript, 164
refreshing with client-side

simple action, 162-163
refreshing with server-side

JavaScript, 161
refreshing with server-side

simple action, 160-161
buttonNewTopic control, 662
buttons

Cancel, 38
Submit, 37
xp:button tag, 71-72
XSP markup, 38

buttonSave button, 666

C
caching view data, 265-269
CAE (Composite Application

Editor), 533-536
category tag, 468
Cancel buttons, 38
captionStyleClass property, 566
categorized columns, 293-300
category tags, 443
categoryFilter property

(xp:dominoView tag), 246-249
ccTagCloud control, 561,

660-661
CDATA (character data), 55
Change Document Mode

action, 236

change document mode simple
action, 168-169

changing
document mode, 168-169
pass-through text, 191

character data (CDATA), 55
Character Set Type Picker, 469
checkbox groups, 81
checkboxes, 79
checking for Public Access, 703
CKEditor, 238-242
classes

classes available in XPages, 7
Notes/Domino Java API

classes, online resources,
714

online documentation, 492
style classes

advantages of, 553-554
computed values, 561-562
defined, 552
extended styleClass

properties, 563-566
stylingWithClasses

XPage, 554-558
use by browser or client,

559-561
XSP Java classes, online

resources, 712-714
XSP JavaScript pseudo

classes, online resources,
715-716

classloader bridge (NSF), 695
Clean dialog, 624
Clear Private Data button, 525
client fix packs, 11
client IDs, 206-208
client scripts, executing, 173
Client Side Event Editor, 469
Client Side Script Editor, 470
client-side actions, refreshing

with, 162-163
client-side JavaScript

adding client and server logic
to same event, 209-210

control IDs versus client IDs,
206-208

including server data in client
JavaScript, 208-209

localization, 639
XSP client JavaScript library,

210-211
client-side script libraries,

localization, 641-643
client-side scripting, 125-127
clients

client fix packs, installing, 11
client user experience, 8
configuring, 11-12
XPiNC (XPages in the Notes

client), feature scope, 7
ClientSideValidator, 146
columnClasses property, 566
columns (View Panel)

categorized columns,
293-300

custom pager, 321-323
decorating with images,

284-287
displaying column data,

277-279
displaying document

hierarchy, 281
emulating Notes client

rendering, 296-300
publishing, 177-178
reordering, 279-280
sorting, 270, 287, 290-292
View Title components,

288-292
Combo Box, 470
combo boxes, 76-79
command controls

xp:button tag, 71-72
xp:eventHandler tag, 70-71
xp:link tag, 72-73

complex properties (XSP), 54
complex types, 439
complex types, specifying,

453-463
complex values (XSP), 54-55
component mode, setting,

182-183
component tag, 433

732 Index

component tree, scripting,
187-192

component-class tag, 433
component-extension tag, 433
component-family tag, 433
component-type tag, 433
ComponentBindingObject, 462
components. See also specific

components
creating for composite

applications, 529-531
extensions. See UI

component extensions,
creating

JSF standard user-interface
components, 148-151

JSF user interface component
model, 136, 143

listening components,
531-532

Composite Application Editor
(CAE), 533-536

composite applications, 528
aggregating XPages

Discussion component and
Notes Google widget,
533-536

creating components,
529-531

listening components,
531-532

compositeData object, 346-352
compound documents, 49
computed expressions,

localization, 636-639
computed fields, 83-84, 308
computed properties (XSP),

55-59
computed values

control property values, 616
style property, 552
styleClass property, 561-562

computeDocument property
(Domino document data
source), 218

computeWithForm property, 685

computeWithForm property
(Domino document data
source), 218, 225

concurrencyMode property
(Domino document data
source), 218, 227

concurrent document updates,
managing, 227

configuration, variable
resolvers, 140

configuring
clients, 11-12
event parameters, 384-386
localization options, 624-626
Public Access, 703
themes

theme configurations
supported by XPages,
570-576

with Application
Properties editor,
580-583

confirm simple action, 169-170
confirm() method, 211, 509
confirming actions, 169-170
ConstraintValidator, 147
containers

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

tags. See individual tag name
content modifiers (view)

expandLevel property,
257-259

startKeys property, 256-257
Content Type Picker, 470
content-type element, 589
context global object, 196
context variable, 155
control declaration snippets, 190
control definitions, 613-614
control element

control definitions, 613-614
control properties. See

controls, properties
control IDs, 206-208, 633-634

Control Picker, 470
controls. See also specific

controls
adding to XPages, 21-22
Core Controls, setting

properties on, 616, 619
custom control properties,

635
Custom Controls. See Custom

Controls, 327
data binding, 59-60
explained, 64-65
properties

computing control
property values, 616

control property types,
619-621

explained, 614-616
setting properties on

XPages Core Controls,
616, 619

xp:button tag, 71-72
xp:checkBox tag, 79
xp:checkBoxGroup tag, 81
xp:comboBox tag, 76-79
xp:dataTable tag, 94-95
xp:dataTimeHelper tag, 68-69
xp:eventHandler tag, 70-71
xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:image tag, 84
xp:include tag, 99
xp:inputRichText tag, 67
xp:inputText tag, 65-66
xp:label tag, 83
xp:link tag, 72-73
xp:listBox tag, 74-76
xp:panel tag, 87-90
xp:radio tag, 80
xp:radioGroup tag, 81-82
xp:repeat tag, 95-98
xp:section tag, 100
xp:tabbedPanel tag, 99-100
xp:table tag, 90-91
xp:text tag, 83-84
xp:view tag, 91-93

Controls Palette, 17
Converter interface, 145

Index 733

converters, 107-109, 145-146
Cookie variable, 138
Core Controls, setting properties

on, 616
CPU utilization, reducing, 658

GET- versus POST-based
requests, 658-659

immediate property, 661-663
partial execution mode,

665-668
partial refresh, 663-664
readonly property, 660-661

Create Control dialog, 433-434
Create menu commands,

Bookmark, 501
Create New Custom Control

dialog, 329
Create Response Document

action, 236
Create Response Document

dialog, 221
create response document simple

action, 170-171
createViewNavFromCategory()

method, 248
createViewNavFromDescendants

() method, 252
CRUD operations, supporting,

36-42
CSS (Cascading Style Sheets)

files, table of, 719-720
inline styling, 545
online resources, 545
styles

classes. See styles (CSS),
style classes

computed values, 552
extended style properties,

563-566
setting manually, 550-551
setting with Style

properties panel,
545-547

Styling XPage, 548-550
use by browser or client,

551-552
current date/time

displaying, 160

refreshing
with client-side

JavaScript, 164
with client-side simple

action, 162-163
with server-side

JavaScript, 161
with server-side simple

action, 160-161
Custom Controls, 5, 635

compositeData object,
346-352

creating, 329-337
design patterns

Aggregate Container
pattern, 357-358

Layout Container pattern,
358-365

explained, 327-329
Property Definitions

explained, 337-340
Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

replyButton control, 352
multiple instances and

property groups,
355-357

onClick event, 353-355
custom Dojo widgets,

integrating, 393-398
custom pager, 321-323
custom responses, generating

with XPages, 399-401

D
data binding, 59-60, 306
data contexts, 63
Data Source Picker, 470
data source tags (XSP)

xp:dataContext, 63
xp:dominoDocument, 61-62
xp:dominoView, 62-63

data sources
connecting Data Tables to,

305-307

Domino document data
sources, 216

basic data source
markup, 217

events, 231-233
multiple data sources,

228-230
properties, 217, 233-234

filters, 246
categoryFilter property,

246-249
ignoreRequestParams

property, 252
keys property, 253-256
keysExactMatch property,

255-256
parentId property,

251-252
search property, 249-251
searchMaxDocs

property, 251
saving, 179-180

data table control, 94-95
Data Tables, 305

building embedded profile
view with, 311-315

Computed Fields, 308
connecting to data source,

305-307
Pager property panel, 308
sample XSP markup, 309-311

Data tool, 17
database global object, 196
database variable, 155
databaseName property (Domino

document data source),
218, 234

databaseName property
(xp:dominoView tag), 245-246

dataCache property
(xp:dominoView tag), 265-269,
670-672

dataTableStyle property, 566
dataTableStyleClass property,

566
Date class, 201

734 Index

date/time, displaying, 160
with client-side JavaScript,

164
with client-side simple action,

162-163
with server-side JavaScript,

161
with server-side simple

action, 160-161
date/time picker control, 68-69
DateTimeConverter, 146
DateTimeRangeValidator, 147
debugging XPages in Notes

client, 525-528
decode() method, 482
default variables

JSF (JavaServer Faces),
138-139

XPages, 154-156
default-prefix tag, 433
Delete Document action, 236
delete document simple

action, 171
Delete Selected Documents

action, 40
delete selected documents simple

action, 172
Delete Selected Documents

action, 236
deleting documents, 171-172
DEPOSITOR access level, 676
deprecated locale codes, 648-650
description tag, 433, 443
design element layer (security),

677
form access control options,

678-679
view access control options,

679-680
XPage access control,

680-684
Design menu commands, 18-20
design patterns

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

Repeat control design pattern,
317-318

DESIGNER access level, 675
designer-extension tag, 443
designer-extension tags, 468-469
development

and performance, 654-655
of XPages, xvii, 4-7

dialogs. See specific dialogs
directories

Dojo directory, 599-600
HTML directory, 597-598
XPages Global directory,

598-599
DirectoryUser class, 201-203
dirty documents, saving in Notes

client, 511-513
disableClientSideValidation

property, 117
disableModified flag, 513-516
Discussion application. See

Notes Discussion application,
498

display controls
xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:image tag, 84
xp:label tag, 83
xp:text tag, 83-84

Display XPage instead property,
283

display-name tag, 433, 443
@DocDescendants function, 278
document collection for

folders/views, retrieving,
262-264

document hierarchy, displaying,
281

document layer (security),
684-686

document mode, changing,
168-169

document signing, 686
Document Type Definitions

(DTDs), 48
documentation, XPages

classes, 492

documentId property (Domino
document data source), 218

documents, 215
actions, 235-236
controlling URL parameter

usage, 220
creating, 219-220
data sources, 216

basic data source markup,
217

events, 231-233
multiple data sources,

228-230
properties, 217, 233-234

deleting, 171-172
document hierarchy,

displaying, 281
document mode, changing,

168-169
editing, 219-220
executing form logic,

224-227
in-memory documents,

405-412
JavaScript, 236-238
linking View Panel to,

281-284
managing concurrent

document updates, 227
profile documents, 197-198,

405-412
response documents,

170-171, 220-224
rich text, 238-242
saving, 180-182

Dojo directory, 599-600
Dojo integration, 386-387

dojoAttributes property, 389
dojoModule resource,

388-389
dojoParseOnLoad property,

387-388
dojoTheme property, 387-388
dojoType property, 389
extending Dojo class path,

390-391

Index 735

integrating Dojo widgets,
390-391

custom Dojo widgets,
393-398

generating custom
responses with XPages,
399-401

standard Dojo widgets,
391-393

Dojo modules, 105
Dojo Toolkit, 648
dojo.require() statement, 388
dojoAttributes property, 389
dojoModule resource, 388-389
dojoModule resource element,

592
dojoParseOnLoad property,

387-388
dojoTheme property,

387-388, 600
dojoType property, 389
DOM library, 205-206
Domino, 5

documents. See documents
Domino links versus Notes

links, 520-524
history and development,

xiii-xvi
views. See views

Domino Designer, 5
adding Package Explorer to,

424-426
applications

creating, 15, 24-26
CRUD operations,

supporting, 36-42
forms, 26-31

client configuration, 11-12
client fix packs, installing, 11
Controls Palette, 17
Data tool, 17
documents, 61-62
downloading, 9-10
installing, 10-11
library, 197-198
Outline tool, 17
perspective, 14-15

property sheets, 17
views, 26-31, 62-63

creating, 31-36
XSP markup, 33-34

Welcome screen, 13-14
XPage design elements

adding controls to, 21-22
creating, 16-18
previewing, 18-21
tool, 16

XPages Editor, 16
DoubleRangeValidatorEx2, 147
DoubleValue, 470
downloading

Domino Designer, 9-10
files, xp:fileDownload tag,

86-87
DTDs (Document Type

Definitions), 48
_dump() method, 526

E
ECLs (Execution Control Lists),

697-699
edit box control, 65-66
editing documents, 219-220
editing controls, 64-65

xp:dataTimeHelper tag, 68-69
xp:inputRichText tag, 67
xp:inputText tag, 65-66

EDITOR access level, 676
editor tag, 469-472
EL (Expression Language), 136
elements. See specific elements
ELResolver class, 141
embedded profile view, building

with Data Tables, 311-315
embedding Java in JavaScript,

190
empty theme, 583-585
enableModified flag, 513-516
encodeBegin() method, 482
encodeEnd() method, 482
encryption, 686
endsWidth() method, 211

error() method, 211
escape property, 57
event handlers, 70-71, 164-167
event property (xp:eventHandler

tag), 164
eventParametersTable

control, 386
events

adding client and server logic
to same event, 209-210

document data source events,
231-233

event parameters, 384-386
receiving and publishing,

536-539
exceptions, NoAccessSignal, 703
execId property

(xp:eventHandler tag),
142, 164

execMode property
(xp:eventHandler tag),
142, 164

execute script simple action,
173-174

executing client scripts, 173
Execution Control Lists (ECLs),

697-699
expandLevel property

(xp:dominoView tag), 257-259
exporting resource bundle files,

628-629
Expression Language (EL), 136
expressions

computed expressions,
localization, 636-639

formula language
expressions, 404

ExpressionValidator, 147
extended style properties,

563-566
extending Dojo class path,

390-391
extensibility. See UI component

extensions, creating
Extensible Hypertext Markup

Language (XHTML), 48-50

736 Index

F
faces-config tag, 432
faces-config-extension tag, 432
faces-config.xml file, 139, 413
FacesAjaxComponent, 143
FacesAutoForm, 143
FacesComponent, 143
facesContext variable, 138
FacesDataIterator, 144
FacesDataProvider, 144
FacesDojoComponent, 145
FacesDojoComponentDelegate,

145
FacesInputComponent, 144
FacesInputFiltering, 144
FacesNestedDataTable, 144
FacesOutputFiltering, 144
FacesPageIncluder, 144
FacesPageProvider, 144
FacesParentReliantComponent,

144
FacesPropertyProvider, 145
FacesRefreshableComponent,

145
FacesRequiredValidator, 147
FacesRowIndex, 145
FacesSaveBehavior, 145
FacesThemeHandler, 145
facets, 92
Favorite Bookmarks command

(Open menu), 502
field encryption, 686
fields

Computed Fields, adding,
308

modifying, 174-175
file download control, 86-87
File menu commands,

Replication, 504-506
file upload control, 84-85
files. See also specific files

resource bundle files
adding, 637-638
adding strings, 632
changing strings, 631-632
exporting, 628-629
importing, 630

localization within, 623
removing strings, 632-633

XSP CSS (Cascading Style
Sheets) files

style class reference,
720-726

table of, 719-720
filters

view content modifiers
expandLevel property,

257-259
startKeys property,

256-257
view data source filters

categoryFilter property,
246-249

ignoreRequestParams
property, 252

keys property, 253-256
keysExactMatch property,

255-256
parentId property,

251-252
search property, 249-251
searchMaxDocs property,

251
findForm() method, 211
findParentByTag() method, 211
fix packs, 11
folders

compared to views, 261
Java source code folders,

426-427
retrieving document

collection for, 262-264
Font tab (Style properties

panel), 545
form logic, executing, 224-227
formName property (Domino

document data source), 218
forms, 26-31

access control options,
678-679

executing form logic,
224-227

formula language, 404-405
formula language expressions,

404

functions. See specific functions
@Functions, 402-405
@Functions library, 205

G
generating custom responses

with XPages, 399-401
Generic File Picker, 470
generic head resources, 106
GET-based HTTP requests,

656-659
getAttributes() method, 439
getBrowser() method, 601
getBrowserVersion() method,

601
getBrowserVersionNumber()

method, 602
getClientId() method, 192, 197
getColumnIndentLevel()

method, 298
getColumnValue() method, 298,

306, 311-312
getColumnValues() method, 278
getComponent() method, 196,

353-355
getComponentAsString()

method, 189
getComponentsAsString()

method, 189
getDatabasePath() function, 395
getDocument() method, 236
getElementById() method, 211
getFacetsAndChildren() method,

192
getFamily() method, 428
getForm() method, 196
getLabelFor() method, 196
getMilliseconds() method, 309
getParameterDocID() method,

405
getSubmittedValue() function,

539
getUserAgent() method, 602
getVersion() method, 602
getVersionNumber() method,

602
getView() method, 196

Index 737

getViewAsString() method, 189
getViewEntryData agent,

302-303
global objects (JavaScript), 193

@Functions library, 205
context global object, 196
database global object, 196
DOM library, 205-206
Domino library, 197-198
global object maps, 193-196
runtime script library,

198-200
session global object, 196
standard library, 200-201
view global object, 196-197
XSP script library, 201-204

group tag, 443
group-type tag, 443
group-type-ref tag, 443

H
handlers property

(xp:eventHandler tag), 165
hasEntry() method, 602
head tag, 49
Header variable, 138
headerValues variable, 138
Hello World XPage, 187
help

Notes/Domino Java API
classes, 714

XPages websites, 727-728
XSP Java classes, 712-714
XSP JavaScript pseudo

classes, 715-716
XSP tag reference, 711-712

hiding sections, paragraphs, and
layout regions, 685-686

history
of Eclipse, 12-13
of XPages, xvii, 4-5

href element, 589
HTML (Hypertext Markup

Language), 47-48
directory, 597-598
tags (XSP), 127-128

html tag, 49

HTML htmlFilter property,
699-700

htmlFilterIn property, 699
HTTP

GET-based HTTP requests,
656-659

POST-based HTTP requests,
656-659

sample HTTP servlet,
132-133

HTTPJVMMaxHeapSize
parameter, 669

HTTPJVMMaxHeapSizeSet
parameter, 669

Hypertext Markup Language
(HTML), 47-48

I
I18n class, 199
IBM developerWorks, 492
IDs

control IDs, 206-208,
633-634

themeID, 611-613
ignoreRequestParams property

(Domino document data
source), 218-220

ignoreRequestParams property
(xp:dominoView tag), 252

Image File Picker, 470
images

adding to columns, 284-287
xp:image tag, 84

immediate property, 166,
661-663, 667-668

implementing ACLs (access
control lists), access levels,
689-690

importing resource bundle files,
630

in-memory documents, 405-412
in-palette tag, 468
include page control, 99
Indent Responses control, 281
infoboxes, 27
inheritance, themes, 569

inheritance levels, 585-587

Platform Level versus
Application Level themes,
569-570

theme configurations
supported by XPages,
570-576

inheriting xsp-config properties,
441-446

initParam variable, 138
inline styling, 545
Insert Column command (View

menu), 284
installing

client fix packs, 11
Domino Designer, 10-11

Integer Value, 470
interfaces. See specific interfaces
international enablement, built-in

functionality, 643-644
internationalization, 621

international enablement,
built-in functionality,
643-644

localization
computed expressions,

636-639
control IDs, 633-634
custom control properties,

635
deprecated locale codes,

648-650
explained, 622
JavaScript, 636-639
locales in XPages,

644-647
merging XPage changes,

631-633
need for, 621
script libraries, 640-643
setting localization

options, 624-626
testing localized

applications, 627-628
within resource bundle

files, 623
working with translators,

628-630

738 Index

Invoke Application phase (JSF
request processing lifecycle),
135

isCategory() method, 298
isChrome() method, 602
isDirectionLTR() method, 605
isDirectionRTL() method, 605
isExpanded() method, 298
isFireFox() method, 602
isIE() method, 602
isOpera() method, 603
isRunningContext() method, 604
isSafari() method, 603

J
jAgent agent, 408-409
Java

embedding in JavaScript, 190
getViewEntryData agent,

302-303
Notes/Domino Java API

classes, online resources,
714

security exceptions,
troubleshooting, 706-707

source code folders, 426-427
XSP Java classes, online

resources, 712-714
Java Build Path editor, 414
Java Community Process

(JCP), 4
Java Specifications Request

(JSR), 4
JavaScript, 186

adding client and server logic
to same event, 209-210

control IDs versus client IDs,
206-208

documents, 236-238
embedding Java in, 190
global objects, 193

@Functions library, 205
context global object, 196
database global object,

196
DOM library, 205-206
Domino library, 197-198

global object maps,
193-196

runtime script library,
198-200

session global object, 196
standard library, 200-201
view global object,

196-197
XSP script library,

201-204
including server data in client

JavaScript, 208-209
localization, 636-639
refreshing with client-side

JavaScript, 164
refreshing with server-side

JavaScript, 161
scripting component tree,

187-192
XPages object model,

186-187
XSP client JavaScript library,

210-211
XSP JavaScript pseudo

classes, online resources,
715-716

JavaServer Faces. See JSF
JavaServer Pages. See JSP
JCP (Java Community

Process), 4
JSF (JavaServer Faces), 3-4,

130-131
APIs, 137-138
application integration, 137
benefits, 129
binding expressions, 136,

152-153
integration with JSP

(JavaServer Pages), 136
JSF default variables,

138-139
per-request state model, 137
presentation tier, 133,

141-142
rendering model, 137
request processing lifecycle,

134-135, 142
explained, 655-656

GET-based HTTP
requests, 656-659

POST-based HTTP
requests, 656-659

resources, 131
sample HTTP servlet,

132-133
sample JSP with JSF

tags, 133
standard user-interface

components, 148-151
user interface component

model, 136, 143
variable resolvers, 139-141
XPages

behavioral interfaces,
143-145

converters, 145-146
default variables, 154-156
validators, 146-148

JSP (JavaServer Pages), 5
integration with JSF

(JavaServer Faces), 136
sample JSP with JSF tags,

133
JSR (Java Specifications

Request), 4

K-L
keys property (xp:dominoView

tag), 253-256
keysExactMatch property

(xp:dominoView tag), 255-256
keyView, 270

labels, 83
Language Direction Picker, 470
Language Picker, 470
LargeSmallStepImpl.java,

458-461
LargeSmallStepInterface.java,

455
lastSubmit property, 211
launching

Domino Designer
perspective, 14

Notes Discussion, 498-500

Index 739

Layout Container pattern,
358-365

layout regions, hiding, 685-686
LCD (Lotus Component

Designer), xiv, 4
LengthValidatorEx, 147
libraries

@Functions library, 205
DOM library, 205-206
Domino, 197-198
runtime script library,

198-200
script libraries

creating, 101-103
localization, 640-643
xp:script tag, 102-103

standard library, 200-201
ViewUtils script library,

188-189
XPages Extension Library,

492
XSP client JavaScript library,

210-211
XSP script library, 201-204

linking View Panel to documents,
281-284

linkResource resource element,
594

links
Notes links versus Domino

links, 520-524
xp:link tag, 72-73

linkSubject link control, 659
listboxes, 74-76
loaded property, 683
loaded property (Domino

document data source),
218, 234

loaded property (xp:dominoView
tag), 263

loaded property
(xp:eventHandler tag), 165

Locale class, 199-200
locales

deprecated locale codes,
648-650

in XPages, 644-647

localization
computed expressions,

636-639
control IDs, 633-634
custom control properties,

635
deprecated locale codes,

648-650
explained, 622
JavaScript, 636-639
locales in XPages, 644-647
merging XPage changes,

631-633
need for, 621
resource bundle files,

importing/exporting,
628-630

script libraries
client-side script libraries,

641-643
server-side script libraries,

640-641
setting localization options,

624-626
testing localized applications,

627-628
within resource bundle

files, 623
working with translators

exporting resource bundle
files, 628-629

importing resource bundle
files, 630

log() method, 211
LongRangeValidatorEx2, 147
Lotus Component Designer

(LCD), xiv, 4
Lotus Expeditor (XPD), 496
Lotus Notes Template

Development ID file, 689
Lotus Notes. See Notes

M
managed beans, 412-419
managed-bean-class tag, 413
managed-bean-name tag, 413
managed-bean-scope tag, 413

MANAGER access level, 675
managing concurrent document

updates, 227
Margins tab (Style properties

panel), 546
mask characters, 146
MaskConverter, 146
Math class, 201
media element, 589
memory utilization, reducing,

668-669
dataCache property, 670-672
HTTPJVMMaxHeapSize

parameter, 669
HTTPJVMMaxHeapSizeSet

parameter, 669
xsp.persistence.* properties,

669-670
merging XPage changes,

631-633
metaData resource element,

594-597
metadata resources, 106-107
Method Binding Editor, 471
methods. See specific methods
milliSecsParameter, 385-386
MIME Image Type Picker, 471
MinMaxPair interface, 450
MinMaxUIInput, 444-446
modifing fields, 174-175
Modify Field action, 236
modify field simple action,

174-175
ModulusSelfCheckValidator, 148
moreLink link, 417
multiline edit boxes, 66
Multiline Text, 471
multiple actions, executing,

184-186
multiple document data sources,

228-230
multiple views, 259-260
mxpd.data.ViewReadStore

custom widget, 397
mxpd.ui.ViewTree widget,

399-400
mxpd1 theme, 613-614
mxpd2 theme, 614

740 Index

N
namespace-uri tag, 433
namespaces, XML, 49
nanoTimeParameter, 385-386
Native and Custom Control

Custom Visualization Best
Practices’ article, 469

navigate property
(xp:eventHandler tag), 166

nested Repeat controls, 318-320
New Application dialog, 15-16,

424-425, 687-688
New File dialog, 431
New Java Class dialog, 429, 435,

456-457
New Java Interface dialog, 454
New menu commands

Application, 15
Theme, 577
XPage, 16

New NSF Component dialog,
534

New Replica dialog, 504
New Script Library dialog, 102
New Source Folder dialog,

426-427
New Style Sheet dialog, 103
New Theme button, 577
New Theme dialog, 578-579
New XPage dialog, 16, 35,

216-217, 225, 433
NO ACCESS access level, 676
NoAccessSignal exception, 703
Notes, history and development,

xiii-xvi
Notes client, XPages in

composite applications, 528
aggregating XPages

Discussion component
and Notes Google
widget, 533-536

creating components,
529-531

listening components,
531-532

online video about, 540
receiving and publishing

events, 536-539

debugging, 525-528
emulating Notes client

rendering, 296-300
explained, 495-497
Notes Discussion application

banner area, 507-508
bookmarks, 501-503
client versus web,

508-511
disableModified flag,

513-516
enableModified flag,

513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

Notes links versus Domino
links, 520-524

previewing design
elements, 18

security, 696
ACF (Active Content

Filtering), 699-702
Execution Control Lists

(ECLs), 697-699
Notes Discussion application

banner area, 507-508
bookmarks, 501-503
client versus web, 508-511
disableModified flag,

513-516
enableModified flag, 513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

NotesViewEntry class, 715
NotesXspDocument class,

201, 204
NotesXspViewEntry class, 201
NSF classloader bridge, 695
Number class, 201
Number Format Editor, 471
NumberConverter, 146

O
Object class, 201
object model (XPages), 186-187
Object Technology International

(OTI), 12
objects, JavaScript global

objects, 193. See also specific
objects

@Functions library, 205
DOM library, 205-206
Domino library, 197-198
global object maps, 193-196
runtime script library,

198-200
standard library, 200-201
XSP script library, 201-204

offline, working offline, 503-506
onComplete property

(xp:eventHandler tag), 167
onError property

(xp:eventHandler tag), 167
oneuiv2 theme, 605
onStart property

(xp:eventHandler tag), 167
Open menu commands

Favorite Bookmarks, 502
Replication and Sync, 505

Open Page action, 236
open page simple action,

175-176
opening pages, 175-176
OpenNTF, xv, 492
?OpenXPage command, 503
OTI (Object Technology

International), 12
outerStyleClass property,

563-565
Outline tool, 17

P
Package Explorer, adding to

Domino Designer perspective,
424-426

Pager property panel, 308,
321-323

pages, opening, 175-176
panels, 87-90

Index 741

paragraphs, hiding, 685-686
Param variable, 138
parameters, event parameters,

384-386
parameters property

(xp:eventHandler tag), 166
paramValues variable, 138
parentId property (Domino

document data source), 218
parentId property

(xp:dominoView tag), 251-252
parseVersion() method, 603
partial execution mode, 369,

654-668
partial refresh, 663-664

online resources, 369
performing with Partial

Refresh option, 369-376
scripting, 376-377

partialRefreshGet()
function, 377-381

partialRefreshPost()
function, 381-382

Partial Refresh option, 369-376
PartialRefreshField control,

373-375
partialRefreshGet() function,

377-381
partialRefreshGet() method, 211
partialRefreshPost() function,

381-382
partialRefreshPost() method, 211
pass-through text, changing, 191
Password Value, 471
paths, resource paths, 597

bidirectional resources,
605-606

Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598
user agent resources, 600-605
XPages Global directory,

598-599
patterns

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

Repeat control design pattern,
317-318

per-request state model
(JSF), 137

performance
and application development,

654-655
reducing CPU utilization, 658

GET- versus POST-based
requests, 658-659

immediate property,
661-663

partial execution mode,
665-668

partial refresh, 663-664
readonly property,

660-661
reducing memory utilization,

668-672
request processing lifecycle,

655-659
perspective (Domino Designer),

14-15
Platform Level themes, 569-570
POST-based HTTP requests,

656-659
postNewDocument property

(Domino document data
source), 218, 232-233

postOpenDocument property
(Domino document data
source), 218

postOpenView property
(xp:dominoView tag), 263-264

postSaveDocument property
(Domino document data
source), 218

presentation tier, 133, 141-142
Preview in Browser option, 168
Preview in Notes command

(Design menu), 18
Preview in Web Browser

command (Design menu), 20
PreviewBean class, 415-417
previewHandler XPage, 400
previewing XPage design

elements, 18-21

print() method, 526
print-to-console debugging

example, 526
printing view column data,

302-303
Process Validations phase (JSF

request processing lifecycle),
134

profile data, displaying with
Repeat control, 316-317

profile documents, 197-198,
405-412

Programmability Restrictions,
691-693

prompt() method, 211, 509
properties. See also specific

properties
custom control properties,

635
event handler properties,

164-167
Property Definitions, 337-339

Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

theme properties, 607-611
UI component extension

properties. See UI
component extensions,
creating

View Panel properties,
301-305

view properties, 301-305
XSP

complex properties, 54
complex values, 54-55
computed properties,

55-59
data binding, 59-60
simple properties, 52

Property Definitions, 337-340
Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

property element, 607-610

742 Index

property sheets, 17
Property tab (Property

Definitions), 340-343
property tag, 443
property-class tag, 443
property-extension tag, 443
property-name tag, 443
Public Access, 702-703
publish component property

simple action, 176-177
publish view column simple

action, 177-178
publishEvent() method, 211, 510
publishing

component properties,
176-177

events, 536-539
view columns, 177-178

Q-R
queryNewDocument property

(Domino document data
source), 218

queryOpenDocument property
(Domino document data
source), 219, 231

queryOpenView property
(xp:dominoView tag), 263-264

querySaveDocument property
(Domino document data
source), 219

radio button groups, 81-82
radio buttons, 80
@Random() function, 404
RCP (Rich Client Platform),

12, 497
READER access level, 676
reader access lists, 685
Readers field, 685
readMarksClass property, 566
readonly property, 660-661, 683
reducing

CPU utilization, 658
GET- versus POST-based

requests, 658-659

immediate property,
661-663

partial execution mode,
665-668

partial refresh, 663-664
readonly property,

660-661
memory utilization, 668-670

refresh, partial refresh, 663-664
refreshId property

(xp:eventHandler tag), 166
refreshing

with client-side JavaScript,
164

with client-side simple action,
162-163

with server-side JavaScript,
161

with server-side simple
action, 160-161

refreshMode property
(xp:eventHandler tag), 166

RegExp class, 201
registering backing beans, 486
registerModulePath() function,

396-398
Regular Expression Editor, 471
Release Line Picker, 471
reloadPage() method, 644
removing strings, 632-633
Render Response phase (JSF

request processing lifecycle),
135

render-markup tag, 468
rendered property

(xp:eventHandler tag),
166, 683

renderers, 423
creating, 434-437
UISpinnerRenderer, 477-483

rendering model (JSF), 137
RenderKit-specific client script

handlers, 165
renderkits, 137
reordering columns, 279-280
repeat control, 95-98, 274-276
Repeat control

design pattern, 317-318

displaying profile data with,
316-317

nesting, 318-320
rich text content in, 320-321

replaceItemValue() method, 405
Replication and Sync command

(Open menu), 505
Replication command (File

menu), 504-506
replyButton control, 352

multiple instances and
property groups, 355-357

onClick event, 353-355
request processing lifecycle

(JSF). See JSF (JavaServer
Faces), request processing
lifecycle

requestParamPrefix property
(Domino document data
source), 219, 229-230

requestParamPrefix property
(xp:dominoView tag), 260

requests, 656-659
requestScope, 193-196
requestScope variable, 138
RequiredValidator, 148
resetting Domino Designer

perspective, 14
resource bundle files

adding, 637-638
exporting, 628-629
importing, 630
localization within, 623
strings, 631-633

resource bundles, 104-105
resources

Dojo modules, 105
generic head resources, 106
metadata resources, 106-107
Notes/Domino Java API

classes, 714
resource bundles, 104-105
resource paths, 597

bidirectional resources,
605-606

Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598

Index 743

user agent resources,
600-605

XPages Global directory,
598-599

script libraries
creating, 101-103
xp:script tag, 102-103

security, 687
style sheets

creating, 103-104
xp:styleSheet tag, 104

theme resources. See themes,
resources

XSP. See XSP, resources
Resources XPage, 595-596
response documents, 170-171,

220-224
Restore View phase (JSF request

processing lifecycle), 134
restoreState() method, 440
restricted operation, 693-694
Rich Client Platform (RCP),

12, 497
rich text, 67, 238-242, 320-321
rowClasses property, 566
rowData expression, 306
Run as web user option, 405
runOnServer() method, 412
runtime script library, 198-200
runWithDocumentContext()

method, 406-407, 410-412

S
Save Data Sources action, 236
save data sources simple action,

179-180
Save dialog for dirty documents,

511-513
Save Document action, 236
save document simple action,

180-182
save property (xp:eventHandler

tag), 166
save() method, 197
saveLinksAs property (Domino

document data source),
219, 234

saveState() method, 440
saving

data sources, 179-180
documents, 180-182
state between requests, 440

scope property
Domino document data

source, 219, 234
xp:dominoView tag, 263

script libraries
creating, 101-103
localization, 640-643
xp:script tag, 102-103

script property (xp:eventHandler
tag), 167

script resource element, 592-593
scripting

@Functions, 402-405
agents, 405-412
client-side scripting, 125-127
client scripts, executing, 173
component tree, 187-192
Dojo integration. See Dojo

integration
in-memory documents,

405-412
JavaScript. See JavaScript
managed beans, 412-419
partial refresh scripting, 376

partialRefreshGet()
function, 377-381

partialRefreshPost()
function, 381-382

profile documents, 405-412
runtime script library,

198-200
scripts, executing, 173-174
ViewUtils script library,

188-189
XSP script library, 201-204

search property (xp:dominoView
tag), 249-251

searchMaxDocs property
(xp:dominoView tag), 251

section control, 100
sections, hiding, 685-687
security, 673-674

ACF (Active Content
Filtering), 699-702

ACLs (access control lists),
675-676, 689-690

application layer, 675-677
design element layer, 677

form access control
options, 678-679

view access control
options, 679-680

XPage access control,
680-684

document layer, 684
Authors and Readers

fields, 685
computeWithForm

property, 685
reader access list, 685
sections, paragraphs, and

layout regions, 685-686
Java security exceptions,

troubleshooting, 706-707
Notes client, 696-699
online resources, 687
Programmability

Restrictions, 691-693
Public Access, 702-703
restricted operation, 693-694
server layer, 674-675
sessionAsSigner sessions,

704-705
signatures, 689-691
workstation ECL layer,

686-687
XPages security checking,

695-696
security checking, 695-696
Select Element to Update

dialog, 371
selection controls

xp:checkBox tag, 79
xp:checkBoxGroup tag, 81
xp:comboBox tag, 76-79
xp:listBox tag, 74-76
xp:radio tag, 80
xp:radioGroup tag, 81-82

server data, including in client
JavaScript, 208-209

server layer (security), 674-675
Server Options, 369-371

744 Index

server-side actions, refreshing
with, 160-161

server-side JavaScript
global objects. See global

objects (JavaScript)
scripting component tree,

187-192
XPages object model,

186-187
server-side script libraries,

localization, 640-641
servers

Domino, xiii-xvi, 5
server layer of security,

674-675
servlets, sample HTTP servlet,

132-133
session authentication, 675
session global object, 196
session variable, 155
sessionAsSigner sessions,

704-705
sessionAsSigner variable, 155
sessionAsSignerWithFullAccess

sessions, 704
sessionAsSignerWithFullAccess

variable, 156
sessionScope, 193-196
sessionScope variable, 139
set component mode simple

action, 182-183
set value simple action, 183-184
setLocaleString() method, 644
setRendererType() method, 429
Shape Type Picker, 471
Show View dialog, 424-425
showSection() method, 211
Sign Agents or XPages to Run on

Behalf of the Invoker field, 693
Sign Agents to Run on Behalf of

Someone Else field, 692-693
Sign or Run Unrestricted

Methods and Operations
field, 692

Sign Script Libraries to Run on
Behalf of Someone Else
field, 693

signatures, 689-691

Simple Actions, 39-40,
118-125, 167

simple actions
action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175
open page, 175-176
publish component property,

176-177
publish view column,

177-178
refreshing with, 160-163
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

simple properties (XSP), 52
sorting columns, 270, 287,

290-292
SpinnerBean

creating, 485
registering, 486
xpSpinnerTest .xsp, 486-491

standard Dojo widgets,
integrating, 391-393

standard library, 200-201
standard user-interface

components (JSF), 148-151
Standard Widget Toolkit

(SWT), 131
Start Configuring Widgets

wizard, 531-532
startKeys property

(xp:dominoView tag), 256-257
startsWith() method, 211
state, saving between requests,

440

stateful runtime environment,
367

StateHolder, 440, 462
stateless runtime environment,

367
String class, 201
String Value, 471
strings

adding, 632
changing, 631-632
removing, 632-633

Style Class Editor, 471
style classes. See styles (CSS),

style classes
Style Editor, 471
Style properties panel, 545-547
style property

computed values, 552
extended style properties,

563-566
setting manually, 550-551
setting with Style properties

panel, 545-546
Styling XPage, 548-550
use by browser or client,

551-552
style sheets, 103-104
styleClass attribute, 472-473
styleClass property

advantages of, 553-554
computed values, 561-562
extended styleClass

properties, 563-566
stylingWithClasses XPage,

554-558
use by browser or client,

559-561
styles (CSS)

computed values, 552
extended style properties,

563-566
inline styling, 545
online resources, 545
setting manually, 550-551
setting with Style properties

panel, 545-547

Index 745

style classes
advantages of, 553-554
computed values, 561-562
defined, 552
extended styleClass

properties, 563-566
stylingWithClasses

XPage, 554-558
table of, 720-726
use by browser or client,

559-561
Styling XPage, 548-550
use by browser or client,

551-552
styleSheet resource element,

593-594
Styling XPage, 548-550
stylingWithClasses XPage,

554-558
Submit buttons, 37
submit property

(xp:eventHandler tag), 166
submitLatency property, 211
supporting CRUD operations,

36-42
SWT (Standard Widget Toolkit),

131

T
tab management in Notes client,

516-519
tabbed panel control, 99-100
table containers, 90-91
tables, Data Tables. See Data

Tables
tag-name tag, 433
tagField input control, 403
tags. See specific tags, 51, 597
testing

localized applications,
627-630

UI component extensions,
437-438, 483

creating backing bean,
483-485

creating final test
application, 486-491

look and feel, 491
registering backing bean,

486
text

pass-through text, changing,
191

rich text in Repeat controls,
320-321

Theme command (New menu),
577

ThemeControl, 145
themeId property, 611-613
themes

architecture and inheritance
inheritance levels,

585-587
Platform Level versus

Application Level
themes, 569-570

theme configurations
supported by XPages,
570-576

benefits of, 568-569
control definitions, 613-614
control properties

computing control
property values, 616

control property types,
619-621

explained, 614-616
setting properties on

XPages Core Controls,
616, 619

creating, 577-580
empty theme, 583-585
explained, 567-568
properties, 607-611
resources

bundle resource element,
591-592

dojoModule resource
element, 592

explained, 587-591
linkResource resource

element, 594
metaData resource

element, 594-597

script resource element,
592-593

styleSheet resource
element, 593-594

setting, 580-583
themeId, 611-613

Time Zone Picker, 471
time/date, displaying, 160

with client-side JavaScript,
164

with client-side simple action,
162-163

with server-side JavaScript,
161

with server-side simple
action, 160-161

TimeZone class, 199-200
toggleExpanded() method, 298
translators, working with,

628-630
trim() method, 211
troubleshooting XPages Java

security exceptions, 706-707

U
UI component extensions,

creating, 421-422
completing implementation,

473-477
extension class, 428-431
initial application, 424
Java source code folder,

426-427
Package Explorer, adding to

Domino Designer
perspective, 424-426

process overview, 422-424
properties, 438, 452

adding to components,
439-440

complex types, 439
inheriting xsp-config

properties, 441-446
specifying complex-type

properties, 453-463

746 Index

specifying simple
properties, 440-441

StateHolder, 440
renderer implementation,

434-437, 477-483
test application, 483
testing, 437-438

creating backing bean,
483-485

creating final test
application, 486-491

look and feel, 491
registering backing bean,

486
XPages Extensibility API

Developers Guide, 492
XPages Extension Library,

492
xsp-config file

base.xsp-config, creating,
446-449

completing, 464-467
creating, 431-432
designer-extension tags,

468-469
editor tag, 469-472
inheriting xsp-config

properties, 441-446
interface, creating,

450-452
styleClass attribute,

472-473
tags, 432-434

UICallback, 149
UIColumnEx, 149
UICommandButton, 149
UICommandEx2, 149
UIComponentBase class, 428
UIComponentTag, 149
UIDataColumn, 149
UIDataEx, 149
UIDataIterator, 149
UIDataPanelBase, 149
UIDateTimeHelper, 149
UIEventHandler, 149
UIFileuploadEx, 149
UIFormEx, 149
UIGraphicEx, 150

UIInclude, 150
UIIncludeComposite, 150
UIInputCheckbox, 150
UIInputEx, 150
UIInputRadio, 150
UIInputRichText, 150
UIInputText, 150
UIMessageEx, 150
UIMessagesEx, 150
UIOutputEx, 150
UIOutputLink, 150
UIOutputText, 150
UIPager, 150
UIPagerControl, 150
UIPanelEx, 150
UIPassThroughTag, 150
UIPassThroughText, 150
UIPlatformEvent, 150
UIRepeat, 150
UIRepeatContainer, 151
UIScriptCollector, 151
UISection, 151
UISelectItemEx, 151
UISelectItemsEx, 151
UISelectListbox, 151
UISelectManyEx, 151
UISelectOneEx, 151
UISpinner component extension,

423-424
initial application, 424
Java source code folder,

426-427
LargeSmallStepImpl.java,

458-461
LargeSmallStepInterface.

java, 455
MinMaxUIInput, 444-446
Package Explorer, adding to

Domino Designer
perspective, 424-426

properties, 438, 452-453
adding to components,

439-440
complex types, 439,

453-463
inheriting xsp-config

properties, 441-446
simple types, 440-441

StateHolder, 440
test application, 483
testing, 437-438

creating backing bean,
483-485

look and feel, 491
registering backing bean,

486
xpSpinnerTest .xsp,

486-491
UISpinner .java, 473-477
UISpinner extension class,

428-431
UISpinnerRenderer, 434-437,

477-483
xsp-config file.

See xsp-config file
uispinner.xsp-config, 451-452,

464-467
UISpinnerRenderer, 434-437,

477-483
UITabbedPanel, 151
UITabPanel, 151
UITypeAhead, 151
UIViewColumn, 151
UIViewColumnHeader, 151
UIViewPager, 151
UIViewPanel, 151
UIViewRootEx2, 151
UIViewTitle, 151
unreadMarksClass property, 566
Update Model Values phase (JSF

request processing lifecycle),
135

updates, managing concurrent
document updates, 227

uploading files, xp:fileUpload
tag, 84-85

URL parameter usage,
controlling, 220

user agent resources, 600-605
user interface component model

(JSF), 136, 143
user-interface development,

543-545
users

Anonymous, 690
client user experience, 8

Index 747

V
validateAllFields property, 210
Validation tab (Property

Definitions), 343-345
Validator interface, 146
validators, 110-118, 146-148
ValueBindingObject, 462
ValueBindingObjectImpl, 462
ValueHolder interface, 483
values, setting, 183-184
var property (Domino document

data source), 219
variable resolvers (JSF), 139-141
variables

JSF (JavaServer Faces)
default variables, 138-139

variable resolvers, 139-141
XPages default variables,

154-156
View Browser Configuration

button, 526
view control, 91-93
view global object, 196-197
view inspector outline, 192
View menu commands

Append Column, 285
Insert Column, 284

View Panel
categorized columns,

293-300
custom pagers, 321-323
decorating columns with

images, 284-287
displaying column data,

277-279
displaying document

hierarchy, 281
emulating Notes client

rendering, 296-300
features, 276-277
linking to documents,

281-284
properties, 301-305
reordering columns, 279-280
sorting columns, 287,

290-292
View Title components,

288-292

View variable, 139
Viewcontrol. See View Panel
ViewReadStore custom widget,

397
views, 26-31, 243-244

access control options,
679-680

caching view data, 265-269
columns, publishing, 177-178
compared to folders, 261
content modifiers, 256-259
creating, 31-36
data source filters. See data

sources, filters
Data Tables. See Data Tables
databaseName property,

245-246
Domino views, 62-63
examples, 273
multiple views, 259-260
properties, 301-305
Repeat control, 274-276

design pattern, 317-318
displaying profile data

with, 316-317
nesting, 318-320
rich text content in,

320-321
retrieving document

collection for, 262-264
sorting columns, 270
View Panel. See View Panel
XSP markup, 33-34

viewScope, 193-196
viewScope variable, 155
viewStyleClass property, 566
ViewTree widget, 399-400
ViewUtils script library, 188-189
Visible tab (Property

Definitions), 345
Vulcan, xv

W
WAS (WebSphere Application

Server), 496
web browsers, previewing XPage

design elements in, 18-21

websites, XPages resources,
727-728

WebSphere Application Server
(WAS), 496

Welcome screen (Domino
Designer), 13-14

widgets, integrating Dojo
widgets, 390

custom Dojo widgets,
393-398

generating custom
responses with XPages,
399-401

standard Dojo widgets,
391-393

wizards, Start Configuring
Widgets, 531-532

working offline, 503-506
workstation ECL layer

(security), 686-687

X
XFaces, 4, 129-130
xhrGet() function, 400
XHTML (Extensible Hypertext

Markup Language), 48-50
XML

comparing
to HTML, 47-48
to XHTML, 48-50

compound documents, 49
namespaces, 49
xmlns attribute, 49
XSP. See XSP

XML User Interface Language
(XUL), 496

xmlns attribute, 49
xp:acl tag, 680-683
xp:aclEntry tag, 681-682
xp:actionGroup tag, 120,

184-186
xp:br tag, 127
xp:button tag, 71-72
xp:changeDocumentMode tag,

118, 168-169
xp:checkBox tag, 79
xp:checkBoxGroup tag, 81

748 Index

xp:comboBox tag, 76-79
xp:confirm tag, 119, 169-170
xp:convertDateTime tag, 107
xp:convertList tag, 107
xp:convertMask tag, 107
xp:convertNumber tag, 107
xp:createResponse tag, 119,

170-171
xp:customConverter tag, 107
xp:customValidator tag, 110
xp:dataContext tag, 63
xp:dataTable tag, 94-95
xp:dataTimeHelper tag, 68-69
xp:deleteDocument tag, 119, 171
xp:deleteSelectedDocuments tag,

119, 172
xp:dojoModule tag, 105,

388-389
xp:dominoDocument tag, 61-62,

216
xp:dominoDocument tag. See

also documents, 216
xp:dominoView tag. See views
xp:eventHandler tag, 70-71

example to display current
date/time, 160

properties, 164-167
refreshing, 160-164

xp:executeClientScript tag, 119,
163, 173

xp:executeScript tag, 119,
173-174

xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:handler tag, 126
xp:image tag, 84
xp:include tag, 99
xp:inputRichText tag, 67
xp:inputText tag, 65-66
xp:label tag, 83
xp:link tag, 72-73
xp:listBox tag, 74-76
xp:metaData tag, 106
xp:modifyField tag, 119,

174-175
xp:openPage tag, 119, 175-176
xp:pager tag, 308-311, 321-323

xp:panel tag, 87-90
xp:paragraph tag, 127
xp:publishValue tag, 119,

176-177
xp:publishViewColumn tag, 119,

177-178
xp:radio tag, 80
xp:radioGroup tag, 81-82
xp:repeat tag, 95-98
xp:save tag, 120, 179-180
xp:saveDocument tag, 120,

180-182
xp:script tag, 102-103
xp:scriptBlock tag, 125
xp:section tag, 100
xp:setComponentMode tag, 120,

182-183
xp:setValue tag, 120, 183-184
xp:span tag, 127
xp:styleSheet tag, 104
xp:tabbedPanel tag, 99-100
xp:table tag, 90-91
xp:text tag, 83-84
xp:this.facets tag, 308
xp:validateConstraint tag, 110
xp:validateDateTimeRange

tag, 110
xp:validateDoubleRange

tag, 110
xp:validateExpression tag, 110
xp:validateLength tag, 110
xp:validateLongRange tag, 110
xp:validateModulusSelfCheck

tag, 110
xp:validateRequired tag, 110
xp:view tag, 51, 91-93
xp:viewPanel tag. See View

Panel, 284
XPage command (New menu),

16
XPages

access control, 680-684
design elements, 46-47

adding controls to, 21-22
creating, 16-18
previewing, 18-21
XML. See XML, 47-50
XSP. See XSP

extensibility. See UI
component extensions,
creating

history and development,
xiv-xv

locales in, 644-647
in Notes client. See Notes

client, XPages in
object model, 186-187
security checking, 695-696
website resources, 727-728

XPages application development.
See application development

XPages Design Elements tool, 16
XPages development paradigm,

5-7
XPages Editor, 16
XPages Extensibility API

Developers Guide, 492
XPages Extension Library, 492
XPages Global directory,

598-599
XPages in the Notes client

(XPiNC), 7
XPages Resource Servlet,

accessing resource paths with
bidirectional resources,

605-606
Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598
user agent resources, 600-605
XPages Global directory,

598-599
XPD (Lotus Expeditor), 496
XPiNC (XPages in the Notes

client), feature scope, 7
xpQuickTest, 438
xpSpinnerTest .xsp, 486-491
XSP

CDATA (character data), 55
client-side scripting, 125-127
command control tags, 71-73
complex properties, 54
complex values, 54-55
computed properties, 55-59

Index 749

container tags
xp:dataTable tag, 94-95
xp:include tag, 99
xp:panel tag, 87-90
xp:repeat tag, 95-98
xp:section tag, 100
xp:tabbedPanel tag,

99-100
xp:table tag, 90-91
xp:view tag, 91-93

control tags
explained, 64-65
xp:dataTimeHelper tag,

68-69
xp:inputRichText tag, 67
xp:inputText tag, 65-66

converters, 107-109
CSS (Cascading Style Sheets)

CSS files, 719-720
style class reference,

720-726
data binding, 59-60
data source tags

xp:dataContext tag, 63
xp:dominoDocument tag,

61-62
xp:dominoView tag,

62-63
Data Table markup, 309-311
display control tags

xp:fileDownload tag,
86-87

xp:fileUpload tag, 84-85
xp:image tag, 84
xp:label tag, 83
xp:text tag, 83-84

explained, 50-51
HTML tags, 127-128
markup, 33-34, 38
resources

Dojo modules, 105
generic head resources,

106
metadata resources,

106-107
Notes/Domino Java API

classes, 714
resource bundles, 104-105

script libraries, 101-103
style sheets, 103-104
tag reference guide,

711-712
XSP Java classes, 712-714
XSP JavaScript pseudo

classes, 715-716
selection control tags

xp:checkBox tag, 79
xp:checkBoxGroup

tag, 81
xp:comboBox tag, 76-79
xp:listBox tag, 74-76
xp:radio tag, 80
xp:radioGroup tag, 81-82

simple actions, 118-125
simple properties, 52
tags. See individual tag name
validators, 110-118
XSP client JavaScript library,

210-211
XSP Document Action Picker,

472
XSP Page Picker, 472
XSP script library, 201-204
xsp-config file

completing, 464-467
creating, 431-432
creating base.xsp-config,

446-449
creating interface, 450-452
defined, 422
designer-extension tags,

468-469
editor tag, 469-472
inheriting xsp-config

properties, 441-446
styleClass attribute, 472-473
tags, 432-434

xsp.css file, 720
xsp.persistence.* properties,

669-670
xsp.properties file, 581-583
XSPContext class, 201
xspFF.css file, 720
xspIE.css file, 720
xspIE06.css file, 720
xspIE78.css file, 720

xspIERTL.css file, 720
xspLTR.css file, 720
xspRCP.css file, 720
xspRTL.css file, 720
xspSF.css file, 720
XSPUrl class, 201-203
XSPUserAgent class, 201-203,

601-603
XUL (XML User Interface

Language), 496
XULRunner, 496-497

This could be the best advice you
get all day

➢ Select from hundreds of technical deliverables
➢ Purchase bound hardcopy Redbooks publications
➢ Sign up for our workshops
➢ Keep informed by subscribing to our weekly newsletter
➢ See how you can become a published author

We can also develop deliverables for your business. To find out how we can work

together, send a note today to: redbooks@us.ibm.com

See a sample of what we have to offer

Get free downloads

See how easy it is ...
ibm.com/redbooks

The IBM® International Technical Support Organization (ITSO) develops and

delivers high-quality technical materials and education for IT and business

professionals.

These value-add deliverables are IBM Redbooks® publications, Redpapers™

and workshops that can help you implement and use IBM products and

solutions on today’s leading platforms and operating environments.

